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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in various do-
mains, including radiology report generation.
Previous approaches have attempted to utilize
multimodal LLMs for this task, enhancing their
performance through the integration of domain-
specific knowledge retrieval. However, these
approaches often overlook the knowledge al-
ready embedded within the LLMs, leading to
redundant information integration. To address
this limitation, we propose RADAR, a frame-
work for enhancing radiology report genera-
tion with supplementary knowledge injection.
RADAR improves report generation by system-
atically leveraging both the internal knowledge
of an LLM and externally retrieved informa-
tion. Specifically, it first extracts the model’s ac-
quired knowledge that aligns with expert image-
based classification outputs. It then retrieves
relevant supplementary knowledge to further
enrich this information. Finally, by aggregat-
ing both sources, RADAR generates more accu-
rate and informative radiology reports. Exten-
sive experiments on MIMIC-CXR, CHEXPERT-
PLus, and IU X-RAY demonstrate that our
model outperforms state-of-the-art LLMs in
both language quality and clinical accuracy’.

1 Introduction

Radiology report generation (Chen et al., 2020,
2021) plays a crucial role in chest X-ray interpre-
tation, requiring highly specialized domain knowl-
edge (Jain et al., 2021; Irvin et al., 2019). Recent
advances in foundation models (Pellegrini et al.,
2023; Chen et al., 2024; Hyland et al., 2024), which
leverage large language models (LLMs) for en-
hanced medical image analysis, have demonstrated
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'Our code is available at: https://github.com/wjhou/
Radar
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Figure 1: A motivating example. The report directly
generated by the multimodal LLM showcases its knowl-
edge regarding several findings (Opg) but can contain
hallucinations and overlook some other findings. To
address this, we regard the part that aligns with another
expert model (Or N Oy) as trustworthy and we incor-
porate supplementary knowledge for the remaining part
(O — Ogr N Oy) to enhance the report generation.

remarkable potential in generating fluent and cohe-
sive clinical text, aiding radiologists in their diag-
nostic workflow.

Despite their ability to generate highly readable
and clinically plausible report content, LLMs still
face persistent challenges in ensuring clinical ac-
curacy. One major challenge lies in the knowl-
edge gap between the medical and general domains.
Many studies have attempted to bridge this dispar-
ity by augmenting models with retrieved domain-
specific knowledge (Yang et al., 2021; Liu et al.,
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2021; Liet al., 2023c; Ranjit et al., 2023; Sun et al.,
2025). However, these approaches often overlook
the knowledge LL.Ms have already acquired. That
is, much of the retrieved information is often dupli-
cate knowledge already encoded within the model’s
parameters, leading to redundant information re-
trieval. Moreover, the knowledge learned by LLMs
(Liu et al., 2024) is not always trustworthy, as hallu-
cinations frequently occur (Huang et al., 2025). For
instance, in Figure 1, the LLM correctly identifies
Cardiomegaly, making the retrieval of additional
knowledge about this observation unnecessary. Ad-
ditionally, the generated Pleural Effusion is highly
credible, as it aligns with the expert model, whereas
Edema remains uncertain. Thus, balancing learned
and retrieved knowledge in radiology report gener-
ation is crucial to address these challenges.

In this paper, we propose RADAR, a framework
for RADiology report generation that integrates
both the internal knowledge of LLMs and exter-
nal supplementARy knowledge. Our framework
primarily consists of two stages: preliminary find-
ings generation and supplementary findings aug-
mentation. In the first stage, RADAR generates an
initial report from the input images. Subsequently,
an expert model processes the images for obser-
vation classification. The overlapping information
between the generated report and the classified ob-
servations is identified as high-confidence internal
knowledge. In the second stage, RADAR addition-
ally retrieves new knowledge to supplement the
internal knowledge. Finally, both internal and sup-
plementary knowledge sources are aggregated to
enhance the report generation process. Our main
contributions can be summarized as follows:

* We propose RADAR, a novel framework that
enhances the clinical accuracy of radiology re-
port generation by effectively integrating both
the internal knowledge of LLMs and exter-
nally retrieved domain-specific knowledge.

* To optimize knowledge utilization, we intro-
duce a knowledge extraction method that iden-
tifies and retains non-overlapping information
from the model’s learned knowledge, reduc-
ing redundancy and bridging the knowledge

gap.
* We conduct extensive experiments on
three benchmark datasets: MIMIC-CXR,

CHEXPERT-PLUS, and IU X-RAY, demon-
strating the effectiveness of RADAR.

2 Preliminary

2.1 Problem Formulation

A multimodal LLM (MLLM) generally consists of
a vision encoder, a vision connector that transforms
visual signals into the language space (e.g., MLP
(Liu et al., 2023), Q-Former (Li et al., 2023b), or
Perceiver Resampler (Xue et al., 2024)), and an
LLM, as illustrated in the left part of Figure 2.
For radiology report generation?, the MLLM takes
a radiograph X, its prior X,, (if available), and
the clinical context C' (e.g., Indication or Prior
Findings) as input and generates the report Y =
{y1,...,yr}. The probability of the ¢-th token is
computed as follows:

p(yt) = MLLM(X7 Xpa 07 y<t)7

where the MLLM is optimized using the negative
log-likelihood loss:

