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Abstract

Current benchmarks for large language model
(LLM) reasoning predominantly focus on math-
ematical and coding abilities, leaving a gap
in evaluating broader reasoning proficiencies.
One particular exception is the BIG-Bench
dataset, which has served as a crucial bench-
mark for evaluating the general reasoning ca-
pabilities of LLMs, thanks to its diverse set
of challenging tasks that allowed for a com-
prehensive assessment of general reasoning
across various skills within a unified frame-
work. However, recent advances in LLMs
have led to saturation on BIG-Bench, and its
harder version BIG-Bench Hard (BBH). State-
of-the-art models achieve near-perfect scores
on many tasks in BBH, thus diminishing its
utility. To address this limitation, we intro-
duce BIG-Bench Extra Hard (BBEH), a new
benchmark designed to push the boundaries
of LLM reasoning evaluation. BBEH replaces
each task in BBH with a novel task that probes
a similar reasoning capability but exhibits sig-
nificantly increased difficulty. We evaluate vari-
ous general-purpose and reasoning-specialized
models on BBEH and observe an accuracy
of 23.9% for the best general-purpose model
and 54.2% for the best reasoning-specialized
model, indicating substantial room for im-
provement and highlighting the ongoing chal-
lenge of achieving robust general reasoning in
LLMs. We release BBEH publicly at: https:
//github.com/google-deepmind/bbeh.

1 Introduction

Reasoning, the ability to draw inferences and con-
clusions from given information, is a cornerstone
of human intelligence and a critical frontier in the
development of large language models (LLMs).
While recent research has made significant strides
in evaluating the reasoning capabilities of LLMs,
the focus has been disproportionately skewed to-
wards math/science and coding. This emphasis
is likely driven by the availability of challenging

Performance on BBEH

Random @ ]
Llama-3.1-8B-Instruct
Gemma2-27B-IT
Gemma3 27B
Gemini-2.0-Flash-Lite
Gemini-2.0-Flash
GPT-40
Distill-R1-Qwen-32B
Deepseek R1
03-mini(high)

general-purpose models

reasoning models

0 5 10 15 20 25 30 35 40 45 50

Harmonic Mean Accuracy (%)

Figure 1: Model performances on BBEH (harmonic
mean over individual task performances).

benchmarks in these domains and the relative ease
of evaluating quantitative solutions. However, rea-
soning encompasses a far broader spectrum of cog-
nitive skills, including logical deduction, temporal
and spatial understanding, commonsense reason-
ing, and even the ability to comprehend humor.

To assess these diverse reasoning facets, the com-
munity has relied on the BIG-Bench benchmark
(Srivastava et al., 2022), specifically its more chal-
lenging subset, BIG-Bench Hard (BBH) (Suzgun
et al., 2022). BBH has served as the de facto stan-
dard for evaluating general reasoning in LLMs due
to its versatility and the wide array of reasoning
skills it probes. However, the rapid progress in
LLM development has led to a saturation of BBH,
with frontier models achieving over 90% accuracy
(e.g., Claude 3.5 reported an accuracy of 93.1% on
BBH in June 2024 using a 3-shot prompt!). This
performance ceiling renders BBH less effective in
discriminating between the reasoning abilities of
the latest generation of LLMs.

To address this challenge, we introduce BIG-
Bench Extra Hard (BBEH), a benchmark designed
to assess advanced reasoning capabilities. BBEH
builds upon BBH by replacing each of its 23 tasks
with a novel counterpart that probes similar reason-
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ing capabilities, but exhibits significantly increased
difficulty. Solving the tasks in BBEH requires fur-
ther reasoning skills than the problems in BBH.
These skills include, but are not limited to, many-
hop reasoning, learning on the fly, finding errors
in reasoning traces, processing long-context inputs
and finding (multi-)needles in a haystack, going
against strong prior, dealing with long-range de-
pendencies, dealing with distractors and inducing
patterns from examples. By presenting LLMs with
problems that demand a wider array of reasoning
capabilities, BBEH aims to provide a more accurate
measure of their general reasoning abilities.

We provide a comprehensive evaluation of sev-
eral state-of-the-art LLMs on BBEH. Our results
demonstrate that BBEH presents a significant chal-
lenge even for the most advanced models. Specifi-
cally, we observe a ceiling accuracy of 23.9% for
the best general-purpose model and 54.2% for the
model reasoning-specialized model, highlighting
the substantial headroom for improvement in ro-
bust general reasoning for LLM. Furthermore, we
conduct a detailed failure analysis, revealing in-
triguing failure modes for both general-purpose
LLMs and models specifically designed for rea-
soning and thinking. These findings offer valuable
insights into the current limitations of LLMs and
provide guidance for future research aimed at en-
hancing their reasoning capabilities.

2 Beyond BIG-Bench Hard (BBH)

We believe three key factors in the success of BBH
were the following: 1- it was challenging for the
frontier models at the time, thus helping reveal
areas for improvement, 2- despite being composed
of various tasks, all the questions in BBH were in a
way that allowed for simple correctness verification
of model responses with a few simple rules, and
3- perhaps most importantly, it tested for a vast
array of reasoning skills making it a good proxy for
measuring general reasoning. The latter factor is
in contrast to many existing reasoning benchmarks
that test only for a few of these skills as explained
in the related work section.

Despite the great success of BBH and its
widespread use, it also exhibited some key limi-
tations. Firstly, a random chance baseline already
has a high performance on BBH due to the high
number of tasks with limited options (8/23 of the
tasks have binary labels, and another 5/23 have at
most 5 options to choose from). Secondly, some of

the problems in BBH can be solved using shortcuts
without solving the problem (for example, in the
geometric shapes task, whenever there are three L
commands the answer is triangle). Thirdly, while
real-world reasoning problems typically require
processing large amounts of input texts, the input
lengths of the problems in BBH are often quite
short with a macro average of 700 characters across
tasks. Fourthly, since the problems were made to
be challenging for the LLMs of the time, they typ-
ically require only few hops of reasoning. And
finally, while BBH tests for a quite large and di-
verse set of skills, the set can be greatly expanded
to include even more reasoning skills. The fast
pace of improvement in the reasoning ability of
the latest LLMs coupled with the limitations of the
BBH dataset outlined above has led to BBH getting
saturated with latest models achieving accuracies in
the range of 90+ percent on it, thus causing BBH to
disappear from the latest model evaluation reports.

We create a challenging benchmark for measur-
ing the general reasoning capability of LLMs by
using BBH as a guide: we preserve the positive
aspects of BBH and lift the limitations as much
as possible. Specifically, we create a benchmark
that is challenging for the frontier models, the cor-
rectness of the model responses can be verified
automatically despite being composed of several
sub-tasks, the random chance baseline has a much
lower success rate and the shortcuts are removed
from the problems as much as possible, problems
require processing longer inputs and require sig-
nificantly more hops of reasoning to be solved,
and, perhaps most importantly, covers a wide array
of reasoning skills including those in the original
BBH dataset and beyond. Through studying the 23
tasks in BIG-Bench Hard (BBH), we identify that
for a reasoner to perform well on BBH it needs to
have at least the following broad reasoning skills:
1- temporal understanding, 2- spatial and geomet-
ric understanding, 3- commonsense understanding,
4- humour understanding, 5- causal understanding,
6- reasoning about world entities and events, 7-
deductive logical reasoning, 8- reasoning through
linguistic knowledge, 9- counting and filtering, 10-
data structures and algorithms, and 11- performing
arithmetic operations.

For our benchmark, we wish to preserve the high
diversity of the reasoning skills and capabilities
from BBH and also expand upon it by including
more of the following skills.
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Spatial Reasoning

Buggy Tables

You have been given a diamond tile map consisting of N rows [...]
There is a unique object placed at each vertex. [...] You are initially
at the top corner where you see a football. Then you move down-
right for one step and see a shampoo. Then you move down-left
for one step and you see a cat. [...] Then, you jump to a random
vertex V where you see a bear. Then you move [...] Then you
move up-left and you see a shampoo. Then you jump back to the
random vertex V and do the following moves: down-left, down-
left, down-right, up-left, down-left, up-left. What will you find?

I have a table with 30 rows (including the header) and 18 columns.
The table was converted to Markdown format as follows: <TA-
BLE IN MARKDOWN FORMAT>. However, the code used
to convert the table into Markdown format was buggy and mis-

takenly replaced some values with "ERROR". The correct val-
ues for those cells in row-order are respectively as follows:

[9,10,null, 12, ..., 29]. Compute the absolute difference between

the mean of coding_minutes and exercise_minutes, considering

only the days where: 1- The number of meetings was greater than 2.

J
N n
Causal Understanding VR BT
Reagent X is being added to a tank. At each time interval, a drop of Consider a new alphabet whose letters have the same or-
. X . . der as the English alphabet, except that r and p are swapped.
Reagent X is being added. At one point the tank overflows. Is adding . O
Sort the following words with the new alphabet and separate
the last drop of Reagent X a necessary cause for the tank to overflow? . . [
L ) them with comma: syndrome, therefrom, [...], specifications.
§ J
N\ 2!
Multistep Arithmetic BoardgameQA
Consider the following new operations: A few players are playing a boardgame. The current state of the game
allb = [.] is as follows. The bee has a football with a radius of 15 inches. The
chihuahua has a smoothie. [...]
) And the rules of the game are as follows.
@b = (a=b)*b, ifallb<2 Rulel: Anyone who [...] has to pay $$$ to the beaver.
(b —a) *x a, otherwise Rule2: If the stork [...], then it does not pay $$$ to beaver.
Rule 2 is preferred over Rule 1. If a rule is preferred over the other,
R it means whenever both of them can be applied to derive new con-
For brevity, wefse a (opl) <Op?> b*lo denofe (aopl b) O_p2 b"* clusions and those conclusions contradict with each other, we
Let A = (1 @*+4) <>+[] (4 *<>* -1)) @; ((1 <>six) 3 (2 should go with the conclusion from the rule with higher preference.
one))) @@@ (((five - five) [J@ @ (-8 - one)) ; ((two +; -5) +[]- What is the truth value of the statement:
(three - -8)))). Let B =[...]. Let C =[...]. Compute: A + B - C. ) "Does the finch shout at the mermaid?" )
N

Dyck Language

You are given an initial Dyck language sequence and
the steps, provided as thoughts, that were used to arrive
at the closing bracket sequence in the Dyck language.
Your job is to identify the first step that was a mistake.
Task: Complete the rest of the sequence, mak-
ing sure that the parentheses are closed properly.
Input: ( < < > [ (

Thoughts: Thought 1: We should process each input
one by one and keep track of the stack configuration.

Time Arithmetic

Thought 2: stack: empty Thought 3: (; stack: ( [...]

Let the answer to Q1 be X and the answer to Q2 be Y.

QI: Clara and William were born on 2015-Aug-24 and 2016-May-20 re-
spectively. When William was 326 days old, how old was Clara in days?
Q2: <TEXT OF THE QUESTION>

Define: X’ =X +3, Y =Y -568
Q3: Alan and Mary tried a new restaurant on Aug Y’
1997 and really liked it. They decided to go to the same
restaurant every X’ days. If today is Oct 11, 1997,
when is the next time they will go to that restaurant?

Figure 2: Sample Questions from 8 tasks. The text has been shortened due to lack of space.

* Many-hop reasoning: The ability to solve a
problem that require many steps/hops

* Very long-range dependency: the ability to
remember and use information provided or
concluded much earlier in the context

* Going against strong prior: the ability to
reason through a problem even when it does
not match the prior beliefs (it has been shown
that models often fail and even exhibit inverse
scaling in such cases (McKenzie et al., 2023))

* Learning on the fly: the able to learn some-
thing new on the fly (i.e. from the information
in the context) and apply it to solve a problem

* Dealing with distractors: The ability to iden-
tify the parts of the context necessary for solv-
ing the problem, and not getting distracted by
the redundant information

* Long-context: the ability to reason through
a long input context and stitching different
pieces of input together

* Needle in a haystack: the ability to find small
pieces of relevant information from a large
input (e.g., finding one value from a large
table)

* Finding errors in reasoning traces: the abil-
ity to identify the errors in a chain of reasoning
not produced by the model itself

* Inductive reasoning: the ability to induce
patterns from a number of examples and be-
ing able to apply the same pattern to a new
instance of a problem

* Contraint satisfaction: the ability to under-
stand constraints and find a solution that satis-
fies them

» Compositional understanding: the ability to
solve multiple independent problems that are
fused into one problem (recent work (Hosseini
et al., 2024; Miner et al., 2024) shows that
models may fail more often in solving two
problems composed into one, compared to
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BBEH task

Summary of changes made and the task it replaces from BBH

Main reasoning skills

Boardgame Based on (Kazemi et al., 2023b) but with larger reasoning depth. Requires many hops of deductive reasoning as well as learning a specific Deductive reasoning, learning on the fly,
QA type of conflict resolution on the fly. Replaces Logical Deduction from BBH which needed only a few simple steps of deductive logic. many-hop reasoning.

