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Abstract

Recent advances in large language models have
highlighted the critical need for precise con-
trol over model outputs through predefined con-
straints. While existing methods attempt to
achieve this through either direct instruction-
response synthesis or preferential response op-
timization, they often struggle with constraint
understanding and adaptation. This limitation
becomes particularly evident when handling
fine-grained constraints, leading to either hal-
lucination or brittle performance. We intro-
duce Generative Adversarial Policy Optimiza-
tion (GAPO), a novel framework that com-
bines GAN-based training dynamics with an
encoder-only reward model to progressively
learn and adapt to increasingly complex con-
straints. GAPO leverages adversarial train-
ing to automatically generate training sam-
ples of varying difficulty while utilizing the
encoder-only architecture to better capture
prompt-response relationships. Extensive ex-
periments demonstrate GAPO’s superior per-
formance across multiple benchmarks, partic-
ularly in scenarios requiring fine-grained con-
straint handling, where it significantly outper-
forms existing methods like PPO, DPO, and
KTO. Our results suggest that GAPO’s unique
approach to preferential prompt learning of-
fers a more robust and effective solution for
controlling LLM outputs. Code is avaliable in
https://github.com/MikeGu721/GAPO.

1 Introduction

The advent of large-scale models has induced sig-
nificant transformations in practical applications,
enabling models to comprehend a broad spectrum
of human instructions, ranging from casual dia-
logue to intricate problem-solving tasks (Kaplan
et al., 2020; Srivastava et al., 2022). As large
language models (LLMs) advance in capability,
guiding their outputs to fulfill specific require-
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Figure 1: Illustration of the procedural differences be-
tween Preferential Response and Preferential Prompt,
emphasizing their distinct utilization of prompts and
responses.

ments—whether concerning format, style, or con-
tent accuracy—becomes increasingly critical (Yang
et al., 2024; Team, 2024; Bubeck et al., 2023). This
is particularly vital in domains where compliance
with constraints is paramount, such as legal docu-
ment generation, medical record processing, and
workflow automation.

Ensuring that LLMs adhere to predefined con-
straints during text generation is essential (Zhou
et al., 2023a; Xu et al., 2023; He et al., 2024).
One effective strategy for achieving this is train-
ing models to generate responses within specified
boundaries at the data level (Ouyang et al., 2022;
Keskar et al., 2019; Zhou et al., 2023b). Data-
level control is typically realized through two pri-
mary methods. The first method directly synthe-
sizes instruction-response pairs that satisfy the con-
straints, offering clear examples of compliant out-
puts (Xu et al., 2023; Wang et al., 2022). The
second method leverages preferential response data
to adjust the probability distribution, thereby in-
creasing the likelihood that the model produces
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an expected response rather than an unexpected
one (Rafailov et al., 2023; Schulman et al., 2017;
Ethayarajh et al., 2024; Meng et al., 2024).

The first approach often leads to the phe-
nomenon of “hallucination”, where the model,
having learned only what constitutes a correct re-
sponse, may resort to shortcuts that result in inac-
curate or fabricated outputs. The second method
is more commonly employed, as preferential re-
sponse data allows the model to more precisely
align its output with the desired response based
on specific prompts. However, neither approach
effectively addresses the fundamental challenge
of constraint understanding. The first method fo-
cuses solely on correct outputs without teaching
the model to comprehend the constraints. In con-
trast, the second method adjusts output probabil-
ities without explicitly training the model to rec-
ognize and interpret the constraints in the prompts.
This limitation in constraint understanding can lead
to brittle performance when the model encounters
novel or slightly modified constraints.

A straightforward approach to enhance con-
straint understanding would be directly modify-
ing the constraints within prompts, allowing mod-
els to learn fine-grained differences between con-
straints. As shown in Figure 1, this method of
prompt modification is simple to implement and
provides rich preference data that captures subtle
variations in constraints. However, this approach
presents significant optimization challenges for cur-
rent mainstream methods. For decoder-only archi-
tectures (Subakan et al., 2021), which dominate
current large language models (Bubeck et al., 2023;
Yang et al., 2024), their unidirectional attention
mechanism fundamentally limits their ability to
detect discrepancies between prompts and given re-
sponses. Furthermore, existing optimization meth-
ods typically require manual intervention to con-
struct intermediate training samples that bridge the
complexity gap between different constraint pat-
terns, introducing additional computational and en-
gineering overhead.

In this paper, we introduce the Generative
Adversarial Policy Optimization (GAPO), which
leverages Generative Adversarial Network
(GAN) (Goodfellow et al., 2020; Aggarwal et al.,
2021) to adaptively generate training samples
with progressive difficulty while utilizing an
encoder-only model to guide the generator’s opti-
mization through Proximal Policy Optimization
(PPO) (Schulman et al., 2017). A key innovation

of GAPO lies in its seamless integration of GAN
and PPO frameworks. While utilizing the same
number of preference samples as other standard
preference optimization methods, GAPO has
superior performance stability and constraint
adherence. During the cold-start phase, the
algorithm initializes an encoder-only Reward
Model to learn prompt-response correspondences,
subsequently guiding the generator’s training.
Through this adversarial process, the generator
continuously evolves to produce increasingly
sophisticated outputs while the Reward Model
learns to discriminate between valid and invalid
responses with greater precision.

The advantages of GAPO are summarized as fol-
lows: 1. Using an encoder-only Reward Model in
GAPO effectively enhances the exploitation of pref-
erential prompt data, enabling the language model
to develop a deeper understanding of the intricate
details within the prompt. 2. GAPO significantly
simplifies the training process of the Reward Model
in PPO. Traditionally, the performance of the Re-
ward Model needed to be ensured before training
an effective generator in PPO. In contrast, within
the GAPO framework, the Reward Model and gen-
erator undergo iterative automated training, greatly
reducing the complexity of Reward Model training.
3. According to our experiments, GAPO outper-
forms other baseline training methods, like PPO,
DPO, KTO, and ORPO, in learning from prefer-
ential prompt data. It also demonstrates superior
performance in learning from general preferential
response data. Thus, GAPO can be considered a
more effective approach for enabling models to
learn from preference data.