T
L=-) logp(w).
t=1

2.2 Semi-Structured Report as Knowledge

In this paper, the training set of MIMIC-CXR
serves as the knowledge source for radiology re-
port generation. To effectively leverage the knowl-
edge encoded in each report, we convert it into
semi-structured data. Specifically, given a report
consisting of N sentences, ¥ = {S1,...,Sn},
we annotate each sentence using the 14-category
CheXpert observations (Irvin et al., 2019) with the
CheXbert model (Smit et al., 2020). Each observa-
tion falls into one of four classes: Positive, Nega-
tive, Uncertain, or Blank. To ensure conciseness,
we retain only sentences annotated with Positive
observations. These selected sentences collectively
represent the knowledge extracted from the report,
as illustrated in the top-right part of Figure 2. Note
that we annotate and process Preliminary Findings
(§3.1) and Supplementary Findings (§3.2) in the
same manner.

3 The RADAR Framework

3.1 Stage I: Preliminary Findings Generation

We illustrate the Stage I process in the left part of
Figure 2. To assess the learned knowledge of an

%In this paper, "report” typically refers to "findings," and
we use these two terms interchangeably.
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Stage I: Preliminary Findings Generation

Stage II: Supplement Findings Augmentation
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Figure 2: Overview of the RADAR. In Preliminary Findings, only sentences that reach agreement are retained,
whereas in Supplementary Findings, only sentences that supplement the Preliminary Findings are preserved.

LLM, we first feed the input (X, X, and C') into
RADAR to generate a report Y':

T
Y = argmax | [ MLLM(X, X, C, <),
Yey =1

where ) represents the set of possible reports. Note
that exact maximization is intractable and we em-
ploy an approximate decoding algorithm for gen-
eration. Next, we convert the findings into semi-
structured knowledge, as described in §2.2, and
denote the observations of Y as O R-

To extract credible knowledge from Y while fil-
tering out untrustworthy information, we train an
expert model that predicts observations for the im-
age. Unlike previous works (Hou et al., 2023b;
Pellegrini et al., 2023), which consider only the
image as input, we incorporate the clinical context
to enhance performance. Specifically, the expert
model f(X) encodes X and C using an image en-
coder Encoder, and a text encoder Encodery, re-
spectively, and then processes their outputs through
an MLP for observation classification:

h, = Encoder,(X), h; = Encoder,(C),

p(0i) = o(MLP([hy; hy])),

where [;] is the concatenation function, h, and h;
are the pooled outputs of the image and text en-
coders, respectively, and p(O;) represents the prob-
ability of the ¢-th observation. We denote the obser-
vations derived from f(X) as Oy, and the credible
and high-confidence observations, O, are then
obtained by intersecting O and Og, as follows:

O, =0;rNOkg.

Finally, we refine Y by removing sentences that
do not correspond to O, yielding the Preliminary
Findings (PF).

To train the expert model, we collect observa-
tions from each report as image annotations and op-
timize the expert model using binary cross-entropy
loss. Following Pellegrini et al. (2023), we ad-
dress data imbalance by re-weighting the positive
observations with a log-scale weight, defined as

a; = log (1 + %#‘f"'), where |Dyin| is the total
number of training samples and w; denotes the fre-
quency of observation O;.

3.2 Stage II: Supplementary Findings
Augmentation

Supplementary Knowledge Retrieval. We follow
the retrieval process of Yang et al. (2021) to search
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for domain knowledge. Specifically, the expert
model described in §3.1 produces probabilities for
14 observations, and we compute the similarity
between different samples using KL-divergence:

2 = Normalize(f (X)),

0 )
Sim(X, X;) = — Y 2jlog —
7=1

J
A 9
i,

where Normalize(-) normalizes f(X) to 1, 2 rep-
resents the normalized scores for (X), and 2; ; de-
notes the score of the j-th observation in the i-th
sample from the database (i.e., the training set of
the MIMIC-CXR dataset). We then rank the sam-
ples based on their similarity scores, Sim(X, X;),
and retrieve the top-K reports, denoted as )° =
vy, ... Y2

Supplementary Knowledge Extraction. Since
the retrieved information may overlap with the
knowledge learned by LLMs, we extract only sup-
plementary knowledge based on two principles: (1)
it should be concise and relevant, and (2) it should
complement, rather than duplicate, the preliminary
findings. Thus, for each supplementary report YiS
with its corresponding observations O, we retain
only the following observations:

05 =0—-0y.

Next, we convert Y;° into semi-structured knowl-
edge and remove sentences that do not correspond
to Os, referring to these findings as Supplementary
Findings (SF). Notably, all sentences correspond-
ing to negative observations are removed, ensuring
that SF remains concise and clinically relevant.

3.3 Enhanced Radiology Report Generation

We integrate both PF and SF into the clinical con-
text C' to form the augmented context C4, from
which the final report Y is generated as:

T
Y = argmax | [ MLLM(X, X,,C*,y<).
Yey t=1

Since PF and SF contain information from various
studies, summarizing high-level information before
generating the report is necessary. Thus, we include
the observations of Y as part of the training targets.
Specifically, during training, Y is converted into a
structured format:

YO ={0y,..

'7ONay17"'ayL}v

where {O1, ..., On} represents the observations
inY, and {y1,...,yr} corresponds to the tokens
of the report. We refer to this process as Obser-
vation Identification (OI). During inference, we
extract the final report from the generated output
for evaluation.