Boolean Ex- | Requires determining the truth value of an expression whose operands could themselves be textual/mathematical sub-expressions that | Logical reasoning, many-hop reasoning.
pressions evaluate to True or False. Replaces the Boolean Expressions task from BBH which can be easily solved through one line of python code.

Buggy Tables Requires understanding and reconstructing a large buggy table given the description of the bug, and then computing some conditional | Data structures, learning on the fly, needle

queries on it. Replaces Penguins in a table from BBH which required simple operations over small, clean tables.

in haystack

Causal Under-

A subset of the causal stories in (Nie et al., 2023) and improved examples from (Kiciman et al., 2023). One subtask focuses on testing causal

Causal judgement/reasoning, logical rea-

standing judgment and the other on the ability to reason about necessary and sufficient causes. Replaces the Causal Judgement task from BBH. soning, counterfactual reasoning

Disambiguation | A task created by the authors, requiring pronoun disambiguation over longer and more challenging text compared to the original | Commonsense understanding, linguistics
A Disambiguation QA task in BBH. knowledge.

Dyck Lan- | Involves finding errors in (potentially) faulty solutions to closing a sequence of brackets. It comes from (Tyen et al., 2023) and replaces the | Data structures, finding errors in reason-

guage Dyck languages task from BBH which requires properly closing brackets as opposed to finding errors. ing traces.

Geometric Requires identifying the set of shapes drawn by a series of SVG commands while also dealing with distracting commands that do not Spatial reasoning, geometric understand-

Shapes participate in any shape. Replaces the Geometric Shapes from BBH which involved identifying a single shape. ing, dealing with distractors.

Hyperbaton Requires inducing correct adjective order given examples on a new variant of English, and properly apply it to new examples. Replaces | Inductive reasoning, going against strong

Hyperbaton from BBH which required simply knowing the correct adjective order in English. prior, linguistic knowledge.
Linguini Comes from (Sanchez et al., 2024) and requires linguistic reasoning and inductive reasoning to learn about a new language given some | Inductive reasoning, linguistic knowl-

examples and then apply those learnings. Replaces Salient Translation Errors from BBH which involved simpler linguistic understanding.

edge.

Movie Recom-

Given a number of sets of movies, the task is to determine which set has movies that are all likely to be liked by a specific group of people.

Reasoning through knowledge

mendation Repl: Movie R from BBH which required simple next movie recommendation.

Multi-step Requires learning new arithmetic operations and their compositions on the fly, and apply them to evaluate long expressions. Replaces the | Learning on the fly, many-hop reasoning.
Arithmetic Multi-step Arithmetic task from BBH which involved simple arithmetic over basic operations.

New  Yorker | Comes from (Hessel et al., 2022; Zhang et al., 2024) and requires selecting the funniest caption for an image. We adopt the variant that | Humour understanding, commonsense

Cartoon Cap-
tion (NYCC)

predicts the best caption only given the textual description of the image. This replaces the Ruin Names task from BBH which involved
simpler humour understanding.

understanding.

Object Count-
ing

Requires counting the number of objects of a certain type given a very long list of various objects and in presence of many types of
distractors. Replaces the Object Counting from BBH which required simple counting in a short context.

Long-context, (multi-)needle in a
haystack, dealing with distractors.

Object Proper-
ties

Requires keeping track of a large collection of objects with various properties while they go through multiple rounds of modification.

Replaces Colored Objects from BBH which required only recognizing the color of some objects.

Temporal track keeping, long-range de-
pendency.

SARC Triples Requires understanding sarcasm in Reddit posts and replies. Each problem requires determining the sarcastic-ness of three post/reply pairs. | Commonsense and sarcasm understand-
Replaces the Snark task in BBH which required simpler sarcasm understanding. ing, compositional reasoning.

Shuffled Ob- | A long-context variant of the original Shuffled Objects from BBH which may also require remembering very long-range information. Temporal track keeping, long-context,

jects long-range dependency.

Spatial Reason-

Adopts the SpatialLLMEval (Yamada et al., 2023) dataset requiring spatial reasoning over complex patterns and expands it to require

Spatial understanding, many-hop reason-

ing many-hops of reasoning. Replaces the navigation task from BBH which requires much simpler spatial understanding of navigation signals. ing, long-range dependency.
SportQA Comes from (Xia et al., 2024) and requires reasoning combined with a high amount of sports knowledge. We use the hardest subset | Knowledge-intensive reasoning, compo-
containing compositional questions. Replaces Sport Understanding from BBH which needed much simpler reasoning over sport knowledge. sitional reasoning.
Temporal Requires finding proper meeting times given multiple calendars (each corresponding to a temporal sequence) and various constraints. | Temporal understanding, constraints sat-
Sequences Replaces the Temporal Sequence task from BBH which involves understanding only a single sequence. isfaction.
Time  Arith- | Comes from the Test of Time benchmark (Fatemi et al., 2024) and involves various operations over various representations of date/time. We Temporal reasoning, compositional un-
metic created a compositional version of this task following (Hosseini et al., 2024). Replaces the Date Understanding task from BBH which derstanding.
involved significantly simpler operations over dates.
Web of Lies Requires many-hop reasoning to predict the truthfulness of a set of people, and contains two subsets: one coming from the variant used in | Logical reasoning, many-hop reasoning.

LiveBench (White et al., 2024) and one novel variant that involves cases where the truthfulness of some individuals remains unknown but
new conclusions can be drawn from it nevertheless. Replaces the Web of Lies from BBH which involved simpler cases of this problem.

Word Sorting

Contains two subtasks: 1- sorting over a modified alphabet order, which goes against the strong prior of the model, and 2- finding errors in
sorting traces. Replaces the original Word Sorting task which required simple sorting.

Apply algorithms, Going against strong
prior, Finding errors in reasoning traces.

Zebra Puzzles

This is based on puzzles from (Shah et al., 2024) and requires applying various logical deduction rules to be solved. We add distracting
clues for extra challenge. Replaces Formal Fallacies from BBH which requires understanding formal fallacies in much simpler setups.

Constraint satisfaction, many-hop reason-
ing, distractors, long-range dependency.

Table 1: The tasks in BBEH in alphabetical order of the names, a high-level description of what they test for, the
reasoning capabilities that they probe, and the task from BBH that they replace.

solving the two problems in isolation)

* Knowledge-intense reasoning: the ability to
reason in domains where a great amount of
domain knowledge is needed

3 BIG-Bench Extra Hard

We create BIG-Bench Extra Hard (BBEH), a
dataset that tests the general reasoning capability
of models on a wide array of reasoning skills. To
this end, we build on the success of BBH and re-
place each of the 23 tasks in BBH with another task
that is in a similar reasoning domain and tests for
similar (or more) skills, but is more challenging
compared to the original one. Replacing each task
with another one in the same domain that tests for
similar capabilities ensures that we preserve the

high diversity of original BBH dataset. In Table 1,
we outline a high-level description of the new tasks
in BBEH, how they have been constructed and
which task from BBH the replace, and what reason-
ing skills they target. The benchmark contains 200
questions per task, except for the Disambiguation
QA task where we have 120 questions. For more
details about the tasks and some intuitions from the
experimental results and model failure modes, see
Appendix A. Samples from a few of our tasks are
provided in Figure 2.

A key challenge in creating model evaluation
benchmarks is ensuring they remain difficult for
frontier models. This is particularly true for rea-
soning benchmarks, given the rapid progress in the
field over the past year, and especially for BBEH,
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which comprises 23 distinct tasks, each requir-
ing careful design. To ensure our tasks challenge
frontier models, we adopted a semi-adversarial ap-
proach. We selected two strong reference models:
one general-purpose and one specialized in reason-
ing. We iteratively increased task difficulty while
keeping in mind the extra skills that we wanted
our benchmark to test for, evaluating the reference
models on each new iteration. If a task proved
insufficiently challenging, we either replaced it
with another task or added extra types of difficulty
and re-evaluated until the difficulty level was sat-
isfactory. We used Gemini 1.5 Flash (Team et al.,
2024a) as our general-purpose reference model and
the Gemini Thinking Experimental model as our
reasoning-specialized reference model (initially the
December 2024 version but later changed to the
January 2025 version, known as Gemini-2.0-Flash-
Thinking-Exp-01-21). These models were chosen
for their performance and the speed of generating
outputs, which facilitated rapid iteration during task
construction. We iterated on each task until both
reference models achieved an accuracy below 70%.

In most cases, we tried to use the reference mod-
els only as a black box that provided feedback on
the difficulty of our tasks. In some cases, how-
ever, making tasks more difficult required looking
into the approach adopted by the model. As an
example, the original "Boolean Expression" task in
BBH required models to evaluate the truth value
of expressions such as (not True) or False. Our
initial attempt to increase difficulty involved cre-
ating longer expressions with significantly more
clauses. However, our reference model achieved
high accuracy regardless of the number of clauses.
While initially this seemed surprising, upon investi-
gating the model’s approach, we discovered it clev-
erly used Python to solve the problem by directly
evaluating the expression: result = <expression>;
print(result). Thus, adding more clauses did not
have much effect in increasing difficulty. Our next
step was to prevent the model from using Python.
We achieved this by replacing some "True" and
"False" clauses with sentences that evaluated to the
same truth value (e.g., replacing "True" with "The
capital of Canada is Ottawa.").

Given the similarity of the high-level approach
in creating LLM reasoners (architecture, train-
ing phases, etc.), we believe our semi-adversarial
benchmark construction can lead to a benchmark
that is also challenging for non-reference models.
This is confirmed by the experimental results in the

following sections. However, this approach also
has some notable limitations. Firstly, the choice
of the reference model will unavoidably bias the
benchmark towards certain types of failure modes.
For instance, had our reference model not used
code to solve the multi-hop Boolean expressions,
we might have stopped there, resulting in a task
too easy for models that appropriately trigger code.
We tried to mitigate this as much as possible by
using strong reference models, and by avoiding
over-engineering to the reference model failures.
Secondly, since the benchmark is created adver-
sarially with respect to the reference models, a
fair comparison of the reference and non-reference
models may not be possible. We expect this limita-
tion to be temporary and be resolved when newer
versions of the reference models become available.

BBEH Mini: Besides reporting results on
BBEH, we also report results on a smaller subset
called BBEH Mini which contains 460 examples
overall (20 examples randomly selected from each
task). This subset can be used for faster and cheaper
experimentations.

4 Results and Analyses

We start by analyzing the BBEH dataset and com-
paring it against its counterpart, BBH. We then
report results on BBEH for various models and
compare their performances. Then, we provide
some extra analysis of the results revealing interest-
ing insights about where reasoning-specialized and
larger models gain more and where they gain less
compared to general-purpose and smaller models
respectively. We also provide a large body of ob-
servations and insights from task-specific results in
Appendix A.

4.1 BBEH Analysis

Required Amount of Thinking: Many of the prob-
lems in BBH only require few hops of reasoning,
sometimes not requiring a great amount of thinking.
As a proxy for measuring the amount of thinking
required by BBEH and compare it to BBH, we
compare the average length of the outputs gener-
ated by a fixed model (Gemini 2.0 Flash) for the
two datasets. The results are presented in Figure 3.
From the figure, we can observe that the average
length of the output has significantly increased for
every single one of the tasks in BBEH compared to
their counterpart in BBH, thus providing evidence
that the problems in BBEH may require much more
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Figure 3: A comparison of the average output lengths of the Gemini 2.0 Flash responses for each of the tasks in
BBEH and their counterparts in BBH, as a proxy for the required amount of thinking.

thinking. The macro average output length of the
responses for tasks in BBEH is about seven times
bigger than that of BBH.

