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Abstract

Recent studies have explored Continual Instruc-
tion Tuning (CIT) in Multimodal Large Lan-
guage Models (MLLMs), with a primary fo-
cus on Task-incremental CIT, where MLLMs
are required to continuously acquire new tasks.
However, the more practical and challenging
Domain-incremental CIT, focused on the con-
tinual adaptation of MLLMs to new domains,
remains underexplored. In this paper, we pro-
pose a new Sparse Mixture of Expert (SMoE)
based method for domain-incremental CIT in
MLLMs. During training, we learn a domain-
specific SMoE module for each new domain
in every FFN sub-layer of MLLMs, preventing
catastrophic forgetting caused by inter-domain
conflicts. Moreover, we equip the SMoE mod-
ule with a domain-specific autoregressive loss
(DSAL), which is used to identify the most suit-
able SMoE module for processing each test in-
struction during inference. To further enhance
the SMoE module’s ability to learn domain
knowledge, we design an adaptive threshold-
based router (AT-Router) that allocates com-
puting resources (experts) to instruction tokens
based on their importance. Finally, we establish
a new benchmark to evaluate the efficacy of our
method and advance future research. Extensive
experiments show that our method consistently
outperforms all competitive baselines.

1 Introduction

Multimodal Large Language Models (MLLMs),
as key building blocks for general-purpose assis-
tants, have garnered significant attention in the re-
search community (Chen et al., 2022b; Dai et al.,
2023; Zhu et al., 2024; Liu et al., 2024a; Lan et al.,
2025). In their success, instruction tuning plays
a crucial role, which uses carefully-crafted multi-
task instruction data to train MLLMs for generating
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Figure 1: SMoE-based CL method, where an SMoE
module is appended to each FFN sub-layer in LLMs.

accurate and human-friendly responses. Further-
more, recent studies (He et al., 2023; Zhai et al.,
2023; Chen et al., 2024a) have begun to explore
more realistic Continual Instruction Tuning (CIT)
in MLLMs, requiring MLLMs to continually learn
new knowledge while retaining previously acquired
knowledge. However, they mainly focus on Task-
incremental CIT that requires MLLMs to continu-
ally learn new tasks. In contrast, the exploration of
Domain-incremental CIT in MLLMs, aimed at the
continuous adaptation of MLLMs to new domains,
remains insufficient.

Indeed, the default multi-task instruction tuning
already endows MLLMs with strong task gener-
alization ability, allowing them to tackle unseen
tasks in a zero-shot manner (Liu et al., 2023b; Xu
et al., 2023). However, the limited domain general-
ization ability of MLLMs restricts their effective-
ness in solving domain-specific problems (Li et al.,
2024; Shi et al., 2024). This indicates the greater
practicality of domain-incremental CIT over task-
incremental CIT. Moreover, domain-incremental
CIT is often more challenging due to a higher risk
of catastrophic forgetting, resulting from conflicts
in tasks and data distributions across domains.

To prevent the forgetting problem of Large Lan-
guage Models (LLMs) during Continuous Learning
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(CL), several Sparse Mixture of Experts (SMoE)-
based methods (Chen et al., 2023; Shen et al., 2023;
Dou et al., 2024a) have been proposed, benefiting
from the excellent training and inference efficiency
inherent in SMoE (Shazeer et al., 2017). As shown
in Figure 1, these methods first append an SMoE
module, including an expert group and a router,
into each FFN sub-layer in LLMs. Then, they se-
quentially add new experts into the expert group to
learn new knowledge while freezing prior param-
eters, so as to ensure efficient training and avoid
catastrophic forgetting. While the number of ex-
perts will continue to increase in the CL process,
the router only selects the k most relevant experts
to process each token, ensuring efficient inference.
Nonetheless, these methods have not been applied
to domain-incremental CIT in MLLMs and exhibit
several notable deficiencies. (1) They allocate the
same computational resources (k experts) to each
token regardless of its importance, limiting their
performance. (2) During training, the router only
selects partial tokens to train each expert, causing
the issue of insufficient expert training (Gou et al.,
2023; Ding et al., 2024). (3) In these methods, the
continual updating of the router during CL limits
its accuracy in selecting experts for earlier tasks,
thus leading to catastrophic forgetting.

In this paper, we propose a new SMoE-based
method for domain-incremental CIT in MLLMs,
which can continually adapt MLLMs to new do-
mains without catastrophic forgetting. Its overall
architecture is illustrated in Figure 2. During CL
training, we independently train a domain-specific
SMoE module for each new domain in every FFN
sub-layer of MLLMs, preaventing catastrophic for-
getting caused by inter-domain conflicts. To en-
hance the SMoE module’s ability for learning new
domain knowledge, we design a novel adaptive
threshold-based router (AT-Router) for it. Unlike
traditional routers, our AT-Router first dynamically
calculates an adaptive threshold for each token to
assess its importance, and then allocates experts to
process the token based on this importance. Hence,
our method can achieve superior performance by
activating fewer experts than existing methods.

Moreover, we equip the SMoE module with a
domain-specific autoregressive loss (DSAL) that is
used to accurately identify the most suitable SMoE
module for processing each test instruction during
inference. Specifically, we first create a virtual
expert for each SMoE module by averaging the
parameters of all experts in its expert group. Next,

we employ the virtual expert and a linear projec-
tor to compute an autoregressive loss, specific to
the domain of the current SMoE module, for each
instruction. In our method, DSAL plays several
crucial roles: First, during training, the virtual ex-
pert allows every expert in the SMoE module to
access all instruction tokens in the training set, ef-
fectively alleviating the issue of insufficient expert
training in traditional SMoE. Second, during in-
ference, the SMoE module (trained with DSAL)
yields a smaller DSAL for test instructions from
its corresponding domain compared to those from
other domains. Thus, DSAL intuitively indicates
the domain of the test instruction. Notably, since
both the virtual expert and the projector are domain-
specific, our DSAL remains highly stable without
continuous changes during the CL process.

To evaluate the efficacy of our method, we con-
struct a new benchmark for domain-incremental
CIT in MLLMs. It covers three common domains,
including Medicine, Chart, and Math, each involv-
ing instructions from a variety of tasks. Experi-
mental results show that our method consistently
outperforms all competitive baselines. Extensive
ablation studies further demonstrate the effective-
ness of various components in our method.

2 Our Method

In this section, we provide a detailed description for
our proposed method. Specifically, we first present
the problem formulation for domain-incremental
CIT in MLLMs, and then introduce the overall
architecture of our method. Finally, we elaborate
on the CL training process involved in our method.

2.1 Problem Formulation
In domain-incremental CIT, MLLMs are required
to continuously learn new domains while retain-
ing previously acquired domain knowledge. Thus,
MLLMs are successively fine-tuned on a sequence
of domain-specific datasets: [D1,D2, · · · ,DNd

],
where Nd denotes the domain number and Dn is
the multi-task instruction dataset for the n-th do-
main. In Dn, each instruction instance consists of
an instruction (v, q) and its response r, where v
signifies an input image and q is an input question.

