
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25605–25639
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

On Many-Shot In-Context Learning for Long-Context Evaluation

Kaijian Zou, Muhammad Khalifa, and Lu Wang
Computer Science and Engineering, University of Michigan, Ann Arbor, MI

{zkjzou,khalifam,wangluxy}@umich.edu

Abstract

Many-shot in-context learning (ICL) has
emerged as a unique setup to both utilize and
test the ability of large language models to
handle long context. This paper delves into
long-context language model (LCLM) eval-
uation through many-shot ICL. We first ask:
what types of ICL tasks benefit from additional
demonstrations, and how effective are they in
evaluating LCLMs? We find that classification
and summarization tasks show performance
improvements with additional demonstrations,
while translation and reasoning tasks do not
exhibit clear trends. Next, we investigate the
extent to which different tasks necessitate re-
trieval versus global context understanding. We
develop metrics to categorize ICL tasks into
two groups: (i) similar-sample learning (SSL):
tasks where retrieval of the most similar ex-
amples is sufficient for good performance, and
(ii) all-sample learning (ASL): tasks that ne-
cessitate a deeper comprehension of all exam-
ples in the prompt. Lastly, we introduce a new
many-shot ICL benchmark built on existing
ICL tasks, MANYICLBENCH, to character-
ize model’s ability on both fronts and bench-
mark 12 LCLMs using MANYICLBENCH. We
find that while state-of-the-art models demon-
strate good performance up to 64k tokens in
SSL tasks, many models experience significant
performance drops at only 16k tokens in ASL
tasks.1

1 Introduction

Long-context language models (LCLMs) have rev-
olutionized the way users interact with language
models by extending the context size from 2K to
128K or even 1M tokens (Team et al., 2023; GLM
et al., 2024; Dubey et al., 2024). This unlocks
challenging applications, such as long- and multi-
document summarization, multi-turn dialogue, and

1Data and code are available at https://github.com/
launchnlp/ManyICLBench.

code repository comprehension. Despite the recent
progress in building LCLMs, existing benchmarks
primarily evaluate these models’ retrieval capabili-
ties (Liu et al., 2023; Hsieh et al., 2024). From syn-
thetic tasks such as Needle-in-A-Haystack (NIAH)
(Kamradt, 2023) and RULER benchmark (Hsieh
et al., 2024) to real-world challenges like long-
novel QA (Karpinska et al., 2024), the majority
of benchmarks assess how well LCLMs retrieve
specific pieces of information from extensive con-
texts. As a result, evaluating models’ global un-
derstanding of the full context remains lacking.

To fill the gap, Li et al. (2024) introduce Long-
ICLBench, which uses many-shot ICL classifica-
tion tasks to evaluate models’ long-context perfor-
mance, arguing that these tasks require the com-
prehension of the entire input. A few other works
have also explored many-shot ICL for long-context
models (Agarwal et al., 2024; Bertsch et al., 2024).
However, they have mainly relied on classification
tasks (Li et al., 2024; Bertsch et al., 2024), which
are insufficient to distinguish which skills LCLMs
require to perform well in many-shot ICL classi-
fication tasks. Agarwal et al. (2024) study non-
classification ICL tasks but only limit its study to
Gemini 1.5 Pro. In this work, we want to conduct
a comprehensive study on many-shot ICL across
a wide range of models, with a goal of identifying
tasks that benefit from additional demonstrations
and explore their utility in evaluating long-context
models. Moreover, we seek to determine the extent
to which these tasks rely on retrieving most simi-
lar examples versus learning from all samples.

RQ1: Which tasks benefit from many-shot ICL?
First, we investigate ICL tasks that are used in prior
work, including classification, summarization, and
reasoning, under many-shot settings with context
lengths from 1k to 128k (Agarwal et al., 2024).
We find that classification and summarization tasks
show strong positive correlation between context
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lengths and model performance. Our findings in-
dicate that translation and reasoning tasks such as
ARC (Clark et al., 2018) and FLORES-200 (Team
et al., 2022) do not gain much performance with
an increasing number of demonstrations. Science
and symbolic reasoning tasks exhibit inconsistent
trends between context lengths and model perfor-
mance. This variance in performance is mainly
attributed to the specific nature of tasks, where
more demonstrations do not boost the models’ task
understanding. Interestingly, math tasks benefit
from additional demonstrations only when step-by-
step solutions (or chain-of-thoughts) are derived
and using strong LCLMs.