4 Experiments

4.1 Datasets

We evaluate our model using three publicly avail-
able radiology report generation datasets: MIMIC-
CXR3 (Johnson et al., 2019), CHEXPERT PLUS*
(Chambon et al., 2024), and IU X-RAY> (Demner-
Fushman et al., 2016):

e MIMIC-CXR contains 377,110 chest radio-
graphs and 227,827 reports. We use this
dataset for fine-tuning, and we include only
frontal images in our experiments. The num-
ber of samples in the train, validation, and test
sets is 162,955, 1,286, and 2,461, respectively.

e CHEXPERT PLUS comprises 223,462 unique
radiology reports and chest X-ray pairs from
187,711 studies. We evaluate our model using
only frontal images from the validation set,
which includes 62 samples.

* [U X-RAY is a dataset collected by Indiana
University. Following Bannur et al. (2024),
we use all frontal images for evaluation, total-
ing 3,199 studies.

4.2 Evaluation Metrics

Lexical Metrics. Following previous research
(Chen et al., 2020; Li et al., 2023c), BLEU-1/4
(Papineni et al., 2002), ROUGE-L (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005) are adopted
for evaluating the languages of generated outputs.
Clinical Metrics. We evaluate the factual accu-
racy using several metrics. Specifically, RG-F; and
RGﬁ(ER) (Jain et al., 2021) evaluate the entity-
level factuality and RadCliQq (Yu et al., 2022),
denoted as CliQg, aligns with the preference of
radiologists. For observation evaluation, *Macro-
F; (**Ma-F,;) and "*Micro-F; (**Mi-F;) evaluate
the macro and micro Fy of 14 observations (refers
to Table 7), respectively. In addition, ®Macro-F;

3https://physionet.org/content/mimic—cxr—jpg/
2.0.0/

4https://aimi.stanford.edu/datasets/
chexpert-plus

Shttps://openi.nlm.nih.gov/
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Dataset: MIMIC-CXR (Training and Evaluation)

Model Lexical Metrics Clinical Metrics (CheXpert: Uncertain as Negative / Positive)
B-1 B-4 MTR R-L |RG-F; RGgx CliQy(}) "Ma-F; °Ma-F, “Mi-F; °Mi-F,
RadFM — 0.128 — 0.182 — — - - — -
XrayGPT 0.128 0.004 0.079 0.111 - — — — — — —
R2GenGPT 0.411 0.134 0.160 0.297 — - — 0.389 - — —
R2-LLM 0.402 0.128 0.175 0.291 - - — - — -
RaDialog 0.346  0.095 0.140 0.271 — — 0.394 — — —
LLaVA-Med 0.354 0.149 0.353 0.276 | 0.191  0.238 3.30 0.269 0.363 0.427 0.439
CheXagent 0.169  0.047 — 0.215 — 0.205 0.247 0.345 0.393 0.412
GPT-4V 0.164 0.178 — 0.132 — 0.132 0.204 0.196 0.355 0.258
Med-PalLM 0.323 0.115 - 0.275 | 0.267 — — 0.398 0.516 0.536 0.579
LLaVA-Rad 0.381 0.154 — 0.306 — 0.294 0.395 0.477 0.573 0.574
MAIRA-1 0.392 0.142 0.333 0.289 | 0.243 0.296 3.10 03?? 0'%73 0'55_7 0?60
0.423 0.517 0.553 0.588
MAIRA-2 0.465 0.234 0.420 0.384 | 0.346 0.396 2.64 0.416 0.504 0.581 0.591
MedVerse — 0.178 - - 0.280 — 2.71 — - — —
M4CXR 0.339  0.103 — - 0.218  0.285 — 0.400 0.495 0.606 0.618
Libra 0.513 0.245 0.489 0.367 | 0.329 0.376 2.70 0.404 0.538 0.559 0.601
RADAR (Ours) | 0.509 0.262 0.450 0.397 | 0.346 0.393 2.61 0'469 0'546,,7 062’_7 0'653
0.497 0.602 0.627 0.674

Table 1: Evaluation results of our model and baseline methods on the MIMIC-CXR dataset. Baseline results
are cited from their respective literature. The best results are shown in bold, while underlined values indicate the
second-best results. | denotes that lower values are better. Results of CheXpert treat Uncertain labels as Positive
when compared with MAIRA-1. Comparisons with SOTA specialists are provided in Table 8.

Dataset: IU X-RAY (Evaluation Only)

Dataset: CHEXPERT PLUS (Evaluation Only)

. .. Lexical Clinical
Lexical Clinical Model ‘ Train 5
Model . AnAs » . 14(5) " 14(5) M.
ode ‘ B4 RL ‘ RG-F, CliQy()) “MaF, YMiF, B4 RL | R Ma-Fy Mi-F)

e M* | 0.034 0.191 | 0.136 (0.198) 0.268 (0.383) 0.410 (0.423)
LLaVA-Rad - 0253 - - - 0.535 SWINy2-BERT | C 0.057 0.228 | 0.183 (0.250) 0.331 (0.401) 0.508 (0.432)
MAIRA-2 0.117 0.274 | 0.271 2.68 0.319 0.525 M&C | 0.056 0.234 | 0.201 (0.277) 0.366 (0.495) 0.560 (0.532)
RADAR (Ours) | 0.116 0.276 | 0.237 2.78 0.325 0.546 RADAR (Ours) | M 0076 0.203 | 0.143 (0.216) 0.362 (0.417)  0.541 (0.524)
BACKBONE | 0.112 0.275 | 0.236 2.79 0.269  0.514 0.401 (0.540) - 0.554 (0.608)
Backsone | M| 0073 0203 | 0145 020 0252 Q43D 07T (0460

Table 2: Evaluation on the IU X-RAY dataset. Results
of LLaVA-Rad and MAIRA-2 are cited from Bannur
et al. (2024).