2.2 Overall Architecture
As depicted in the left part of Figure 2, MLLMs
often consist of three components: a visual encoder,
a connector, and a LLM. Given a multimodal in-
struction (v, q), we first feed the input image v
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Figure 2: Illustration of our method. During training, we independently train a domain-specific SMoE module for
each new domain in every FFN sub-layer of the LLM. During inference, for each test instruction, we use DSAL to
identify the SMoE module corresponding to its domain in each FFN sub-layer, effectively processing the instruction.

into the visual encoder to extract its visual features.
Then, the connector maps these visual features into
the LLM’s embedding space to obtain a feature
sequence H(0)

v ∈R|v|×d, where |v| denotes the num-
ber of visual tokens in v. Concurrently, we input
the question q into the LLM’s embedding layer to
generate its feature sequence H

(0)
q ∈R|q|×d, where

|q| is the number of text tokens in q. Lastly, we con-
catenate these two feature sequences: H(0)=[H

(0)
v ;

H
(0)
q ]∈RT×d (with T=|v|+|q|), and feed it into

the LLM to generate the corresponding response r.
Since all layers of the LLM are identical, we

use the l-th layer as an example to explain its com-
putation process. Here, we first feed the output
H(l−1) of the previous layer into the multi-head
self-attention (MHSA) sub-layer of the current
layer, yielding updated instruction features Ĥ(l):

Ĥ(l) = Norm
(
H(l−1)+MHSA

(
H(l−1)

) )
, (1)

where Norm(·) refers to Root Mean Square Layer
Normalization (RMSNorm) (Zhang et al., 2019).

In the FFN sub-layer of the l-th layer, we sepa-
rately learn a domain-specific SMoE module for
each new domain to prevent the catastrophic for-
getting caused by inter-domain conflicts. The right
part of Figure 2 illustrates that our SMoE mod-
ule consists of an expert group and an adaptive
threshold-based router (AT-Router). Notably, to
generate the correct response for the current instruc-
tion, it is essential to accurately identify the most
suitable SMoE module for processing the instruc-
tion. To this end, we equip each SMoE module with

a domain-specific autoregressive loss (DSAL).

DSAL. For the i-th SMoE module in the FFN
sub-layer of the l-th layer, we create a virtual expert
E(l,i)
V (·) by averaging the parameters of all experts

in its expert group (see Merge
=⇒ in Figure 2). Then,

we leverage the virtual expert with a linear projec-
tor P(l,i)(·) to compute an autoregressive loss (i.e.,
DSAL) on the feature sequence Ĥ(l). However,
the absence of visual tokens in the LLM vocabu-
lary (i.e., no labels) restricts the computation of
DSAL. Therefore, we use the LLM embedding ma-
trix W em to calculate the distribution vectors P for
all instruction tokens, serving as their soft labels:
P=[p1, · · ·, pT ]=softmax(H(0)W em). Next, we
utilize the feature ĥ

(l)
t ∈Ĥ(l) of each token to pre-

dict the distribution q
(l,i)
t+1 of its subsequent token:

q
(l,i)
t+1 = softmax

(
h
(l,i)
t W

(l,i)
em

)
, (2)

where h
(l,i)
t = P(l,i)

(
E(l,i)
V (ĥ

(l)
t )

)
,

W
(l,i)
em = P(l,i)

(
W em

)
.

Here, the projector P(l,i)(·) aims to lower the com-
putational cost of DSAL by reducing the feature
and embedding dimensions of tokens. Finally, the
current SMoE module’s DSAL L(l,i)

DSAL is given by

L(l,i)
DSAL=− 1

T−1

∑T
t=2 p

T
t log(q

(l,i)
t ). (3)

Generally, the SMoE module produces a smaller
LDSAL for instructions from its corresponding do-
main compared to those from other domains. Thus,
following the above steps, we calculate the DSAL
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for all Nd SMoE modules in the current FFN sub-
layer, and select the SMoE module with the small-
est DSAL to process the current instruction (see
step ① in Figure 2):

m = argmin
i
([L(l,1)

DSAL, · · ·,L
(l,Nd)
DSAL]), (4)

Notably, the virtual experts and projector responsi-
ble for calculating DSAL are domain-specific and
remain unchanged when the model learns other do-
mains, effectively ensuring the stability of DSAL.

AT-Router. In the selected m-th SMoE module,
for each instruction token ĥ

(l)
t ∈Ĥ(l), we use AT-

Router, a multi-layer perceptron (MLP), to com-
pute its adaptive threshold α

(l)
t and relevance score

s
(l)
t,n to every expert in the expert group:

S
(l)
t =[α

(l)
t , s

(l)
t,1, · · ·, s

(l)
t,Ne

]=RouteAT(ĥ
(l)
t ), (5)

where Ne is the total number of experts in the ex-
pert group of the SMoE module, and s

(l)
t,n indicates

the relevance score of the current token to the n-th
expert. As shown in the AT-Router part (step ②) in
Figure 2, we activate only those experts with scores
exceeding α

(l)
t to process the token. Accordingly,

we employ an activation function Act(·) to remove
the scores of non-activated experts from S

(l)
t , fol-

lowed by normalizing the scores of activated ex-
perts and the adaptive threshold α

(l)
t through a soft-

max function softmax(·):

S̃
(l)

t =softmax(Act(S
(l)
t )). (6)

Intuitively, 1−α
(l)
t reflect the token’s importance.

The above process ensures that vital tokens (lower
α
(l)
t ) are allocated more experts, whereas less sig-

nificant tokens (higher α(l)
t ) receive fewer or no

expert assignments. Unlike traditional threshold-
based methods that manually set a fixed threshold
for all tokens, our method computes a dynamic
threshold for each instruction token based on its
current context, assigning experts more effectively.

Expert group. It consists of Ne identical experts,
each is instantiated as a FFN:

E(ĥ(l)
t )=(σ(ĥ

(l)
t W gate)◦(ĥ(l)

t W up))W dow (7)

where σ(·) is the SwiGLU activation function, ◦
refers to element-wise multiplication, W gate/up∈
Rd×d′ and W dow∈Rd′×d are learnable parame-
ters, d and d′ are the hidden state dimensions of the
LLM and the expert, respectively. We leverage d′

to control the parameter number of each expert.

After deriving the normalized score s̃
(l)
t,n∈S̃

(l)
t

for each activated expert via Eq. 6, we compute the
weighted sum of the output features from these acti-
vated experts to form the final output of the selected
m-th SMoE module (see step ③ in Figure 2):

h̃
(l)
t =

∑
s̃
(l)
t,n∈S̃

(l)
t

(
s̃
(l)
t,n×E(l,m)

n

(
ĥ
(l)
t

))
, (8)

where E(l,m)
n is the n-th expert in the expert group.

Finally, we combine the output of the original FFN
sub-layer with that of the selected SMoE module
using the normalized adaptive threshold α̃

(l)
t ∈S̃(l)

t

to generate the l-th layer output H(l) of the LLM:

H(l) = Norm
(
Ȟ(l)+Ĥ(l)

)
, (9)

Ȟ(l) = [ȟ
(l)
1 , · · · , ȟ(l)

T ], (10)

ȟ
(l)
t =len(S̃

(l)

t )×
(
h̃
(l)
t +α̃

(l)
t ×FFN(ĥ

(l)
t )

)
, (11)

where len(S̃(l)
t ) represents the number of elements

in S̃
(l)
t , used to scale the features of important to-

kens (with more activated experts). It enhances the
effect of key instruction tokens in response genera-
tion and accelerates model training.

After obtaining the final feature H(L) for the
current instruction, the LLM autoregressively gen-
erates its response r=[r1, · · ·, r|r|]:

rt = argmax
r

P (r|H(L); r1:t−1). (12)

where L indicates the number of layers in the LLM,
|r| refers to the number of text tokens in r.

2.3 Model Training
During CL training, upon the arrival of a new do-
main, we first add a new SMoE module into each
FFN sub-layer in the LLM. Then, we freeze the
prior model parameters and use three loss terms to
jointly train the newly added SMoE modules in the
new domain: L=L1+βL2+ηL3, where the hyper-
parameters β and η balance their contributions.

The first loss term L1 is an autoregressive loss
derived on the token sequence of the response r:

L1 = − 1
|r|

∑|r|
t=1 logP (rt+1|H(L), r1:t). (13)

It is our primary loss, aiming at training the model
to generate accurate responses for instructions.