RQ2: To what extent does each task require
learning from a limited number of samples ver-
sus learning from more samples with broader
context from LCLMs? We use the ratio between
the performance change of removing dissimilar
examples and the change of removing similar ex-
amples. A high ratio means a more pronounced
drop in performance upon removing similar exam-
ples, which indicates the task’s heavy reliance on
retrieving and learning its prediction with more
similar examples. Our analysis indicates that ex-
isting many-shot ICL classification tasks (Li et al.,
2024) predominantly assess models’ skills to learn
from similar examples rather than all examples,
overshadowing the model’s ability to understand
all samples. This leads us to categorize tasks into
similar-sample learning (SSL) and all-sample learn-
ing groups (ASL).

Following the categorization, we collect existing
tasks and propose a new many-shot ICL bench-
mark, MANYICLBENCH, designed to evaluate
long-context models and advocate for including
many-shot ICL tasks as effective evaluation can-
didates. Importantly, on MANYICLBENCH, mod-
els are tested to either retrieve and learn from the
most similar demonstrations or assimilate and learn
from all demonstrations to enhance their under-
standing of the task (Lin and Lee, 2024; Bertsch
et al., 2024). Therefore, MANYICLBENCH evalu-
ates both retrieval skills and global context under-
standing, thus providing a holistic assessment of
long-context models’ capabilities.

Unlike NIAH, which focuses on retrieving a
statement given a query, MANYICLBENCH rede-
fines retrieval to test a model’s ability to identify
and leverage similar examples during in-context
learning. Additionally, the benchmark retains a
focus on global context understanding, as explored

in prior works (Zhang et al., 2024; Karpinska et al.,
2024), by requiring models to reason over and syn-
thesize information from all demonstrations to gen-
erate accurate outputs.

In summary, we make contributions as below:

• Investigate whether ICL tasks benefit from ad-
ditional demonstrations and assess their suit-
ability for evaluating LCLMs with a context
length up to 128k tokens.

• Develop methods to characterize the primary
skills evaluated by ICL tasks, where we fo-
cus on distinguishing between similar-sample
learning and all-sample learning skills.

• Construct a many-shot ICL benchmark,
MANYICLBENCH, designed for evaluating
LCLMs on both retrieval and global con-
text understanding, while excluding irrelevant
datasets previously used in evaluation.

• Benchmark 12 widely-used state-of-the-art
LCLMs on MANYICLBENCH to assess their
performance comprehensively.

2 Related Work

2.1 Long-Context Language Models and
Evaluation

As large language models (LLMs) grow in scale,
there is an increasing demand for handling tasks
that require extended contexts. Tasks such as
long document summarization (Kryściński et al.,
2022), conversations with long-context memory
(Xu et al., 2021), and repository-level code com-
pletion (Zhang et al., 2023) have garnered sig-
nificant interest. Advances in efficient attention
mechanisms, such as flash attention (Dao et al.,
2022) and grouped query attention (Ainslie et al.,
2023), alongside the development of GPUs with
larger memory capacities, have enabled LLMs to
be trained on extended contexts. Techniques like
position interpolation (Chen et al., 2023; Peng et al.,
2023) and context compression (Chevalier et al.,
2023; Mohtashami and Jaggi, 2023; Jiang et al.,
2024) have further extended the context window
size to up to 1 million tokens.

Despite these advancements, the NLP commu-
nity still seeks a universal and effective method
for evaluating long-context models. One promi-
nent task is Needle-in-a-Haystack (Kamradt, 2023),
which requires models to retrieve the most relevant
document from a large set of documents. Currently,
most evaluation benchmarks focus on synthetic
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tasks that primarily assess the retrieval capabilities
of long-context models (Hsieh et al., 2024; Kam-
radt, 2023; Lee et al., 2024; Lei et al., 2024). Only
a few benchmarks, such as Karpinska et al. (2024)
and Zhang et al. (2024), emphasize the model’s
ability to comprehend the global context. For ex-
ample, Karpinska et al. (2024) manually curated
a set of challenging questions based on various
novels to evaluate global context understanding. It
creates a realistic long-context benchmark empha-
sizing retrieval and global context understanding.