(°Ma-F;) and Micro-F; (°Mi-F;) measure the per-
formance of 5 common observations (Atelectasis,
Cardiomegaly, Consolidation, Edema, and Pleu-
ral Effusion). Two lines of CheXpert results are
reported, i.e., Uncertain as Negative and Uncertain
as Positive.

4.3 Baselines

On the MIMIC-CXR dataset, we compare our
models with the state-of-the-art (SOTA) MLLMs,
including RadFM (Wu et al., 2023), XrayGPT
(Thawakar et al., 2024), LLaVA-Med (Li et al.,
2023a), R2GenGPT (Wang et al., 2023b), R2-LLM
(Liu et al., 2024), RaDialog (Pellegrini et al., 2023),
CheXagent (Chen et al., 2024), GPT-4V (OpenAl,
2023), LLaVA-Rad (Chaves et al., 2024), Med-
PalLM (Singhal et al., 2022), MAIRA-1 (Hyland

Table 3: Evaluation on the CHEXPERT PLUS dataset.
The results for SWINy,-BERT are cited from Chambon
et al. (2024), and we primarily compare RADAR with
its x variant. The "Train" column indicates the training
datasets, where M and C denote the MIMIC-CXR and
CHEXPERT PLUS datasets, respectively.

et al., 2024), MAIRA-2 (Bannur et al., 2024), Med-
Verse (Zhou et al., 2024), M4CXR (Park et al.,
2024), and Libra (Zhang et al., 2024). Other SOTA
specialists are in the Appendix A.1. We also com-
pare RADAR with LLaVA-Rad and MAIRA-2 on
the IU X-RAY dataset. On the CHEXPERT-PLUS
dataset, we compare RADAR with the baseline
SWiNy2-BERT (Chambon et al., 2024) consisting
of a Swin Transformer V2 (Liu et al., 2022) and a
BERT decoder (Devlin et al., 2019). The SWINy-
BERT model has three variants, each trained on
a different dataset: the MIMIC-CXR dataset, the
CHEXPERT PLUS dataset, and a combined version
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Model Modules Lexical Metrics Clinical Metrics (CheXpert: Uncertain as Negative)

PF SF OI| B-1 B4 MIR R-L |RGF, RGg CliQ() YMa-F, °Ma-F;, “MiF, °Mi-F,
RADAR /o v/ v/ 0509 0.262 0450 0.397 | 0.346  0.393 2.61 0.460 0.567 0.627  0.653
BACKBONE | X X X |0.497 0259 0.444 0.396 | 0.343 0.387 2.67 0.402 0.495 0.565  0.581
RADAR,,r | X X / |0.506 0.260 0.448 0.396 | 0.343 0.391 2.63 0.442 0.545 0.624  0.651
RADAR,,se | v X/ | 0.508 0.262 0.451 0.398 | 0.346  0.394 2.62 0.447 0.543 0.626  0.650
RADAR,,pr | X v/ | 0.508 0.261 0.450 0.396 | 0.344 0.389 2.63 0.456 0.559 0.623  0.652

Table 4: Ablation results of RADAR with different modules. Per-observation results of BACKBONE, RADAR,,, F,
RADAR,,, sr, RADAR,, pr, and RADAR are provided in Appendix, Table 7.

Model Modules Lexical Metrics Clinical Metrics (CheXpert: Uncertain as Negative)

Vision Resampler LLM | B-1 B4 MTR R-L |RG-F; RGg CliQy () '“Ma-F; °Ma-F; “Mi-F; 5Mi-F;
BACKBONE v v v 0.497 0.259 0.444 0.396 | 0.343  0.387 2.67 0.402 0.495 0.565 0.581
BACKBONE-V1 X 4 X 0.430 0.183 0.359 0.318 | 0.245 0.296 3.15 0.284 0.415 0.476 0.508
BACKBONE-V2 X v v 0.483 0.246 0.428 0.381 | 0.321  0.368 2.78 0.361 0.465 0.532 0.550

Table 5: Ablation results of fine-tuning different modules of BACKBONE.

Hyperparameters ‘ Stage I Stage I1
Vision Encoder (LoRA)

Trainable Module | Perceiver Resampler (Full) LLM (LoRA)

LLM (LoRA)

Training Epoch 3 2

Learning Rate le—4

Optimizer AdamW

LR Scheduler Cosine

Warmup Ratio 0.03

LoRA Config r=064,a=128

Batch Size 32

Table 6: Detailed hyperparameters for training RADAR.
LoRA is used to fine-tune both the vision encoder and
the LLM, while the Perceiver Resampler is fully fine-
tuned.

of both.