Input/Context Length: As mentioned in Sec-
tion 2, the problems in the original BBH dataset
are mostly short. On the contrary, the problems
in BBEH tend to be quite long and require a great
amount of input processing by the models. Figure 6
(in Appendix) compares the average input lengths
of each of the tasks in BBEH with their counterpart
from BBH. From the figure, one can observe how
input lengths have increased for almost all the tasks
(except two), sometimes quite significantly. The
macro average context length of the tasks in BBEH
is about six times bigger than that of BBH.

4.2 Model Evaluations

Models: We evaluate various models on BBEH
and compare their performance across individual
tasks and on the entire dataset. Specifically, we
experiment with models from the following fam-
ilies: Llama 3.1 (Dubey et al., 2024), Qwen 2.5
(Yang et al., 2024a), Gemma2 (Team et al., 2024b),
Gemma3 (Team et al., 2025), Gemini 2.0, GPT40
(the latest version, 2024-11-20, at the time of the
experiments) (Achiam et al., 2023), DeepSeek R1
and the Distilled model in Qwen 32b (Guo et al.,
2025), and 03-mini (high)z.

Metric: Given the highly versatile use-cases of
the current LLM reasoners, they should be capable
across the board to excel at real-world problems
and be robust general reasoners. However, we find
that micro and macro averages (which are often
used for benchmarks composed of multiple tasks),
fail to capture this crucial aspect. These metrics

2https://openai.com/index/openai-o03-mini/

are susceptible to distortion by outlier performance,
potentially presenting a misleadingly optimistic
assessment when a model excels in a limited sub-
set of tasks while faltering in others. To address
this, we employ the (adjusted) harmonic mean?
as our primary evaluation metric for BBEH. The
harmonic mean provides a more conservative and
balanced representation of overall performance, ef-
fectively penalizing models with significant per-
formance disparities across different tasks, thereby
aligning more closely with the requirement for con-
sistent, general reasoning capabilities. We also
report micro average accuracies for completeness.
For BBEH Mini, due to the small number of exam-
ples per task, harmonic mean may be too noisy, so
we only report micro average.

The results for each task and on the entire dataset
for each model is presented in Table 2 and in Ta-
ble 3 for BBEH Mini. According to the results,
we make several interesting observations. Firstly,
we observe a large headroom not only for the in-
dividual tasks, but also for BBEH overall. The
best performance for the general-purpose models
is at 23.9% micro average accuracy. The reasoning-
specialized models are expectedly performing bet-
ter than the general-purpose models on the bench-
mark, but the best performance for these models
is still at 54.2% on BBEH. Note that while we
calibrated the difficulty with respect to two refer-
ence models so their accuracies fall below 70%, the
difficulty mostly carries to other models too with
03-mini (high) exceeding 70% accuracy only on 4
out of 23 tasks, DeepSeek R1 exceeding it only on
3 out of 23 tasks, and other models never exceeding
it. Despite the adversarial construction, the refer-

3To deal with zero values, we add a value of 1 to all accu-
racy numbers.
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Buggy Tables 0.0 1.5 00 05 0.5 0.0 00 1.5 35 0.5 0.5 45 595
Causal Understanding 380 400 37.0 455 46.0 49.0 515 525 520 54.0 | 545 545 540
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Geometric Shapes 6.2 415 255 31.0 180 325 265 300 350 225 | 45 1.5 525
Hyperbaton 00 05 20 40 20 25 35 6.5 4.5 7.5 30 60 320
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Movie Recommendation | 10.0 245 30.0 40.0 350 445 550 515 595 61.0 | 460 595 84.0
Multistep Arithmetic 00 00 05 00 00 05 1.5 7.5 9.5 55 | 36.0 465 730
NYCC 100 13.0 130 135 70 11.5 150 135 11.0 23.0 | 105 200 16.0
Object Counting 00 00 00 00 00 05 00 40 110 65 40 765 90.0
Object Properties 1.6 00 05 00 05 1.5 0.5 0.5 1.5 0.0 00 0.0 565
SARC Triples 125 175 165 210 140 260 240 270 375 385|220 285 240
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Web of Lies 55 2.5 5.5 65 120 220 21.0 140 185 145 | 13.0 295 43.0
Word Sorting 43 40 25 35 4.5 60 75 125 260 220 | 360 680 775
Zebra Puzzles 154 190 25 230 100 195 300 320 445 320 | 15 80 675
BBEH (Micro Average) 84 125 106 148 11.0 163 188 197 239 223 | 192 349 542
BBEH (Harmonic Mean) | 24 3.0 3.6 40 34 45 49 80 98 6.0 52 6.8 448

Table 2: The performance of various models on the individual tasks and overall on BBEH.

ence Thinking model achieves a (micro) average
accuracy of 32.8% and a harmonic average accu-
racy of 20.2% on BBEH. Note that some model
accuracies are even below random performance.
Upon checking, we observe that these are mostly
cases where models could not solve the problem
in their effective output token lengths and started
degenerating after a point, so no final answer could
be extracted from their solution.

Secondly, the harmonic mean accuracies reveal
an even larger headroom: the best general-purpose
model having a harmonic mean accuracy of 9.8%
and the best reasoning-specialized model having an
accuracy of 44.8%. Interestingly, while DeepSeek
R1 performs better than all general-purpose mod-
els in terms of micro average accuracy, given its
low performance on some of our tasks it performs
worse than two of the general-purpose models in
terms of harmonic mean accuracy.

Thirdly, as mentioned in Section 2, the problems
in the original BBH dataset suffered from having
a small output space, thus allowing for a random

baseline to have a high performance. In Table 2, we
provide the results of a random baseline for each
of the tasks in BBEH and the entire dataset. As can
be viewed, the random baseline has a performance
of 8.4% for BBEH which leaves substantial room
for comparing models of various size.

Finally, looking at the accuracies of the models
on various tasks, we can see that various models are
good at different types of reasoning. For example,
DeepSeek R1 significantly outperforms other mod-
els on BoardgameQA, 03-mini (high) significantly
outperforms other models on Temporal Sequences
and Object Properties, GPT4o significantly outper-
forms other models on NYCC, and GPT4o0 and
Gemini 2.0 Flash significantly outperform other
models on SARC Triples.

4.3 Further Analyses of the Results

General-Purpose vs Reasoning Models: With
the introduction of reasoning models that leverage
test-time compute for thinking, a tremendous jump
in performance was observed on reasoning tasks
involving math and coding. For example, on the
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Figure 4: Performance gains (absolute) of 03-mini (high) over GPT-40 on BBEH tasks. Tasks are ordered
by the magnitude of improvement, with green signifying substantial gains and yellow/red signifying minimal or

negative gains.

AIME2024 dataset, the performance of GPT40 was
13.4%, but the o1 model increased it to 83.3% and
03-mini (high) increased it further to 87.3%. Here,
we examine whether the same is true for various
types of general reasoning. In Figure 4, we com-
pare o3-mini (high) and GPT4o, as examples of
reasoning and general models respectively, on each
of the tasks from BBEH and sort the tasks ascend-
ing based on how much 03-mini (high) gains over
GPT40. We observe that the tasks that gain the
most are those involving counting, planning, arith-
metic, and data structures and algorithms. Whereas
the tasks that gain the least (or sometimes nega-
tively) are mostly those involving commensense,
humour, sarcasm, and causation. Our results indi-
cate that reasoning models achieve the most sig-
nificant gains when applied to formal problems
and demonstrate limited progress in handling the
softer reasoning skills which are typically needed
for complex, real-world scenarios.

Model Size Effect: In Figure 7 (in Appendix),
we compare Gemini 2.0 Flash against Gemini 2.0
Flash-Lite on different tasks from BBEH and sort
the tasks ascending based on how much Flash gains
over Flash-Lite*. While the signal is not as clear

*In some cases, these models perform below random

as the case where we compared general models
against reasoning models, we still observe that the
tasks related to humour, commonsense, and causal
reasoning are the ones with the least gains, and
tasks requiring many-hop reasoning or applying
algorithms are the ones with the largest gains. A
particular exception is the SARC Triples task which
is a sarcasm understanding and where the gains are
large. This could in part be due to the fact that each
example in SARC Triples is a composition of three
sub-questions, and larger models may be better at
dealing with such composite questions.

The Effect of Context Length and Required
Thinking: The tasks in BBEH come at different
average context lengths (see Figure 6) and may re-
quire different amount of thinking (as shown using
the output length proxy in Figure 3). We use this
property to understand the effect of context length
and required thinking on reasoning vs general mod-
els, and on larger vs smaller models. To this end, in
Figure 5 we compare the performance of 03-mini
(high) vs GPT40 and Gemini 2.0 Flash vs Gem-
ini 2.0 Flash-Lite as a function of average context

chance due to not generating an extractable final answer. To
reduce noise for this analysis, in such cases we assumed the
performance of the model is the same as the random chance
performance for the task.
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Figure 5: Performance gains as a function of (left) context length and (right) output length (proxy for required
thinking). A scatter plot and line fit for the gains obtained by a reasoning-specialized model (03-mini high) vs a
general-purpose model (GPT40) and a larger model (Gemini 2.0 Flash) vs a smaller model (Gemini 2.0 Flash-Lite),
as a function of (left) the average context lengths and (right) the average output lengths, for the tasks in BBEH.

lengths of the tasks and average output length as
a proxy for required thinking®.. We observe that
the gains of 03-mini tend to increase compared
to GPT40 both when context length increases and
when the required thinking increases, showing how
reasoning models may have improved across both
directions compared to general models. For Gem-
ini 2.0 Flash vs Gemini 2.0 Flash-Lite, we see a
similar increase in gains when the context length
increases, but the curve for the case of increased
thinking remains mostly flat.

5 Conclusion

Recent advances in LLM reasoning has made these
models reach near ceiling performance on exist-
ing general reasoning benchmarks such as BIG-
Bench and its harder variant BBH, and shifted fo-
cus toward other types of more focused reasoning.
However, substantial distance remains before we
can claim these models posses true mastery of di-
verse reasoning skills. To rekindle the pursuit of
truly robust and versatile LLM reasoners, we pre-
sented BIG-Bench Extra Hard (BBEH), a signifi-
cantly more challenging successor to BBH. This
new benchmark, meticulously crafted to amplify
the difficulty of existing tasks while preserving
their core diversity, reveals a stark reality: even the
most advanced LLMs still grapple with fundamen-
tal aspects of general reasoning. BBEH provides
a crucial stepping stone, reigniting the challenge
and offering a more rigorous platform for future
research aimed at unlocking the full potential of

>for the latter case, we removed the Shuffled Objects task
as models ran out of effective tokens and started degenerating,
and this was adding noise to the analysis

LLMs in complex, real-world applications.

Limitations

As explained in the main text, BBEH has been
constructed semi-adversarially with respect to two
reference models. This leads to two limitations: 1-
it will unavoidably bias the benchmark towards cer-
tain types of failure modes, 2- since the benchmark
is created adversarially with respect to the refer-
ence models, a fair comparison of the reference
and non-reference models may not be possible.
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A Detailed Description of the Tasks and
Task-Specific Insights from
Experiments

we classify the 23 tasks in BBEH into the following
four categories.

Category 1: A post-processed version of an al-
ready existing dataset: These are the tasks where
we took an already existing dataset from the liter-
ature and did some post-processing to make them
conform to the format of the tasks in BBEH. The
tasks in this category include:

* SARC Triples: We did some length filtering
and combined three problems into one. Every-
thing was done programmatically.

* SportQA: We took a subset of examples from
the most difficult subset. Everything was done
programmatically.

* Linguini: The original questions asked about
multiple things; we slightly modified them
so each question asks about a single thing.
Everything was done programmatically.

* Causal Understanding: We did some manual
cleaning for all the examples in this task as
described in detail in the Appendix.

* NYCC: We took an existing binary classifica-
tion dataset and turned it into multiple-choice
questions. Everything was done programmati-
cally.