2 Related Work

2.1 Reinforcement Learning with Human
Feedback

Reinforcement Learning from Human Feedback
(RLHF) (Bai et al., 2022; Christiano et al., 2017;
Ziegler et al., 2019) has emerged as a crucial
approach for aligning Large Language Models
(LLMs) with human values and expectations, ad-
dressing the limitations of traditional supervised
fine-tuning (SFT) which can lead to increased hal-
lucinations despite improving preferred outputs.
Classical RLHF algorithms, such as Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017),
achieve this alignment through a specialized re-
ward model for evaluation (Williams, 1992). In
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Figure 2: The GAPO framework encompasses two distinct tuning phases. The initial phase consists of a warm-
up period, during which the Reward Model is trained utilizing existing preference data. The subsequent phase
implements adversarial training through a dual mechanism: the Generator is updated based on feedback from the
Reward Model. The Reward Model undergoes training using a combination of Generator-produced data and existing
preference data.

contrast, more recent approaches like Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023).
Its variants, including SimPO (Meng et al., 2024),
IPO (Azar et al., 2024), and KTO (Ethayarajh et al.,
2024) streamline the process by directly optimizing
human preferences, thereby eliminating the need
for a separate reward model and reducing compu-
tational complexity and bias (Zheng et al., 2024).
However, these approaches face notable challenges:
RLHF generally requires substantial-high-quality
feedback data with detailed labeling (Bai et al.,
2022), and DPO training exhibits vulnerability to
overfitting, leading to poor generalization on novel
data (Hu et al., 2024), highlighting the ongoing
need for improvements in model alignment tech-
niques. However, these works face significant chal-
lenges in terms of data requirements and model
stability. In contrast, GAPO addresses these limita-
tions through its innovative GAN-PPO integration
and encoder-only Reward Model, which enables
more efficient training with better stability and gen-
eralization capabilities.

2.2 Constraint Following Augmentation

Prior work in constrained text generation can
be broadly categorized into three main ap-
proaches (Zhang et al., 2022). The first cate-
gory encompasses search-based methods, such
as Constrained Beam Search (CBS) (Anderson
et al., 2017) and its variants like Grid Beam Search
(GBS) (Hokamp and Liu, 2017) and Dynamic
Beam Allocation (DBA) (Post and Vilar, 2018),
which enforce lexical constraints by modifying the
search space, though often at the cost of generation
speed and quality. The second category consists
of score-based sampling methods that transform
constraints into differentiable score functions (Liu

et al., 2022), offering greater flexibility in handling
diverse constraint types but lacking guaranteed con-
straint satisfaction and suffering from slower gener-
ation speeds (Qin et al., 2022). The third category
focuses on model-centric approaches, including
specialized training methods and large language
models like CTRL (Keskar et al., 2019) and In-
structCTG (Zhou et al., 2023b), which incorporate
constraints through pre-training or natural language
instructions. Recent advancements have explored
multiple directions: multi-attribute controlled text
generation through prefix tuning (Li and Liang,
2021); latent space manipulation techniques such
as MacLaSa (Ding et al., 2023) and MAGIC (Liu
et al., 2024), where the latter employs counterfac-
tual feature vectors to disentangle attributes; regu-
lar expression-based constraint generation through
REI (Zheng et al., 2023); and the development of
specialized datasets (Zhang et al., 2023) to improve
control ability while maintaining text quality. How-
ever, existing model-centric approaches often rely
heavily on specialized pre-training or require heavy
manual engineering to incorporate constraints in
instructions and still suffer from unstable training
performance. GAPO addresses these limitations
through more automated and efficient constraint
learning while providing better constraint under-
standing and adherence without requiring exten-
sive specialized pre-training or manual instruction
engineering.

3 Generative Adversarial Policy
Optimization

3.1 Preliminary of Constrained Generation

Given an input prompt P = (T , C), where
T denotes a free-text description and C =
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Symbol Definition

T Free-text description component
C Constraint set
P Input prompt (T , C)
R Generated text output
πθ(t|c) Generator that produces next token t given context c
πref Reference generator for comparison
L(R,Ci) Constraint satisfaction function
D Training dataset
D′ Augmented dataset
R(c, t) Reward model evaluating token t in context c
V π(c) Expected future rewards given context c
Qπ(c, t) Expected cumulative reward for token t in context c
R̂ Generator-produced text output

Table 1: All definitions used in the GAPO section.

{C1, C2, . . . , Cn} represents a set of constraints,
our objective is to generate an output R that satis-
fies all constraints in C. We formulate this as an
expectation maximization problem:

E(πθ) = ER∼πθ(P )


∑

Ci∈C
L(R,Ci)


 , (1)

where πθ represents the generator parameterized
by θ. The constraint satisfaction function L(R,Ci)
is defined as:

L(R,Ci) =

{
1 if R |= Ci,

0 otherwise.
(2)

3.2 Constraint-Aware Data Augmentation
We propose a data augmentation method for
constraint-aware learning. Given a dataset D =
{(Pi, Ri)}Ni=1, where each prompt Pi = (Ti, Ci),
we construct an augmented dataset through con-
straint perturbation. For each original constraint
set Ci, we generate a rejected constraint set Creject

i

through one of the following operations:
1) Constraint Modification: For a randomly

selected constraint Ci,j ∈ Ci, we modify it to create
C

reject
i,j such that it becomes incompatible with the

original response Ri:

