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Abstract

With the rapid adoption of LLM-based chat-
bots, there is a pressing need to evaluate what
humans and LLMs can achieve together. How-
ever, standard benchmarks, such as MMLU,
measure LLM capabilities in isolation (i.e., “AI-
alone”). Here, we design and conduct a user
study to convert MMLU questions into user-
AI conversations, by seeding the user with the
question and having them carry out a conver-
sation with the LLM to answer their question.
We release ChatBench, a new dataset with AI-
alone, user-alone, and user-AI data for 396
questions and two LLMs, including 144K an-
swers and 7,336 user-AI conversations. We
find that AI-alone accuracy fails to predict user-
AI accuracy, with significant differences across
multiple subjects (math, physics, and moral
reasoning), and we analyze the user-AI conver-
sations to provide insight into how they diverge
from AI-alone benchmarks. Finally, we show
that fine-tuning a user simulator on a subset of
ChatBench improves its ability to estimate user-
AI accuracies, increasing correlation on held-
out questions by more than 20 points, creating
possibilities for scaling interactive evaluation.1

1 Introduction

In 2024, nearly 40% of US adults reported using
generative AI in their everyday lives, an unprece-
dented rate of adoption for a new technology (Bick
et al., 2024). As these models, particularly large
language models (LLMs), become more integrated
into our lives, it becomes increasingly important
to evaluate not only their capabilities in isolation,
but also on how effectively they support people
in solving a variety of tasks. However, there is
a large gap between human interactions and how
standard benchmarks, such as Massive Multitask
Language Understanding (MMLU), evaluate mod-
els (Hendrycks et al., 2021). These benchmarks

1Our dataset ChatBench is available at https://
huggingface.co/datasets/microsoft/ChatBench.

test models on a fixed set of questions, and for
each question, they prompt the model with the en-
tire question text and often constrain it to respond
with a single multiple choice option as its answer.
In contrast, interactions with human users are far
more variable, open-ended, and subject to ambi-
guity. Even conditioned on the same underlying
intent, users may phrase their prompts differently,
leave out information in their early prompts, or
rely on context in later prompts. Robust AI mod-
els must be designed to handle user interactions in
these contexts to provide accurate information and
complement human expertise.

Recently, there have been efforts to evaluate how
humans interact with LLMs, such as examining
real-world conversations using a strong LLM as
a judge (Lin et al., 2024; Li et al., 2024c). How-
ever, these new evaluations have been largely dis-
connected from standard benchmarks, which are
widely used; for example, every LLM released by
OpenAI, Google, and Meta, inter alia, has reported
its performance on MMLU (OpenAI, 2023; Gem-
ini Team Google, 2023; Llama Team, AI@Meta,
2024). This disconnect is due to a large distribution
shift between benchmark questions and questions
asked by real-world users, missing the user’s true
intent, and missing ground-truth labels to judge the
interaction, necessitating techniques like LLM-as-
judge. As a result, it is difficult to directly compare
results from standard benchmarks to real-world
interactions or to understand how incorporating
interactions changes evaluation insights.

Here, we seek to bring these lines of research
closer together by directly converting benchmarks
into user-AI conversations. We focus on MMLU,
as one of the most widely used benchmarks, and
design a user study where we seed users with an
MMLU question and have them carry out a conver-
sation with an LLM with the intent of answering
that question. For each question, we test the LLM
in isolation (i.e., “AI-alone”) and evaluate the ac-
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curacy of a user interacting with the LLM (i.e.,
“user-AI”); furthermore, we also gather “user-alone”
data per question to understand how much users
improve with the LLM. This parallel data has two
advantages: first, we can now conduct an apples-
to-apples comparison of AI-alone performance, as
reported in most papers, vs. user-AI performance
on the same questions, so that we can isolate the
effects of incorporating interaction into evaluation.
Second, recent works have explored the possibility
of simulating the user in user-AI conversations (Li
et al., 2024a) but lack sufficient data for training
and testing. Our approach of “seeding” users with
a question corresponds naturally to a new way to
initialize user simulators, and the large-scale data
we collect enables fine-tuning and validating a user
simulator on this task, improving the trustworthi-
ness of simulations for AI evaluation.

Our resulting dataset ChatBench, which we re-
lease publicly, consists of AI-alone, user-alone,
and user-AI data for 396 questions and two LLMs
(GPT-4o and Llama-3.1-8b), with 144K answers
and 7,336 user-AI conversations. Our study de-
sign also includes two user-AI conditions—where
the user attempts the question first on their own
vs. uses AI directly—to explore nuances in user
behavior. Our study reveals that AI-alone accuracy
fails to predict user-AI accuracy, with significant
differences across multiple subjects (math, physics,
and moral reasoning). We also analyze the user-AI
conversations to understand where user-AI inter-
actions are diverging from AI-alone benchmarks.
Our contributions are summarized as follows:

• We design and conduct a user study to convert
MMLU questions into user-AI conversations
and release a large-scale dataset ChatBench.

• We show that AI-alone accuracy fails to pre-
dict user-AI accuracy, across subjects, mod-
els, AI-alone methods, and user-AI conditions,
and we analyze user-AI conversations to un-
derstand where AI-alone and user-AI diverge.

• We develop a new user simulator that mimics
our user study task and show that fine-tuning
our simulator on ChatBench improves its cor-
relation with real user-AI accuracies by 22-26
points and outperforms baselines.

All together, our work helps to reconcile two vital
lines of research in AI evaluation, revealing how
interactions change evaluation insights and paving
the way towards scalable interactive evaluation.

2 Related Work

Benchmarks. In this work, we focus on MMLU
as one of the most commonly used LLM bench-
marks (Hendrycks et al., 2021). MMLU is a
question-answering (QA) dataset, consisting of
multiple choice questions across 57 subjects (which
we discuss in detail in Section 3.2). We also draw
on the efforts of MMLU-Redux (Gema et al., 2024),
where authors noted some quality concerns in the
original MMLU, so they sampled a large number
of MMLU questions and manually annotated them
for errors. While we conduct our user study on
MMLU, our approach of converting QA bench-
marks to a user-AI conversation is general, and
could be applied to other QA benchmarks, such as
HotPotQA (Yang et al., 2018) or GSM8K (Cobbe
et al., 2021), as well as adapted to non-QA tasks.

Evaluating human-AI interactions. Recently,
there have been growing efforts to evaluate AI mod-
els based on their interactions with humans. For ex-
ample, some works gather real-world interactions
(e.g., WildChat (Zhao et al., 2024), ChatbotArena
(Chiang et al., 2024)) and evaluate the interactions
(e.g., WildBench (Lin et al., 2024), ArenaHard
(Li et al., 2024c), MT-Bench (Zheng et al., 2023),
LMSYS-Chat-1M (Zheng et al., 2024)), typically
using a strong LLM as a judge. However, as dis-
cussed before, it is difficult to directly compare
these evaluation results to standard benchmarks,
due to the lack of ground-truth user intents and in-
teraction labels, distribution shift in questions, and
change in evaluation metric. Other works have eval-
uated human-AI interactions in diverse contexts,
such as theorem proving (Collins et al., 2024), ed-
ucation (Jurenka et al., 2024), co-writing with AI
(Dhillon et al., 2024), and collaborating with AI
agents (Shao et al., 2024), and sought to understand
where human-AI combinations outperform either
alone (Bansal et al., 2021; Vaccaro et al., 2024).

Our work builds on Lee et al. (2023), who argue
for the need to evaluate human-LM interactions,
covering five types of tasks including QA. Their
work includes an exploratory user study where they
have users interactively answer MMLU questions;
however, they only test 30 questions and do not
explore simulation. Our study builds on theirs by
testing 396 questions, at a large enough scale to
estimate significant effects and fine-tune a user sim-
ulator, and introduces an AI-alone method that is a
far more competitive baseline for estimating user-
AI results. Furthermore, our study tests more so-
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phisticated LLMs, complex reasoning subjects, and
user-AI effects across levels of question difficulty
and user-AI conditions. While different in domain,
our work is also related to Li et al. (2024b), who
convert medical benchmarks into simulated inter-
actions between a patient and an expert.

Simulation with LLMs. LLMs have shown
promising capabilities to realistically simulate hu-
man behaviors, such as responses to surveys and so-
cial science experiments (Argyle et al., 2023; Hor-
ton, 2023; Hwang et al., 2023; Hewitt et al., 2024;
Suh et al., 2025) or interactions between humans
(Park et al., 2023; Chang et al., 2024). There is also
much interest in developing LLM-based user simu-
lators to scale AI evaluation and training (Dubois
et al., 2023; Ren et al., 2024; Kong et al., 2024;
Li et al., 2024a). However, LLMs can sometimes
produce unrealistic simulations of humans, with
risks of bias or uniformity (Cheng et al., 2023a,b;
Bisbee et al., 2024; Wang et al., 2025). Thus, there
is a need to rigorously test whether LLM simula-
tors produce realistic outputs and match insights
that we would learn from real humans. Here, we
examine a setting with well-defined simulator goals
(i.e., does the simulator match user behavior and
accuracy in real user-AI conversations) and release
a large-scale dataset that enables training and vali-
dation of simulators in this setting.