4.4 Implementation Details

Training and Inference. We implement RADAR
using BLIP-3° (Xue et al., 2024) as the backbone,
which comprises a SigL.IP (Zhai et al., 2023) vi-
sion encoder, a Perceiver Resampler, and a Phi-
3-mini3 gg (Abdin et al., 2024) language model.
Our implementation is based on Hugging Face’s
Transformers library (Wolf et al., 2020). The
expert model consists of a Swin Transformer
V27 (Liu et al., 2022) and a BioClinical BERT?
(Alsentzer et al., 2019). Top-2 reports are selected
as knowledge. The hyperparameters used for train-
ing RADAR are provided in Table 6. During infer-
ence, we employ beam search with a beam width

The model card is "Salesforce/xgen-mm-phi3-mini-
instruct-interleave-r-v1.5."

"The model card is "microsoft/swinv2-large-patch4-
window12to16-192t0256-22kto1k-ft."

8The model card is "emilyalsentzer/Bio_ClinicalBERT."

of 5 for report generation and set the length penalty
to 2.0. As proposed by Xue et al. (2024), BLIP-3
samples vision tokens using a Perceiver Resampler
with learned queries and supports images of any res-
olution, resulting in significant performance gains
across multiple tasks. In this paper, we use only
the base resolution (384 x 384) with 128 learned
query tokens to ensure a fair comparison with other
baselines. For training, in Stage I, we fine-tune all
three components (i.e., the vision encoder, the Per-
ceiver Resampler, and the LLM) in BLIP-3 since
the model is not specifically designed for medical
tasks. In Stage II, we further fine-tune only the
LoRA of the LLM to enhance performance.

Data Preprocessing. Following previous research
(Hyland et al., 2024; Bannur et al., 2024; Zhang
et al., 2024), we incorporate Indication, History,
Comparison, Technique, and Prior Findings as clin-
ical context for the MIMIC-CXR and CHEXPERT
PLUS datasets, when available. Since the TU X-
RAY dataset does not include follow-up studies,
we extract only Indication, Comparison, and Tech-
nique as clinical context. For a better illustration,
we provide the prompt template in Table 9.

5 Results and Analyses

5.1 Quantitative Analysis

Comparison with MLLMs. As shown in Table
1, RADAR achieves SOTA performance compared
to other MLLM baselines. In terms of lexical met-
rics, RADAR outperforms the best baselines (i.e.,
Libra and MAIRA-2) with absolute improvements
of 1.7% in BLEU-4 and 1.3% in ROUGE-L, while
maintaining competitive performance of 0.509 in
BLEU-1 and 0.450 in METEOR. Regarding entity-
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level clinical metrics, our model achieves the best
performance on RG-F; and RadCliQg, attaining
scores of 0.346 and 2.61, respectively. Addition-
ally, RADAR surpasses the top baselines, achieving
improvements across multiple observation-level
clinical metrics, with *Macro-F; increasing to
0.460, ®Macro-F; to 0.567, "*Micro-F; to 0.627,
and 5Micro-F; to 0.653, respectively. Notably, the
smallest gain over the second-best model is 2.1%,
underscoring RADAR’s effectiveness. Furthermore,
we provide an additional set of CheXpert results
using the Uncertain as Positive policy and compare
RADAR with MAIRA-1. We observe that the im-
provements under this setting follow a similar trend
to those obtained with the Uncertain as Negative
policy. These results collectively demonstrate the
effectiveness of RADAR in generating coherent and
clinically accurate radiology reports.
Comparison with SOTA Specialists. The results
of other specialists are shown in Table 8. We find
that models incorporating clinical context (e.g., In-
dication) as input generally achieve better perfor-
mance than others. For example, the Controllable
model significantly outperforms other baselines
across both lexical and clinical metrics. This trend
also holds for MLLMs, as shown in Table 1. More-
over, benefiting from the strong contextual com-
prehension and language generation capabilities of
LLMs, RADAR further improves linguistic qual-
ity, which requires models to integrate diverse in-
formation sources. However, we observe that the
14Macro-F; score of our model still lags behind that
of the Controllable baseline (0.497 vs. 0.553). This
discrepancy may stem from differences in learning
objectives, as this baseline treats Uncertain cases
as Positive.

Model Generalization. Following prior research
(Bannur et al., 2024), we further evaluate RADAR
on the CHEXPERT PLUS and IU X-RAY datasets
to assess its generalization capability. The results
are presented in Table 2 and Table 3. On the IU
X-RAY dataset, RADAR outperforms MAIRA-2 in
terms of CheXpert metrics, achieving a *Macro-
Fi of 0.325 and a *Micro-F; of 0.546. How-
ever, a performance gap remains in RG-F; and
RadCliQg, which may be attributed to differences
in training data, as MAIRA-2 is trained with the
additional USMix dataset. Meanwhile, RADAR
demonstrates comparable performance to the base-
lines in terms of lexical metrics. On the CHEX-
PERT PLUS dataset, our model significantly out-
performs SWINy,-BERT trained on the MIMIC-

BACKBONE PLus
BACKBONE+RAG
BACKBONE+FP+SF
oo B RADAR (Ours)

+6.63%
+6.81%

+7.79%

Metric Value

+6.24%

RG-F, RGgr

Ma-F, "Ma-F, TIMi-F, SMi-F,

Figure 3: Comparisons among BACKBONE+RAG,
BACKBONE+FP+SF, and RADAR on six clinical met-
rics.