C
reject
i,j = fmodify(Ci,j), where L(Ri, C

reject
i,j ) = 0

2) Constraint Insertion: We introduce an addi-
tional constraint Creject

i,n+1 that conflicts with existing
constraints:

Creject
i = Ci∪{Creject

i,n+1}, where L(Ri, C
reject
i,n+1) = 0

The augmented dataset is thus constructed as
follows:

D′ = {(P accept
i , Ri), (P

reject
i , Ri)}Ni=1, (3)

Algorithm 1 Generative Adversarial Policy Opti-
mization (GAPO)
Require: Generator πθ , Reference generator πref, Reward

model R(c, t) with value function V π(c), Training
dataset D = {(Pi, Ri)}Ni=1, Adversarial Steps T ,
Warmup Steps Twarmup

Ensure: Optimized generator πθ

1: // Warmup Phase
2: for t = 1 to Twarmup do
3: Sample batch (Pi, Ri) from D
4: Train R(c, t) with balanced sampling on

{(P acc
i , Ri, 1), (P

rej
i , Ri, 0)}

5: Update R(c, t) with BCE loss: LR(θ) =
−E(c,t,y)∼D′ [y logR(c, t)+(1−y) log(1−R(c, t))]

6: end for

7: // Adversarial Training Phase
8: for t = Twarmup + 1 to Twarmup + T do
9: if t mod 2 = 1 then

10: Sample batch (Pi, Ri) from D

11: Generate R̂i = πθ(Pi)
12: Train R(c, t) with balanced sampling on

{(P acc
i , Ri, 1), (P

rej
i , Ri, 0), (P

acc
i , R̂i, 0)}

13: Update R(c, t) using BCE loss LR(θ)
14: else
15: Update πθ with policy gradient: LG(θ) =

En[
πθ(tn|cn)
πref(tn|cn)

An]

16: where An = Qπ(cn, tn)− V π(cn)
17: end if
18: end for
19: return πθ

where P
accept
i = (Ti, Ci) and P

reject
i = (Ti, Creject

i ).
This augmentation strategy ensures that:

∃Creject
i,j ∈ Creject

i : L(Ri, C
reject
i,j ) = 0. (4)

3.3 Adversarial Learning Framework
We propose an adversarial learning framework
comprising a generator πθ(t|c) that produces the
next token t given the current context c, a reward
model R(c, t) evaluating the quality of generated
tokens, and a value function V π(c) estimating ex-
pected future rewards. The reward model is trained
on the augmented dataset:

D′ =
{
(P acc

i , Ri, 1),

(P
rej
i , Ri, 0), (5)

(Pi, R̂i, 0)
}
.

where R̂i represents the text response generated
by πθ based on prompt Pi. The reward model
optimizes the cross-entropy loss:

LR(θ) =− E(c,t,y)∼D′

[
y logR(c, t)

+ (1− y) log(1−R(c, t))

]
. (6)
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Name #Product #PV-Pair #Sample #Token

PDD-Raw 201 93,616 - -
PDD-Train 201 76,913 26,419 17,541,881
PDD-Rej-Train 201 66,838 26,419 14,983,806
PDD-Test 201 49,470 6,605 4,212,440
PDD-Rej-Test 201 31,280 6,605 3,629,544

Table 2: PDD-Raw contains only product informa-
tion and available descriptions without prompt-response
pairs, making it unsuitable for direct training. Rej rep-
resents mismatched prompt-response pairs. Train and
Test denote the training and testing datasets, respec-
tively.

Name #Type #Sample #Token

IFEval-Response 9 540 355,199
IFEval-Train 9 432 143,151
IFEval-Rej-Train 9 432 141,963
IFEval-Test 9 108 -

Table 3: IFEval-Response consists of GPT-4o re-
sponses provided by the IFEval benchmark in their of-
ficial version. Train comprises the prompt-response
pairs used for training, while Rej contains mismatched
prompt-response pairs. As IFEval incorporates its own
evaluation framework, the Test set does not include
prompt-response pairs.

The generator’s objective function is formulated
as:

LG(θ) = En

[
πθ(tn|cn)
πref(tn|cn)

An

]
, (7)

where n indexes the token position, and the advan-
tage function An is defined as:

An = Qπ(cn, tn)− V π(cn). (8)

Moreover, the action-value function is:

Qπ(cn, tn) = R(cn, tn) + γEcn+1∼πθ
[V π(cn+1)].

(9)
The value function is optimized by minimizing

the mean squared error:

LV (θ) = Ec

[
(V π(c)−R(c, t))2

]
. (10)

4 Experiment Setup

4.1 Baselines

The experiments are grouped into two categories
based on the role-playing methods used:

4.1.1 Prompt-Based Methods
(1) Direct Generation: The model generates con-
tent directly without role-playing instructions, eval-
uating its inherent capabilities and biases. (2)

Chain-of-Thought (CoT): (Kojima et al., 2022)
The model engages in reasoning before generating
the output, improving coherence and transparency.
(3) Plan-and-Solve (Plan-N-Solve): (Wang et al.,
2023) The model plans its response before generat-
ing content, leading to more organized solutions.

4.1.2 Training-Based Methods
(4) Supervised Fine-Tuning (SFT): Fine-tunes
the model on a role-specific dataset to im-
prove performance in role-playing scenarios. (5)
DPO: (Rafailov et al., 2023) Directly optimizes for
annotated responses, minimizing the likelihood of
undesired outputs. (6) KTO: (Ethayarajh et al.,
2024) Uses prospect theory to optimize model
outputs, outperforming preference-based methods.
(7) SimPO: (Meng et al., 2024) Aligns the re-
ward function with model generation, simplify-
ing optimization without reference models. (8)
ORPO: (Hong et al., 2024) Optimize models with
preferential response data but without reference
model. (9) PPO: (Schulman et al., 2017) Opti-
mizes the model using a pre-trained reward model
that remains fixed throughout the training process
(10) GAPO (Ours): Optimize models with reward
criteria become progressively more demanding as
training advances.