» Time Arithmetic: We took an existing dataset
and combined multiple questions into one to
create a compositional version of it. Every-
thing was done programmatically.

* Dyck Languages Word Sorting (the error de-
tection subset): We took a subset of the exist-
ing dataset that involved more reasoning steps.
Everything was done programmatically.

¢ Web of lies (the LiveBench subset): Part of
the data comes from LiveBench with minimal
programmatic post-processing.

* Movie Recommendation: We programmati-
cally updated the options for each question
to turn the problem from a “recommendation”
task to a “best subset selection” task.

* Spatial Reasoning (the SpatialLLMEval sub-
set): We programmatically sampled from the
harder subtasks of the dataset.

Category 2: Re-running the code that gener-
ates an existing dataset, but changing the origi-
nal parameters: These are the tasks that already
existed in the literature and they were generated
using code. The code contained parameters that
could be modified to create more difficult versions
of them. The tasks in this category include:

* BoardgameQA: We only increased the depth
parameter. Zebra Puzzles: We only increased
the puzzle size and

* distractor parameters.

Category 3: Creating new tasks through
writing code that generates the tasks: These
are the tasks that did not previously exist. We
wrote code that could be executed and created in-
stances of them. The tasks in this category include:
Boolean Expressions, Buggy Tables, Geometric
Shapes, Hyperbaton, Multi-Step Arithmetic, Ob-
ject Counting, Object Properties, Shuffled Objects,
Spatial Reasoning (except the Spatial LLMEval sub-
set), Temporal Sequences, Web of lies (except the
LiveBench subset), and Word Sorting (except the
error finding subset).

Category 4: Creating new tasks manually:
This subset only includes the DisambiguationQA
task, which was created manually by the authors.

In what follows, we describe in detail how each
of the 23 new tasks in BBEH have been created.
Moreover, we provide interesting task-specific in-
sights from our experiments.

A.1 BoardgameQA

BoardgameQA (Kazemi et al., 2023b) is a bench-
mark where given a defeasible theory (a set of input
facts, possibly contradictory rules, and preferences
over the rules), and a question about that theory, the
task is to do multi-hop reasoning and conflict reso-
lution over the input theory to answer the question.
The final answer to the question is either ‘proved*
(if the statement in the question derives from the
theory), ‘disproved‘ (if the negation of the state-
ment in the question derives from the theory), or
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Figure 7: Performance gains (absolute) of Gemini 2.0 Flash over Gemini 2.0 Flash-Lite on BBEH tasks. Tasks
are ordered by the magnitude of improvement, with green signifying substantial gains and yellow/red signifying

minimal or negative gains.

‘unknown* (if neither the statement in the questions
nor its negation derives from the theory). With
three labels per question, a random baseline has an
accuracy of 33.3%. Conflicts may arise when two
rules such as R1 : a — cand R2 : b — —c are
both activated leading to different beliefs about the
truth value of the variable c. However, preferences
over the rules is provided in the input question and
in the case of conflicts, the derivation from the rule
with the higher preference must be concluded (e.g.,
if R1 is preferred over R2 and they both apply,
then we conclude c is true).

One of the parameters controlling the difficulty
of the problems in this benchmark is the depth,
corresponding to the number of hops of reasoning
that must be done to compute the truth value of the
statement in the question. We use the code from the
paper and generate tasks with depths 6, 7 and 8. We
made some changes in the prompt to clarify the task
for the model so that it works in zero-shot setting.
That includes: Answer ’proved’ if it can be proved,
"disproved’ if it can be disproved, and 'unknown’ if
it can neither be proved nor disproved as well as A
rule is only applicable if all of its antecedents can
be proved.. We then uniformly sampled prompts
across depths and labels to created the final set.

Through analyzing the model outputs, we ob-
serve that for this task, models tend to over-predict
that the truth value of a statement is unknown. The
percentage of unknown predictions for our models
(when at least one of the three labels was predicted)
is presented in Table 4. Note that only one-third of
the problems have an unknown label. An unknown
label is typically predicted when the model cannot
find a way to either prove or disprove the statement
from the facts and rules. Therefore, we observe a
failure mode for the state-of-the-art models: they
struggle to search the space of facts and rules and
find a proof, despite there being one. While simi-
lar observations have been previously made about
models without chain-of-thought (Saparov et al.,
2024), our results apply to the case with chain-of-
thought.

A.2 Boolean Expressions

This task requires determining the truth value of
a statement that is composed of logical operands
such as T'rue and False as well as other textual
or mathematical statements that evaluate to True
or False. To create this task, we first randomly
create expressions containing only True and False
operands and three logical operators: and, or, and
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Models | Gemma227bIT  Gemini 2.0 Flash-Lite

Gemini 2.0 Flash

GPT40 DeepSeek R1  03-mini (high)

Unknown % | 77.6 67.4

73.3 82.4 39.7 65.5

Table 4: Percentage of unknown predictions on BoardgameQA for different models (only one third of the labels are

unknown).

not. We create this in a bottom-up fashion where
we generate smaller sub-expressions and then com-
bine them with logical operators. Once a large
enough expression is created, we replace some of
the T'rue and F'alse operands with statements that
evaluate to True or False. These could be mathe-
matical expressions such as 24 - 2 is greater
than 48 / 2 (which evaluates to False) or textual
statements such as The capital of Canada is
Ottawa (which evaluates to True). In both cases,
we select these statements from a predefined set.
While determining the truth value of each of these
statements in isolation may be easy for many mod-
els, including these statements makes it more diffi-
cult for models; otherwise, they can simply solve
the problem by generating a single line of python
code.

We generate five expressions using the approach
outlined above, four of which evaluate to False
and one of which evaluate to True. The job of the
model is then to find the expression that evaluates to
True. Since this is a five-way question, the random
chance accuracy is 20%.

A.3 Buggy Tables

The objective in this task is to be able to respond
to conditional queries over tabular data, where the
information in the table are presented in a buggy
way but the description for the bug is also presented
so that the model can reconstruct the original ta-
ble based on that. As an example, we provide a
row-major/column-major format of the table where
the null values have been mistakenly removed, but
we also provide the positions of the null values in
the original table so one can reconstruct the table
given the two pieces of information. As another
example, we provide a buggy version of the table
where some random values are appended at the end
of each row or each column, but we also specify
how they have been added so one can use this infor-
mation to remove them and reconstruct the original
table. As yet another example, we provide a mark-
down format of the table that mixes each two rows
of the table into one row, but also provide an expla-
nation of how each two rows have been merged into

one so that the original table can be reconstructed
based on that information. Examples of conditional
queries include computing some statistics (count,
sum, mean, stdev, median) of some columns while
only considering rows where some columns have
some specific values.

A.4 Causal Understanding

In BBEH we replace the original causal judgement
task in BBH with a set of questions that assess
both (i) causal judgement (142 queries) and (ii) the
ability to determine necessary and sufficient causes
(58 queries). In this section we describe how these
different sets of questions are obtained.

Causal Judgement These queries are based on
the 144 causal stories included in the MoCa bench-
mark (Nie et al., 2023), which partially overlap
with the sets of questions originally included in
BBH. In MoCa, short stories obtained from cogni-
tive science papers were given to 25 human annota-
tors who had to judge whether, based on the given
story, a certain person or event caused a certain
outcome. The task was phrased as a binary task
with Yes/No answers, and the ground truth label
was assigned according to the label chosen by the
majority of humans.

However, the stories included complex norma-
tive and logical factors, and for many of them there
was a large degree of disagreement among the hu-
man annotators. In cases where the human raters
strongly disagreed on the answer (defined as hav-
ing a difference of at most 20% between the “Yes”
and “No” answers among the annotators), ques-
tions were additionally tagged as “Ambiguous”.
Based on this, we constructed the renewed task to
have 3 possible labels: Yes, No and Ambiguous.
The label ambiguous was assigned to the 46 ques-
tions originally tagged as “Ambiguous” in MoCa.
For instance, the label for example 36 in Table 5
was changed from Yes to Ambiguous, as 15 human
annotators replied Yes while 10 replied No. In this
example we have that, on the one hand Billy was
asked to be in the room at 9am and cannot be given
the fault of entering the room and triggering the
alarm. On the other hand, the alarm was set to
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be triggered if at least one person appeared in the
room, thus both Billy and Suzy could be assigned
the responsibility for the detector going off. Both
explanation could be considered valid. For the re-
maining questions, the label was kept unchanged
to Yes/No.

With the above re-definition of ground truth la-
bels, models were then asked to correctly identify
the way humans, as a group, would answer the
question, thus testing alignment with human causal
intuitions. To reflect this, we added the following
instructions to each query:

Prompt Instructions

Reply Yes or No based on the answer the
majority of people would give.

If you think people would be split roughly
50-50 between Yes and No then reply Am-
biguous.

Finally, to ensure consistency in terms of
number of queries included for the other tasks,
we removed 2 stories included in the origi-
nal set (these correspond to question 17 and
19 at https://moca-11m.github.io/causal_
stories/1/). The final set includes 45 Ambigu-
ous questions and 48 and 49 questions with Yes
and No labels respectively.

Necessary and Sufficient Causes We comple-
mented the causal judgement stories with 58 ex-
amples testing reasoning about necessary and suffi-
cient causes given a description of a set of events
(example scenario). These examples were obtained
by modifying those in (Kiciman et al., 2023) to
correct ambiguities and incorrect outputs.

The first 30 examples in (Kiciman et al., 2023)
were constructed from 15 scenarios introduced in
different studies over the years to critique actual
causality (Halpern, 2016) definitions from the liter-
ature (Kueffner, 2021). Each scenario is associated
with a question about necessary cause and a ques-
tion about sufficient cause, specifically “Is { Actor}
a necessary cause of {Event}?” and “Is { Actor} a
sufficient cause of {Event}?”. To test LLM memo-
rization issues, (Kiciman et al., 2023) constructed
28 additional examples from 14 new scenarios ob-
tained by adapting the original ones to a chemistry
lab setting involving reagents, mixtures and crys-
tals.

Three experts of causal reasoning analysed each
example and suggested minimal changes to resolve

ambiguities, typos, and incorrect outputs. The main
ambiguities that were identified relates to the use of
{Actor}, which was substituted with the associated
action. Each example was discussed to reach an
agreement on the changes, this resulted in changing
the outputs of six examples (see Table 6).

Model Outputs Analysis Analysing the perfor-
mance that Gemini 2.0 Flash achieves on the causal
understanding task reveals that this model answers
correctly to 45% of the causal judgment queries
(random performance is 33%) and 71% of the
queries about necessary and sufficient causes (ran-
dom performance is 50%).

Focusing on the causal judgment queries, most
of the errors are in questions for which the ground
truth label is Ambiguous (44 mistakes out of 45
examples) or No (24 mistakes out of 49 examples),
with only 10 mistakes out of 48 examples for the
Yes label. This reveals the difficulty the model has
in determining an absence of causal relationships,
and in dealing with ambiguities and the existence of
different possible answers. This behaviour has been
previously observed across other causal reason-
ing benchmarks (see e.g. (Romanou et al., 2023))
where models have been found to infer stronger
causal relationships than those that humans per-
ceive. Another interesting failure mode is that the
model sometimes exhibits a lack of understanding
of the normative aspect of causal judgements as
made by humans: humans tend to ascribe causality
more easily when the causal factor is unusual in a
statistical sense, or when it violates an established
rule or behavioral norm (Halpern, 2008; Phillips
et al., 2015; Kominsky et al., 2015; Halpern and
Hitchcock, 2015; Icard et al., 2017). For instance,
in example 136 of Table 5, the event can only oc-
cur if both Alice and Zoe log on simultaneously
to a computer — which is indeed what happened.
However, Alice was allowed to log on while Zoe
violated an established rule when she logged in. In
such situations, humans tend to say that Alice did
not cause the event, while Zoe did. The model fails
to capture this nuance and instead it applies straight-
forward causal reasoning and concludes that Alice
is a cause.