CXR dataset, across both lexical and clinical met-
rics. Furthermore, RADAR surpasses the baseline
that is trained on CHEXPERT PLUS alone as well as
the one trained on a combination of both datasets.
These results demonstrate the strong generalization
ability of RADAR across different datasets. Ad-
ditionally, RADAR significantly outperforms the
BACKBONE, underscoring the effectiveness of the
integrated knowledge.

Analysis of PF, SF, and OI. We analyze the impact
of PF, SF, and OI on the performance of RADAR,
with results summarized in Table 4. RADAR,,, F,
which first identifies observations before report
generation without incorporating knowledge, sig-
nificantly improves the CheXpert metrics, partic-
ularly MMacro-F; and ®Macro-F;, as observation
information captures high-level abstractions of re-
ports and aligns closely with the objectives of these
metrics. This highlights the crucial role of OI in
enhancing clinical accuracy, independent of other
components. When PF and SF are introduced indi-
vidually with OI, introducing PF alone helps pre-
serve the knowledge embedded in the LLM, result-
ing in comparable performance across both lexi-
cal and clinical metrics. In contrast, introducing
SF alone substantially improves '*/>Macro-F1, but
negatively impacts RGgr and RadCliQq. Moreover,
combining both PF and SF leverages the strengths
of each, leading to further improvements in the
clinical metrics while maintaining comparable per-
formance across the other metrics. We notice that
BACKBONE tends to retain easily acquired knowl-
edge (i.e., PF) and that selectively supplementing
it with external information (i.e., SF) is crucial for
bridging the remaining knowledge gaps.
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Case A

focal consolidation, pleural effusion or
pneumothorax is present. ......

Expert Observations: O; = ()
Agreement: O, = 0

Overall Findings: O = ()

are normal. Lungs are clear. ......
Reference:0O=0 | |..
Cardiac, mediastinal and hilar contours are
normal. ......

.

Preliminary Findings: Or [Edema, Cardiomegaly]

[Edema] ..... there is still evidence of mild-to-moderate pulmonary
Preliminary Findings: Or [Atelectasis] edema. [Cardiomegaly] Moderate cardiomegaly persists.
Heart size is normal. ...... fAteleetasis] Mild Supplementary Findings:
is i se: No [Atelectasis] There are areas of left mid-to-lower lung linear

atelectasis/scarring.

[Atelectasis] Mild areas of atelectasis at the left lung bases.

Expert Observations: O; [Cardiomegaly, Atelectasis, Edema]
Agreement: O, [Edema, Cardiomegaly]

Overall Findings: O

The cardiac, mediastinal and hilar contours | |...... [Edema] Moderate pulmonary edema with [Cardiomegaly]
moderate cardiomegaly and [Atelectasis] bilateral areas of atelectasis.

Reference:

[Edema] There are still signs indicative of mild pulmonary

edema. [Atelectasis] In addition, there is a small right medial basal
atelectasis. [Cardiomegaly] Moderate cardiomegaly. ......

Case B

Figure 4: Two cases generated by RADAR, where false positive observation appears in the PF of case A and false

negative observation shows in the PF of case B.

Analysis of RADAR versus RAG. To evaluate the
effectiveness of knowledge integration in RADAR,
we conduct experiments comparing our model
against three baselines: (1) BACKBONE PLUS, (2)
BACKBONE+RAG, and (3) BACKBONE+PF+SF.
The results are presented in Figure 3. Note that
these baselines do not include the OI. Since RADAR
undergoes two-stage training (i.e., two additional
epochs), we apply the same extended training to
BACKBONE, referring to this variant as BACK-
BONE PLUS. In addition, we introduce a standard
RAG baseline (BACKBONE+RAG), which utilizes
the same retrieved findings as RADAR. Building
upon this baseline, BACKBONE+PF+SF further
includes PF as context. Our findings reveal that
while all four models achieve comparable perfor-
mance on lexical metrics (e.g., 50%/26% B-1/4),
they differ in clinical metrics. Specifically, BACK-
BONE+RAG and BACKBONE PLUS show simi-
lar performance, and BACKBONE+FP+SF outper-
forms these two baselines on CheXpert metrics and
exhibits similar performance on RadGraph met-
rics. This demonstrates that incorporating credible
knowledge can effectively enhance report genera-
tion even without OI. Moreover, RADAR demon-
strates a relative improvement of over 6% across
four key CheXpert metrics. This suggests that struc-
tured integration of internal and external knowl-
edge contributes to its enhanced clinical accuracy.

Analysis of Fine-tuning Different Modules in
BACKBONE. To assess the contributions of differ-
ent components in the base model (i.e., BLIP-3),
we conduct an ablation study on the impact of fine-
tuning the vision encoder, the Resampler, and the
LLM. The results are summarized in Table 5. By
comparing BACKBONE and BACKBONE-V2, we
find that fine-tuning the vision encoder to incor-

porate domain-specific knowledge is crucial for
achieving high clinical accuracy, even though both
configurations exhibit strong language coverage in
lexical metrics. Furthermore, fine-tuning the LLM
(i.e., Phi-3) results in substantial improvements in
both lexical and clinical metrics, as evidenced by
the comparison between V1 and V2. This high-
lights the importance of adapting the LLM to the
clinical domain for optimal performance. Notably,
RADAR utilizes a 3.8B LLM as the decoder and out-
performs many larger models (e.g., LLaVA-Med
and MAIRA-1).