2.2 Many-shot ICL with LCLMs

As the context length of a model grows, the number
of demonstrations that can be utilized in ICL also
increases. Studies by Li et al. (2024), Bertsch et al.
(2024), and Agarwal et al. (2024) have examined
various properties of ICL under the many-shot set-
ting. Bertsch et al. (2024) explore whether models
are merely performing retrieval tasks or genuinely
understanding the tasks during many-shot ICL clas-
sification. Similarly, Agarwal et al. (2024) analyzes
the performance of tasks beyond classification in
the many-shot context, using Gemini-Pro, and finds
that additional demonstrations generally enhance
task performance. Furthermore, Li et al. (2024) pro-
pose a long-context evaluation benchmark LongI-
CLBench comprising many-shot ICL classification
tasks, noting that current long-context models still
face challenges in this area. None of the prior
works has studied what skill each ICL task mea-
sures LCLMs for. LongICLBench mostly focuses
on classification tasks, which may only evaluates
the retrieval ability of LCLMs. Unlike previous
studies, our work provides a more comprehensive
analysis of many-shot ICL across a diverse set of
tasks and multiple models. We introduce novel
metrics to measure retrieval skills required for each
task. We identify a set of ICL tasks suitable for
evaluation and present a refined long-context eval-
uation benchmark with fine-grained categorization
based on required similar-sample learning and all-
sample learning skills. More related work on ICL
can be found in Appendix A.

3 Experiment Setting

We select 11 open-weights models ranging from
3.8B to 123B parameters and one proprietary
model. Our evaluation includes 12 datasets with 21
subtasks, spanning classification, summarization,
reasoning, and translation domains. For each task,

we randomly sample 200 data points from the test
set, using the full test set if it contains fewer than
200 samples.

For each task, we construct prompts for different
context window sizes by incrementally adding new
demonstrations from the training set to the prompt
of the shorter context window size and duplicate
training examples if they are insufficient to fill
the context window. To ensure a fair comparison,
we randomize the order of the demonstrations and
consistently use the same set of examples across
all context sizes. For simplicity, we apply greedy
decoding across all models and conduct each ex-
periment using three different random seeds. For
prompt construction, we only include demonstra-
tions and provide minimal task instruction. See
Table 4 for more details.

3.1 Datasets

Following previous works (Agarwal et al., 2024;
Li et al., 2024; Agarwal et al., 2024), we include
five datasets for classification tasks: BANKING77,
GoEmotions, DialogRE, TREC, and CLINC150.
For the summarization task, we use XLSUM, and
for translation, we use FLORES-200. Addition-
ally, we incorporate four datasets for reasoning
tasks: MATH, BBH, and GPQA, and ARC. More
details about each dataset can be found in Table 1
and Appendix B.

For the MATH, BBH, GPQA, and ARC tasks,
we use accuracy as the evaluation metric. Macro
F1-score is employed as the metric for all classi-
fication tasks. ROUGE-L (Lin, 2004) is used for
the XLSUM summarization task. ChrF (Popović,
2015) is applied for translation evaluation.

3.2 Models

Below we list out the 12 models used in our experi-
ment: Llama-3.1 8B and 70B (Dubey et al., 2024),
GLM-4-9B-Chat (GLM et al., 2024), Mistral Nemo
(12B) and Large (123B) (Mistral AI, 2024), Qwen2
7B and 72B (Yang et al., 2024), Phi-3 mini (3.8B),
small (7B), and medium (14B) (Abdin et al., 2024),
and Jamba 1.5 Mini (12B/52B) (Team et al., 2024),
and Gemini-1.5-Pro (Team, 2024). We use the
instruction-tuned version of all the models. For
open-weights models with more than 50B, we run
the quantized version of the models.2 More details
about each model can be found in Appendix C.