Looking at the reasoning traces for Gemini 2.0
Flash responses to questions on sufficient and nec-
essary causes reveals that, while the model achieves
very close performances in terms of precision and
recall, it fails on identifying sufficient causes (11
errors out of 28 examples) more often than identify-
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Example ID |

Input

| Output

Gemini 2.0 Flash Response

36

Question: Suzy and Billy are working on a project that is very important for our
nation’s security. The boss tells them both: “Be sure that you are here at exactly
9 am. It is absolutely essential that you arrive at that time.” Both Billy and Suzy
arrive at 9 am. As it happens, there was a motion detector installed in the room
where they arrived. The motion detector was set up to be triggered if at least one
person appeared in the room at the same time. So the motion detector went off.
Did Billy cause the motion detector to go off? Reply Yes or No based on the
answer the majority of people would give. If you think people would be split
roughly 50-50 between Yes and No then reply Ambiguous.

Ambiguous

The question asks whether Billy caused the mo-
tion detector to go off. The motion detector was
triggered if at least one person was present. Both
Billy and Suzy were present at 9 am. Suzy’s pres-
ence also triggered the motion detector. Since
the motion detector would have gone off regard-
less of whether Billy was there, it cannot be
definitively said that Billy caused the motion de-
tector to go off. The answer is: Ambiguous.

123

Question: A group of students who lived on the same floor of a dormitory
obtained a copy of the final exam for their biology class. The students cheated
on the test. One student, John Granger, did not go along with the group. Granger
deviates from the norm and refuses to cheat on the test. The biology class
comprises 80 students and is graded on a curve such that 20 people will receive
a grade of A, 20 a grade of B, 20 a grade of C, and 20 students will receive a D.
Grangers$ score was the 20th-highest score in the class, which means he was the
last student to receive a grade of A. The 21st student was a pre-med student who
received a B and, as a result, missed the GPA cutoff she needed to get into the
medical school she was hoping for by .07 GPA points. Did Granger cause the
student to fail to meet the medical school cutoff? Reply Yes or No based on the
answer the majority of people would give. If you think people would be split
roughly 50-50 between Yes and No then reply Ambiguous.

No

Here’s a step-by-step analysis: 1. John’s Score:
John earned the 20th highest score, placing him
at the very top of the “A" grade range. 2. The
Pre-Med Student’s Score: The pre-med student
scored the 21st highest score, placing her at the
top of the “B" grade range. 3. Impact on the
Curve: If John had cheated and scored higher,
he could have potentially been in the “A" range
with a higher score. This would have potentially
shifted the scores on the curve down. 4. The Stu-
dent’s Failure: It is possible, though not guaran-
teed, that if John had cheated and scored higher,
the curve could have shifted down. 5. Conclu-
sion: The pre-med student failing the cutoff is
related to the grading curve. If a number of stu-
dents cheated, it changed the overall distribution.
It is highly probable that, without cheating, the
pre-med student would have gotten the higher
grade. The answer is: Yes.

136

Question: Alice and Zoe work for the same company. They work in different
rooms and both of them sometimes need to access the central computer of the
company. Unbeknownst to everybody, if two people are logged in to the central
computer at the same time, some spam emails containing dangerous viruses
are immediately deleted from the central computer. In order to make sure that
one person is always available to answer incoming phone calls, the company
issued the following official policy: Alice is the only one permitted to log in to
the central computer in the mornings, whereas Zoe is the only one permitted to
log in to the central computer in the afternoons. One day, violating the official
policy, Zoe logs in to the central computer at 9 am. The same day, Alice also logs
in at 9 am. Immediately, some spam emails containing dangerous viruses are
deleted from the central computer. Did Alice cause some spam emails containing
dangerous viruses to be removed from the central computer? Reply Yes or No
based on the answer the majority of people would give. If you think people
would be split roughly 50-50 between Yes and No then reply Ambiguous.

The question asks if Alice caused the deletion
of spam emails. The scenario states that if Alice
and Zoe are logged in simultaneously, the spam
emails are deleted. Both Alice and Zoe logged in
at the same time. Thus, Alice’s action, combined
with Zoe’s, resulted in the deletion of the spam
emails. The answer is: Yes"

Table 5: Causal understanding: examples of causal judgment queries and correct or incorrect reasoning traces.
Example ID corresponds to the index of the question in the causal understanding sub-benchmark.

ing necessary causes (6 errors out of 30 examples).
Interestingly, the model correctly recalls the defi-
nition of necessary and sufficient causes in most
of the responses and uses counterfactual reason-
ing to consider alternative scenarios. Despite this,
the model often fails at interpreting some of the
causal links described in the scenarios (in exam-
ple 155 of Table 6 the model interprets the input
as implying that “flowers would likely die in hot
weather whether the neighbor waters or not”) or
draws incorrect conclusions despite correct reason-
ing traces.

A.5 Disambiguation QA

This task introduces a more challenging adaptation
of the original DisambiguationQA task in BBH.
The objective is to accurately determine the refer-
ents of ambiguous pronouns in complex sentences,
or to explicitly identify instances of unresolvable
ambiguity by responding "ambiguous’. To enhance
the task’s difficulty and complexity, we constructed
a dataset of 120 novel examples that are longer

than those in BBH, require more referent disam-
biguation, and each question contains more op-
tions so the random chance performance is lower.
These examples were constructed either by creat-
ing entirely new sentences or combining existing
BBH instances. Ten annotators (all of them the au-
thors of the paper) were tasked with creating these
examples, each comprising a potentially ambigu-
ous sentence, a single correct resolution statement,
and several distractor options for a multiple-choice
format. To ensure data quality, each example un-
derwent a two-stage verification process. First, a
separate annotator independently evaluated the cor-
rectness of the resolution. Discrepancies were then
resolved through a third-party adjudicator or collab-
orative refinement by all three annotators. In cases
where consensus could not be reached, the annota-
tors jointly revised the example to achieve clarity
and accuracy. This rigorous process resulted in 25
examples requiring modification. An example of
an ambiguous sentence is provided below.
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Example ID | Original Input | Original Output | Modified Input | Modified Output
149 Two two-state switches are wired to an electrode. The switches are controlled by | No Two two-state switches are wired to an electrode. | Yes
A and B respectively, and the electrode is attached to C. A has the first option The switches are controlled by A and B respec-
to flip her switch. B has the second option to flip her switch. The electrode is tively, and the electrode is attached to C. A has
activated and shocks C if both switches are in the same position. B wants to the first option to flip her switch. B has the
shock C, and so flips her switch iff A does. C gets an electric shock. Is A’s action second option to flip her switch. The electrode
to flip the switch a necessary cause for C getting shocked? is activated and shocks C if both switches are
flipped. B wants to shock C, and so flips her
switch if and only if A does. C gets an electric
shock. Is A’s action to flip the switch a necessary
cause for C getting shocked?
154 There are a left and a right window. Alice and Bob both order Carol to fire | Yes There are a left and a right window. Alice and | No
at the left window. Carol fires at the left window, shattering it. Commands Bob both order Carol to fire at the left window.
from Alice always trump commands form Bob (e.g. if Bob would have ordered Carol fires at the left window, shattering it. Com-
to fire at right window, Carol would still have fired at the left one.). Without mands from Alice always trump commands from
a command Carol would not have fired at all. Is Alice a necessary cause for Bob (e.g. if Bob would have ordered to fire at
window shattering? the right window, Carol would still have fired at
the left one). Without a command Carol would
not have fired at all. Is Alice ordering Carol to
fire a necessary cause for the window shattering?
155 If there is hot weather, flowers will die. Watering prevents the flowers to die in | No If there is hot weather, flowers will die. Watering | Yes
hot weather. The neighbor does not water the flowers in her yard. The flowers prevents the flowers from dying in hot weather.
die. Is neighbor’s inaction a necessary cause for flowers’ death? The neighbor does not water the flowers in her
yard, the weather is hot and the flowers die. Is
the neighbor’s inaction a necessary cause for the
flowers’ death?
170 If there is hot weather, flowers will die. Watering prevents the flowers to diein | Yes If there is hot weather, flowers will die. Watering | No
hot weather. The neighbor does not water the flowers in her yard. The flowers prevents the flowers from dying in hot weather.
die. Is neighbor’s inaction a sufficient cause for flowers’ death? The neighbor does not water the flowers in her
yard, the weather is hot and the flowers die. Is
the neighbor’s inaction a sufficient cause for the
flowers’ death?
177 Reagent X is added to a beaker containing a crystal. If Reagent X touches the | No Reagent X is added to a beaker containing a | Yes
crystal, the crystal dissolves. If Reagent X does not touch the crystal, Sam adds crystal. If Reagent X touches the crystal, the
Reagent Y which leads to the crystal dissolving. Is Reagent X a necessary cause crystal dissolves. If, when added, Reagent X
for crystal dissolving? does not touch the crystal, Sam adds Reagent
Y, which leads the crystal to dissolve. Is adding
Reagent X to the beaker a necessary cause for
the crystal to dissolve?
183 There is a test tube on the left and a test tube on the right. Sam and Riya both | Yes There is a test tube on the left and a test tube | No
order Frank to break the left test tube. Carol throws the left test tube, breaking it. on the right. Sam and Riya both order Frank to
Commands from Sam always trump commands form Riya (e.g. if Riya would break the left test tube. Frank throws the left test
have ordered to break the right test tube, Frank would still have thrown the left tube, breaking it. Commands from Sam always
one.). Without a command Frank would not have acted at all. Is Sam a necessary trump commands from Riya (e.g. if Riya would
cause for test tube breaking? have ordered to break the right test tube, Frank
would still have thrown the left one). Without a
command Frank would not have acted at all. Is
Sam’s order a necessary cause for the test tube
to break?

Table 6: Causal understanding: queries for which the output was changed with respect to the original dataset in
(Kiciman et al., 2023). Example ID corresponds to the index of the question in the causal understanding sub-

benchmark.

Ambiguous Example

Here is a sentence with pronoun(s) whose
antecedent(s) can either be derived from the
context or is ambiguous.

Sentence: While walking through the forest,
John saw a deer and its fawn. It was beauti-
ful.

Which of the following options correctly ex-
plains the antecedent(s) of the pronoun(s)?
(A) The deer was beautiful.

(B) The fawn was beautiful.

(C) The walk through the forest was beauti-
ful.

(D) Ambiguous.

A.6 Dyck Languages

This task comes from the BIG-Bench Mistake
dataset (Tyen et al., 2024). It involves finding
the first mistake in an existing chain-of-thought
sequence, used to answer a Dyck Languages

question in the original BBH dataset. In each
example, the target answer is either the number
where the first mistake occurred, or that there are
no mistakes in the CoT sequence. These CoT
sequences are generated by prompting PaLM 2
Unicorn (Anil et al., 2023) on the original BBH
dataset at temperature = 0. The prompts can be
found at https://github.com/suzgunmirac/
BIG-Bench-Hard/blob/main/cot-prompts/
dyck_languages.txt. The newline is used as
a stop token so that each intermediate step can
be prepended with ‘Thought 1: °, “Thought 2: ’,
etc. Further information on the prompting and
generation process can be found in Tyen et al.
(2024).

In the cases where there is an error in the trace
and the model makes a mistake in identifying the
first error, the mistake can occur due to two differ-
ent reasons: 1- mis-classifying a correct reasoning
step as erroneous before any error has occurred,
and 2- missing the first error and identifying some
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later erroneous step. We looked into the breakdown
of what percentage of the errors belong to each cat-
egory when there is an error to be found and the
model also identifies one of the steps as erroneous.

We find that the majority of the errors belong
to the second category. Specifically, for 03-mini
(high) 98.7% of the errors belong to the second
class, for Gemini 2.0 Flash all the errors belong to
the second class, for Gemini 2.0 Flash-Lite 94.9%
and for GPT40 96.8% of the errors belong to the
second class. This highlights a failure mode for the
frontier models in that they can identify the correct
reasoning steps, but fail to identify the ones that
have errors.

A.7 Geometric Shapes

SVG is a language for drawing shapes. We use
two basic commands: 1- M (z,y) corresponding
to moving to the (z, y) coordinate, and 2- L(z,y)
corresponding to drawing a line from the current
location to (z,y). We use the shape outlines from
GeomVerse (Kazemi et al., 2023a), a dataset of
geometry questions involving multiple shapes that
share some elements, which are specified as TikZ
commands and convert them to SVG. We then ask
the model to identify what shapes will be drawn if
we visualize the SVG.