5.2 Qualitative Analysis

Case Study. We conduct a case study to illus-
trate the advantages of incorporating both internal
knowledge and retrieved information, as shown
in Figure 4. In Case A, RADAR initially gener-
ates a report that includes the finding Atelectasis.
However, expert assessment indicates the image
shows no positive findings. As a result, their in-
tersection is (), and by removing this incorrect ob-
servation, RADAR ultimately produces an accurate
report. This example highlights the model’s abil-
ity to refine its predictions when guided by expert
constraints, effectively eliminating unnecessary or
incorrect findings. Another more complex case is
presented on the right side of this Figure. Specifi-
cally, RADAR initially identifies findings related to
Edema and Cardiomegaly, which the expert model
also notes. However, the observation of Atelecta-
sis is omitted from the preliminary findings. By
incorporating retrieved evidence such as "... lin-
ear atelectasis ..." and "Mild areas of atelectasis
..."", RADAR successfully corrects the omission and
generates a complete and accurate report. This
case demonstrates the model’s capability to lever-
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Indication: History of
chest pain x20 minutes,
please evaluate for
pneumonia or other acute
process.

Prior
Current

Preliminary Findings: Or [Cardiomegaly]

[Cardiomegaly] Mild cardiomegaly has been stable compared to exams
dated back to at least ____.

Supplementary Findings:

[Edema] Mild pulmonary edema is improved from ___.

[Lung Opacity] ......, there is an ill-defined somewhat rounded opacity ......
[Fracture] Left lateral rib fractures are again noted.

Expert Observations: O; [Edema, Fracture, Cardiomegaly]
Agreement: O, [Cardiomegaly]

Overall Findings:

[Cardiomegaly] Mild cardiomegaly is stable compared to exams dated back
to atleast .

edema: ......

Reference:

[Cardiomegaly] There is stable mild cardiomegaly.

[Lung Opacity] There appears to be a subtle increase in opacification in the
retrocardiac region, ......

Figure 5: Error case generated by RADAR, where spans
and spans indicate incorrect and correct observations.

age external knowledge to recover missing findings,
thereby improving factual completeness.

Error Analysis. We conduct an error analysis to
gain deeper insights, as shown in Figure 5. RADAR
initially generates a report containing the obser-
vation Cardiomegaly, which is also present in the
expert model’s output. In this case, the observation
reflects credible knowledge possessed by the LLM
and should be preserved. Subsequently, RADAR
produces a false positive finding, Edema, which
aligns with the retrieved supplementary findings.
This error may result from the model’s overreliance
on external knowledge. Moreover, since Edema
is clinically associated with Cardiomegaly, it is
possible that RADAR has learned only superficial
correlations between them. To address these is-
sues, potential solutions include refining the expert
model and expanding the training dataset.

6 Related Works

Radiology report generation (Jing et al., 2018; Li
et al., 2018) is a valuable yet challenging task.
Numerous research efforts have been dedicated
to improving clinical accuracy, employing diverse
approaches such as memory-based neural models
(Chen et al., 2020, 2021), planning-based meth-
ods (Nishino et al., 2022; Hou et al., 2023b),
and reinforcement learning-optimized techniques
(Lovelace and Mortazavi, 2020; Miura et al., 2021;
Qin and Song, 2022). Additionally, several stud-
ies (Ramesh et al., 2022; Bannur et al., 2023; Hou

et al., 2023a; Dalla Serra et al., 2023; Hou et al.,
2024) have addressed the issue of hallucination,
particularly in the absence of prior studies. Given
the critical role of domain knowledge in this field,
researchers have leveraged knowledge graphs to
enhance report generation (Yang et al., 2021; Li
et al., 2023c; Huang et al., 2023; Yan et al., 2023).

With the emergence of MLLMs (Li et al., 2023b;
Liu et al., 2023), which demonstrate exceptional
capabilities in image understanding and caption-
ing, many studies (Singhal et al., 2022; Wu et al.,
2023; Thawakar et al., 2024; Li et al., 2023a) have
explored their application in the medical domain.
Chen et al. (2024) introduced a foundation model
for chest X-ray interpretation, while Chaves et al.
(2024) developed a lightweight MLLM tailored for
radiology. Park et al. (2024) investigated the multi-
task potential of LLMs, and Zhang et al. (2024) in-
corporated temporal information to enhance chest
X-ray analysis.

7 Conclusion

In this paper, we introduce RADAR, a novel ap-
proach designed to enhance radiology report gener-
ation by leveraging both the internal knowledge of
an LLM and externally retrieved information. Our
model first generates a report and subsequently clas-
sifies the image based on observations, with their
shared components regarded as internal knowledge.
It then retrieves supplementary information to fur-
ther refine and complement this knowledge. Exten-
sive experiments on three public datasets demon-
strate that RADAR achieves SOTA performance in
both language quality and clinical accuracy, high-
lighting the effectiveness of integrating internal and
external knowledge for more accurate and coherent
radiology report generation.

Limitations

Our experiments are conducted using a single back-
bone architecture. While this choice provides a
controlled evaluation, the performance of alterna-
tive architectures remains unexplored. Future work
should investigate whether different model architec-
tures can achieve comparable or better results. In
addition, our study focuses exclusively on a single
imaging modality (e.g., Chest X-ray). The model’s
effectiveness in other imaging modalities, such as
CT scans or MRI, has not been evaluated. Extend-
ing our approach to multiple imaging modalities
would be an important direction for future research
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to enhance its clinical utility and generalizability.