3 User Study Design

In this section, we discuss our user study design,
including the task flow and interface, how we se-
lected questions, and data collection. We provide
additional details in Appendix A.

3.1 Task Flow and Interface

Figure 1 shows the flow of our user study. In Phase
1, users are asked to answer each question to the
best of their ability on their own. In Phase 2, users
are asked to chat with an unnamed “AI Chatbot”
to help them answer their question. We test two
LLMs, contrasting GPT-4o as a strong model and
Llama-3.1-8b as a relatively weaker model. We re-
quire interaction in Phase 2—the user cannot move
onto the next question without sending a message
and we say that low-effort conversations, e.g., only
“hi”, will be flagged—but otherwise, we do not
specify at all how the user should interact with the
AI Chatbot. In both phases, users are asked to first
report how confident they are about approaching
the problem, before attempting to answer it. This

User-AI 
answer

Report 
confidence

User-alone 
answer

Report 
confidence

User-alone 
answer

User-AI 
answer

Feedback

Phase 1

Phase 2

direct-to-AI answer-first

per question

per question

Figure 1: Flow of our user study.

Figure 2: Screenshot from Phase 2 where the user inter-
acts with an AI Chatbot to answer the question.

additional question-level variable allows us to ana-
lyze how AI assistance helps users across varying
levels of confidence. After Phase 2, all users pro-
vide feedback on the task, with free-text responses
including whether they found the AI Chatbot help-
ful and if they saw it make any mistakes. In Figure
2, we show a screenshot of what users see in Phase
2; in the Appendix, we provide screenshots of all
other pages in our task (Figures A3-A10).

Conditions. We explore two user-AI conditions:
answer-first and direct-to-AI. In the answer-first
condition, the user attempts to answer each Phase
2 question on their own first before answering with
AI, but in the direct-to-AI condition, they have im-
mediate access to AI for the Phase 2 questions (in
both conditions, Phase 1 is all user-alone). The
advantage of answer-first is that, for the same ques-
tion, we can record a user’s answer on their own
vs. with AI, allowing us to estimate the marginal
impact of AI more precisely (i.e., within-subjects),
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A number is rounded to the nearest hundred. The result is 
500. Which number could not be the number before it 
was rounded to the nearest hundred?
A. 458 B. 463 C. 547 D. 559

Elementary Mathematics

To say that a rose petal is red is to say that it
A. absorbs red B. reflects red
C. emits red D. transmits red

Conceptual Physics

For which of these two scenarios does the main 
character do something clearly morally wrong? 
Scenario  1 | I embraced my sister's newly widowed husband to 
show him sympathy. 
Scenario  2 | I came home late one night to find that I had lost 
my house keys, so I had to break into my neighbor's house.
A. Wrong, Wrong B. Wrong, Not Wrong
C. Not Wrong, Wrong D. Not Wrong, Not Wrong

Moral Scenarios

Figure 3: Examples of questions from our user study.

while for direct-to-AI, the set of user-alone answers
and user-AI answers for a given question come
from different users (i.e., between-subjects). How-
ever, we hypothesized that user behavior and accu-
racy in the user-AI stage could be impacted by the
user attempting the answer first, reducing ecologi-
cal validity if we believe users typically go directly
to AI in the real world. Thus, we keep both condi-
tions, allowing us to test our hypothesis and explore
nuances in user behavior.

Incentivization. To incentivize participants in
our study to answer questions correctly, we in-
cluded a small bonus of $0.10 per correct answer,
on top of a base compensation of $5.00 for complet-
ing the entire task. We included these incentives
to improve ecological validity, since our study is
meant to capture how a real-world user would in-
teract with an AI system if they have a question
that they genuinely want to answer. In Appendix
A.2, we discuss pilots we ran with and without in-
centivization, as well as how we mitigated risks of
cheating with external tools.

3.2 Question Selection

We consider five datasets from MMLU for our ex-
periments: Elementary, High School, and College
Mathematics, Conceptual Physics, and Moral Sce-
narios. We include three math datasets since this
subject still poses unique challenges for LLMs:
for example, the HELM leaderboard (Liang et al.,
2023) reports that while GPT-4o’s mean accuracy
on MMLU is 84%, its accuracy is only 48% on

High School Math and 51% on College Math.2

Furthermore, the three math datasets stratify dif-
ferent levels of difficulty for humans, allowing us
to explore how user-AI effects change across diffi-
culty levels. We also include Conceptual Physics
and Moral Scenarios as two other reasoning do-
mains with very different types of problems and
differing levels of human expertise. In Figure 3, we
provide examples of questions from these datasets,
showcasing their diversity.

To aid with question selection, we use the annota-
tions from MMLU-Redux (Gema et al., 2024). The
authors recognized occasional quality issues with
the original MMLU, so for each MMLU dataset,
they sampled 100 questions from the test set uni-
formly at random and labeled them for errors.
While they found many errors in some datasets
(e.g., Virology), the majority of the questions (92%-
99%) in the datasets we chose passed their review.
As a second layer of quality control, we also ran
OpenAI’s advanced reasoning o1 model over the
100 questions and manually checked the questions
that o1 did not get correct. We kept the intersection
of questions that passed MMLU-Redux’s inspec-
tion and ours (with o1’s help).

Batches. To reduce variance in the number of
answers that each question received, we organized
the questions into batches and selected a random
batch per user, instead of selecting each question
randomly. For the math questions, each batch con-
sisted of 5 elementary, 5 high school, and 2 college
questions. We included fewer college questions
since we found in pilots that college questions were
too difficult for most users, so they tended to defer
to the LLM’s first answer without much interaction.
Based on the number of questions that passed in-
spection, we were able to create 19 math batches,
with 95 elementary, 95 high school, and 38 col-
lege questions in total. For Conceptual Physics and
Moral Scenarios, we constructed 7 batches of size
12, resulting in 84 questions for each subject.

3.3 Data Collection

We recruited workers on Prolific to participate as
users in our study (see eligibility criteria in Ap-
pendix A). For our full pre-registered study, we re-
cruited 650 workers, and we also ran two medium-
sized pilots (100 workers without incentives and 60
workers with incentives). When a user began the

2https://crfm.stanford.edu/helm/mmlu/latest/#/
leaderboard.
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study, they were randomly assigned to one of the
three subjects (60% probability for math, 20% for
conceptual physics, and 20% for moral scenarios)
and assigned uniformly at random to one of that
subject’s question batches, one of the two user-AI
conditions, and one of the two models (GPT-4o
and Llama-3.1-8b). Within the question batch, 3
questions were randomly assigned to Phase 1 and
9 to Phase 2. We also included an attention-check
question for every user, which we found the vast
majority (over 99%) of users passed.

Compiling data over the three runs, we have
10,828 confidence answers, 7,148 user-alone an-
swers, and 7,336 user-AI answers and conversa-
tions in ChatBench (see Table A3 for additional
data statistics). While we include data from all
three runs in ChatBench to provide a larger re-
source for the community, for our analyses in the
rest of the paper, we only use data from the workers
in our full pre-registered study so that populations
within our analysis are entirely comparable.

4 Experimental Results

In this section, we describe our experimental re-
sults, including how we conducted AI-alone ex-
periments, comparisons of AI-alone vs. user-AI
results, and analyses of the user-AI conversations.
For our main results comparing AI-alone vs. user-
AI, we preregistered our analyses on AsPredicted.3

We provide additional results and methodological
details (e.g., statistical tests) in Appendix B.

4.1 AI-Alone Experiments

Our goal in this work is to understand how eval-
uation conclusions change when we move from
AI-alone to user-AI settings. However, even for
a fixed benchmark, there can be multiple ways to
evaluate an LLM on its own. First, we try letter-
only methods, which require the model to answer
with only a single letter corresponding to the se-
lected answer option (“A” through “D”). This is
the method used by Lee et al. (2023), along with
various leaderboards, such as HELM (Liang et al.,
2023), to standardize the answer format. We try
two letter-only variants, zero-shot and few-shot,
where we prepend the 5 examples from the MMLU
“dev” set to the prompt as in-context examples.

We also introduce a more realistic AI-alone tech-
nique which serves as a better proxy for user ex-
perience by not constraining the model’s response

3https://aspredicted.org/n84n-sn3f.pdf.

format. The method, which we call free-text, is
very simple: (1) prompt the evaluated model with
the concatenated question text and answer options,
without any additional instructions, (2) use GPT-
4o to extract an answer (if any) from the response.
We include the full prompts for all three AI-alone
methods in Listings 1-4.

We ran these three AI-alone methods on the two
models and all 396 questions from our user study,
gathering 50 answers per model and question. As
shown in Figure 4, our few-shot letter-only results
for GPT-4o approximately match those reported on
the HELM leaderboard per dataset (which is also
few-shot letter-only, but uses the entire MMLU test
sets). While prior work, like HELM, often uses
temperatures of 0 for multiple choice QA, we used
a temperature of 0.7, since we wanted to perfectly
match the model parameters used in the user study,
and 0.7 is a more realistic temperature for real-
world AI chatbots.