4.2 Training Dataset

Product Description Dataset (PDD) is a novel
dataset designed for generating product descrip-
tions in this paper. The dataset encompasses 201
product categories and contains 93,616 property-
value pairs. Models trained on this dataset are
tasked with generating coherent product descrip-
tions using only the provided property-value pairs,
with two key constraints: they must (1) incorporate
all given facts while (2) avoid the introduction of
any additional information not present in the source
data. For detailed information regarding the dataset
construction methodology, please refer to Sec. A.2
in the Appendix, while comprehensive statistical
analyses are presented in Tab. 2.

IFEval is a benchmark designed to evaluate
Large Language Models’ instruction-following ca-
pabilities by enabling a standardized and automated
assessment methodology (Zhou et al., 2023a).
Building upon the existing dataset, we utilized GPT-
4 (Achiam et al., 2023) to generate additional data
samples that maintain similar constraint conditions
while exhibiting low similarity to the original en-
tries. Please refer to Sec. A.1 in the Appendix for a
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Model Prompt Punctuation Format Length Content Combination ChangeCase Startend Keywords Language All

Qwen-2.5-7B Naive Prompt 17.6 88.1 42.3 66.7 20.0 62.5 66.7 52.6 90.9 57.8
Qwen-2.5-7B CoT 23.5 78.6 53.8 33.3 13.3 62.5 66.7 57.9 100.0 57.8
Qwen-2.5-7B Plan-N-Solve 23.5 81.0 38.5 66.7 0.0 68.8 44.4 63.2 90.9 56.1

Qwen-2.5-7B + SFT Naive Prompt 100.0 92.9 57.7 83.3 26.7 75.0 88.9 81.6 90.9 78.3
Qwen-2.5-7B + DPO Naive Prompt 17.6 45.2 26.9 16.7 6.7 31.2 11.1 42.1 63.6 33.3
Qwen-2.5-7B + KTO Naive Prompt 11.8 71.4 38.5 50.0 6.7 50.0 44.4 76.3 100.0 54.4
Qwen-2.5-7B + SimPO Naive Prompt 11.8 45.2 23.1 16.7 0.0 31.2 0.0 39.5 63.6 30.6
Qwen-2.5-7B + ORPO Naive Prompt 5.9 40.5 34.6 33.3 20.0 25.0 33.3 55.3 9.1 33.9
Qwen-2.5-7B + PPO Naive Prompt 94.1 90.5 50.0 66.7 33.3 62.5 88.9 84.2 90.9 75.6
Qwen-2.5-7B + GAPO Naive Prompt 100.0 95.2 57.7 83.3 46.7 75.0 100.0 92.1 100.0 83.9

Table 4: Performance comparison across different categories on IFEval Benchmark.

Model Prompt
Reward Model LLM-as-a-Judge

HumanLongFormer-
Base-40963k

LongFormer-
Large-40963k

GPT-4o GPT3.5-turbo

Qwen2.5-7B Naive Prompt 61.4 52.3 75.4 73.7 45
Qwen2.5-7B CoT 58.4 50.5 71.5 72.6 43
Qwen2.5-7B Plan-N-Solve 62.8 53.7 72.5 78.1 51

Qwen2.5-7B + SFT Naive Prompt 70.1 59.8 82.6 80.3 60
Qwen2.5-7B + DPO Naive Prompt 12.5 11.3 5.4 9.6 0
Qwen2.5-7B + KTO Naive Prompt 64.5 57.1 72.6 74.8 49
Qwen2.5-7B + SimPO Naive Prompt 5.3 7.6 2.9 3.8 0
Qwen2.5-7B + ORPO Naive Prompt 21.4 20.8 7.5 8.2 0
Qwen2.5-7B + PPO Naive Prompt 89.4 88.5 89.7 86.4 81
Qwen2.5-7B + GAPO Naive Prompt 95.4 94.3 90.2 90.0 89

Table 5: Comprehensive model performance comparison on PDD dataset. 3k represents the model is pre-tuned on
3,000 preferential data to give evaluation scores.

detailed description. The statistical breakdown of
this expanded dataset is detailed in Tab. 3.

4.3 Evaluation Method

We utilize the IFEval dataset’s built-in evaluation
methodology to maintain consistency with existing
research in this domain.

For the PDD, we employ three evaluation meth-
ods: (1) The Reward Models act as automated
evaluators during our adversarial training process.
Specifically, we use Longformer models (Beltagy
et al., 2020) with an input length capacity of 4096
tokens, which has been tuning on 3,000 preference
data pairs to generate evaluation scores. (2) GPT-
4o functions as an external evaluation model to
provide independent assessment. (3) human eval-
uators assess the quality of generated descriptions
based on predefined criteria.

5 Experiment

5.1 Overall Result

As shown in Tab. 4, while all preference optimiza-
tion methods maintain basic functionality, their
effectiveness varies significantly under different
constraint types. This is evidenced by the stark per-
formance gap: GAPO and PPO achieve strong over-

all performance (83.9% and 75.6% respectively),
while methods like DPO, SimPO, and ORPO strug-
gle considerably with scores of 33.3%, 30.6%,
and 33.9% - particularly in handling complex con-
straints like combinations (6.7%, 0%, and 20.0% re-
spectively) and length requirements (26.9%, 23.1%,
and 34.6%).