The second loss term L2 is defined as the sum
of the DSAL for all newly added SMoE modules:
L2=

∑L
l=1 L

(l)
DSAL, allowing these modules to ef-

fectively capture the data distribution of the new
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domain. Through this loss and the virtual expert
for calculating DSAL, we can utilize all instruction
tokens to train each expert in these SMoE modules,
mitigating the issue of insufficient expert training.

The third loss term L3 is designed to balance the
activation rates of experts in each SMoE module.
To achieve this, we employ the adaptive threshold
as a reference point, decreasing the scores of over-
activated experts and increasing those of under-
activated experts. Specifically, for the newly added
SMoE module in the l-th layer of the LLM, we
first compute the average score s̄

(l)
n for each ex-

pert and the average adaptive threshold ᾱ(l) based
on Eq. 5: [ᾱ(l), s̄

(l)
1 ,· · ·,s̄(l)Ne

]= 1
|B|

∑|B|
t=1 S

(l)
t , where

|B| denotes the number of instruction tokens in
the current training batch B. Next, we derive the
probability score p̂

(l)
n =es̄

(l)
n /(es̄

(l)
n +eᾱ

(l)
) of each

expert relative to ᾱ(l). To identify over-activated
and under-activated experts, we also count the ac-
tivation frequency f (l)=[f

(l)
1 , · · ·, f (l)

Ne
] of each ex-

pert from S̃
(l)
t in Eq. 6. Finally, we formalize the

expert balance loss L(l)
Bal of the current SMoE mod-

ule as a binary cross-entropy:

L(l)
Bal=− 1

Ne

∑Ne
n=1

[
I(f

(l)
n < 1

Ne
) log(p̂

(l)
n ) (14)

+I(f
(l)
n ≥ 1

Ne
) log(1−p̂

(l)
n )

]
,

where I(·) is the indicator function, I(f (l)
n < 1

Ne
)

and I(f
(l)
n ≥ 1

Ne
) indicate the under-activated and

over-activated experts, respectively. To balance
the experts in all newly added SMoE modules, our
third loss term is defined as L3=

∑L
l=1 L

(l)
Bal.

In this way, our method can learn each domain
independently and without mutual interference, of-
fering several advantages: (1) It minimizes con-
flicts among domains in the CL process, prevent-
ing catastrophic forgetting. (2) This allows paral-
lel adaptation of our method to multiple domains,
thus accelerating the development of multi-domain
MLLMs. (3) It also ensures that our method is
unaffected by the order of domain learning.

3 Benchmark

Although recent studies (Zhai et al., 2023; Chen
et al., 2024a) have explored task-incremental CIT
in MLLMs and introduced relevant benchmarks,
domain-incremental CIT remains underexplored
due to the lack of benchmarks. Thus, we construct a
new benchmark to comprehensively investigate the
behavior of MLLMs in domain-incremental CIT.
Table 1 presents the statistics for our benchmark.

Domain Task Dataset Train Test

VQA-RAD 1,793 451
PathVQA 25,913 6,719
SLAKE 11,934 2,094Medicine VQA

LLaVA-Med 56,649 −
VQA ChartQA 28,138 2,490

Chart-to-Table ChartQA 19,373 1,509

Pew 7,892 1,393
Chart

Chart-to-Text Statista 24,368 −
IconQA 20,771 1,741
CLEVR-Math 4,840 445MWP
TabMWP 20,639 1,743

Geometry3K 8,854 835
GeoQA+ 15,660 1,433
UniGeo 11,014 901

Math

GPS

GEOS 483 24

Table 1: The statistic of datasets in our benchmark,
where VQA=Visual Question Answering, MWP=Math
Word Problem and GPS=Geometry Problem Solving.

Given the time-intensive nature of data collection,
our benchmark, as the first of its kind, initially fo-
cuses on three common domains: Medicine, Chart,
and Math. Meanwhile, we collect various publicly
available datasets from each domain and convert
their instances into a unified instruction format. To
better reflect real-world scenarios, our benchmark
covers as many task types as possible in each do-
mains. In total, the benchmark includes 3 domains,
5 task and 14 datasets, with each domain involv-
ing about 90K instructions. In the future, we will
incorporate more domains into our benchmark to
better facilitate subsequent studies.

4 Experiment

4.1 Datasets & Evaluation Metrics

We conduct experiments on our benchmark. In
Appendix A, we provide detailed descriptions of
each task and dataset in our benchmark, along with
their commonly used metrics and relevant cases.
Notably, since the performance of our method re-
mains unaffected by the order of domain learning,
we randomly adopt a continual learning sequence:
Medicine→Chart→Match.

4.2 Settings

Following prior studies (Han et al., 2023a; Li et al.,
2024; Shi et al., 2024; Chen et al., 2024a; Cao et al.,
2024), we adopt the widely used LLaVA-1.5 (Liu
et al., 2024a) as our base MLLM. Notably, the de-
fault instruction tuning dataset of LLaVA-1.5 does
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not overlap with our benchmark, ensuring more
accurate evaluations of various CL methods. We
fine-tune our model for 2 epochs on each domain,
using a learning rate of 2e-4 and a batch size of 16.
For our SMoE module, we set the expert dimension
d′ to 128 and the expert number Ne to 4. Moreover,
both hyper-parameters β and η in our training ob-
jective L are set to 0.1. As shown in Appendices B
and C, the optimization of these hyper-parameters
can further enhance our method’s performance.

4.3 Baselines

We compare our method with the following three
categories of competitive CL methods:

Replay-based Methods. Following prior studies
(Chaudhry et al., 2019a; Huang et al., 2021; He
et al., 2021), after learning each domain, we store
1% of representative instruction instances chosen
via the K-means algorithm from the domain. Then,
we replay these stored instances while learning a
new domain. We refer to this method as Replay.

Regularization-based Methods. Here, we con-
sider two classical methods: (1) EWC (Kirkpatrick
et al., 2017b). This method uses the Laplace ap-
proximation with the Fisher information matrix to
identify key parameters for previously seen tasks.
Next, it slows down learning on these parameters
when learning new tasks. (2) LWF (Li et al., 2017b).
It adopts knowledge distillation to prevent the for-
getting of prior knowledge.

Architecture-based Methods. These methods
use independent parameters to learn distinct tasks,
avoiding catastrophic forgetting. In this aspect, the
typical methods mainly include: (1) CODA (Smith
et al., 2023). It learns a set of task-specific soft
prompts for each task while introducing an orthog-
onal constraint to prevent conflicts between tasks.
(2) M-LoRA. This method learns a task-specific
LoRA for each task, all of which are loaded and in-
tegrated during inference. (3) O-LoRA (Wang et al.,
2023). Here, an orthogonal constraint is introduced
on top of M-LoRA to further avoid catastrophic for-
getting. (4) MoELoRA (Dou et al., 2024b; Liu et al.,
2024b). Unlike the above methods, this method at-
tempts to utilize different experts in the Dense MoE
(DMoE) framework to learn various tasks, reducing
the risk of conflicts between tasks. (5) SMoELoRA.
Based on MOELoRA, this method uses a sparse ac-
tivation router to further reduce conflicts between
tasks. (6) L-SMoE (Qin et al., 2022) and (7) MoLM

(Shen et al., 2023). Both methods are designed
to incrementally add new experts into the SMoE
module to accommodate new tasks.

Like our method, these baselines are developed
on LLaVA-1.5 with parameter-efficient fine-tuning
techniques, including LoRA (Hu et al., 2022),
DMoE (Ma et al., 2018), and SMoE (Shazeer et al.,
2017). To ensure a fair comparison, all methods
use a comparable average number of parameters
to learn each domain (see Line 2 in Table 3). For
further details on the implementation of baselines,
please refer to Appendix E. Besides, to validate
our SMoE module’s ability to learn domain knowl-
edge, we compare it with traditional LoRA , DMoE,
and SMoE in both single-domain and multi-domain
learning scenarios. Here, SMoE selects a single
most relevant expert to process each token, while
DMoE uses all experts for every token.