4.2 AI-Alone vs. User-AI
Dataset-level accuracy. We visualize our main
results in Figure 4, which shows mean accuracy
per model and dataset, over user-alone (red), user-
AI (purple), and AI-alone (blue). First, we see
that few-shot letter-only (light blue) is a very poor
predictor of user-AI performance, with a mean ab-
solute deviation of 21 percentage points, averaged
over the 10 dataset and model pairs. With a few
exceptions—specifically Conceptual Physics for
Llama-3.1-8b and College Mathematics and Moral
Scenarios for GPT-4o—all differences are statisti-
cally significant. Results are similar for zero-shot
letter-only, which we report in Tables A1-A2. No-
tably, our AI-alone method, free-text (dark blue), is
a much better predictor of user-AI accuracy, reduc-
ing the mean absolute deviation to 10 percentage
points. However, it still differs significantly from
user-AI performance, notably for Moral Scenar-
ios with Llama-3.1-8b and for all datasets except
Moral Scenarios with GPT-4o.

Our results also reveal the complexity of com-
bining humans and AI, as the size of gaps and or-
dering between user-alone, user-AI, and AI-alone
vary over models and datasets. For example, for
the math datasets, GPT-4o performs quite well on
its own (using free-text), while humans struggle on
their own, especially for high school and college.
In these cases, user-AI accuracy is between the two,
significantly better than user-alone and significantly
worse than AI-alone. Meanwhile, Llama-3.1-8b
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Figure 4: Mean accuracy per model and dataset, comparing user-alone (red), user-AI (purple), AI-alone free-text
(dark blue), and AI-alone letter-only few-shot (light blue). See Tables A1-A2 for numbers and statistical tests.

performs significantly worse than GPT-4o on the
math datasets, but we do not see a further drop in
performance from AI-alone to user-AI. In the fol-
lowing section, we uncover counterveilling factors
that explain these results: on one hand, users in-
troduce ambiguity compared to AI-alone methods,
which include the entire question text and answer
options; on the other hand, users can sometimes
recognize mistakes in AI reasoning, of which there
are more for Llama-3.1-8b. Finally, our results re-
veal that even when AI-alone benchmarks report
a large gap in performance between two models,
this gap can become much smaller after incorpo-
rating user interactions. Comparing GPT-4o and
Llama-3.1-8b, their average gap in AI-alone free-
text accuracy is 25 percentage points, but this gap
shrinks to less than 10 percentage points in user-AI
interactions (9 percentage points for direct-to-AI
and 5 percentage points for answer-first).

Question-level accuracy. Besides mean accu-
racy, we can also measure the correlation in per-
question accuracies. We find that the Pearson cor-
relation between AI-alone free-text and user-AI
is only r = 0.45 for direct-to-AI and r = 0.46
for answer-first. While correlations may be lower
because per-question user-AI accuracies are imper-
fectly measured, the free-text correlation is still
well below what we would expect if user-AI ac-
curacies were drawn from the same distribution
as free-text, which would range from r = 0.88 to
0.94 (Section B.2).

We also examine the correlation with per-
question differences in user-AI and user-alone ac-

curacy, since it may be more reasonable to ex-
pect AI-alone to predict the improvement the user
makes with AI assistance, instead of the overall
accuracy. However, the correlations remain low,
at r = 0.26 for direct-to-AI and r = 0.27 for
answer-first, showing that AI-alone cannot predict
improvements well either. Finally, we fit a linear
model to try predicting a question’s user-AI accu-
racy from its user-alone and AI-alone accuracies.
The fitted model yields a correlation of 0.55 for
predicting answer-first accuracies and 0.63 for pre-
dicting direct-to-AI accuracies, demonstrating that
user-AI accuracy also cannot be reliably predicted
from user-alone and AI-alone accuracy.

4.3 Characterizing User-AI Conversations

Our summary results show that user-AI accuracies
are significantly different from AI-alone accuracies.
To better understand what drives these differences
we use a separate LLM as an annotator to charac-
terize the user-AI conversations. For each user-AI
conversation, we gather the full log of the con-
versation and the correct answer to the question,
and prompt a separate instance of GPT-4o to use
this information to extract the answers to several
classification questions: 1) whether the first user
question was a near-exact rephrasing of the original
question to which an intelligent person or AI would
respond with the correct answer among the answer
choices; 2) whether the first AI answer is correct; 3)
whether the AI provides an answer to the question
at hand more than once; and 4) which of the four
answer choices the AI’s first answer corresponds
to, or “none” if there is no such answer (Listing 5).
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Figure 5: Fraction of user-AI interactions that mirror AI
benchmark, by subject and model.

How often does the conversation follow what
we might expect if AI benchmarks were faithful
proxies of human-AI interaction? We say a con-
versation mirrors an AI benchmark if (1) the user’s
first substantive prompt is a near-exact rephrasing
of the benchmark question (otherwise the user is
injecting their own knowledge or information into
the interaction), (2) the LLM responds with only
a single answer during the entire interaction, and
(3) the user submits that answer. In Figure 5, we
see that only 39.8% of all interactions mirror AI
benchmarks, revealing the extent to which user-AI
interactions diverge from AI benchmarks.

Using data from the answer-first condition also
reveals that AI helps humans more often than it hin-
ders them. When the same user answers a question
first without AI and then with AI assistance, more
than half (54%) of incorrect user-alone answers
are corrected with AI support, while only 10% of
correct user-alone answers turn incorrect with AI
assistance. This data also allows us to look more
closely at how often user-AI interactions improve
on AI-alone performance. Compared to AI-alone
free-text, user-AI accuracy is lower for 57% and
higher for 15% of questions for GPT-4o, and lower
for 39% and higher for 44% of questions for Llama-
3.1-8b (keeping questions where we have at least 5
user-AI answers for the AI system). Thus, we see
effects in both directions, and there are certainly
cases where user-AI improves on AI-alone, espe-
cially for the weaker model. Below, we analyze
both types of cases in more detail.

Cases where interaction introduces errors.
First, we study cases where user interaction in-

troduces errors, by focusing on questions where
AI-alone free-text is always correct (accuracy of
100% over 50 trials) but the user-AI interaction re-
sults in the wrong answer. This could happen either
if the user decided to ignore the AI’s correct answer
(e.g., if they believed they knew the answer or due
to lack of effort) or if the change from AI-alone
prompting to user prompting resulted in the AI no
longer providing the correct answer. We find much
more evidence for the latter. Among over 300 of
these interactions with GPT-4o, the model only pro-
vided the correct answer in 26% of interactions, and
in the remaining interactions, the model either did
not provide any clear answer (67%) or provided a
wrong answer (7%). Among 122 interactions with
Llama-3.1-8b (there are fewer because there are
fewer questions where Llama-3.1-8b achieves per-
fect accuracy on its own), the model only provided
the correct answer in 20% of interactions, instead
providing no clear answer in 68% of interactions
and the wrong answer in 12% of interactions.

We also find that in the majority of these inter-
actions (66.2% for GPT-4o and 59.8% for Llama-
3.1-8b), the user’s first substantive prompt is not a
near-exact rephrasing of the benchmark question,
providing further evidence for our hypothesis that
the change in accuracy is largely due to the shift
in prompting from AI-alone benchmarks to human
users. We find that a primary source of divergence
is the user asking a related but different question,
which is often ambiguous (e.g., leaving out critical
information for a math problem).

Cases where interaction corrects AI errors.
Next, we study the opposite scenario: questions
where AI-alone free-text’s accuracy is poor (below
10% over 50 trials) but the user-AI interaction ar-
rives at the correct answer (there are approximately
100 such interactions for each model). In a substan-
tial fraction of these interactions, the AI model ac-
tually provided the correct answer to the user (40%
for GPT-4o and 32% for Llama-3.1-8b), suggesting
that the user’s prompting enabled the AI to arrive at
the correct answer, even though it could not on its
own. Notably, we find that in around 10% of these
interactions the AI’s responses shift from incorrect
or unclear to correct over the course of the conver-
sation, highlighting how user prompting can elicit
better answers and underscoring the importance of
multi-turn analysis beyond static benchmarks.

Even when the AI is not able to arrive at the
correct answer, we find that users are sometimes
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You are a human 
user interacting 
with an AI system, 
and you are trying 
to answer the 
following question:
A number is rounded 
to the nearest 
hundred. The result is 
500. Which number 
could not be the 
number before it was 
rounded to the 
nearest hundred?
A. 458
B. 463
C. 547
D. 559

Simulator Task 1
Generate the first prompt you would 
say to the system to get started with 
answering your question.

Simulator Task 2

Here is your conversation so far with 
the AI system:
===================
YOU: […]
SYSTEM: […]
===================
If your question is answered by this 
conversation, return ONLY the 
answer in the format "Answer: 
<letter>". If not, generate the next 
prompt you would say to the system 
to answer your question. 

Figure 6: Example of prompts to our two-step user
simulator, using one of the example questions from
Figure 3. See Listings 6-8 for complete prompts.

still able to correct the mistake and select the right
answer. We visualize the rates of these corrections
in Figure B1.

5 Simulating User-AI Conversations

From our user study, we showed that incorporat-
ing user interactions significantly changes evalua-
tion conclusions, compared to AI-alone evaluation.
However, data from human users is costly and time-
consuming to collect, motivating the development
of a user simulator to scale interactive evaluation.
In this section, we describe our user simulator and
present experimental results.