As shown in Tab. 5, when facing more nuanced
preferential prompts that require a fine-grained un-
derstanding of constraints, most traditional opti-
mization methods experience catastrophic failure,
while encoder-based approaches maintain robust
performance. The collapse of conventional meth-
ods is dramatic: DPO, SimPO, and ORPO achieve
near-zero performance on both automated metrics
(5.4%, 2.9%, and 7.5% on GPT-4o) and human
evaluation (all 0%). In contrast, encoder-based
methods like GAPO and PPO demonstrate strong
capability with GPT-4o scores of 90.2% and 89.7%,
and human evaluation scores of 89% and 81% re-
spectively.

5.2 Effectiveness of Preferential Prompt vs.
Preferential Response

As shown in Tab. 6, training with Preferential
Prompt consistently outperforms Preferential Re-
sponse across all experimental configurations with
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Model Reward Model #Training Samples #Token PDD Score ∆No Train ∆PR vs. PP

No Training
Qwen-2.5-7B - - - 61.4 - -
No Preferential Data
Qwen-2.5-7B + SFT - 3,300 6,561,531 70.1 + 8.3 -
Training w/ Preferential Response (PR)
Qwen-2.5-7B + PPO Qwen-2.5-7B 2,000 4,295,575 61.8 + 0.4 - 6.7
Qwen-2.5-7B + PPO Qwen-2.5-7B 4,000 8,660,218 72.4 + 11.0 - 2.7
Qwen-2.5-7B + PPO Qwen-2.5-7B 6,600 13,243,796 78.5 + 17.1 - 10.9
Qwen-2.5-7B + GAPO Longformer-0.4B 2,000 4,295,575 63.3 + 1.9 - 7.3
Qwen-2.5-7B + GAPO Longformer-0.4B 4,000 8,660,218 74.4 + 13.0 - 6.9
Qwen-2.5-7B + GAPO Longformer-0.4B 6,600 13,243,796 82.9 + 21.5 - 12.5
Training w/ Preferential Prompt (PP)
Qwen-2.5-7B + PPO Qwen-2.5-7B 2,000 4,219,814 68.5 + 7.1 + 6.7
Qwen-2.5-7B + PPO Qwen-2.5-7B 4,000 8,506,194 75.1 + 13.7 + 2.7
Qwen-2.5-7B + PPO Qwen-2.5-7B 6,600 12,984,601 89.4 + 28.0 + 10.9
Qwen-2.5-7B + GAPO Longformer-0.4B 2,000 4,219,814 70.6 + 9.2 + 7.3
Qwen-2.5-7B + GAPO Longformer-0.4B 4,000 8,506,194 81.3 + 19.9 + 6.9
Qwen-2.5-7B + GAPO Longformer-0.4B 6,600 12,984,601 95.4 + 34.0 + 12.5

Table 6: Comparative Analysis of using Preferential Response and Preferential Prompt. The PDD Performance
metric represents the model’s generative output on the PDD dataset, as evaluated using a fine-tuned LongFormer-
Large-4096 Reward model architecture. The IFEval Performance metric indicates the model’s comprehensive
performance across the IFEval benchmark framework.

Figure 3: Analysis of Correlative Factors Influencing GAPO’s Performance on PDD and IFEval Benchmarks. The
analysis utilizes 300 randomly sampled instances from the PDD test set and the complete IFEval test set with 108
samples for comprehensive evaluation.

Figure 4: Detailed Performance Analysis Across Se-
quential Adversarial Training Stages. W indicates the
warmup phase, and A represents the adversarial phase
with alternating training between Generator and Reward
Model components.

both optimization methods. With 6,600 training
samples, Preferential Prompt with GAPO achieves
95.4% PDD Performance, surpassing its Preferen-
tial Response counterpart by 12.5 percentage points
and the supervised fine-tuning baseline by 34.0
percentage points. This performance advantage
holds across different sample sizes, with Prefer-
ential Prompt showing improvements of 7.3 and
6.9 percentage points at 2,000 and 4,000 samples,
respectively.

5.3 Training Efficiency Analysis

Tab. 6 also demonstrates GAPO’s superior opti-
mization capability and efficient utilization of train-
ing data. In Preferential Prompt training, GAPO
demonstrates remarkable scaling efficiency, achiev-
ing a 24.8 percentage point improvement (70.6%
to 95.4%) when increasing training tokens from
4.2M to 13.0M, while PPO shows a more modest
improvement of 20.9 percentage points (68.5% to
89.4%). A similar pattern is observed in Prefer-
ential Response training, where GAPO achieves a
19.6 percentage point improvement compared to
PPO’s 16.7 percentage points.

5.4 Detail Analysis on Model Performance

As shown in Fig. 3 Analysis across various dimen-
sions of prompt complexity reveals several key
findings. First, GAPO maintains consistent per-
formance even as prompt length increases, show-
ing only minimal degradation compared to baseline
methods. Second, performance scales well with the
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Prompt:  
Generate a description of a pet backpack, 
approximately 50 words. You need to use all the 
information from the "## Factual Information" 
section to generate the description, which should 
incorporate the emotions from "## Emotions to 
Add". Note that you cannot add additional factual 
information, please only add emotional content.

## Emotions to Add:
Pride: A feeling of satisfaction and respect for 
one's achievements or actions, typically 
associated with positive self-evaluation.

## Factual Information:
Material: Thickened PU leather 
Suitable pet type: Small parrots 
Weight: 750 grams 
Color options: Sunlight yellow 
Safety measures: High-strength nylon straps 
Dimensions: 30 x 25 x 40 cm 
Strap design: Anti-slip coating

Qwen-2.5-7B + SFT 
Experience pride with this stylish, sunlight-yellow pet backpack for small parrots, 
cra;ed from thickened PU leather, weighing just 750 grams. It features anD-slip strap 
design and high-strength nylon safety measures, with spacious dimensions of 30 x 25 x 
40 cm.