We consider two extra axes for difficulty: 1- we
randomly break some lines segments into multi-
ple colinear line segments, and 2- we add some
extra lines such that they intersect at some points
and those intersections form some shapes (in other
cases, shapes are created using the full line seg-
ments and not at their intersection points). We then
create four subsets for the task corresponding to
the cross product of few vs many line breaks and
intersect vs no intersect.

For 03-mini (high), which is the best performing
model on this task, we observe that the accuracy
for the few breaks subset is 58% while the accuracy
for the many breaks subset is 47%; we also observe
that the accuracy for the no intersect subset is 72%
while for the infersect subset is 33%. This shows
that both axes are adding to the difficulty of the
task.

A.8 Hyperbaton

In English, a prescribed order governs the sequence
of multiple adjectives preceding a noun. This or-
der, generally, is: opinion — size — age — shape
— color — origin — material — purpose. The
BBH suite includes Hyperbaton, an adjective or-

dering task designed to evaluate a model’s linguis-
tic knowledge—specifically, its understanding of
adjective categories and adherence to the correct
adjective ordering in English. In this task, models
must choose the sentence with the correct adjective
sequence from a pair of English sentences. Current
general-purpose models excel at this task, reaching
nearly 95% accuracy (see Table 9 for Gemini 2.0
Flash performance on Hyperbaton task from BBH).

We replace Hyperbaton with a novel task that as-
sesses inductive reasoning in addition to linguistic
knowledge. This new task involves inducing the
correct adjective order in a new variant of English,
given a set of example sentences. Specifically, for
each test sample, we create a unique English variant
by randomly shuffling the standard adjective order
and generating 50-250 sentences. Each sentence
contains 1 to 3 adjectives preceding a noun. Mod-
els must then infer the correct adjective order for
this variant and identify all correct sentences from
10 provided options. A “None of the above” option
is included as a distractor. We observe that this
variant already poses a challenge for latest general-
purpose models. To further increase the difficulty,
we ensure that the provided sentences only reveal
partial adjective orderings, such as opinion, size,
shape, color, purpose, age, and material, origin,
without specifying the relative order of all cate-
gories (e.g., whether material precedes or follows
age, or whether origin precedes or follows opin-
ion). This requires models to reason with partial
information and avoid relying on prior knowledge.

We observe an interesting failure mode in this
task: some models correctly induce partial adjec-
tive orderings but rely on prior knowledge of stan-
dard English order when selecting answers. Con-
sider the example below.
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In a variant of English, we are given that the
following sentences have correct adjective
order: (1) medium-size aqua wrench (2)
normal-size spherical repulsive scissors - - -
(90) big chair (91) midsize bicycle

In this variant of English, which of
the following sentences use the correct
adjective order? - - - Select all that apply.
(A) big yellow drinking prismlike mysteri-
ous bangladeshi fiberglass brand-new ball
(B) old leather drinking pyramidal lovely
congolese teal key

(J) ancient paper smoking circular repulsive
turkish bottle
(K) None of the above

03-mini (high) provides the following response:

Model Response

The answer is: ACDEHI

In every correct sentence the adjectives
from chain A (if present) appear in the
order: size — color — purpose — shape
— opinion — origin; and if any chain-B
adjectives are used they come afterward in
the order: material — age.

Looking at the options:

(A) “big (size) yellow (color) drinking
(purpose) prismlike (shape) mysterious
(opinion) bangladeshi (origin) fiberglass
(material) brand-new (age) ball” fits exactly.
(C) “large (size) gray (color) whittling
(purpose) spherical (shape) silly (opinion)
turkish (origin) brand-new (age) banana”
fits (chain-A adjectives then the single
chain-B adjective).

(D) “medium-size (size) brown (color)
walking (purpose) triangular (shape)
ridiculous (opinion) russian (origin) dog”
fits chain A perfectly.

(E) “little (size) crimson (color) driving
(purpose) circular (shape) ridiculous (opin-
ion) congolese (origin) rubber (material)
bowl” fits (chain-A then chain-B).

(H) “red (color) typing (purpose) circular
(shape) good (opinion) vietnamese (origin)
paper (material) archaic (age) candle” fits.

(@D “typing (purpose) pyramidal (shape)
obnoxious (opinion) mexican (origin)
cardboard (material) brand-new (age) bag”
fits as well.

Although the model correctly infers the partial
adjective orderings: (i) size — color — purpose —
shape — opinion — origin, and (ii) material — age,
it incorrectly assumes that material follows origin.
This assumption likely stems from prior knowledge
of standard English ordering (opinion — size —
age — shape — color — origin — material — pur-
pose). While the model correctly identifies option
D, the only correct answer, its incorrect assumption
leads it to also select options A, C, E, H, and 1.

A.9 Linguini

This task comes from Sanchez et al. (2024) and its
problems are extracted from the International Lin-
guistic Olympiad (IOL). According to the original
work that introduced this dataset, the problems are
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"linguistic problems which require meta-linguistic
awareness and deductive reasoning capabilities to
be solved instead of pre-existing language profi-
ciency".

We created a subset of the Linguini problems
by sampling from four categories of the Linguini
problems, namely translation, fill blanks, num to
text and fext to num. The original dataset contains
questions that require multiple answers. For exam-
ple, the fill blanks questions have multiple blanks
that need to be filled. We create questions that have
a single answer by randomly selecting one of those
blanks and only asking the model to fill that one.

A.10 Movie Recommendation

The original Movie Recommendation task in BBH
has been created as follows. For each question,
a set of eight movies from MovieLens have been
selected such that a rather large number of people
have all liked five of them and disliked three of
them. Then, a question has been generated by giv-
ing four of the five liked movies and asking models
to recommend one of the remaining four movies,
where the correct answer is the one left out of the
5 liked movies.

We updated this task as follows. We create mul-
tiple sets of movies where one of them contains
the five liked movies and the other ones contain
some of the liked movies and some of the disliked
movies. Then, we ask the model to select the set
that contains movies that are more likely to all be
liked by a large group of people. In the new vari-
ant we created, instead of recommending a single
movie given four movies, models have to examine
each set separately and predict their overall likabil-
ity, and then decide the option that is more likely to
have a likability score with our specific definition
of likeability.

A.11 Multi-step Arithmetic

This task introduces new arithmetic operators. An
example of such an operator is as follows:

Sample New Operator

a>< b equals (a-b) if a * b > 0; otherwise,
itequalsa+b

Some of the operations can be defined based on
the other new operations. For example we may
have:

Another Sample New Operator

a; b equals (a><Db) if a+ b > 0; otherwise,
itequalsa-b

We also define a form of composing multiple
operations as follows: a <opl><op2> b denotes (a
opl b) op2 b; for example, 4 +* -5 means (4 + 5) *
-5and 4 * + + 5 means (4 * 5) ++ 5.

Then we sample random arithmetic expressions
involving the above operations. An example expres-
sion is: (1 @*+ 4) <>+[] (-4 *<>* -1) (although
our expressions are longer), with @, <>, and []
being new operations. The job of the model is to
compute the value of the expression. Being able to
compute these expressions requires expanding the
expressions and making a long list of computations
correctly.

Upon looking at the outputs generated by the
models, we find a common failure mode is that
when multiple operations are composed, models
sometimes forget to apply all of them despite un-
derstanding how the operator composition works.
For instance, in one of our examples, while 03-
mini correctly explains how the operator composi-
tion works in its reasoning trace, it still computes
(1 *+><— —6)as(l*x—6) >< —6and
forgets the final subtraction operator in the com-
posed operator * >< —.

A12 NYCC

This task builds on the existing benchmarks for the
New Yorker Caption Contest (NYCC) dataset (Hes-
sel et al., 2022; Zhang et al., 2024). The NYCC
caption dataset consists of a) several hundred con-
tests, each of which is a cartoon published in the
New Yorker magazine and several thousand sub-
mitted humorous captions, b) crowdsourced ratings
for each caption. The ratings are on a scale of
“Unfunny”, “Somewhat Funny”, and “Funny”, and
each caption has anywhere from a few dozen to a
few thousand ratings. Past works have focused on
pairwise comparison tasks, where two captions and
a textual description of the cartoon are presented
to the model, and the model has to pick the funnier
of the two. As discussed in these works, the model
tends to be fairly successful at these tasks, with
GPT-4 Turbo getting to ~ 70% accuracy.

To make the task significantly more difficult, for
each contest we sample one query from the top ten
rated, and then take captions ranked 1000-1009 and
ask the model to choose the funniest. We use the
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textual descriptions of the cartoons generated by
GPT-40 that are provided in Zhang et al. (2024).
An example query is below.

Sample Problem

The following is a description of a funny
cartoon for the New Yorker Caption Contest
Description: Two people are sitting at a ta-
ble in a restaurant, having a conversation
over glasses of wine. One of them is wear-
ing a suit of armor.

Which of the following captions is the fun-
niest?

1) Yes, I wrote that in my profile but I didn’t
mean it literally.

2) That’s not what I meant by a nice night
out and you know it.

3) Sorry. It’s laundry day.

4) So, do you like horses?

5) In vino veritas? Surely you joust.

6) So that’s your best suit?

7) “Cougar seeks millennial” didn’t mean
the year 1000

8) Oh, really? You think men are under at-
tack?

9) This is not what I expected when you
said you were middle aged.

10) Frankly, you look much older than your
profile photo

In the above the correct caption is caption num-
ber 9. Adding multiple possible options makes the
task significantly more challenging compared to
the pairwise task.

A.13 Object Properties

In this task, an initial collection of objects with dif-
ferent properties (color, size, origin, smell, and ma-
terial) are provided (e.g., a extra-small blue Cana-
dian jar made of glass and with a smell of rose).
Then, the collection goes through several updates
corresponding to adding, removing or editing some
of the objects. The updates are explained in the
prompt and the models require a full grasp of the
object properties to identify what changes to the
collection must be made for each update. A simple
example of an update is as follows:

Sample Update to the Collection

My dad threw away all objects of a certain
color from my collection.

After this, my collection only had 5 blue
objects and 3 white objects.

For the above update, one has to find which color
has been removed by comparing the new colors
with the object colors in the previous collection,
and then update the collection accordingly. The
set of updates that the collection goes through in
each of the examples are randomly selected from a
large set of possible changes. At the end, a question
is asked about the final collection. The question
is either an either question in which we ask how
many items in the final collection have property 1
or property 2, ... (e.g., how many items are either
blue or small), or a neither question in which we
ask how many items neither have property 1 nor
property 2, ... (e.g., how many items are not blue
and are not small).

One of the updates, in particular, is a trick update.
It says one of the objects of property X has been
lost, but does not say which one. For example
it says: I lost one of the blue objects
without specifying which blue object. This update
is made in a way that the final number is the same
regardless of which object was lost. However, we
observe that many of the models get confused with
this update and assume that the final count cannot
be computed since we do not know which item was
lost. Specifically, 03-mini (high) says the problem
cannot be solved in 8% of such cases, Gemini 2.0
Flash in 93.5% of the cases, and GPT4o0 in 96.5%
of the cases.

A.14 Object Counting

Given a long list of objects that a person has, the
model has to count the number of items of a certain
type. For examples, the items might belong to
classes (fruits, cell phones, cars) and the goal may
be to count the total number of cell phones that the
person has. We consider two types of questions: 1-
counting the sum of the number of items belonging
to two different classes, and 2- finding the absolute
difference of the number of items belonging to two
different classes. To add to the difficulty of the task,
some irrelevant information, including the number
of the same items that other people have, are added
to the input context so the problem becomes one of
finding multiple needles in a haystack.
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Models | Gemini 2.0 Flash-Lite ~ Gemini 2.0 Flash GPT40 DeepSeek R1  03-mini (high)
Over-count % 53.0 50.5 17.5 6.0 1.5
Under-count % 43.0 38.5 66.5 15.5 8.5

Table 7: Percentage of problems from the Object Counting task where the models over-counted or under-counted.

In Table 7, we report the percentage of cases
where each of the models either over-counted the
number of objects or under-counted, for the subset
where the sum of two sets must be reported. Inter-
estingly, we observe a that different models have
different failure modes on this task. The Gemini
models tend to mostly over-count when they are
wrong, whereas GPT40, DeepSeek R1 and 03-mini
tend to under-count when they are wrong.