4.4 Main Results
The experimental results on our benchmark are
shown in Table 2. After carefully analyzing these
results, we draw several conclusions:

First, the original LLaVA-1.5 exhibits signifi-
cantly poor performance across various domains in
our benchmark, indicating that its pre-training and
instruction fine-tuning do not cover these domains.

Second, in the single-domain learning scenario
where the model is only trained and tested on a sin-
gle domain, our method consistently outperforms
all baselines. This demonstrates the powerful ca-
pability of our SMoE module, equipped with AT-
Router and DSAL, for learning domain knowledge.
Particularly, our method exceeds its theoretical up-
per bound, DMoE, across all domains. The main
reason is that our AT-Router can more effectively
alleviate the conflict between various tasks in the
same domain, and such conflict has been found by
prior studies (Gou et al., 2023; Chen et al., 2024b).

Third, in the multi-domain scenarios, we assume
that instruction data of all domains can be obtained
at once, which can be regarded as a special case (up-
per bound) of replay-based approaches. As shown
in the second part of Table 2, our method exceeds
other baselines across all domains in this scenario.
We also note that most methods perform worse in
the multi-domain scenarios than in single-domain
one. This is mainly attributed to the conflicts in
task and data distribution across domains.

Lastly, we compare our method to baselines in
the continual learning scenario, as shown in the
third part of Table 2. Our method exhibits a signif-
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Model

Medicine Chart Math

VQA-RAD PathVQA SLAKE ChartQA Chart-to-Table Chart-to-Text MWP&GPS
Closed(Acc.) / Open(Recall) Relax_Acc. RMSF1 BLEU4 Acc.

LLaVA-1.5 2.10/13.27 4.62/8.87 7.33/28.92 9.27 9.97 4.20 8.93

Single–Domain
Learning

LoRA 68.40/35.37 90.09/33.07 82.65/82.25 54.13 56.08 9.28 37.23
DMoE 72.40/36.48 90.24/34.82 82.77/83.38 55.18 57.32 9.94 38.62
SMoE 65.20/32.66 87.59/30.43 80.09/80.05 50.72 54.51 7.37 36.08
Ours 74.10/36.87 91.35/35.51 83.96/84.61 55.58 57.94 10.27 39.14

Multi–Domain
Learning

LoRA 66.10/33.56 88.32/31.73 80.15/80.66 52.21 56.57 8.39 32.74
DMoE 69.20/35.12 89.02/33.16 81.21/82.36 54.31 56.64 9.03 34.05
SMoE 65.00/32.60 87.60/30.06 79.76/80.00 50.37 54.04 7.19 33.63
Ours 72.70/36.98 89.89/34.55 82.85/83.98 55.02 57.69 9.84 37.69

Continual
Learning

Replay 59.60/21.66 64.77/12.31 48.25/48.63 20.51 22.73 4.45 36.79
EWC 60.70/23.35 65.81/14.55 51.46/52.87 23.92 25.77 4.89 35.55
LWF 61.30/24.83 65.59/15.74 55.38/57.16 26.12 29.45 6.07 35.87
CODA 62.20/25.66 66.62/16.02 58.46/62.31 30.51 32.73 6.45 34.19
M-LoRA 64.80/29.75 72.82/21.68 65.15/66.24 40.42 42.62 6.54 30.97
O-LoRA 66.50/30.71 76.35/22.68 77.15/67.24 45.42 49.62 7.31 36.52
MoELoRA 60.90/23.66 66.43/16.11 56.38/57.52 25.73 28.94 4.51 38.06
SMoELoRA 59.50/23.13 66.09/17.77 55.16/58.61 23.82 27.76 5.04 35.10
L-SMoE 65.20/28.69 70.14/20.25 62.50/63.01 38.53 41.05 6.18 38.19
MoLM 63.10/25.37 66.09/18.07 60.35/61.26 36.77 38.21 5.79 37.64
Ours 74.10/36.95 91.12/35.33 84.06/84.61 55.58 57.94 10.31 39.10

Table 2: The results of our method and baselines on our benchmark.

icant advantage over all baselines, particularly in
early-learned domains, such as Medicine. A com-
parison of our method’s performance in the single-
domain learning and continual learning reveals that
it suffers almost no catastrophic forgetting. This
implies that our DSAL can accurately identify the
SMoE module corresponding to the test instruc-
tion’s domain in each layer of the LLM. We further
assess its accuracy, achieving a score of 97.2%.

In addition, Table 3 reports the average num-
ber of experts activated by the relevant methods
to handle each instruction token, along with the
corresponding number of activated parameters. We
observe that our method activates an average of
only 0.81 experts to process each token, resulting
in a significantly lower number of activated param-
eters than other methods. Further analysis of our
AT-Router is presented in Appendices C and G.

4.5 Ablation Study

We further conduct extensive ablation studies by
removing different components from our method
to investigate their different impacts. We compare
our method with the following variants in Table 4.

(1) w/o AT-Router. In this variant, we replace
our AT-Router with the router from the traditional
SMoE, which activates the most relevant one expert
for each token. While this variant activates more
experts for each token, its performance remains in-

Model LoRA DMoE SMoE SMoE (Ours)

Learnable 221M 208M 208M 208M
Activated 221M 208M 52M 42M
Top-K − top-4 top-1 top-0.81

Table 3: Statistics on the average learnable/activated
parameters per domain. Here, "Top-K" means the aver-
age number of experts activated to process each token.

ferior to our method (See Line (1)). This confirms
that allocating experts based on token importance
can indeed achieve better model performance with
fewer expert activations. Moreover, this variant is
equivalent to the traditional SMoE equipped with
our DSAL, yet its performance in the continuous
learning scenario still exceeds that of the SMoE in
the single-domain learning scenario (See Table 2).
It affirms our DSAL’s ability to alleviate the issue
of insufficient expert training in SMoE.

(2) DSAL→EDI. Following prior studies (Jang
et al., 2023; Bohao et al., 2024), we replace DSAL
in our method with an External Domain Identifier
(EDI) to ascertain the domain of each instruction.
Specifically, this variant first uses the image and
text encoders of the CLIP model (Radford et al.,
2021) to generate representations of all instructions
in the training set. Then, the instruction represen-
tations in the same domain are averaged to form
a prototype vector for each domain. During infer-
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Model
Medicine Chart Math

VQA-RAD PathVQA SLAKE ChartQA Chart-to-Table Chart-to-Text MWP&GPS

Ours 74.10/36.95 91.12/35.33 84.06/84.61 55.58 57.94 10.31 39.10

(1) w/o AT-Router 67.00/34.41 89.11/32.28 81.80/81.49 52.65 55.04 8.16 36.75
(2) DSAL→EDI 66.70/32.52 84.47/29.78 77.97/77.06 50.36 52.94 7.60 37.48
(3) w/o DSAL 64.50/30.18 72.97/22.14 64.73/65.80 40.17 42.83 6.96 32.07
(4) w/o L3 70.30/34.13 87.49/32.55 80.90/81.77 52.53 55.44 8.14 37.11
(5) w/o len(S̃

(l)
t ) 71.69/35.34 89.13/33.26 81.77/82.89 53.93 56.25 8.87 38.25

Table 4: Ablation results of our method on our benchmark. EDI=External Domain Identifier.

ence, the test instruction’s domain is identified by
its nearest prototype vector. As shown in Line (2),
this variant causes a consistent drop in performance
across all domains. This can be attributed to two
factors: 1) The accuracy of EDI is significantly
lower than that of our DSAL (78.4% vs. 97.2%).
2) The absence of DSAL leads to insufficient expert
training, limiting the model performance.