Qwen-2.5-7B + PPO 
Proudly present your vibrant companion with this stylish pet backpack, cra;ed from 
high-quality thickened PU leather in a cheerful sunlight yellow. Weighing just 750 
grams, it is thoughKully designed for small parrots and boasts dimensions of 30 x 25 x 
40 cm. Featuring robust high-strength nylon straps for internal safety and anD-slip 
coated straps, it ensures a secure and chic travel experience.

Qwen-2.5-7B + GAPO 
Proudly present your feathered friend in this sunlight yellow, thickened PU leather 
backpack, designed specifically for small parrots. Weighing just 750 grams, it's a breeze 
to carry. At 30 x 25 x 40 cm, it's spacious yet compact. Your cherished companion will 
travel securely with high-strength nylon straps inside, while you confidently stride with 
anD-slip coated shoulder straps.

Qwen-2.5-7B 
Cra;ed with pride, this pet backpack is a testament to excellence in pet care. Made 
from thickened PU leather, it exudes durability and quality. Designed specifically for 
small parrots, it ensures comfort and safety. The 750 grams weight is balanced, making 
it easy to carry. Available in sunny yellow, it upli;s moods instantly. Its internal structure 
includes high-strength nylon straps, guaranteeing your pet's secure journey. With 
dimensions of 30 x 25 x 40 cm, it's spacious enough for comfort. The anD-slip strap 
design adds an extra layer of security, giving you peace of mind. This pet backpack is not 
just a tool; it's a symbol of your love and commitment towards your feathered friend.

Figure 5: Case study of model performance under different training baslines.

number of constraints, demonstrating robust han-
dling of multiple simultaneous requirements. Third,
the model shows strong capability in generating
both short and long responses while maintaining
constraint adherence.

5.5 Details in Adversarial Process

As shown in Figure 4, the evolution of Reward
Models during adversarial training reveals distinct
learning patterns and convergence behaviors. From
the initial warmup phase (W), where all models
assign near-zero scores to generated samples, we
observe a clear stratification in learning trajecto-
ries across different Reward Models through stages
A1-A15. The top-performing model demonstrates
rapid improvement in the early stages (A1-A7),
reaching a score of 0.6, followed by gradual con-
vergence to 0.95 after A12. This stratification of
final convergence scores (ranging from 0.2 to 0.95)
and the stable plateaus after A12 indicates that
GAPO successfully establishes a balanced adver-
sarial training dynamic, where both the generator
and Reward Models effectively learn the under-
lying constraints without falling into degenerate
solutions (Lucic et al., 2018; Gulrajani et al., 2017;
Creswell et al., 2018) often encountered in adver-
sarial training scenarios.

5.6 Case Study

As illustrated in Fig. 5, training substantially aug-
mented the model’s proficiency in following com-

plex constraints while retaining linguistic authentic-
ity, with GAPO attaining exemplary performance
across all metrics. The base Qwen-2.5 model exhib-
ited considerable divergence from the prescribed
length and incorporated superfluous emotional el-
ements. GAPO demonstrated remarkable superi-
ority over alternative approaches, for it achieved
meticulous control over word count and exem-
plified more sophisticated emotional articulation.
Most significantly, GAPO maintained impeccable
fidelity to the prescribed parameters by circumvent-
ing extraneous descriptive content and unsolicited
emotional undertones.

6 Conclusion

This paper presents GAPO, a novel framework
that effectively addresses constraint understand-
ing in LLMs through the integration of GAN and
PPO frameworks. Experimental results demon-
strate GAPO’s superior performance compared to
baseline methods (PPO, DPO, KTO, and ORPO) in
both preferential prompt learning and general pref-
erential response tasks, validating its effectiveness
in enhancing constraint adherence while maintain-
ing training stability. As LLMs continue to evolve
and find applications across various domains re-
quiring precise adherence to constraints, GAPO’s
robust framework provides a promising direction
for future developments in controlled text genera-
tion.
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Ethical Concern

This research contributes to constrained text gen-
eration through two key innovations: a Preferen-
tial Prompt data augmentation methodology and
the GAPO training framework. Our approach sig-
nificantly reduces dependency on preference data
while maintaining generation quality, addressing a
critical challenge in the field. The technical solu-
tions focus solely on enhancing model capabilities
under specific constraints, ensuring research re-
producibility without introducing ethical concerns
or societal risks. The implementation emphasizes
technical optimization and maintains research neu-
trality throughout the development process.

Additionally, we introduce the PDD dataset, a
comprehensive e-commerce corpus for product de-
scription generation. This dataset’s construction
prioritized both data quality and ethical considera-
tions. Through rigorous quality control measures,
including thorough manual review processes, we
ensured data diversity while addressing potential
biases and sensitive issues. The dataset maintains
strict compliance with ethical guidelines and pri-
vacy protection standards, safeguarding corporate
and user interests. Our validation process confirms
the dataset’s objectivity and reliability, establish-
ing it as a valuable resource for future research
endeavors.

Limitation

GAPO’s primary strength lies in its ability to re-
duce the Reward Model’s training data require-
ments while improving Generator performance.
However, this advantage comes with notable trade-
offs. The framework’s adversarial training process,
involving simultaneous optimization of the Gen-
erator, Reward Model, and Critic Model, signifi-
cantly increases computational demands compared
to traditional preference optimization approaches.
This intensive resource consumption represents a
practical limitation for widespread adoption and
implementation.