5.1 Fine-Tuning a User Simulator

We define a new user simulator that we can fine-
tune on our collected user data, by mimicking the
experience of users in our study. First, we seed
the user simulator with the MMLU question, as we
did with human users in our study, and we tell the
simulator to interact with an AI system to answer
its question (Figure 6, left). Then, we break the
simulator’s task into two subtasks: (1) when there
is no conversation yet, we prompt the simulator to
generate its first prompt as a user (Figure 6, top
right), (2) given the conversation so far, we prompt
the simulator to either answer the question in the
form “Answer: LETTER”, if the question has been
answered by the conversation, or if not, generate
the next user prompt (Figure 6, bottom right).

We then transform the real user-AI conversa-
tions from our study into training examples for
supervised fine-tuning. Each conversation with k

user utterances yields k+1 training examples: one
example in the Task 1 format where the gold stan-
dard response is the real user’s first utterance; k−1
examples in the Task 2 format where the gold stan-
dard response is each of the remaining utterances
(providing the conversation up to that utterance);
and one example in the Task 2 format with the full
conversation and the gold standard response being
“Answer: LETTER” corresponding to the user’s
selected multiple choice option.

5.2 User Simulator Experiments

For these experiments, we use GPT-4o as our simu-
lator. We try four baselines: the two AI-alone meth-
ods, the two-step simulator without fine-tuning,
and the user simulator from IQA-EVAL (Li et al.,
2024a). Their simulator, designed with prompt en-
gineering, receives a prompt consisting of a role
description (“You are mimicking a human.”), a task
description (“You are trying to choose the correct
answer for the given question.”), and discussion
instructions (e.g., “In each turn, please only ask
one sub-question to interact with the assistant.”);
see Listing 9 for the full prompt. We compare these
baselines to our model, the two-step simulator fine-
tuned on ChatBench (“ChatBench-Sim”).

In our fine-tuning experiments, we randomly
split the questions from our user study into 60% for
training (n = 237) and withheld 40% for testing
(n = 159), and we fine-tuned on all user-AI con-
versations for the train questions. For all three sim-
ulator methods, we test them on the held-out test
questions by generating conversations entirely from
scratch, given only the question (in contrast, an eas-
ier but less realistic set-up would be to provide the
real conversation up to the nth turn and have the
simulator generate the next user utterance).

Evaluation metrics. We generate 10 simulator-
AI conversations per test question and compare to
real user-AI conversations for the same question
and AI system. To evaluate whether accuracies are
similar, we measure the correlation and mean abso-
lute error (MAE) between simulator-AI vs. user-AI
accuracies, keeping test questions where we have
at least 5 user-AI answers (n = 132 and n = 124
for GPT-4o and Llama-3.1-8b, respectively). To
evaluate whether the simulator’s generated utter-
ances are realistic, we measure the average BLEU
and ROUGE scores of the simulator’s first prompt
compared to the real user’s first prompt.
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AI: GPT-4o AI: Llama-3.1-8b
Type Method Corr. ↑ MAE ↓ BLEU ↑ ROUGE ↑ Corr. MAE BLEU ROUGE

AI-alone Letter-only few-shot 0.30 0.31 – – 0.21 0.40 – –
AI-alone Free-text 0.49 0.20 – – 0.61 0.20 – –
Sim-AI IQA-EVAL 0.50 0.18 0.085 0.311 0.43 0.22 0.086 0.313
Sim-AI Two-Step 0.41 0.19 0.102 0.347 0.39 0.23 0.102 0.346
Sim-AI ChatBench-Sim 0.63 0.15 0.261 0.460 0.65 0.17 0.258 0.457

Table 1: Comparing to user-AI conversations: AI-alone methods, IQA-EVAL (Li et al., 2024a), and the two-step
simulator before (Two-Step) and after fine-tuning on ChatBench (ChatBench-Sim). Top-performing is bolded.

Results. As shown in Table 1, fine-tuning our
simulator yields large gains, with a 22-26 point
increase in correlation and a 21-26% decrease in
MAE. As shown in Figures B3-B4, a primary
failure mode of the simulator before fine-tuning
is that it cannot replicate human mistakes and
greatly overestimates user-AI performance, pro-
ducing far more questions with accuracies of 100%
than we see in the real user-AI distribution, while
the fine-tuned simulator matches the real distribu-
tion more closely. We also find that fine-tuning im-
proves the realism of the simulator’s generated ut-
terances, with 11-16 point improvements in BLEU
and ROUGE. The fine-tuned simulator also out-
performs both AI-alone methods and IQA-EVAL
across metrics.

6 Conclusion

We have shown that evaluation conclusions change
significantly from AI-alone benchmarks to user-AI
interactions, across question domains, AI models,
AI-alone methods, and user-AI conditions. Our
results motivate the need for more realistic eval-
uations of AI models that incorporate user inter-
actions. However, this goal is difficult to achieve,
as user data is expensive to collect. To make this
goal more feasible, we both release a new large-
scale dataset of user interactions, ChatBench, and
demonstrate the potential of building user simula-
tors to scale interactive evaluation.

The changes we see from AI-alone to user-AI
accuracies are often large enough to affect quali-
tative conclusions about the models. For example,
what can seem like a large disparity between mod-
els on AI-alone benchmarks (e.g., 25 percentage
point gap between GPT-4o and Llama-3.1-8b on
free-text) can shrink to much smaller gaps after
incorporating user interactions (e.g., 5 point gap
for answer-first). These changes could impact real-
world decisions, such as which model to deploy
(e.g., a lightweight, on-device model that performs
only slightly worse than a much larger off-device

model might be preferable in some circumstances).
To this end, in future work we hope to under-

stand how AI-alone benchmarks are currently used
to make decisions (Hardy et al., 2024) and how
those decisions might change after taking into ac-
count human interactions. We also hope to expand
our analysis to more benchmarks and non-QA tasks.
Finally, we hope to develop training techniques to
build even more realistic user simulators: while we
see large gains from fine-tuning on ChatBench, the
best correlations only reach 0.63, leaving room for
future improvement and innovation.

7 Limitations

Our work has several limitations, which we tried
to mitigate but should be taken into consideration
when interpreting the results.

Coverage. Our user study has limited coverage
of possible benchmarks and user tasks. We chose to
focus on the MMLU benchmark (Hendrycks et al.,
2021) and question-answering as our task, since
MMLU is one of the most popular LLM bench-
marks and it covers a wide range of subjects, so
we could test multiple subjects in comparable ways
and with minimal changes to our user study. We be-
gan with question-answering since we can naturally
transform a benchmark question into a user-AI con-
versation, where the user is trying to answer the
question. However, future work should investigate
whether results are consistent on other benchmarks
and/or tasks, especially more open-ended genera-
tion tasks that are common in real-world user-AI
interactions (Zhao et al., 2024).

Ecological validity. Our user study is meant to
capture how a user would act if they have a ques-
tion in mind and they are interacting with an AI
system to answer their question. However, since
we wanted to match the user’s underlying question
with the MMLU questions, we had to tell the user
what question to answer, which could lead to differ-
ent behavior compared to if they were intrinsically
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motivated to answer a question. To mitigate this,
we included a small incentive ($0.10 per correct
answer), so that they would try to get the correct
answer, and we filtered out users who failed the at-
tention check; however, it is still possible that users’
behaviors would be different in the real world. Our
study setting was also different from real world
question-answering: we recruited workers on Pro-
lific to do our study, where they answered 13 ques-
tions consecutively in our interface. Still, we tried
to match real-world settings, such as choosing mod-
els they might interact with in the real world (e.g.,
GPT-4o), using realistic model parameters (e.g.,
temperature of 0.7), and not guiding their prompts
to the AI system at all, besides requiring at least
one interaction per question.

8 Broader Impacts and Ethical
Considerations

Our work is driven by broader impacts: we seek
to make AI evaluation more realistic and human-
centered, by investigating how evaluation conclu-
sions change when we incorporate human interac-
tions. With our user study, we show that evaluation
conclusions change significantly from AI-alone to
user-AI settings (for the same set of questions),
and these results hold over different subject areas,
AI models, AI-alone methods, and user-AI con-
ditions. We hope that our work motivates AI re-
searchers and practitioners to think more carefully
about human-AI interactions when they evaluate
AI systems, instead of only using AI-alone bench-
marks.

The direction of evaluating human-AI interac-
tions also raises some ethical considerations. First,
we should seek to recruit diverse human partici-
pants, since an AI system that works well for one
individual or group may not work well for another
(e.g., depending on ability, language, preferences,
etc.). Second, user studies should be run ethically:
participants should be paid fairly, they should pro-
vide informed consent about how their data will
be used, and their data should be anonymized and
personal information removed (e.g., if they tell the
AI system their name). Third, the possibility of
simulating humans in human-AI interactions is ex-
citing and could make interactive evaluation feasi-
ble at scale, but LLM-based simulations of humans
also have risks that need to be addressed, such as
their possibilities for stereotyping, bias, and flat-
tening populations (Cheng et al., 2023b,a; Wang

et al., 2025). Researchers hoping to build and de-
ploy user simulators should extensively probe for
such biases, especially if user demographics are
provided in simulator prompts.
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A Details on User Study

A.1 Task Details

All studies were reviewed and approved by the Mi-
crosoft Research Institutional Review Board (IRB
#10999) and informed consent was obtained from
all participants prior to participation.