2In Appendix D, we show that quantized and unquantized
models roughly exhibit the same trend.
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Dataset Task Category Avg. Tokens / Shot Max # of Shots # of Tasks

BANKING77 Intent Classification 13.13 5386 1
GoEmotions Emotion Classification 15.85 5480 1
DialogRE Relation Classification 233.27 395 1
TREC Question Classification 11.25 6272 1
CLINC150 Intent Classification 8.95 7252 1
MATH Math reasoning [185.52, 407.90] [286, 653] 4
GSM8K Math reasoning 55.78 784 1
BBH Reasoning [48.27, 243.01] [406, 2660] 4
GPQA MQ - Science [183.55, 367.02] [314, 580] 1
ARC MQ - Science [61.54, 61.54] [1997, 2301] 2
XLSUM New Summarization 621.32 220 1
FLORES-200 Translation [63.63, 101.74] [570, 1965] 3

Table 1: Dataset information. GPT-4o tokenizer is used to calculate # of tokens. Max # of shots is the number of
shots can be fitted into the 128k context window. For datasets that have multiple subtasks, we list the range for each
value. We have 21 tasks in total.

4 Preliminary Study on many-shot ICL
In this section, we explore the extent to which
many-shot ICL enhances models’ performance
across different task types. Previous work has ei-
ther focused on only classification tasks (Bertsch
et al., 2024) or studied only one specific model
(Agarwal et al., 2024). In contrast, our analysis
provides a comprehensive evaluation of many-shot
ICL across both classification and generation tasks
using eleven open-weights LCLMs. We collect
tasks from previous work (Bertsch et al., 2024;
Agarwal et al., 2024; Li et al., 2024) from six cate-
gories: classification, translation, summarization,
math reasoning, science reasoning, and symbolic
reasoning. The results, illustrated in Figure 1, in-
clude aggregated model performance across task
types and the correlation coefficients between con-
text lengths and performance from 1k to 64k. We
also plot models’ performance on individual tasks
in Appendix H and present more analysis on task
categories in Appendix E.

Classification performance steadily improves
with more shots. Figure 1a demonstrates a con-
sistent performance increase across all models as
more demonstrations are added for classification
tasks. This trend indicates a strong positive cor-
relation between context length and performance,
which is illustrated in Figure 1b. Given that some
classification tasks often involve extensive label
spaces, e.g., CLINC150 has 150 classes, additional
demonstrations provide models with exposure to
more classes and thus enhance their ability to per-
form accurately. This is consistent with prior re-
search findings (Bertsch et al., 2024).

Summarization shows gradual performance

gains only. On summarization, most models ex-
hibit a high correlation between context length
and performance. However, there is a noticeable
slowdown in the performance gains as the num-
ber of demonstrations increases. This suggests that
while additional context may improve performance,
it does so at a diminishing rate, particularly for
smaller models like Llama-3.1-8B that struggle to
leverage longer contexts effectively.

Inconsistent trends in science and symbolic
tasks. For science and symbolic reasoning tasks,
the performance trends are less predictable, with
some models displaying minimal changes when
seeing additional examples, while others benefit.
This variability suggests that not all tasks lend
themselves to the advantages of many-shot ICL
equally. Ideally, for every task, additional demon-
strations should either improve performance or,
at the very least, not harm it. A model with ro-
bust long-context capabilities should exhibit a non-
decreasing performance trend as the context length
increases. Given the inconsistent performance on
non-classification tasks and even decreasing perfor-
mance on some reasoning tasks, in the next section,
we further investigate what aspects these datasets
evaluate and identify a set of tasks useful for evalu-
ating important skills of LCMLs.

5 Task Categorization: Similar-Sample
Learning vs. All-Sample Learning

To understand what skill each ICL task primarily
requires from LCLMs, in this section, we measure
the sample learning ratio of each task and divide
them into similar-sample learning vs. all-sample
learning tasks. We exclude translation tasks as tok-
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Figure 1: (a) Aggregated performance of models over datasets in different categories of tasks. (b) Average pearson
correlation coefficient between context lengths (1k to 64k) and the corresponding performance.

enization can be inconsistent across languages and
to avoid difference in multilingual capabilities af-
fecting the results. Similarly, we omit GoEmotions
because of its subjective nature. Given the resource
constraint, we only choose a subset of models to
measure the sample learning ratio.