(3) w/o DSAL. This variant removes DSAL from
our method, relying only on AT-Router to indirectly
achieve domain identification for test instructions.
As shown in Line (3), this variant also shows a
significant performance decline across all domains.
These results clearly illustrate the significant contri-
bution of DSAL to the effectiveness of our method.

(4) w/o L3. As described in Section 2.3, based
on our adaptive threshold, we design L3 to balance
the expert activations in the SMoE module. To
verify its efficacy, this variant eliminates it from
our training objective L. The results in Line (4)
reveal that balancing expert activation is essential
for improving the performance of our method.

(5) w/o len(S̃
(l)
t ). In Eq. 11, we use len(S̃(l)

t ) to
scale the representations of important tokens while
accelerating model training. As shown in Line
(5), the removal of len(S̃(l)

t ) consistently degrades
the performance of our method across all domains,
thereby confirming its effectiveness.

Notably, we further explore the generalization
ability of our method to unseen relevant domains in
Appendix D. In Appendix F, we also investigate
the efficacy of our method in task-incremental CIT.

5 Related Work

Continual Learning. In this regard, models are
required to continually learn new knowledge with-
out forgetting previously acquired knowledge. To
do this, three categories of CL methods have been
proposed: (1) replay-based methods (Chaudhry
et al., 2019b; Scialom et al., 2022; Zhang et al.,
2023; Huang et al., 2024). By retraining on his-

torical instances while learning new knowledge,
these methods prevent models from forgetting prior
knowledge. However, historical examples are not
always available and require additional training
and storage costs. (2) regularization-based meth-
ods (Li et al., 2017a; Kirkpatrick et al., 2017a;
Feng et al., 2022; Zheng et al., 2023; Wang et al.,
2024b). These methods alleviate catastrophic for-
getting by constraining updates on crucial parame-
ters that store prior knowledge during the learning
of new knowledge, which, however, may impair
the model’s ability to acquire new knowledge. (3)
architecture-based methods (Mallya et al., 2018;
Gururangan et al., 2021; Qin et al., 2022; Yu et al.,
2024). They use untapped or newly added parame-
ters to learn new knowledge, minimizing inter-task
conflicts and mitigating forgetting. Notably, these
method will continually increase the model’s pa-
rameters during CL, limiting their inference effi-
ciency.

Sparse Mixture of Experts. By replacing the
FFN sub-layer in the standard Transformer with
the SMoE module, SMoE (Shazeer et al., 2017;
Lepikhin et al., 2021; Fedus et al., 2022; Jiang
et al., 2024) aims to scale the model’s parameters
while maintaining training and inference efficiency.
Generally, each SMoE module consists of a group
of FFN-based experts and a router. The router only
selects the k most relevant experts to process each
token. Given the improved inference efficiency of
SMoE, several SMoE-based methods (Chen et al.,
2023; Shen et al., 2023; Dou et al., 2024a) have
been proposed for CL in LLMs. They first append
a SMoE module to each FFN sub-layer in LLMs,
and then sequentially add new experts to the SMoE
module for acquiring new knowledge. Since their
routers are typically continually updated in the CL
process, it is difficult for them to accurately iden-
tify suitable experts for instructions of earlier tasks
during inference. Moreover, they suffer from the in-
herent issue of insufficient expert training in SMoE
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(Gou et al., 2023; Ding et al., 2024).

Benchmark for CIT in MLLMs. Some recent
studies (He et al., 2023; Zhai et al., 2023; Chen
et al., 2024a) have explored task-incremental CIT
in MLLMs and introduced relevant benchmarks.
However, domain-incremental CIT remains unex-
plored in MLLMs and lacks relevant benchmarks.
Thus, we construct a new benchmark for domain-
incremental CIT in MLLM, comprising instruction
data for various tasks in three different domains.

6 Conclusion

In this paper, we propose a SMoE-based method
for domain-incremental CIT in MLLMs, which can
continually adapt MLLMs to new domains with-
out catastrophic forgetting. During CL training, it
learns a domain-specific SMoE module for each
new domain in every FFN sub-layer of the LLM,
minimizing inter-domain conflicts and avoiding
catastrophic forgetting. To enhance the SMoE mod-
ule’s ability for learning domain knowledge, we de-
sign a novel router AT-Router that allocates experts
to process each tokens based on its importance.
We also equip each SMoE module with a DSAL,
which is used to identify the most suitable SMoE
module for processing each test instruction during
inference. Moreover, we construct a new bench-
mark for domain-incremental CIT in MLLMs to
promote future research. Experimental results on
our benchmark validate the efficacy of our method.
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A Benchmark

As shown in Table 1, our benchmark covers 3 do-
mains, 5 tasks, and 14 datasets. In Figure 3, we
illustrate intuitive examples of our benchmark. In
this section, we will provide a detailed description
for each dataset in our benchmark, along with the
relevant evaluation metrics.

Medicine. Following Li et al. (2024), we primar-
ily focus on visual question answering task (VQA)
in the biomedical domain, while considering four
commonly used datasets in this domain:

• VQA-RAD (Lau et al., 2018) contains 3,515
QA pairs generated by clinicians and 315 radi-
ology images that are evenly distributed over
the head, chest, and abdomen. Here, questions
are classified into 11 categories: abnormality,
attribute, modality, organ system, color, count-
ing, object/condition presence, size, plane,
positional reasoning, and other. Half of the
answers are closed-ended (i.e., yes/no type),
while the rest are open-ended with either one-
word or short phrase answers.

• PathVQA (He et al., 2020) is a dataset com-
prising pathology images. It contains a total
of 4,998 pathology images with 32,799 QA
pairs. Every image has several questions that
relate to multiple aspects such as location, ap-
pearance, shape, color, etc. The questions are
categorized into two types: closed-ended and
open-ended questions.

• SLAKE (Liu et al., 2021) includes of 642 ra-
diology images and over 7,000 diverse QA
pairs annotated by experienced physicians.
Here, the questions may involve external med-
ical knowledge, and the images are associ-
ated with rich visual annotations, including
semantic segmentation masks and object de-
tection bounding boxes. Besides, SLAKE in-
cludes richer modalities and covers more hu-
man body parts than the currently available
dataset, including brain, neck, chest, abdomen,
and pelvic cavity.

• LLaVA-Med (Li et al., 2024) is a biomedical
dataset developed using language-only GPT-
4. With the caption and additional context of
the medical image, the authors use carefully
designed prompts to ask GPT-4 to generate
multi-round conversations about the image. It

includes about 60k instructions from the five
common imaging modalities: CXR (chest X-
ray), CT (computed tomography), MRI (mag-
netic resonance imaging), histopathology, and
gross (i.e., macroscopic) pathology.

In the medical domain, we follow Li et al. (2024)
to report the accuracy (ACC.) for the closed-set
questions. Meanwhile, for open-set questions, we
use Recall to evaluate the ratio that ground-truth
tokens appear in the generated sequences.

Chart. Charts play a crucial role in presenting
and elucidating complex data relationships. To ef-
fectively address problems in this domain, several
domain-specific MLLMs have recently been pro-
posed, such as ChartAssistant (Meng et al., 2024)
and TinyChart (Zhang et al., 2024). In the domain,
we consider three types of tasks:

• VQA requires the model to provide a con-
cise answer for each question based on the
chart content. Here, we primarily focuses
on the ChartQA (Masry et al., 2022) dataset,
which includes a lot of questions requiring
numerical calculation. This dataset comprises
9,600 human-written questions and 23,100
questions generated from human-written chart
summaries. Meanwhile, we follow most prior
studies (Masry et al., 2022; Han et al., 2023b;
Zhang et al., 2024) to adopt the relaxed accu-
racy (Relax_Acc.) as the evaluation metric
on this dataset, which allows numerical error
within 5%.