Recruitment. We recruited workers on Prolific
to participate in our study. All Prolific workers who
were located in the US, fluent in English, and had
not participated in one of our pilots were eligible
for our study. We used Prolific’s standard sample,
which distributed our study to available participants.
Based on early pilots, we estimated that the task
took around 25 minutes. We paid all participants
$5.00 upon completion of the entire task. We ex-
perimented with offering a small bonus per correct
answer, which we discuss in Section A.2.

Participant demographics. The demographic
data we received from Prolific about the workers
who participated in our study included their country
of birth and residence, nationality, fluent languages,
age, sex, ethnicity, and employment status. As a re-
sult of our eligibility criteria, all workers resided in
the US and were fluent in English. We also found
that the vast majority were born in the US (95%
of the workers who participated in our full study),
listed the US as their nationality (99%), and listed
English as their primary language (99%).

Since the workers in our study were primarily
from the US, we compare the other demographic
variables to the demographic distribution of the US
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Figure A1: Comparing the marginal distributions of sex, race, age, and employment status for Prolific workers
(blue) vs US Census (orange). We only keep data in categories that appear in both datasets (e.g., we drop data
values of DATA_EXPIRED or “Prefer not to say” in Prolific), which is why we sometimes have fewer than 650 Prolific
workers (see n in the legends). We then normalize the distributions over the kept categories to sum to 1.

population. We acquire the joint distribution of
sex, race, and age from the U.S. Census Bureau
(2024), using their Monthly Postcensal Resident
Population for July 2023 (the latest month before
projections). For employment status, we use statis-
tics from the U.S. Bureau of Labor Statistics (2025),
using their estimates for February 2025.

In Figure A1, we compare each marginal dis-
tribution over the Prolific workers vs. the US
population. The sex distributions are very well-
matched: the proportions for "female" and "male"
are (0.50, 0.50) on Prolific and (0.51, 0.49) in the
US Census. The race distributions are also decently
well-matched: using the categories provided to us
by Prolific, the proportions for “White”, “Black”,
“Asian”, “Mixed”, and “Other” are (0.72, 0.18,
0.04, 0.05, 0.02) on Prolific and (0.75, 0.14, 0.06,
0.03, 0.02) in the US Census. The employment sta-
tus distribution is slightly different: the proportions
for “Full-Time”, “Part-Time”, and “Unemployed
(and job seeking)” are (0.68, 0.24, 0.07) on Prolific
and (0.79, 0.17, 0.04) in US Labor Statistics, so
individuals working full-time are slightly underrep-
resented while others are overrepresented. We see
the largest divergence between distributions on age:
individuals aged 25-34 are very overrepresented
(0.34 vs. 0.17) while individuals aged 65 and above
are very underrepresented (0.03 vs. 0.23). These
trends are expected, given that younger individuals
and those who are not employed full-time are like-
lier to work on crowdsourcing platforms (Ipeirotis,
2010; Posch et al., 2022); the younger lean of Pro-
lific workers may also match the younger lean of
generative AI users (Bick et al., 2024). Even so,
the non-representative nature of workers on crowd-

sourcing platforms should be taken into account as
a limitation when interpreting our results.

Interface. We implemented our app in React and
used Azure CosmosDB as our database. We pro-
vide screenshots of all of the pages in our user study
interface, including the Introduction Page (Figure
A4), Phase 1 Tutorial (Figure A5), Confidence Page
(Figure A6), User-Alone Page (Figure A7), Phase 2
Instructions (Figure A8), Phase 2 Tutorial (Figure
A9), User-AI Page (Figure 2), and Feedback Page
(Figure A10).

On the User-AI Page (Figure 2), we tried to min-
imize our influence on the user-AI interactions, but
we also wanted to ensure that the users put in mean-
ingful effort to interact with AI, as they would if
they were intrinsically motivated to answer a ques-
tion. We required the user to send at least one
message before moving onto the next question and
we said in the instructions that low-effort conver-
sations, e.g., only “hi”, would be flagged. We also
disabled copy-and-paste of the question text, both
to prevent the use of external tools (e.g., ChatGPT)
and to prevent trivial conversations where the user
simply copy-and-pasted. While users may copy-
and-paste in the real world if presented with a ques-
tion, we were trying to capture the case where a
user had intrinsic motivation to answer a question,
and in those cases, the question would usually be
in their heads so they would not have something
to copy-and-paste. Furthermore, our free-text AI-
alone method already serves as a good estimate
of user copy-and-paste, since it simply copy-and-
pastes the question to the AI as the first prompt,
then uses GPT-4o to extract an answer from the
AI’s free-text response.
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Dataset Model Comparison Acc1 SE1 Acc2 SE2 z-value p-value

Elementary Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.73 0.04 0.92 0.02 -3.92 <0.01
Elementary Math GPT-4o AI letter zero shot vs. UserAI answer first 0.73 0.04 0.90 0.02 -3.43 <0.01
Elementary Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.74 0.04 0.92 0.02 -3.83 <0.01
Elementary Math GPT-4o AI letter few shot vs. UserAI answer first 0.74 0.04 0.90 0.02 -3.34 <0.01
Elementary Math GPT-4o AI free text vs. UserAI direct to ai 0.99 0.01 0.92 0.02 3.03 <0.01

Elementary Math GPT-4o AI free text vs. UserAI answer first 0.99 0.01 0.90 0.02 4.04 <0.01
Elementary Math GPT-4o User alone vs. UserAI direct to ai 0.78 0.03 0.92 0.02 -4.21 <0.01
Elementary Math GPT-4o User alone vs. UserAI answer first 0.78 0.03 0.90 0.02 -3.52 <0.01
High School Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.51 0.05 0.70 0.04 -3.20 <0.01
High School Math GPT-4o AI letter zero shot vs. UserAI answer first 0.51 0.05 0.73 0.03 -3.92 <0.01

High School Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.49 0.04 0.70 0.04 -3.57 <0.01
High School Math GPT-4o AI letter few shot vs. UserAI answer first 0.49 0.04 0.73 0.03 -4.33 <0.01
High School Math GPT-4o AI free text vs. UserAI direct to ai 0.85 0.03 0.70 0.04 3.14 <0.01
High School Math GPT-4o AI free text vs. UserAI answer first 0.85 0.03 0.73 0.03 2.73 <0.01
High School Math GPT-4o User alone vs. UserAI direct to ai 0.41 0.03 0.70 0.04 -5.88 <0.01

High School Math GPT-4o User alone vs. UserAI answer first 0.41 0.03 0.73 0.03 -7.03 <0.01
College Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.45 0.07 0.52 0.08 -0.61 0.54
College Math GPT-4o AI letter zero shot vs. UserAI answer first 0.45 0.07 0.52 0.07 -0.72 0.47
College Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.44 0.07 0.52 0.08 -0.72 0.47
College Math GPT-4o AI letter few shot vs. UserAI answer first 0.44 0.07 0.52 0.07 -0.85 0.40

College Math GPT-4o AI free text vs. UserAI direct to ai 0.73 0.06 0.52 0.08 2.23 0.03
College Math GPT-4o AI free text vs. UserAI answer first 0.73 0.06 0.52 0.07 2.40 0.02
College Math GPT-4o User alone vs. UserAI direct to ai 0.28 0.04 0.52 0.08 -2.67 <0.01
College Math GPT-4o User alone vs. UserAI answer first 0.28 0.04 0.52 0.07 -3.10 <0.01
Conceptual Physics GPT-4o AI letter zero shot vs. UserAI direct to ai 0.91 0.03 0.84 0.03 1.74 0.08

Conceptual Physics GPT-4o AI letter zero shot vs. UserAI answer first 0.91 0.03 0.84 0.03 1.70 0.09
Conceptual Physics GPT-4o AI letter few shot vs. UserAI direct to ai 0.96 0.02 0.84 0.03 3.22 <0.01
Conceptual Physics GPT-4o AI letter few shot vs. UserAI answer first 0.96 0.02 0.84 0.03 3.22 <0.01
Conceptual Physics GPT-4o AI free text vs. UserAI direct to ai 0.97 0.02 0.84 0.03 3.62 <0.01
Conceptual Physics GPT-4o AI free text vs. UserAI answer first 0.97 0.02 0.84 0.03 3.63 <0.01

Conceptual Physics GPT-4o User alone vs. UserAI direct to ai 0.55 0.03 0.84 0.03 -6.48 <0.01
Conceptual Physics GPT-4o User alone vs. UserAI answer first 0.55 0.03 0.84 0.03 -6.69 <0.01
Moral Scenarios GPT-4o AI letter zero shot vs. UserAI direct to ai 0.71 0.05 0.79 0.03 -1.47 0.14
Moral Scenarios GPT-4o AI letter zero shot vs. UserAI answer first 0.71 0.05 0.78 0.04 -1.13 0.26
Moral Scenarios GPT-4o AI letter few shot vs. UserAI direct to ai 0.80 0.04 0.79 0.03 0.27 0.79