5.1 Sample Learning Ratio

To identify similar-sample learning tasks, we pro-
pose a simple metric, sample learning ratio
(SLR), to assess whether tasks predominantly rely
on models to retrieve relevant examples during
many-shot ICL. Concretely, for each ICL task, we
create two variants of the original demonstrations
at each context size ranging from 1k to 64k by re-
moving the 10% most similar and the 10% least
similar examples. At context length l, the model’s
performance on these variants is then evaluated,
and we have Perf(l)most for removing similar exam-
ples and Perf(l)least for removing dissimilar examples.
Here we use BM25 retriever to calculate the simi-
larity. We then average the ratios between Perf(l)least

and Perf(l)most for l = 1k to l = 64k as:

SLR =
1

7

64k∑

l=1k

Perf(l)least

Perf(l)most

(1)

Intuitively, if a model predominantly relies on
retrieval for a task, removing most similar exam-
ples will result in a more pronounced performance
drop compared to removing dissimilar ones, which
causes the ratio to be larger than 1. Conversely,
if there is minimal difference between the two, it
means the model does not retrieve similar examples

to perform the task, and the ratio will be close to 1.

Classification tasks require retrieval of similar
examples. As shown in Figure 2, all classifica-
tion tasks exhibit high SLR across the six mod-
els. The BBH geometric shapes task also shows a
high SLR, indicating that tasks like BANKING77,
CLINC150, and TREC50 demand strong retrieval
capabilities from the models. DialogRE has a rela-
tively lower SLR, suggesting it requires moderate
retrieval skills. Among the symbolic tasks, BBH-
geometric_shapes is the only reasoning task that
has a high SLR. This task involves determining the
geometric shape given a full SVG path element,
making it similar to a classification task. The high
SLR of classification tasks can possibly explain the
largest positive correlation between performance
and context lengths, as displayed in Figure 1b.

All-sample learning tasks. In Figure 2, tasks
such as the math problems and summarization,
Dyck languages, translation error detection from
BBH, and GPQA with explanations all have a low
SLR. This means that they necessitate a greater
degree of global context understanding rather than
relying on the retrieval of relevant examples. These
tasks often involve complex reasoning challenges,
for which models may lack pretraining skills to
solve perfectly, underscoring the need for addi-
tional demonstrations or deeper task comprehen-
sion.

Additional analysis of SLR. To ensure that per-
formance loss is not caused by the absence of cer-
tain labels, we conduct an additional experiment
in which the top k% most similar examples are re-
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Figure 2: Sample Learning Ratio on different categories of tasks from 1k to 64k tokens. The ratio of 1 indicates
models are not doing retrieval during ICL. Classification is the only category of tasks that has a very high ratio,
which means classification tasks requires similar-sample retrieval during ICL. The rest of tasks is close to 1, and
models’ performance on these tasks does not rely on retrieving similar examples.

placed with the most dissimilar examples that share
the same labels. In addition to BM25, we also use
the sentence transformer (Reimers and Gurevych,
2019) as the retriever. The result of this experiment
exhibits the same trend: classification tasks show
a higher SLR than non-classification tasks. More
details can be found Appendix F.

6 ManyICLBench: A Many-shot ICL
Benchmark to measure retrieval skill
and global context understanding

In this section, we present a new long-context
benchmark MANYICLBENCH, designed to evalu-
ate LCLMs’ retrieval skills and global context un-
derstanding capabilities using the ICL setup. Based
on the results from Section 5, we group tasks into
two types:
• 5 SSL Tasks: BANKING77, dialogRE,

TREC50, CLINC150, and the geometric shape task
from BBH.
• 11 ASL Tasks: all math tasks, summarization

task, GPQA with explanations, ARC_challenge,
and all BBH tasks except geometric shapes.

We exclude ARC_Easy and GPQA since
ARC_Challenge and GPQA_CoT are already in-
cluded in the benchmark. Evaluation results of
popular LCLMs are summarized in Table 2.