• Chart-to-Table aims to extract the underlying
data table represented by a chart image. Given
that the ChartQA dataset provides correspond-
ing data table annotation for each chart image,
we also employ this dataset for the Chart-to-
Table task. In addition, we use the commonly
used RMSF1 (Liu et al., 2023a) metric to eval-
uate the model’s performance on this task.

• Chart-to-Text focuses on generating textual
summaries based on chart content. In this task,
we utilize the Statista and Pew datasets devel-
oped by Kantharaj et al. (2022). These two
datasets consist of 44,096 charts covering a
broad range of topics and a variety of chart
types. Following Zhang et al. (2024), we eval-
uate the model solely on the Pew dataset and
report BLEU4 as the metric.
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Figure 3: Examples of our benchmark for domain-incremental CIT in MLLMs.

Math. Recently, many studies (Wang et al.,
2024a; Shi et al., 2024) has focused on improving
the mathematical reasoning capabilities of MLLMs.
To prevent overlap with the default instruction tun-
ing datasets of widely used MLLMs, we collected
seven multimodal mathematical reasoning datasets.
Meanwhile, we categorized these datasets into two
common task types, math word problem (MWP)
and geometry problem solving (GPS):

• MWP aims to solve geometrical problems
with diagrams and figures. In this task, we
considered three datasets: (1) IconQA (Lu
et al., 2021b) focuses on answering a ques-
tion in an icon image context. It consists of
107,439 questions and three sub-tasks: multi-
image-choice, multi-text-choice, and filling-
in-the-blank. (2) CLEVR-Math (Lindström
et al., 2022) consists of simple math word
problems involving addition/subtraction, rep-
resented partly by a textual description and
partly by an image illustrating the scenario.

Solving these problems requires a combina-
tion of language, visual and mathematical rea-
soning. (3) TabMWP (Lu et al., 2023) con-
tains 38,431 open-domain grade-level prob-
lems that require mathematical reasoning on
both textual and tabular data. Each question
in TABMWP is aligned with a tabular con-
text, which is presented as an image, semi-
structured text, and a structured table.

• GPS involves arithmetic calculations within
the context of images. Here, the following
four datasets are considered: (1) GEOS (Seo
et al., 2015) is a dataset of SAT plane ge-
ometry questions where every question has
a textual description in English accompanied
by a diagram and multiple choices. Ques-
tions and answers are compiled from previ-
ous official SAT exams and practice exams
offered by the College Board. In addition, we
use a portion of the publicly available high-
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β
Medicine Chart Math

VQA-RAD PathVQA SLAKE ChartQA Chart-to-Table Chart-to-Text MWP&GPS

0.00 64.50/30.18 72.97/22.14 64.73/65.80 40.17 42.83 6.96 32.07
0.05 73.30/36.00 90.62/34.79 83.11/83.73 55.03 57.15 9.83 38.35
0.10 74.10/36.95 91.12/35.33 84.06/84.61 55.58 57.94 10.31 39.10
0.15 74.60/37.20 91.52/35.97 84.45/85.19 55.71 58.37 10.42 39.75
0.20 74.20/37.01 91.16/35.63 84.11/84.89 55.35 58.07 10.16 39.39
0.25 73.80/36.55 90.33/34.97 83.57/84.15 55.22 57.06 9.87 38.84

Table 5: The results of our method with varying values of β on our benchmark. η maintains its default value of 0.1.

η
Medicine

VQA-RAD PathVQA SLAKE

0.00 70.30/34.13 87.49/32.55 80.90/81.77
0.05 73.10/36.05 90.36/34.10 83.30/83.38
0.10 74.10/36.95 91.12/35.33 84.06/84.61
0.15 73.80/36.73 90.80/34.75 83.64/84.23
0.20 73.50/36.75 90.62/34.82 83.39/84.15
0.25 73.00/36.28 90.46/34.25 83.37/84.08

Table 6: The results of our method with different values
of η in the Medicine domain. Here, β retains its default
value of 0.1.

school plane geometry questions (Seo et al.,
2014) as our training set. (2) Geometry3K
(Lu et al., 2021a) consisting of 3,002 geome-
try problems with dense annotation in formal
language. It also provides a geometry solv-
ing approach with formal language and sym-
bolic reasoning, called Interpretable Geome-
try Problem Solver (Inter-GPS). (3) GeoQA+
(Cao et al., 2022) is obtained by extending
the training set of the original GeoQA dataset
with 2,518 newly annotated geometric ques-
tions. The original GeoQA dataset contains
5,010 geometric problems, 3,509 for training,
746 for validation and 755 for test. (4) Uni-
Geo (Chen et al., 2022a) involves 4,998 calcu-
lation problems with corresponding annotated
program sequence, which illustrates the cal-
culating process of the given problems and
is considered as training and testing target.
Besides, the GeoQA also provides a proving
dataset with 9,543 problems.

In this domain, we follow Shi et al. (2024) to fo-
cus primarily on the closed-set and computational
problems, while employing accuracy (ACC.) as the
evaluation metric.

B Analysis of Hyper-parameter

Our training objective consists of three loss terms:
L=L1+βL2+ηL3, where hyper-parameters β and

Ne

Medicine

VQA-RAD PathVQA SLAKE Top-K

2 70.30/32.46 88.56/31.30 81.78/79.65 0.87
4 74.10/36.95 91.12/35.33 84.06/84.61 0.81
6 74.10/37.01 91.40/35.31 84.36/84.95 0.85
8 74.50/37.28 91.77/35.56 84.85/85.13 0.80

Table 7: The results of our method with different values
of Ne in the Medicine domain. d′ retains its default
value of 128. "Top-K" means the average number of ex-
perts activated by our AT-Router to process each token.

η are used to balance their contributions. In this sec-
tion, we will examine the impact of these two hyper-
parameters on the performance of our method.

Since the loss term L3 aims to balance the expert
activation in the SMoE module, it mainly affects
our method’s capacity to learn domain knowledge
in the single-domain learning scenario. Therefore,
we primarily examine the impact of its coefficient η
on the performance of our method in the Medicine
domain. As shown in Table 6, our method exhibits
robust performance across various values of η and
achieves best performance when η is set to 0.1.

Instead, our DSAL (L2) is mainly utilized to
identify the most suitable SMoE module for pro-
cessing each test instruction during inference, di-
rectly influencing the performance of our method
in the continual learning scenario. Hence, we pri-
marily investigate the impact of β on the perfor-
mance of our method in continual learning scenar-
ios. From Table 5, we observe that our method is
insensitive to β and achieves optimal performance
when β is set to 0.15. Notably, our method achieves
superior results when β is set to 0.15 and η to 0.1,
surpassing the results presented in the Experiment
section (See Lines 5 and 6 of Table 5)

C Analysis of Our SMoE Module

In our method, we apply separate SMoE modules
to learn domain-specific knowledge for each do-
main. This suggests that the configuration of our
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Model
Medicine Chart Math

VQA-RAD PathVQA SLAKE ChartQA Chart-to-Table Chart-to-Text MWP&GPS

LLaVA-1.5 2.10/13.27 4.62/8.87 7.33/28.92 9.27 9.97 4.20 8.93

Ours 74.10/36.95 91.12/35.33 84.06/84.61 55.58 57.94 10.31 39.10
Ours+ 73.60/36.70 90.52/34.97 83.45/84.19 55.79 57.82 10.50 39.42
Ours (Chart+Math)+ 2.10/12.55 4.70/8.36 7.18/28.29 − − − −
Ours (Med+Math)+ − − − − − − 16.70
Ours (Med+Chart)+ − − − 13.91 11.16 5.07 −

Table 8: The results of our method with different inference strategies and training domains. + indicates that our
method uses a new inference strategy for domain generalization. The domain enclosed in parentheses refers to the
training domain. By default, our method utilizes all domains in our benchmark for model training.

d′
Medicine

VQA-RAD PathVQA SLAKE Top-k Norm

32 67.60/26.25 83.37/23.41 74.33/70.24 0.42 0.31
64 70.10/30.60 88.03/30.18 81.30/77.65 0.64 0.37
128 74.10/36.95 91.12/35.33 84.06/84.61 0.81 0.50
256 74.70/37.31 91.94/35.73 84.72/85.20 1.35 0.58
512 75.00/37.93 92.16/36.38 85.10/86.01 2.15 0.66

Table 9: The results of our method with different values
of d′ in the Medicine domain. Here, Ne retains its
default value of 4. "Top-K" means the average number
of experts assigned to process each instruction token by
our AT-router. "Norm" represents the average L2-norm
of the output features from the experts.