Ethical Considerations

This study utilizes the MIMIC-CXR (Johnson et al.,
2019), IU X-RAY (Demner-Fushman et al., 2016),
and CHEXPERT PLUS (Chambon et al., 2024)
datasets, all of which are publicly available and
have been automatically de-identified to mitigate
privacy risks. Our primary objective is to improve
the clinical accuracy of reports generated by LLMs
in medical imaging. However, despite our efforts,
the generated reports may contain inaccuracies or
omissions. Therefore, these outputs should not be
used as a substitute for expert medical judgment.
We strongly advocate for thorough validation by
qualified radiologists or healthcare professionals
before any clinical or diagnostic application.
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A Appendix
A.1 Full List of Specialists

In addition to specialist baselines in Table 1, the fol-
lowing baselines are included: R2GEN (Chen et al.,
2020), R2ZGENCMN (Chen et al., 2021), M?TR
(Nooralahzadeh et al., 2021), KNOWMAT (Yang
et al., 2021), CMM-RL (Qin and Song, 2022),
CMCA (Song et al., 2022), KiUT (Huang et al.,
2023), DCL (Li et al., 2023c), METrans (Wang
et al., 2023a), RGRG (Tanida et al., 2023), RECAP
(Hou et al., 2023a), Controllable (Dalla Serra et al.,
2023), PromptMRG (Jin et al., 2024), and ICON
(Hou et al., 2024).

Observation | P R F,

Atelectasis 0.518 0.645 0.574
Cardiomegaly 0.656 0.783 0.713
Consolidation 0.370 0.174 0.237
Edema 0.518 0.610 0.560
Pleural Effusion | 0.695 0.800 0.744

®Macro Average | 0.551 0.602 0.567
®Micro Average | 0.607 0.707 0.653

Enlarged Card. 0.277 0.204 0.235
Lung Opacity 0.644 0.496 0.561
Lung Lesion 0.492 0.207 0.291
Pneumonia 0.283 0.232 0.255
Pneumothorax 0.407 0.636 0.496
Pleural Other 0.333 0.173 0.228

Fracture 0.421 0.244 0.309
Support Devices | 0.823 0.866 0.844
No Finding 0.302 0.569 0.395

4Macro Average | 0.481 0.474 0.460
“Micro Average | 0.614 0.640 0.627

Table 7: Experimental results of RADAR for each obser-
vation on the MIMIC-CXR dataset.
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Dataset: MIMIC-CXR (Compared with SOTA Specialists)

Model Lexical Metrics CE (**Macro) Metrics
B-1 B-2 B-3 B-4 MTR R-L P R Fq

R2GEN 0.353 0.218 0.145 0.103 0.142 0.270 | 0.333 0.273 0.276
R2GENCMN 0.353 0.218 0.148 0.106 0.142 0.278 | 0.344 0.275 0.278
M2TR 0.378 0.232 0.154 0.107 0.145 0.272 | 0.240 0.428 0.308
KNOWMAT 0.363 0.228 0.156 0.115 — 0.284 | 0.458 0.348 0.371
CMM-RL 0.381 0.232 0.155 0.109 0.151 0.287 | 0.342 0.294 0.292
CMCA 0.360 0.227 0.156 0.117 0.148 0.287 | 0.444 0.297 0.356
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 | 0.371 0.318 0.321
DCL — — — 0.109 0.150 0.284 | 0.471 0.352 0.373
METrans 0.386 0.250 0.169 0.124 0.152 0.291 | 0.364 0.309 0.311
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 | 0.380 0.319 0.305
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 | 0.416 0418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 | 0.389  0.443  0.393
Controllable 0.486 0.366 0.295 0.246 0.216 0.423 | 0.597 0.516 0.553
PromptMRG 0.398 — — 0.112 0.157 0.268 | 0.396 0.393 0.381
ICoN 0.429 0.266 0.178 0.126 0.170 0.287 | 0.445 0.505  0.464

0.481 0.474 0.460
RADAR (Ours) | 0.509 0.390 0.315 0.262 0.450 0.397 0523 0500 0497

Table 8: Experimental results of our model and SoTA specialists on the MIMIC-CXR dataset. Results denotes
Uncertain as Positive.
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Role ‘ Prompt

<|system|>

SYSTEM You are an assistant in radiology, responsible for analyzing medical imaging studies
and generating detailed, structured, and accurate radiology reports.

<|end|>

<|user|>
<prior image> (If prior available)
<current image>

Indication: ......
USER History:. ......
Comparison: ......
Technique: ......
Prior Findings: ...... (If prior available)
Preliminary Findings: ...... (If available)
Supplementary Findings: ...... (If available)
Generate a comprehensive and detailed description of findings based on this chest
X-ray image. Include a thorough comparison with a prior chest X-ray, emphasizing
any significant changes, progression, or improvement. (If prior available) Before this,
systematically identify all observations.
<|end|>
<|assisitant|>
Identified Observations:
ASSISTANT | ™

<|lend|>

Table 9: The prompt template for RADAR and its variants, consisting of three roles: System, User, and Assistant.
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