A.15 SARC Triples

SARC (Self-Annotated Corpus for Sarcasm) (Kho-
dak et al., 2017) is a large dataset of sarcasm re-
sponses mined from the Reddit social media / fo-
rum platform. Many Reddit users end a post or
reply with the token “/s” when they have intended
the preceding text to be interpreted sarcastically
or satirically. This allowed positive examples of
user-intended sarcasm to be mined.

Forking off the SARC dataset, we construct a
challenging task for LL.Ms that requires reading
three independent examples from SARC, and clas-
sifying each into binary label, where a positive
label indicates sarcasm. The SARC authors created
a balanced test set with 64,666 examples. Many
of these examples can only be understood with
an image or an article link that accompanied the
original post or reply. On the other hand, some
examples, usually with longer textual content, can
be understood on their own. We design our de-
rived benchmark to consist mainly of the latter
type. To achieve this, we filter out examples with
either (1) less than 100 characters or (2) without a
reply, resulting in 679 examples from the original
test set, with 48.4% positive label rate. We sam-
ple (uniformly-at-random) 600 examples from this
set, group them (uniformly-at-random) into groups
of three, and pass the text of each 3-tuple of post,
reply pair to the following prompt:

Prompt Template

Here are three (post, reply) pairs from Red-
dit. Your task is to decide whether

each reply is sarcastic. Specifically, label
each pair with a "0" or "1", where

a "1" indicates that the reply is sarcastic,
and a "0" indicates that the reply

does not contain sarcasm, and provide your
final answer as a comma-separated set of
labels (e.g., "1,0,0" or "0,0,0").

POST 1: postl_text

REPLY 1: replyl_text

POST 2: post2_text

REPLY 2: reply2_text

POST 3: post3_text

REPLY 3: reply3_text

A.16 Shuffled Objects

The original task in BBH is as follows: there are
N people each assigned to an object/person (e.g., a
dance partner, a book, a color, etc.). For example,
Alice has a green book, Bob has a red book, etc.
Then, there are multiple switch operations where
pairs of people switch together what they are as-
signed to (e.g., Alice and Bob switch their books).
At the end, one needs to predict the object/person
assigned to one of the N people (e.g., at the end,
what color is the book that Bob has?).

We created two variants of this problem. In the
first variant, we keep everything the same except
that we add switch actions that have no effect. For
example, we add Then, Personl and Person2
switch their books. Then, Person2 and
Person1 switch their books. We add many
of these no-effect operations so that the problem
becomes a long-context reasoning problem similar
to the approach in Vodrahalli et al. (2024).

The second variant extends the first variant, in
which we assign names to some of the switch ac-
tions as they occur and use those names later. For
example, the first time Person1 switches with
Person2 occurs, we replace the text with Person1
switches with Person2 (let’s call this
Action K), and the next time the same switch hap-
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pens, with some probability we replace the text
with action K repeats. Given the long-context
nature of the problem, the model requires to have
the ability to remember information from many
steps ago to be able to identify what that action
corresponded to.

A naive approach to the problem in these tasks
is to look at the switch operations one by one and
keep updating the object/person assigned to each
of the N people. This, however, will require track
keeping over a very large number of operations.
While reasoning-specialized models might still be
able to do this thanks to their long outputs, this may
be less feasible for the general-purpose models,
and it is not the optimal solution to the problem.
A more clever approach to the problem is to first
identify all the operations that cancel each other
out, and then do the track keeping only over the
few operations that do not cancel.

Looking at some model traces, we observe that
the models typically adopt the non-optimal ap-
proach of updating the state after each switch, thus
running out of output tokens in some cases. For ex-
ample, Gemini 2.0 Flash runs out of output tokens
for 25% of the problems. We also observe a sec-
ond failure case where, if the question asks about
the person/object assigned to Person P at the end,
the model assumes only switches involving Person
P are important and other switches are irrelevant.
This is, however, not True. To understand why,
suppose "A" is assigned to "a", "B" is assigned to
"b", and "C" is assigned to "c". Then "A" and "B"
switch and then "B" and "C" switch, and then we
want to know what "C" is assigned to. If we only
consider the switches involving "C", then we may
predict the correct answer to be "b" whereas the

non

correct answer in this case is "a".

A.17 Spatial Reasoning

This task is mainly based on the problems in Spa-
cialLLMEval (Yamada et al., 2023). The problems
describe a geometric construct composed of verte-
cies and edges. At each vertex, there is a unique
object. An agent starts from one of the vertecies,
moves along the edges and observes the objects at
several vertices, and then after moving for several
steps along the edges, the job of the model is to
determine what object is at the final vertex where
the agent stops.

We sampled from the hexagonal, circular, and
rhombus constructs of SpacialLLMEval. We also
created similar constructs with tree structure, tri-

angular and diamond shapes and increased the
difficulty compared to the problems in Spacial-
LLMEval by increasing the number of hops of
reasoning (corresponding to the number of moves
of the agent). Moreover, while the original prob-
lems and the aforementioned problems we created
mainly require keeping track of the state after each
move, we also create some variants of the problem
where we provide multiple paths that intersect at
some vertex, thus requiring backward reasoning
from the intersection point to identify the position
of the previous objects. As an example, consider
the problem below:

Sample Problem Requiring Backward Rea-

soning

You have been given a diamond tile map
consisting of N rows [...] There is a unique
object placed at each vertex. [...] You are
initially at the top corner where you see a
football. Then you move down-right for one
step and see a shampoo. Then you move
down-left for one step and you see a cat. [...]
Then, you jump to a random vertex V where
you see a bear. Then you move [...] Then
you move up-left and you see a shampoo.
Then you jump back to the random vertex
V and do the following moves: down-left,
down-left, down-right, up-left, down-left,
up-left. What will you find?

For the first path (up until the first random jump),
we know where the path starts and we can use that
along with the following moves to determine which
object is where. Then, a random jump is made
to a vertex V but it is not specified which vertex
it is. However, we observe that after a number
of moves, the agent sees the shampoo again so it
can reason backward from this point to figure out
which vertex it has been at in the previous steps.
These information can also be used to determine
the vertex V which must then be used to solve the
problem when the second jump to V is made.

We find that the problems involving backward
reasoning are more challenging for the models.
Specifically, we find that 03-mini (high) gives an ac-
curacy of 58.8% on the forward-only problems and
19.2% on the backward problems and DeepSeek
R1 gives an accuracy of 48.6% on the forward-only
problems and 3.8% on the backward problem:s.
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A.18 SportQA

SportQA (Xia et al., 2024) is a challenging sports
understanding dataset designed to test rule-based
and strategic reasoning capabilities in LLMs be-
yond surface-level sports knowledge. It consists
of three levels (Level 1 to Level 3) with increasing
difficulty. In this work, we focus on Level 3 ques-
tions, which are curated by coaches and student
athletes across six sports: soccer, basketball, vol-
leyball, tennis, table tennis, and American football.
We sub-sample 200 multi-hop reasoning questions
and discard single-hop questions from the Level 3
set. Overall, these questions challenge LLMs to
reason about fine-grained sports rules (e.g., penalty
assessment and tactical choices), which expert stu-
dent athletes can answer with near-perfect accuracy
(Yang et al., 2024b).

The questions we selected from SportQA have a
compositional nature, in that a main question and
some sub-questions are provided and the model has
to answer all of them correctly for its answer to be
considered correct. We add some instructions at
the end of the questions so the models can answer
them zero-shot in the format that we want. The
questions are in the following format:

Prompt Template

You will be given a main question and two
sub-questions. Each question comes with
multiple choices you can select from. For
each question, select all the correct choices.
Main Question: <TEXT OF THE QUES-
TION>

<OPTIONS A to D>

Sub-Question 1: <TEXT OF THE SUB-
QUESTION>

<OPTIONS A to D>

Sub-Question 2: <TEXT OF THE SUB-
QUESTION>

<OPTIONS A to D>

For each question, provide the answer as a
concatenation of the correct choices. Sepa-
rate the answers for the questions by comma.
For example, if the correct choices for the
main question are A and C, for the first
sub-question is D and for the second sub-
question are B and D, your final answer
must be "AC, D, BD".

A.19 Temporal Sequences

In this task, the calendar schedules of a few peo-
ple is provided for an entire week. The blocked
times for the calendar of each person is sampled
randomly, and is provided as text either by giving
the times of the day when it is blocked or giving the
times of the day when it is free. The goal is to find:
1- the longest meeting that can be scheduled for
them, and 2- the number of possibilities for such
a meeting. These people may also have some con-
straints or we might have some information about
them that has to be taken into account for meeting
scheduling. Examples include: being in a different
timezone than the other participants, needing some
free time before/after the meeting, being flexible to
miss a portion of the meeting, requiring some free
time for lunch, only being able to attend meetings
of up to a certain length, being willing to free up
some specific parts of the day if needed, etc.

The model predictions are considered correct
if they predict both values (i.e. the longest time
and the number of possibilities for a meeting of
that length) correctly. We observe that both of
these add to the difficulty of the problem. For
example, 03-mini (high) has an overall accuracy of
68.5% on this problem, but if we only asked for the
longest meeting time, then the accuracy will jump
to 78%. The same is true for Gemini 2.0 Flash
and Flash-Lite where their accuracy for the overall
task is respectively 0.5% and 1.0%, but if we had
asked only for the longest meeting time then their
accuracy will jump to 5% and 7% respectively.

A.20 Time Arithmetic

This task is based on the time arithmetic subset of
the Test of Time (ToT) benchmark (Fatemi et al.,
2024). The original subset contains various ques-
tions about understanding, computations over, com-
parisons, and conversions of dates and times. There
are also trick questions which may require extra
thinking. The dataset also contains some schedul-
ing problems, but we removed that subset given
that we have an entire task (Temporal Sequence)
dedicated to it.

Following Hosseini et al. (2024), we created a
compositional version of the ToT Time Arithmetic
dataset as follows. Let Q1 and Q2 be two ques-
tions from the original dataset, where the answer
to the Q1 is Al (Al being a number) and let A2
be a number that is used in Q2. Then, we create a
compositional question as follows:
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Sample Prompt Template

Let the answer to Q1 be X.

Q1: <Text of the question>.

Let X’ = X + (A2 - Al). Use this value to
solve Q2.

Q2: <Text of the question with A2 replaced
with "X’">.

\. J

In some cases, the answer to a question might
contain multiple numbers, e.g. a date with three
numbers. In those cases, we assign these values
to variables X, Y, and Z and use them in the later
questions.

A.21 Web of Lies

In this task, whether a specific person P1 tells the
truth of lies is provided as input. Then, for other
people, it is specified what they say about the truth
value of some other person. This forms a chain-like
structure that can be started from P1 and continued
to find whether each of the people tells the truth or
lies.

We used two different variants for this task. The
first variant comes from the web of lies V2 from
LiveBench (White et al., 2024). In this variant,
complexity has been added to the task by specify-
ing where each person is, and then having sentences
such as The person at the cafe says the person at
the zoo lies. The second version is created by us. In
this version, we add cyclic cases whose truth value
remains unknown, but one can still infer something
about them and continue the chain. For example,
consider a cyclic case such as Personl says Person2
tells the truth. Person2 says Personl tells the truth.
In this case, we cannot determine whether Personl
or Person? tell the truth or lie (so their truthfulness
remains unknown). However, if we have another
sentence Person3 says either both Personl and Per-
son2 lie or both tell the truth, we can determine
that Person3 tells the truth. In both variants of the
problems, we ask about the truthfulness of three
of the people in the chain, so the random chance
performance for the LiveBench subset is 1/8 since
the truthfulness of each of the three people can be
either yes or no, and 1/27 for our new set given
that the values can also be unknown.

We observe that the first subset is easier than the
second subset, so we included only 40 examples
of subset one and 160 of subset 2. Specifically,
03-mini (high) gives an accuracy of 100% on sub-
set one and Gemini 2.0 Flash gives an accuracy of

77.5%, whereas on the second subset the two mod-
els give an accuracy of 28.8% and 3.8%. We still
keep the first subset despite the high performance
of the 03-mini model so it can be used to distin-
guish among smaller, general-purpose models.