Furthermore, GAPO’s effectiveness is contin-
gent upon the base model’s initial capabilities. Our
research reveals that the framework performs opti-
mally when applied to models that already possess
fundamental generation competencies. This depen-
dency arises because inadequate base model per-
formance, particularly in generating semantically
coherent responses, can compromise the Reward
Model’s training quality during the adversarial pro-

cess. This limitation suggests that GAPO is most
suitable as an enhancement tool for established
models rather than a solution for improving under-
performing ones, highlighting the importance of
careful model selection in its application.
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A Dataset Description

A.1 IFEval (Instruction-Following
Evaluation) Dataset

Dataset Construction Background and Purpose
IFEval represents a benchmark dataset specifically
designed to evaluate instruction-following capa-
bilities of Large Language Models (LLMs). The
research team systematically identified and defined
25 distinct types of verifiable instructions, based on
which they constructed approximately 541 prompts.
The distinguishing characteristic of these prompts
lies in their verifiable nature, allowing for objec-
tive programmatic verification and thus eliminating
potential subjective assessment biases.

Dataset Components The dataset encompasses
multiple dimensions of instruction types. Regard-
ing keyword requirements, it incorporates specific
keyword usage directives, frequency requirements,
and prohibited word constraints. Linguistic spec-
ifications include language-specific requirements.
Additionally, the dataset implements textual con-
straints regarding length parameters, such as para-
graph count, word count, and sentence quantity
specifications. Furthermore, it encompasses re-
quirements for specific content elements such as
postscripts and placeholders, as well as format
specifications including particular markup require-
ments, title formats, and JSON structure require-
ments. The dataset also incorporates specifications
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for text styling, including case usage requirements
and punctuation conventions.

Evaluation Methodology and Metrics IFEval
implements dual evaluation criteria: strict metrics
and loose metrics. The strict evaluation method-
ology requires precise adherence to instructional
requirements, while the loose evaluation methodol-
ogy accommodates common variations while main-
taining instructional integrity. The evaluation met-
rics specifically include:

• Prompt-level accuracy: Measuring the pro-
portion of prompts where all instructions are
correctly executed

• Instruction-level accuracy: Quantifying the
overall proportion of correctly executed in-
structions

A.2 Product Description Dataset

Dataset Construction Process The Product De-
scription Dataset (PDD) represents a specialized
dataset focused on product description generation
tasks, encompassing 1,000 product categories and
32,000 property-value pairs. The research team
initially collected raw product information and
descriptions, subsequently generating correspond-
ing responses using GPT-4 based on carefully de-
signed prompts, followed by human verification.
Through modifications of constraint conditions in
the original prompts, the team constructed a set of
mismatched property-value pairs and descriptions
(Rej dataset), which proves valuable for evaluating
model robustness.

Dataset Structure and Composition The
dataset comprises multiple subsets:

• PDD-Raw: Contains unprocessed original
product information and descriptions

• PDD-Train: High-quality training data gener-
ated by GPT-4 and validated through human
verification

• PDD-Test: Testing dataset serving dual pur-
poses - evaluating generation model perfor-
mance and validating scoring model efficacy

• PDD-Rej-Train and PDD-Rej-Test: Mis-
matched datasets obtained through constraint
condition modifications in original prompts

Evaluation Methodology The evaluation
methodology for the PDD dataset incorporates
multiple complementary approaches:

1. Model-based Evaluation: Utilizing ad-
vanced language models to assess constraint
compliance

2. Human Evaluation: Implementing human
verification to assess content quality and accu-
racy

3. Specialized Evaluation Models: Developing
dedicated models to assess adherence to given
constraints

The evaluation framework primarily focuses on
two critical aspects:

• Verifying whether generated descriptions com-
prehensively incorporate all provided attribute
information

• Ensuring the absence of extraneous informa-
tion not present in the source data

This comprehensive evaluation approach ensures
robust assessment of model performance across
multiple dimensions of content generation quality.

B Manual Effort

This section presents our comprehensive manual
verification process for both the PDD dataset and
the model-generated outputs. Our verification
framework encompasses two primary components:
dataset quality assessment and model output evalu-
ation.

B.1 Dataset Quality Assessment

To ensure the reliability and ethical compliance of
the PDD dataset, we conducted a thorough manual
review process. A team of five domain experts
independently examined 10% of the dataset entries
(approximately 3,300 records), focusing on privacy
protection and content fairness.

B.1.1 Privacy Protection Verification

The privacy protection verification process system-
atically examines potential privacy concerns within
the dataset. Table 7 outlines our evaluation criteria
and standards.
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Aspect Verification Content Acceptance Cri-
teria

Personal
Identity

Names, addresses,
contact information

Strictly prohib-
ited

Indirect
Identifiers

Combinations of infor-
mation that could lead
to identification

Must not enable
personal identifi-
cation

Sensitive
Data

Health conditions, fi-
nancial details

Limited to
general product-
related informa-
tion

Table 7: Privacy protection verification criteria for the
PDD dataset

Category Assessment Focus Requirements

Gender Gender-related stereo-
types and biases

Neutral product
descriptions
without gender
discrimination

Ethnicity Racial or ethnic biases No ethnicity-
specific stereo-
types or preju-
dices

Cultural
Elements

Cultural sensitivity
and representation

Objective and
culturally neu-
tral descriptions

Table 8: Fairness assessment criteria for dataset evalua-
tion

B.1.2 Fairness Assessment

Our fairness assessment framework examines po-
tential biases and discriminatory content within
the dataset. This evaluation ensures that product
descriptions maintain objectivity and avoid perpet-
uating societal stereotypes. Table 8 presents our
fairness evaluation framework.

B.2 Model Output Evaluation

The evaluation of model-generated product descrip-
tions focuses on two fundamental constraints: com-
pleteness and accuracy. We randomly selected
1,000 samples from the test set for this assessment,
with three domain experts conducting independent
evaluations.

B.2.1 Evaluation Methodology

Our evaluation methodology employs a binary scor-
ing system (0 or 1) based on strict compliance with
both completeness and accuracy requirements. Ta-
ble 9 details our scoring criteria.