Moral Scenarios GPT-4o AI letter few shot vs. UserAI answer first 0.80 0.04 0.78 0.04 0.49 0.63
Moral Scenarios GPT-4o AI free text vs. UserAI direct to ai 0.72 0.05 0.79 0.03 -1.26 0.21
Moral Scenarios GPT-4o AI free text vs. UserAI answer first 0.72 0.05 0.78 0.04 -0.93 0.35
Moral Scenarios GPT-4o User alone vs. UserAI direct to ai 0.73 0.03 0.79 0.03 -1.54 0.12
Moral Scenarios GPT-4o User alone vs. UserAI answer first 0.73 0.03 0.78 0.04 -1.05 0.29

Table A1: Results per dataset for GPT-4o, including AI-alone vs. user-AI comparisons and user-alone vs. user-AI comparisons.
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Dataset Model Comparison Acc1 SE1 Acc2 SE2 z-value p-value

Elementary Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.45 0.04 0.86 0.03 -8.58 <0.01
Elementary Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.45 0.04 0.90 0.02 -10.50 <0.01
Elementary Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.43 0.03 0.86 0.03 -9.39 <0.01
Elementary Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.43 0.03 0.90 0.02 -11.53 <0.01
Elementary Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.88 0.03 0.86 0.03 0.56 0.58

Elementary Math Llama-3.1-8b AI free text vs. UserAI answer first 0.88 0.03 0.90 0.02 -0.65 0.51
Elementary Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.81 0.03 0.86 0.03 -1.26 0.21
Elementary Math Llama-3.1-8b User alone vs. UserAI answer first 0.81 0.03 0.90 0.02 -2.70 <0.01
High School Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.32 0.03 0.62 0.04 -6.14 <0.01
High School Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.32 0.03 0.64 0.04 -6.89 <0.01

High School Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.30 0.02 0.62 0.04 -7.09 <0.01
High School Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.30 0.02 0.64 0.04 -7.98 <0.01
High School Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.64 0.04 0.62 0.04 0.24 0.81
High School Math Llama-3.1-8b AI free text vs. UserAI answer first 0.64 0.04 0.64 0.04 -0.16 0.87
High School Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.45 0.03 0.62 0.04 -3.37 <0.01

High School Math Llama-3.1-8b User alone vs. UserAI answer first 0.45 0.03 0.64 0.04 -3.93 <0.01
College Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.35 0.04 0.46 0.07 -1.37 0.17
College Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.35 0.04 0.48 0.07 -1.56 0.12
College Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.30 0.04 0.46 0.07 -1.97 0.05
College Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.30 0.04 0.48 0.07 -2.18 0.03

College Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.41 0.05 0.46 0.07 -0.57 0.57
College Math Llama-3.1-8b AI free text vs. UserAI answer first 0.41 0.05 0.48 0.07 -0.74 0.46
College Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.40 0.04 0.46 0.07 -0.75 0.46
College Math Llama-3.1-8b User alone vs. UserAI answer first 0.40 0.04 0.48 0.07 -0.93 0.35
Conceptual Physics Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.53 0.05 0.67 0.04 -2.25 0.02

Conceptual Physics Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.53 0.05 0.73 0.04 -3.22 <0.01
Conceptual Physics Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.57 0.04 0.67 0.04 -1.64 0.10
Conceptual Physics Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.57 0.04 0.73 0.04 -2.70 <0.01
Conceptual Physics Llama-3.1-8b AI free text vs. UserAI direct to ai 0.62 0.04 0.67 0.04 -0.77 0.44
Conceptual Physics Llama-3.1-8b AI free text vs. UserAI answer first 0.62 0.04 0.73 0.04 -1.80 0.07

Conceptual Physics Llama-3.1-8b User alone vs. UserAI direct to ai 0.46 0.03 0.67 0.04 -3.91 <0.01
Conceptual Physics Llama-3.1-8b User alone vs. UserAI answer first 0.46 0.03 0.73 0.04 -4.97 <0.01
Moral Scenarios Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.40 0.03 0.72 0.04 -6.01 <0.01
Moral Scenarios Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.40 0.03 0.74 0.04 -7.42 <0.01
Moral Scenarios Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.31 0.03 0.72 0.04 -7.35 <0.01

Moral Scenarios Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.31 0.03 0.74 0.04 -8.86 <0.01
Moral Scenarios Llama-3.1-8b AI free text vs. UserAI direct to ai 0.49 0.03 0.72 0.04 -4.07 <0.01
Moral Scenarios Llama-3.1-8b AI free text vs. UserAI answer first 0.49 0.03 0.74 0.04 -5.15 <0.01
Moral Scenarios Llama-3.1-8b User alone vs. UserAI direct to ai 0.79 0.03 0.72 0.04 1.34 0.18
Moral Scenarios Llama-3.1-8b User alone vs. UserAI answer first 0.79 0.03 0.74 0.04 1.00 0.32

Table A2: Results per dataset for Llama-3.1-8b, including AI-alone vs. user-AI comparisons and user-alone vs. user-AI
comparisons.
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Figure A2: Comparing results from Pilot 1 (without
incentives) and Pilot 2 (with incentives).

A.2 Pilots and Incentivization

Pilot 1: no incentives. We ran one medium-sized
pilot with 100 participants where we tested all
datasets and models. At this point, we also included
GPT-4o-mini as a third model, in addition to GPT-
4o and Llama-3.1-8b. In this pilot, we did not in-
clude incentives for correct answers. Results from
this pilot did not show significant differences in
accuracy between GPT-4o and GPT-4o-mini, so we
decided to drop GPT-4o-mini from our full study,
so that we could gather more answers per model.

Pilot 2: testing incentives. In our second pilot,
we wanted to test the effect of including a small
incentive for getting the correct answer, hypothesiz-
ing that it might improve the ecological validity of
the study since users would try harder to answer the
questions correctly. We included a small bonus of
$0.10 per correct answer, with a maximum bonus
of $1.30 for 13 questions, on top of the same base
compensation of $5.00 for completing the task.

While this bonus could help to improve ecolog-
ical validity, there was a risk that the incentives
result in users cheating on the study, such as by
searching for the question on Google or ChatGPT.
To mitigate this risk, first we repeatedly required
users to acknowledge that they would not use exter-
nal tools (Figures A4 and A8) and we said, “Com-
pensation could be affected if we detect that you
are using external tool.” Second, we ran a second
medium-sized pilot with incentives, with 60 partici-
pants on the three math datasets, and we compared
the results between Pilots 1 and 2 to see if Pilot 2
had unrealistic increases in accuracy that could not

be explained by slightly more user effort.
We visualize the mean accuracies per dataset and

model in Figure A2. We found that, as expected, in-
centives tended to improve performance a little: out
of 27 combinations of math datasets (3), models (3),
and answer types (i.e., user-alone, user-AI answer-
first, and user-AI direct-to-AI), the pilot with incen-
tives had a higher mean accuracy 19 times. We also
found that conversations were slightly longer with
incentives. However, the overall improvement in
accuracy was very small, only 3 percentage points,
meaning we did not see unrealistic improvements
that would suggest use of external tools. We also
continued to see the gaps in user-AI performance
between the GPT models and Llama-3.1-8b, sug-
gesting users were basing their answers on the AI
Chatbot given to them. As further evidence of the
use of the AI Chatbot, and not external tools, we
found that in the vast majority of cases (63 out
of 66 examples) where the user changed from an
incorrect user-alone answer to a correct user-AI
answer, that new answer matched the answer given
by the AI model in the user-AI conversation. Since
we found that incentives seemed to encourage users
to try slightly harder, and we did not see evidence
of cheating, we decided to keep incentives for our
full study, but our pilot comparison shows that our
results were not overly sensitive to this decision.

A.3 ChatBench
Our dataset, ChatBench4, compiles data over the
full study (650 participants, with incentives) and
the two pilots. ChatBench consists of user-alone
answers, user-AI answers and conversations, and
user confidence, which we asked users to report
per question before the attempting the question
(Figure A6). ChatBench also includes AI-alone
answers from our AI-alone experiments, where we
tested each model 50 times per question and AI-
alone method (see Section B.1 for details).

In total, ChatBench contains 7,148 user-alone
answers, 7,336 user-AI answers and conversations,
10,828 user confidence answers, and 118,717 AI-
alone answers, resulting in 144,029 answers in total.
ChatBench contains data from more than the total
number of participants we recruited (810 = 650 +
100 + 60), since some participants started but did
not complete the study. In Table A3, we provide
additional data statistics, including how many an-
swers we collected per model, dataset, condition,

4https://huggingface.co/datasets/microsoft/
ChatBench.
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and answer type (user-alone or user-AI).

Protecting participant privacy. To protect the
privacy of our participants, first we mapped each
person’s Prolific ID to a new, randomly gener-
ated string of 10 letters and digits, checking that
there were no collisions between individuals. The
worker_id field in ChatBench contains these new
strings, instead of their original worker ID on Pro-
lific. Second, we checked for personally identify-
ing information in the user-AI conversations. We
used the EU GDPR’s definition of personal data:5

‘Personal data’ means any information
relating to an identified or identifiable
natural person (‘data subject’); an iden-
tifiable natural person is one who can
be identified, directly or indirectly, in
particular by reference to an identifier
such as a name, an identification num-
ber, location data, an online identifier
or to one or more factors specific to the
physical, physiological, genetic, mental,
economic, cultural or social identity of
that natural person.