For the new set we created, we always ask about
the truthfulness of one of the people at the end of
the chain, and another person at an earlier position
in the chain (but still far off in the chain). Concep-
tually, one would expect that if a model has made
a mistake for the person at an earlier position in
the chain, then the chances of making a mistake for
the person at the end of the chain must be higher.
We verified whether this is the case for our models.
For 03-mini, we observe that the accuracy for both
cases is 41.2%, for Gemini 2.0 Flash it is 30% for
the earlier person and 27.5% for the last person,
and for Gemini 2.0 Flash-Lite it is 25.6% for the
earlier person and 21.2% for the last person, all
showing this effect. GPT4o, however, is surpris-
ingly behaving the opposite, having an accuracy of
19.4% for the earlier person and 25% for the last
person.

A.22 Word Sorting

The Word Sorting task is split into 2 sub-tasks.

The first sub-task is from the BIG-Bench Mis-
take dataset (Tyen et al., 2024). This task involves
finding the first mistake in an existing chain-of-
thought sequence, used to answer a Word Sorting
question in the original BBH dataset. In each exam-
ple, the target answer is either the number where
the first mistake occurred, or that there are no mis-
takes in the CoT sequence. These CoT sequences
are generated by prompting PalLM 2 Unicorn (Anil
et al., 2023) on the original BBH dataset at temper-
ature = 0. The newline is used as a stop token so
that each intermediate step can be prepended with
“Thought 1: °, “Thought 2: °, etc. Further informa-
tion on the prompting and generation process can
be found in Tyen et al. (2024).

The second sub-task is sorting a list of words
given a new alphabet order (examples include: an
alphabet order that is the same as English but two
letters are swapped in the order, an alphabet order
that is the same as English but one/two letters are
moved to the beginning/end of the order, or a com-
pletely new order). This task requires going against
a strong prior and sorting words in a non-typical
way. We observe an interesting failure mode for
this task where some models understand the new
alphabet order correctly but keep sorting the words
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based on the original English order. As an example,
consider the following question:

Consider a new alphabet whose letters have
the same order as the English alphabet, ex-
cept that s and i are the last two letters.
Sort the following words with the new al-
phabet and separate them with comma: va,
sprue, subject, immemorial, anaheim, in-
terpretations, clinic, trafficked, communica-
tions, marx, demonstrations, micro, offprint,
characterizations, personifications, eaten,
madeira

Gemini 2.0 Flash provides the following re-
sponse:

Model Response

Here’s how to sort the words according to
the modified alphabet: 1. **Modified Al-
phabet:** a, b, c, d, e, f, g, h, j, k, 1, m, n, o,
pP.q, 1, t, U, V, W, X, Y, Z, 8, 1 [...] The final an-
swer is: anaheim, characterizations, clinic,
communications, demonstrations, eaten, im-
memorial, interpretations, madeira, marx,
micro, offprint, personifications, sprue, sub-
ject, trafficked, va

While the model provides the correct new alpha-
bet, we see that the final answer is sorted based on
the original order (which agrees better with model’s
prior), and not based on the new order.

A.23 Zebra Puzzles

Zebra puzzles, also known as Einstein puzzles, are
verbal descriptions of entities and properties that
partially populate a grid linking entities to their
properties (Shah et al., 2024). The description may
also include constraints on these properties, such
that it is possible to deduce the other entity-property
links. Following the approach in Shah et al. (2024),
we generate square-grid Zebra puzzles of size 5x5,
6x6, 7x7, and 8x8. We add distracting clues to
puzzles of size 5, 6, and 7 to make them more
challenging, but do not add them to puzzles of
size 8 to avoid keeping the context size too large.
To simplify evaluation, the questions ask for the
position of one of the n people in the n x n puzzles,
so the random chance performance for a n X n
puzzle is 1/n.

Looking at the performance for the top perform-
ing models in Table 8, we notice two interesting
patterns. Firstly, while the random chance per-
formance is lower for larger puzzles, we see that
increasing the puzzle sizes does not significantly
lower the model performances in some cases. This
is especially true when going from puzzles of size
6 to 7. Secondly, we observe that the top-2 mod-
els (Gemini 2.0 Flash and 03-mini high) perform
significantly better on the 8x8 puzzles that have no
distracting clues compared to the smaller puzzles
of size 7x7 or 6x6 that do have distracting clues.
This hints at a possible failure mode for frontier
models: they seem to get confused in presence of
distractors and underperform. This might be in
part due to the fact that models might have already
seen clean zebra puzzles and their solutions, but
they may not have seen the variant with distracting
clues, making the latter a case of out-of-distribution
generalization.

B Reproducibility

For most of the models we tested in this work, we
obtained the results through API calls. Specifically,
for Gemini 2.0 and Gemma?2 models, we used Al
Studio, for GPT40 and 03-mini (high) we used the
OpenAl API, and for DeepSeek R1 results we used
the API from Together Al. For the LLama and Dis-
till R1 Qwen results, whose parameters are avail-
able publicly, we obtained results by loading them
on GPUs. This ensures reproducibility as other
researchers can also follow the same approach and
obtain our results.

For all of our problems, we added the following
suffix to the text of the question to encourage the
model to produce the final answer in a format that
we can easily extract it:

Think step by step, and when you provide
the final answer, please use the prefix "The
answer is:" without any modification, and
provide the answer directly, with no format-
ting, no bolding, and no markup. For in-
stance: "The answer is: 42" or "The answer
is: yes". If the question is multiple choice
with a single correct answer, the final an-
swer must only be the letter corresponding
to the correct answer. For example, "The
answer is: (a)".
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Puzzle Size / Models | Gemini 2.0 Flash-Lite  Gemini 2.0 Flash  GPT40  03-mini (high)
5 x 5 (with distractors) 37.5 60.0 37.5 90.0
6 x 6 (with distractors) 38.9 333 30.6 58.3
7 x 7 (with distractors) 36.5 36.5 37.8 554
8 x 8 (without distractors) 16.0 52.0 20.0 74.0

Table 8: Accuracy break-down of the model performances on the Zebra Puzzles task by puzzle size.

We then extract the answer by splitting with the
prefix and finding what comes next. We find that
sometimes the models slightly deviate from the
exact prefix we gave them, so we look for four
prefixes in the answer until one of them is found:
"The answer is: ", "The answer is ", "The
final answer is: ", "The final answer is
". Once we extract the final answer, we apply some
minimal cleaning as follows: 1- if the final answer
is wrapped within the boxed, text, texttt or **, we
remove that and extract what is inside it. We notice
that after producing the final answer, some models
produce a "\n" and then some extra text. Therefore,
we split the extracted final answer using "\n" and
take the first element as the final answer. Then
we lowercase both the final answer and the label
determine correctness using a few simple rules: 1-
if the two are identical, then we consider the final
answer correct, 2- if the final answer is identical to
the label up to removing single or double quotes
or brackets from the beginning and end of it, we
consider it to be correct, 3- the label for multi-
choice questions is in (<KLETTER>) format and
we expect a similar final answer but if the final
answer is only the letter without the parentheses,
we consider it correct, and finally 4- for questions
whose labels contain multiple elements separated
by comma, if the label and final answer are the
same up to replacing the spaces after the commas
with blanks, then we consider the final answer to
be correct.

C BBEH vs BBH Performance

To understand how much each task in BBEH has
become harder compared to its counterpart in BBH,
we evaluated Gemini 2.0 Flash on BBH and re-
ported the results in Table 9. For the fairness of the
comparison, we ran the model in a zero-shot setting.
However, we note that some of the tasks in BBH
may become slightly ambiguous in a zero-shot set-
ting given that it has been mostly developed for a
few-shot evaluation. Nevertheless, we observe that
on almost all the tasks, the difficulty level has sig-
nificantly increased in BBEH. A notable exception

is the DisambiguationQA task. Checking the re-
sponses from Gemini 2.0 Flash on the BBH version
of the dataset, we observe that the model overly
selects the ambiguous option, sometimes for poten-
tially legit reasons. For example, for disambiguat-
ing the pronoun they in the sentence "Alex told
us that they could not meet", the model responds
that "They could refer to Alex or to some other
group of people not explicitly mentioned. There-
fore, the antecedent is ambiguous". We also find
that in several of the cases, simply changing the
task description from "explain the antecedent of
the pronoun [...] or state that it is ambiguous" to
"try to disambiguate the antecedent of the pronoun
given the context or state that it is ambiguous if it
cannot be disambiguated” makes the model pick
the right choice.

D Related Work

There has been significant emphasis on using
LLMs for mathematical and scientific reasoning.
This has led to the popularity and proliferation
of math- and STEM-based evaluations, such as
(Hendrycks et al., 2020; Cobbe et al., 2021), and
more recently, (Glazer et al., 2024; Phan et al.,
2025). However, the generalizability of mathe-
matical reasoning skills to broader domains re-
mains unclear. Indeed, attempts to make existing
benchmarks more robust—for example, (Mirzadeh
et al., 2024)—have highlighted an overall lack of
robustness and logical reasoning capabilities. Sev-
eral benchmarks have also been developed to ad-
dress specific areas of reasoning, including tempo-
ral reasoning (Xiong et al., 2024; Beniwal et al.,
2024; Dhingra et al., 2022), spatial understand-
ing (Bohnet et al., 2024; Yamada et al., 2023;
Mirzaee et al., 2021; Shi et al., 2022), common-
sense reasoning (Zellers et al., 2019; Talmor et al.,
2018; Sakaguchi et al., 2021), and logical reason-
ing (Saparov and He, 2022; Tafjord et al., 2020;
Saparov et al., 2023; Parmar et al., 2024). How-
ever, these benchmarks tend to focus narrowly on
specific domains, leading to potential evaluation
biases if a more holistic view of model capabilities
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Task in BBEH | / Accuracy on —

Old task from BBH New task in BBEH

BoardgameQA 88.0 42.5
Boolean Expressions 97.6 27.0
Causal Understanding 65.2 52.0
DisambiguationQA 42.0 48.3
Dyck Languages 65.2 14.0
Geometric Shapes 73.6 35.0
Hyperbaton 94.8 4.5
SARC Triples 86.0 37.5
Linguini 62.8 15.5
Movie Recommendation 66.4 59.5
Multistep Arithmetic 99.6 9.5
NYCC 81.2 11.0
Object Properties 96.8 1.5
Object Counting 97.6 11.0
Shuffled Objects 100.0 9.0
Spatial Reasoning 97.6 18.5
SportQA 89.6 23.0
Buggy Tables 98.6 3.5
Temporal Sequences 98.8 0.5
Time Arithmetic 92.0 48.0
Web of Lies 94.8 18.5
Word Sorting 84.8 26.0
Zebra Puzzles 87.6 44.5
BBEH 85.2 23.90

Table 9: Performance of Gemini 2.0 Flash on BBEH and its counterpart task from BBH.

is not considered. To address this limitation, sev-
eral benchmarks have been developed to integrate
multiple tasks into a single evaluation framework,
including (Wang, 2018; Wang et al., 2019; Weston
et al., 2015; Lu et al., 2023; Kazemi et al., 2024,
Hendrycks et al., 2020; Wang et al., 2024; Parmar
et al., 2024; Srivastava et al., 2022). Our work
builds on this line of research, introducing a new
set of challenging tasks for future model evaluation
and performance improvement. The multi-task na-
ture of our benchmark with fine-grained tasks each
focused on some reasoning skills enables model
developers to discover and analyze failure modes
in further depth. Note that while private initiatives
such as ChatBot Arena (Imarena) and the SEAL
leaderboard (ScaleAI) conduct model evaluations
across various aspects, they may suffer from several
potential issues as pointed out in (Bansal and Maini,
2024). Our benchmark provides an open evalua-
tion framework with an automatic and deterministic
scoring mechanism, ensuring full transparency and
reproducibility for the broader research commu-
nity.

E Potential Risks

Our benchmark contains questions that contain
long contexts and require a great amount of think-
ing, reflected in the number of output tokens that
the models have to generate to solve them. As
such, evaluating models on our benchmark may
require a higher amount of computation and energy
compared to some other benchmarks.
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