Score Requirements Assessment Criteria

1 Complete satisfac-
tion of all con-
straints

All property-value
pairs included; No
additional information
introduced

0 Failure to meet any
constraint

Missing any property-
value pair OR Includ-
ing extraneous infor-
mation

Table 9: Model output evaluation criteria and scoring
system

Component Specification

CPU Intel Xeon E5-2680 v4 @ 2.40GHz
RAM 128GB DDR4
GPU NVIDIA A100 80GB
Operating System Ubuntu 20.04 LTS
CUDA Version 12.1
Python Version 3.9.12

Table 10: Computing Infrastructure Specifications

B.2.2 Evaluation Protocol
The evaluation protocol ensures consistency and
reliability across assessments. Each evaluator in-
dependently examines the generated descriptions,
comparing them against the input property-value
pairs. For quality control, we conducted prelimi-
nary training sessions and established a standard-
ized evaluation process. Disagreements among
evaluators were resolved through detailed discus-
sion and consensus building.

The final evaluation score for each generated
description represents the average of scores from
all evaluators. To ensure evaluation reliability, we
calculated the inter-rater agreement using Cohen’s
Kappa coefficient. For cases receiving a score of
0, evaluators documented specific violation types,
enabling detailed analysis of model limitations and
potential areas for improvement.

C Training Expense

C.1 Computing Infrastructure

All experiments in this study were conducted using
the computing resources detailed in Table 10. To
ensure reproducibility and consistent performance,
we utilized the same hardware for all evaluations
and training.

C.2 Training Configuration

All hyperparameter settings are listed in Table 12.
Given that IFEval contains only 430 training sam-

294



Parameter Value

Temperature 0.0
Top P 1.0
Frequency Penalty 0.0
Presence Penalty 0.0
Maximum Tokens 2048
Context Window 16385 tokens

Table 11: Language Model Parameters

ples, we adopted smaller batch sizes and larger
initial learning rates when training on the IFEval
dataset.

C.3 Generation Configuration
For our experiments, we employed carefully se-
lected parameters to ensure consistent and repro-
ducible results, as shown in Table 11. These param-
eters were chosen to minimize output variability
while maintaining generation quality.

The temperature was set to 0.0 to maximize de-
terministic behavior, while maintaining a top P
value of 1.0 to preserve the model’s ability to gen-
erate coherent responses. Both frequency and pres-
ence penalties were set to 0.0 to avoid artificial
constraints on the model’s token selection process.
These settings were kept constant across all experi-
ments to ensure consistent generation behavior and
reproducible results.

D Prompt

We use a comprehensive prompt template as shown
in Table 13. The template includes essential com-
ponents such as product name, word count require-
ment, emotion specifications, and factual infor-
mation. To explore the performance of different
prompt engineers strategies, we further implement
three distinct output formats (Table 14), namely
Naive, Chain-of-Thought (CoT), and Plan-N-Solve
approaches.

Parameter PDD Dataset IFEval Dataset
Training Samples 3300 430
SFT
Learning Rate 5e-6 1e-4
Train Batch Size 256 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
DPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
KTO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
SimPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
ORPO
Learning Rate 5e-7 1e-4
Train Batch Size 128 32
Micro Train Batch Size 4 4
Max Sequence Length 4096 4096
Max Epochs 2 2
Beta 0.1 0.1
PPO
Actor Learning Rate 5e-7 1e-4
Critic Learning Rate 9e-6 2e-4
Train Batch Size 128 32
Micro Train Batch Size 2 2
Rollout Batch Size 1024 1024
Micro Rollout Batch Size 4 4
Max Epochs 2 2
KL Coefficient 0.01 0.01
Max Prompt Length 1024 1024
Max Generate Length 3072 3072
GAPO
Actor Learning Rate 5e-7 1e-4
Critic Learning Rate 9e-6 2e-4
Train Batch Size 128 16
Micro Train Batch Size 2 2
Rollout Batch Size 1024 1024
Micro Rollout Batch Size 4 4
Classifier Batch Size 8 4
Classifier Learning Rate 1e-5 1e-5
Max Prompt Length 1024 1024
Max Generate Length 3072 3072
KL Coefficient 0.01 0.01
Adversarial Training Epochs 2 2
Classifier Warmup Epochs 2 2
Classifier Training Epochs 2 2
Max Epochs 2 2
Classifier Generator Ratio 0.5 0.5

Table 12: Hyperparameter Settings for Different Train-
ing Methods
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Product Name
!<INPUT 1>! – Word Count Requirement
!<INPUT 2>! – Emotion Type and Description
!<INPUT 3>! – Factual Information
!<INPUT 4>! – Output Instruction
<commentblockmarker>###</commentblockmarker>
Please generate a product description about !<INPUT 0>! with approximately !<INPUT 1>! words.
You need to use all the information provided in the Factual Information section to generate the
description. The description should convey the emotion specified in the Emotion section.
Note that you cannot add additional factual information, and you must use all the given facts. Please
only add non-factual, emotion-related content.

### Emotion:
!<INPUT 2>!

### Factual Information:
!<INPUT 3>!

### Your output should follow this format:
!<INPUT 4>!

Table 13: Base template for the experiment of product description generation in this paper.

Method Prompt Template

Naive !<INPUT 4>! =

The description should be generated below the “### Generated Result:”

CoT !<INPUT 4>! =

Generate your thinking process step by step below the “### Thinking Process:”

Then the description should be generated below the “### Generated Result:”

Plan-N-Solve !<INPUT 4>! =

Generate your planing step by step below the “### Planning:”

Then the description should be generated below the “### Generated Result:”

Table 14: Detail prompt request in Tab. 13.
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