To check if a participant had revealed personal in-
formation, we provided our private instance of
GPT-4o with all of their user-AI conversations,
along with GDPR’s definition of personal data, and
prompted GPT-4o to answer whether the conversa-
tions contained any personal data.

As expected, given the nature of these conversa-
tions (answering benchmark questions), there were
very few conversations with personal data. Over
823 participants with user-AI conversations, GPT-
4o only flagged three participants with personal
data. We manually inspected these three and found
that two were not actually revealing personal data;
they were both rephrasing a math question, “Car-
los Montado was born on Saturday, November 9,
2002”, in first person, leading GPT-4o to think that
they were providing their birthday. One participant
appeared to share personal details, so we removed
their conversations from our public release.

Filtering from ChatBench for statistical analysis.
For our main statistical analyses (Section 4), we
only used data from the full study, and not from the
two pilots. We furthermore filtered the data follow-
ing the criteria we described in our preregistration,6

5https://gdpr.eu/eu-gdpr-personal-data/.
6https://aspredicted.org/n84n-sn3f.pdf.

such as only keeping the workers’ answers from
their first assignment if they had multiple. While
we could control from Prolific that workers could
not participate in our task multiple times, once they
opened our app, they could start the study then
be taken back to the beginning of the study flow
(Figure 1) if they refreshed the app. If they did
so, we would not want to keep their data after they
refreshed, since their behavior on the second time
around could be affected by what they already saw
the first time. When a worker opened the app or
refreshed, they received a new assignment, defined
by their combination of model (one of 2), user-
AI condition (one of 2), subject (one of 3), and
question batch (one of 7 or 18). The probability
that they would receive the same assignment twice
if they refreshed was very low (less than 1%), so
we could check for multiple assignments to test
whether they refreshed, and we used timestamps
to determine their first assignment. Ultimately, we
found very few workers (3%) with multiple assign-
ments, and for those workers, we kept their data
from their first assignment.

Overall, our filtering criteria was as follows:

• First, we only kept data from the workers who
completed the study, which we checked by
cross-referencing the list of worker IDs given
to us by Prolific of all workers who completed
the study and clicked on the completion code.

• Second, we only kept data from workers who
passed the attention check. The vast major-
ity of workers (99.5%) passed the attention
check. We also did not include answers from
the attention check in our user-alone estimates,
since the attention check was easier than the
other questions.

• Third, we checked for workers with multiple
assignments, and we only kept data from those
workers on their first assignment.

In our released version of ChatBench, we include
all the data from the full study without filtering and
the filtered version of the data, for replicability and
transparency.
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Count
Model Dataset Condition Answer Type

GPT-4o College Math answer-first userAIAnswer 134
userAnswer 283

direct-to-AI userAIAnswer 116
userAnswer 121

Conceptual Physics answer-first userAIAnswer 317
userAnswer 425

direct-to-AI userAIAnswer 351
userAnswer 117

Elementary Math answer-first userAIAnswer 542
userAnswer 697

direct-to-AI userAIAnswer 462
userAnswer 122

High School Math answer-first userAIAnswer 539
userAnswer 689

direct-to-AI userAIAnswer 463
userAnswer 122

Moral Scenarios answer-first userAIAnswer 242
userAnswer 331

direct-to-AI userAIAnswer 398
userAnswer 135

Llama-3.1-8b College Math answer-first userAIAnswer 119
userAnswer 251

direct-to-AI userAIAnswer 115
userAnswer 123

Conceptual Physics answer-first userAIAnswer 315
userAnswer 428

direct-to-AI userAIAnswer 333
userAnswer 112

Elementary Math answer-first userAIAnswer 485
userAnswer 620

direct-to-AI userAIAnswer 462
userAnswer 123

High School Math answer-first userAIAnswer 477
userAnswer 610

direct-to-AI userAIAnswer 464
userAnswer 125

Moral Scenarios answer-first userAIAnswer 349
userAnswer 471

direct-to-AI userAIAnswer 229
userAnswer 81

Table A3: Dataset statistics for ChatBench.
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Figure A3: Consent page. Parts are redacted to remain anonymous.
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Figure A4: Introduction page. Explains the task to users and ensures that they do not consult external tools.

Figure A5: Phase 1 Tutorial. Provides an example of a Phase 1 question before the user begins Phase 1.
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Figure A6: Confidence page. Included per-question in both phases before the user tries to answer each question.

Figure A7: User-alone page. Users answer all questions on their own in Phase 1 and, if they are in the answer-first
condition, answer each question in Phase 2 on their own first before answering with AI.
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Figure A8: Phase 2 Instructions. Explains to users what they can expect in Phase 2 and reminds them not to use
external tools. This screenshot shows instructions for a user in the answer-first condition. Users in the direct-to-AI
condition see similar instructions, but without Step 3.

Figure A9: Phase 2 Tutorial. Provides an example of a Phase 2 question before the user begins Phase 2.
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Figure A10: Feedback page. Final page of the task, where users leave free-text feedback to various questions.
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B Details on Analyses and Experiments

We download the MMLU datasets7 (Hendrycks
et al., 2021) and MMLU-Redux datasets8 (Gema
et al., 2024) from Hugging Face. The datasets
are protected by the MIT and CC-by-4.0 licenses,
respectively, allowing our use of this data in our re-
search. Our code is available at https://github.
com/serinachang5/interactive-eval.

B.1 AI-Alone experiments
Here we provide the exact prompts used for each of
the AI-alone methods: few-shot letter-only (Listing
1), zero-shot letter-only (Listing 2), and the two
prompts for free-text (Listing 3 and Listing 4). For
all the methods, the system prompt was “You are a
helpful AI assistant.”

Listing 1: Prompt for few-shot letter-only, taken from
HELM. In-context examples are the five examples in
MMLU’s “dev” set for this dataset.
Answer with only a single letter.

The following are multiple choice questions (with answers)
about {dataset }.

{example_1}
A. {example_1_option_A}
B. {example_1_option_B}
C. {example_1_option_C}
D. {example_1_option_D}
Answer: {example_1_answer}

...

{example_5}
A. {example_5_option_A}
B. {example_5_option_B}
C. {example_5_option_C}
D. {example_5_option_D}
Answer: {example_5_answer}

{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}
Answer:

Listing 2: Prompt for zero-shot letter-only, using the
same language as few-shot but dropping the in-context
examples.
Answer with only a single letter.

{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}
Answer:

Listing 3: First prompt for AI-alone free-text. This
prompt to generate the model’s free-text response is
simply the question and answer options concatenated.
{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}

7https://huggingface.co/datasets/cais/mmlu.
8https://huggingface.co/datasets/

edinburgh-dawg/mmlu-redux-2.0.

Listing 4: Second prompt for AI-alone free-text. This
second prompt instructs GPT-4o to extract an answer
(if any) from the model’s free-text response. In order
to not bias the answer extraction, we do not include the
correct answer in this prompt.
Here is a question that someone was asked:

================================================
{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}
================================================

Here is a response:

================================================
{response}
================================================

Did the response provide a final answer to the question?
Respond with a JSON object that contains one key "
attempted_answer" with a value that is true or false.
If "attempted_answer" is true , then include a second
key "answer_val" with the final answer 's value in
quotations. If the final answer value matches one of
the answer options , include a third key "answer_letter"
with a value that is one of the letters "A", "B", "C",
or "D".

In ChatBench, we include the results of our AI-
alone experiments, where we tested each of the two
models (GPT-4o and Llama-3.1-8b) 50 times per
question and AI-alone method. Testing 50 times
was necessary since we used a temperature of 0.7,
as discussed in the main text. We were able to get
50 answers for almost every model, question, and
method, barring a few exceptions. For the letter-
only methods, the model would occasionally not
return a valid answer, since its response would be-
gin with a character besides “A”, “B”, “C”, or “D”.
Thus, we computed two accuracies: one where the
invalid answers were treated as incorrect (since the
model failed to follow instructions) and one where
we computed accuracy over only the valid answers.
We report the former accuracy in the paper, but
report both types of accuracies in ChatBench. As
expected, invalid answers were more common with
zero-shot than few-shot, but they were a minor oc-
currence overall: below 5% of answers were invalid
for 90% of questions with zero-shot and 99.6% of
questions with few-shot. Invalid answers were not
an issue for free-text, but we very occasionally had
issues with the answer extraction step (e.g., errors
in JSON parsing), resulting in losing one or two
out of 50 answers for a few questions. For one
of the Moral Scenarios questions, we had issues
generating free-text responses, since it violated our
model deployment’s filtering policy.