SMoE module mainly affects the performance of
our method in the single-domain learning scenario,
rather than in the continual learning scenario. Thus,
in this section, we aim to analyze the effects of
the expert number of Ne and the expert dimension
d′ within the SMoE module on our model’s per-
formance in the Medicine domain. We present the
experimental results in Table 7 and Table 9. Further
analysis of these results reveals several significant
conclusions:

Firstly, increasing the number of experts Ne and
the expert dimension d′ can indeed enhance the
performance of our method. The primary reason is
that increasing Ne and d′ directly leads to a growth
in the trainable parameters involved in our method.
Nevertheless, when Ne exceeds 4 and d′ surpasses
128, the performance gains from further increasing
the trainable parameters become limited. Thus, we
adopt N = 4 and d′ = 128 as the default settings
in the Experiment section. Certainly, when there is
enough training data, increasing both the number
and dimension of experts is still an effective strat-
egy for improving the performance of our method.

Secondly, we observe that the average number of
experts assigned to process each instruction token

by our AT-router increases with the expert dimen-
sion d′ (see the "Top-k" column in Table 9). In
contrast, this phenomenon does not seem to occur
when increasing the number of experts Ne (see the
"Top-k" column in Table 7). To explore the under-
lying reasons, we calculated the average L2-norm
of the output features from experts with different
dimensions d′. To facilitate better comparison, we
divide the L2-norms obtained from the experts by
the L2-norm produced from the original FFN sub-
layer in the LLM. As shown in the "Norm" column
of Table 9, the L2-norms from the experts is posi-
tively correlated with their dimension d′. Thus, we
conjecture that the expert dimension d′ influences
the average number of experts assigned to process
each token via the L2-norm of the output features.

To enhance the practicality of our AT-Router, we
designed a new loss function Ltopk to control the
average number of experts assigned to process each
instruction token. Specifically, we first compute
the average score for each expert and the average
adaptive threshold based on Eq. 5: [ᾱ, s̄1,· · ·,s̄N ]=
1
|B|

∑|B|
b=1 Sb, where |B| denotes the number of in-

struction tokens in the current training batch B.
Next, we combine the average scores of all experts:
s̄= 1

Ne

∑Ne
n=1 s̄n. Then, we calculate the average

number of experts k assigned to process each token
in the current training batch based on Eq. 6. Finally,
Ltopk is defined as a binary cross-entropy:

Ltopk=− (I(k<K) log(p̂)+I(k>K) log(1−p̂)) ,

p̂ = es̄/(es̄+eᾱ),

where I(·) represents the indicator function, K is a
hyper-parameter that denotes the desired average
number of experts assigned to handle each token.
In the equation, we omit the indexes of the SMoE
module and the layers in LLM. Finally, we sum
the loss Ltopk of the SMoE modules in training to
derive our fourth loss term L4.
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K
Medicine

VQA-RAD PathVQA SLAKE

1 74.20/36.72 91.36/35.18 84.20/84.48
2 74.60/37.10 91.98/35.92 84.54/85.04
3 74.90/37.95 92.13/36.30 84.88/85.55
4 74.97/38.01 92.20/36.47 85.02/85.71

Table 10: The results of our method with different
values of K in the Medicine domain. Here, Ne and
d′ retain their default values of 4 and 128, respec-
tively. Meanwhile, we employ the objective function
L=L1+0.1∗(L2+L3+L4) for model training.

As shown in Table 10, we also explore the im-
pact of the hyper-parameter K on the performance
of our method. We find that increasing the average
activations of experts can enhance the performance
of our method. Nevertheless, when K is relatively
large, the performance enhancement from further
increasing K is very limited. The primary rea-
son is that allocating more experts to unimportant
tokens does not yield obvious performance gains.
In contrast, a larger K will result in lower model
inference efficiency.

D Analysis of Domain Generalization

In this section, we evaluate the generalization ca-
pability of our method to unseen relevant domains.
However, our method only selects one domain-
specific SMoE module in every layer of LLM to
process each test instruction, which may limit the
inter-domain knowledge transfer and the domain
generalization of our method. To address this chal-
lenge, we further optimize the inference strategy
utilized in our method. Specifically, we first count
and record the average DSAL of each SMoE mod-
ule on the training instructions in the correspond-
ing domain. Then, during inference, we select the
SMoE module with the minimum DSAL as the
primary module for processing the current test in-
struction (See Eq. 4). Meanwhile, we select the
SMoE module, whose average DSAL exceeds its
DSAL on the current test instruction, as auxiliary
modules to provide supplementary knowledge in
related domains. In this way, our method can be
adapted to open-domain scenarios without requir-
ing model retraining. From the experimental results
presented in Table 8, we derive several conclusions:

First, we notice that directly applying the above
inference strategy to our method improves its per-
formance improvement in the Math and Chart do-
mains, while causing a slight drop in the Medicine

domain (see the line for Ours+ in Table 8). The
main reason for this is the inherent correlation be-
tween the Chart and Math domains, which allows
them to mutually enhance each other. However, the
significant gap between the Medicine domain and
the other two domains prevents our method from
leveraging knowledge from the other two domains
to improve its performance in the Medicine domain.
Moreover, we also observe that LLaVA-1.5 has a
slight performance decline in the Medicine domain
after learning the Chart and Math domains via our
method (see LLaVA-1.5 vs. Ours (Chart+Math)+).
This further validates the gap between the Medicine
domain and these two domains.

Second, we find that our method shows superior
domain generalization in the Chart and Math do-
mains (see LLaVA-1.5 vs. Ours (Med+Math)+ and
LLaVA-1.5 vs. Ours (Med+Chart)+). This clearly
confirms that our method can indeed achieve do-
main generalization by transferring knowledge
from relevant (already learned) domains. In addi-
tion, we attribute the excellent domain generaliza-
tion of our method to the following two aspects: (1)
Our method can effectively fuse knowledge from
multiple domains to process test instructions in new
domains by selecting SMoE modules correspond-
ing to different domains at various layers of the
LLM. (2) The above inference strategy enhances
our method’s capacity to integrate knowledge from
various learned domains, thereby further improving
its domain generalization.

E Implementation Details of Baselines

In the paper, our method and all baselines are devel-
oped on LLaVA-1.5 using the following parameter-
efficient fine-tuning techniques:

• LoRA (Hu et al., 2022): Replay, EWC, LWF,
M-LoRA, O-LoRA.

• DMoE (Ma et al., 2018): MoELoRA.

• SMoE (Shazeer et al., 2017): SMoELoRA,
L-SMoE, MoLM, Ours.

To ensure a fair comparison, all methods add a
comparable average number of learnable parame-
ters to the FFN sub-layers in the LLM for learn-
ing each domain (see Line 2 in Table 3). Unlike
architecture-based methods that dynamically and
sequentially add the same amount of parameters
for each domain to the LLM, both replay-based and
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regularization-based methods add the learnable pa-
rameters for all domains to the LLM at once. By
doing so, we further guarantee that the total num-
ber of parameters for all methods remains com-
parable. In the multi-domain learning, where all
domains can be accessed simultaneously, all meth-
ods add the learnable parameters for all domains to
the LLM at once.

Furthermore, in methods based on DMoE and
SMoE, experts are often implemented in two ways:

• FFN-based Expert: It directly utilizes the
FFN sublayer of the LLM as the expert. L-
SMoE, MoLM, and our method employ this
type of expert. Meanwhile, we leverage the
dimensionality d′ of the intermediate hidden
layer in the FFN sublayer to control the num-
ber of parameters for each expert (See Eq. 7).

• LoRA-based Expert: It applies LoRA to im-
plement the FFN sub-layer of the LLM as the
expert, and then uses the rank r in LoRA to
control the parameter count for each expert.
Here, both MoELoRA and SMoELoRA adopt
this kind of expert.

For a fair comparison, we utilize d′ and r to ensure
that the size and number of experts in our method
are consistent with those in the related baselines.

F Analysis on Task-incremental CIT

Here, we aim to validate the efficacy of our method
in task-incremental CIT. Therefore, we further con-
duct experiments on the recent task-incremental
CIT benchmark, CoIN (Chen et al., 2024a). As
shown in Table 11, our method consistently outper-
forms all relevant baselines in the task-incremental
CIT. This further confirms that our method can
effectively prevent catastrophic forgetting during
continual learning. The underlying reason is that
the output formats of some tasks in CoIN are sig-
nificantly different, causing baselines to forget the
response formats of earlier tasks after learning new
ones. In contrast, our method employs independent
SMoE modules to learn different tasks and lever-
ages DSAL to identify the corresponding task for
each test instruction, effectively avoiding this issue.

By analyzing the results in the first line of var-
ious methods, we find that our approach demon-
strates stronger task learning capabilities, achiev-
ing outstanding performance on each task. More-
over, comparing the results in the two rows for
our method indicates a slight forgetting issue in

task-incremental CIT, which was not observed in
domain-incremental CIT. The possible reason is
that some tasks in CoIN contain similar instruction
instances, which restricts the ability of our DSAL
to distinguish them.

G Analysis of AT-Router

Similar to our AT-Router, several recent studies
also focus on reducing expert activation in SMoE.
In this section, we first provide a detailed discus-
sion of the differences between their method and
our AT-Router:

• AdaMoE (Zeng et al., 2024): It first adds
many null experts to the SMoE module, and
then reduces the activation of true experts by
assigning some null experts to tokens. How-
ever, AdaMoE only employs the load balanc-
ing loss, without the objective loss of the tar-
get task, to train the routing scores of null
experts, which restricts its performance on the
target task.

• AdaK (Yue et al., 2025): It introduces an ex-
tra allocator into the already trained SMoE
module for predicting the number k of ex-
perts to be activated for each token. How-
ever, the allocator requires training using com-
plex reinforcement learning (RL) strategies,
restricting the practicality and generalization
of this method. Meanwhile, AdaMoE’s per-
formance depends on the quality of its base
SMoE model.

• AT-Router: Unlike the above two methods,
our AT-Router calculates an adaptive thresh-
old for each token to assess its importance,
and then assigns experts based on this im-
portance. Notably, the adaptive threshold is
used as the coefficient for the output feature
of the original FFN in the LLM, providing
several benefits to our AT-Router: (1) We can
directly use the objective loss of the target
task to optimize the adaptive threshold, thus
reducing expert activations while improving
model performance. (2) With the help of adap-
tive thresholds, AT-Router can determine how
much additional experts are needed to further
process the current token based on how well
the original FFN processes it.

Furthermore, to validate the superiority of our AT-
Router, we further conduct comparative experi-
ments on our benchmark. Here, considering that
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Model
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA

Accuracy on Each Task

LoRA 75.33 47.06 94.95 52.95 50.77 10.25 56.73 55.33
49.96 23.60 7.22 36.12 33.05 0.09 39.20 55.33

LwF 75.33 48.18 96.90 48.58 44.12 6.60 38.58 62.35
63.14 39.60 8.90 34.83 14.53 2.48 40.67 62.35

EWC 75.28 48.37 96.83 42.77 44.25 8.65 60.27 61.02
67.14 40.41 8.18 35.05 37.88 2.67 41.27 61.02

MoELoRA 75.85 49.05 93.95 56.53 48.70 25.57 61.90 55.35
58.92 38.59 8.85 37.10 44.25 2.45 41.40 55.35

SMoELoRA 74.67 47.15 94.36 54.38 47.51 23.46 60.30 55.26
60.53 39.84 9.73 38.35 45.02 3.61 41.88 55.26

Ours 76.36 49.64 96.96 57.05 50.83 25.79 62.45 62.76
75.04 48.51 95.12 56.10 50.68 24.19 61.71 62.76

Table 11: The results of our method and baselines on CoIN. The first line of each method presents the results for
each task evaluated when just tuned on the corresponding task, and the second line displays the final results of each
task after fine-tuning on the last task.

Model
Medicine Chart Math

VQA-RAD PathVQA SLAKE ChartQA Chart-to-Table Chart-to-Text MWP&GPS

LLaVA-1.5 2.10/13.27 4.62/8.87 7.33/28.92 9.27 9.97 4.20 8.93

DMoE 72.40/36.48 90.24/34.82 82.77/83.38 55.18 57.32 9.94 38.62
SMoE 65.20/32.66 87.59/30.43 80.09/80.05 50.72 54.51 7.37 36.08
AdaMoE 66.50/33.45 88.42/31.50 81.22/81.14 51.60 55.77 8.29 36.68
AdaK (+DMoE) 70.00/35.04 88.86/32.37 81.85/.82.11 52.84 56.19 8.72 36.95

Ours 74.10/36.95 91.12/35.33 84.06/84.61 55.58 57.94 10.31 39.10
Ours (AT-Router→AdaMoE) 67.20/34.82 89.16/32.44 81.93/81.75 52.65 56.04 8.96 37.23
Ours (AT-Router→AdaK) 72.00/35.98 89.82/33.55 82.65/82.81 53.47 56.89 9.46 37.76

Table 12: The results of our method and baselines on our benchmark in single-domain learning scenario. Here,
AdaK is implemented on the basis of DMoE. Meanwhile, we align the expert activation levels of AdaMoE and
AdaK with those of our AT-Router, ensuring a fair comparison.

different routing strategies only affect our method’s
ability to learn domain knowledge, we compared
our AT-Router with AdaMoE and AdaK in the
single-domain learning scenario. From the experi-
mental results presented in Table 12, we can draw
several observations:

First, AdaMoE and AdaK consistently outper-
form traditional SMoE, thus confirming their effec-
tiveness. Additionally, although AdaK reduces the
expert activation of DMoE, it also leads to perfor-
mance degradation across all domains. It implies
that the primary objective of AdaK is to reduce the
expert activation of its base model rather than to
improve its performance.

Second, our method significantly outperforms
both AdaMoE and AdaK across all domains, fur-
ther validating the strong domain learning capabil-
ity of our method. To conduct a fine-grained com-
parison, we replace the AT-Router in our method

with AdaMoE and AdaK, respectively (see the bot-
tom rows of Table 12). We note that both replace-
ments lead to a performance drop in our method,
effectively demonstrating the superiority of our AT-
Router and its compatibility with other components
of our method.
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