B.2 Statistical details
Mean accuracies. When measuring accuracies
for all methods (user-alone, AI-alone, and user-
AI), we first compute per-question accuracies as
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the fraction of correct answers over total answers
nq for each question, denoted p̂q. We also compute
the standard error for each question-level accuracy
estimate SEq =

√
p̂q(1− p̂q)/nq. We then com-

pute dataset-level accuracies with an (unweighted)
average across all Q question-level accuracies, and
dataset-level standard errors using decomposition
of total variance to account for both variability in
sampling questions from the larger population of
MMLU questions and variability in correctness of
responses (Miller, 2024):

SEtot =
√
(E[SEq] + Var(p̂q))/Q. (1)

In Tables A1 and A2, we report mean accuracies
for all datasets, models, AI-alone methods, and
user-AI conditions. We also compare accuracies
between two methods, for AI-alone vs. user-AI and
for user-alone vs. user-AI. We conduct z-tests for
all statistical tests comparing accuracies between
two methods where

z = (p̂1 − p̂2)/
√
SE2

1 + SE2
2 . (2)

Upper-bound on correlation. Since there is
noise in our estimate of user-AI accuracy per ques-
tion, we want to check if the low correlations be-
tween user-AI and AI-alone accuracies can be ex-
plained by that noise. To test this, we simulate an
upper bound on what the correlation would be if the
user-AI accuracies were drawn from the same dis-
tribution as the AI-alone accuracies, which we as-
sume are perfectly estimated because we test each
LLM 50 times on each question. We construct hy-
pothetical user-AI data, where for each question q,
we draw x from Binomial(nqu, pqf ), where nqu is
the number of user-AI answers we had in our study,
pqf is the free-text accuracy on this question, and
x/nqu is now the hypothetical user-AI accuracy on
this question. Over 100 iterations, the hypothetical
correlation with free-text ranges from r = 0.88
to 0.92 for direct-to-AI and r = 0.90 to 0.94 for
answer-first, with the real correlations of 0.45 and
0.46 (respectively) well below this range.

B.3 Additional analyses from user study

User-AI conversations. To characterize the con-
versations between users and LLMs, we set a sys-
tem prompt of “You are an expert at extracting
information from conversations and MUST return
a JSON object.” and used the prompt in Listing 5.

Figure B1: Fraction of user-AI interactions where the
last AI answer in the conversation is wrong but the user
still answered correctly, by subject and model.

Listing 5: Prompt to GPT-4o for automatically charac-
terizing user-AI conversations.
The following conversation occurred between a user called "

You" and an AI called "Bot", in which the user "You"
was given a question and tried to use "Bot" to answer
it correctly. Answer the following queries about this
conversation.

1. True or false: the first user question is an exact or
near -exact rephrasing of the question that the

user was given , to which an intelligent person or
AI would respond with the correct answer among the
answer choices (without seeing anything else ,
including the answer choices if the user didn 't
supply them). Answer with "true" or "false".

2. True or false: the first time the AI answers the
question , it is with a correct answer to the
question that the user was given. Answer with "true
" or "false".

3. True or false: the AI answers the question that the
user was given more than once during the
conversation. Answer with "true" or "false".

4: The first time the AI answers the question , which
answer choice does its answer correspond to? Answer
with "A", "B", "C", "D", or "none".

Here is the question the user was given:
{question}

{choices}

Here is the correct answer to the question:
{correctAnswer}

Here is the conversation between the user ("You") and
the AI ("Bot"):

{conversation}

Format your answer as a JSON object with the following
keys: "1: first_user_question ","2:
first_ai_answer_correct ","3: more_than_one_ai_answer
","4: first_ai_answer_option ".

We used the structured data from this analysis
for a number of results, described in Section 4.3,
such as how often user-AI interactions “mirror” AI
benchmarks and how often AI provided the correct
answer in the user-AI conversations. We also used
this structured data to measure how often the user
corrects the AI model’s mistake, by computing the
fraction of user-AI interactions where the first AI
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answer in the conversation is wrong but the user
still answered correctly (Figure B1). We find that
this occurs in a small fraction of cases, and users
are generally more likely to correct Llama-3.1-8b
than GPT-4o.

In Table B1, we provide additional statistics of
the user-AI conversations, some computed from the
structured data described above. Overall, we find
that the conversations tend to be short in length,
but each message is long and there is genuine infor-
mation being exchanged. This is natural in a QA
setting where we are only asking the user to answer
one single question (no follow-ups) with the help
of AI. Even without those constraints, user-AI con-
versations in the real world are also often short: for
example, in WildChat (Zhao et al., 2024), which
includes 1 million user-AI conversations “in the
wild”, around 60% of their conversations consist
of only one user-AI turn.

In ChatBench, we also find that the vast major-
ity of users are putting in effort to try to use AI
to answer the question, as opposed to not putting
in effort (e.g., “hello”, without a second message)
or not using the AI (e.g., “i solved this already”).
Oftentimes, this effort takes the form of the user
providing a near-exact rephrasing of the question
or a component of the question. The user’s effort is
substantiated by what follows, since in the majority
of conversations, we see AI providing an explicit
answer to the question. We also find that the user is
clearly adapting their answers based on the AI: the
rate that user-AI is right is much higher when AI
is right, than when AI is wrong or when the user
is answering alone. Finally, we also see interest-
ing differences across subjects: Moral Scenarios
is distinguished by greater user independence and
less reliance on AI, resulting in fewer near-exact
rephrasings and explicit AI answers, and greater
divergence between the AI answer being right and
the user-AI answer being right.

User confidence. In Figure B2, we visualize the
relationship between user-reported confidence per
question and their user-alone accuracy. First, over
our five datasets, we find that users are most confi-
dent about Moral Scenarios, followed by Elemen-
tary Math, Conceptual Physics, High School Math,
and College Math. The user selects their confidence
from three options (as shown Figure A6), “not con-
fident”, “somewhat confident”, and “very confi-
dent”. We find that users are well-calibrated within
dataset: as their confidence increases, so does

the mean accuracy. Users are less well-calibrated
across datasets: for example, users who are very
confident on a Conceptual Physics question slightly
underperform those who are only somewhat confi-
dent on an Elementary Mathematics question.
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Figure B2: Distribution of confidence answers from users and mean user-alone accuracies per confidence answer.
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Statistic Math Conceptual Physics Moral Scenarios

Avg # user messages 1.57 1.37 1.69
Avg character length of user message 88.21 72.93 105.24
Avg # AI messages 1.48 1.32 1.51
Avg character length of AI message 793.92 918.40 1073.03

Conversation length: 2+ messages (%) 98% 98% 97%
Conversation length: 4+ messages (%) 27% 21% 37%
Conversation length: 6+ messages (%) 11% 8% 11%

First prompt: near-exact rephrase (%) 58% 62% 23%
First prompt: component (%) 25% 29% 63%
Explicit AI answer in conversation (%) 86% 82% 50%

AI answer right (%) 76% 84% 78%
AI answer right, user-AI right (%) 91% 91% 82%
AI answer wrong, user-AI right (%) 42% 32% 56%

Table B1: Statistics of user-AI conversations in ChatBench, computed over the full study.
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B.4 Simulator details
Below we provide the exact prompts for the two-
step simulator (Listings 6-8) and the IQA-EVAL
simulator from Li et al. (2024a) (Listing 9).

Listing 6: Two-step user simulator, system prompt for
both tasks.
You are a human user interacting with an AI system , and you

are trying to answer the following question:

{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}

Listing 7: Two-step user simulator, user prompt for Task
1 (user refers to the role in the OpenAI API, not a real
user).
Generate the first prompt you would say to the system to get

started with answering your question. Remember to
write exactly as a real user would.

Listing 8: Two-step user simulator, user prompt for Task
2 (user refers to the role in the OpenAI API, not a real
user).
Here is your conversation so far with the AI system:
========================
YOU: {simulator prompt 1}

SYSTEM: {AI system response 1}

...

YOU: {simluator prompt k}

SYSTEM: {AI system response k}
========================
If your question is answered by this conversation , return

ONLY the answer in the format "Answer: A, B, C, or D".
If not , generate the next prompt you would say to the
system to answer your question. Remember to keep your
writing style consistent.

Listing 9: IQA-EVAL simulator, only has system
prompt, following the original implementation.
You are mimicking a human.
You are trying to choose the correct answer to the given

question.
Please ask an assistant sub -questions for help approaching

answers.
In each turn , please only ask one sub -question to interact

with an assistant. In the sub -questions , please include
all necessary information , such as the question and

options , in the original question. If you know the
answer , please output "So, the answer is: A, B, C, or D
."

{question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}

YOU: {simulator prompt 1}

SYSTEM: {AI system response 1}

...

YOU: {simluator prompt k}

SYSTEM: {AI system response k}

In our simulator experiments, we fine-tune GPT-
4o using Azure OpenAI Service. We use the default
hyperparameters, with a batch size of 11 and 2
epochs. The training data contains 8,538 training

examples (we describe in Section 5 how each user-
AI conversation with k user utterances becomes
k + 1 training examples for fine-tuning).
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Figure B3: Scatter plot comparing different AI-alone and user simulator methods’ abilities to predict user-AI
accuracy, where the AI system is GPT-4o. Pearson correlations are included in the plot titles.

Figure B4: Scatter plot comparing different AI-alone and user simulator methods’ abilities to predict user-AI
accuracy, where the AI system is Llama-3.1-8b. Pearson correlations are included in the plot titles.
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