Most models struggle at retrieving examples af-
ter 32k length. Up to a context length of 16k,
all models demonstrate a steady performance in-
crease, indicating effective retrieval from shorter
contexts. However, performance begins to decline
after reaching 32k tokens, particularly for the Mis-

tral family and Jamba models. After 64k, the Llama
3.1 family and the mini and medium versions of
Phi-3 exhibit a notable downgrade in performance.
In contrast, the Qwen-2 family maintains robust
performance, with minimal degradation from 64k
to 128k. Remarkably, only GLM-4 continues to
improve in retrieval performance beyond 64k, in-
dicating its impressive retrieval capabilities within
a very long context window, while larger models
such as Mistral-Large and Llama-3.1-70B exhibit
the most significant performance losses as context
length increases, suggesting that size alone does
not ensure superior long-context retrieval ability.

Challenges in ASL tasks. ASL tasks prove to
be more challenging, with many models struggling
even at short context lengths like 2k or 4k. Only
the Llama 3.1 family, Qwen2 family, GLM-4, and
Gemini models effectively leverage many demon-
strations up to 16k. At 32k, only the Llama 3.1 and
Gemini models sustain performance. As context
length extends from 32k to 128k, all models expe-
rience performance degradation, highlighting that
current architectures still struggle to grasp global
context and utilize demonstrations effectively. No-
tably, Qwen2-72B, GLM-4, and Gemini are the
only models that do not experience significant per-
formance drops in this category.

The paradox of model size. Despite the com-
mon assumption that larger models possess greater
capabilities, our findings illustrate that larger mod-
els can experience more substantial performance
losses compared to smaller models if not trained
adequately on long-context data. For instance,

25610



SSL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 31.63 34.99 46.37 57.27 63.61 68.34 72.16 72.93 55.91 71.14
Mistral-Nemo-Instruct 33.44 35.45 48.17 57.95 65.38 65.49 63.61 61.73 53.90 63.61
Mistral-Large-Instruct-AWQ 49.15 51.23 60.78 71.95 77.10 79.45 77.77 61.89 66.16 73.04
Llama-3.1-8B-Instruct-AWQ 32.13 34.63 45.76 57.39 66.18 70.02 70.55 65.85 55.31 68.81
Llama-3.1-70B-Instruct-AWQ 38.75 42.87 53.98 66.07 73.12 76.56 78.48 65.56 61.92 73.53
Qwen2-7B-Instruct-AWQ 30.18 34.03 44.40 54.85 62.92 65.91 66.94 66.38 53.20 66.41
Qwen2-72B-Instruct-AWQ 36.41 41.89 54.24 65.33 73.39 76.53 77.51 77.47 62.85 77.17
Phi-3-Mini-Instruct 30.27 30.90 38.09 48.14 53.58 57.29 56.83 48.72 45.48 54.28
Phi-3-Medium-Instruct 31.73 33.55 39.10 49.83 58.29 61.17 60.63 45.32 47.45 55.70
Phi-3-Small-Instruct 31.48 36.27 46.20 54.34 59.63 59.73 60.20 48.97 49.60 56.30
Jamba-1.5-Mini 32.10 36.91 48.61 60.29 66.05 68.33 66.02 65.17 55.44 66.51
Gemini-1.5-Pro 36.40 47.31 58.01 65.49 71.43 74.22 72.43 72.42 62.21 73.03

ASL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 40.51 40.28 42.04 42.78 40.70 40.46 38.85 39.13 40.59 39.48
Mistral-Nemo-Instruct 38.25 39.07 39.28 38.99 33.06 32.83 30.46 27.11 34.88 30.13
Mistral-Large-Instruct-AWQ 61.47 61.10 61.23 60.87 60.86 58.84 50.01 16.69 53.88 41.85
Llama-3.1-8B-Instruct 37.31 38.84 41.25 40.79 39.83 39.77 39.12 34.41 38.92 37.77
Llama-3.1-70B-Instruct-AWQ 53.32 54.84 55.76 55.87 56.42 56.34 54.42 18.58 50.69 43.12
Qwen2-7B-Instruct 39.52 41.96 45.17 45.39 45.50 37.29 36.97 33.99 40.72 36.09
Qwen2-72B-Instruct-AWQ 48.01 49.24 50.32 50.70 50.97 48.20 47.98 48.16 49.20 48.11
Phi-3-Mini-Instruct 33.54 32.97 29.80 29.75 30.12 28.78 28.06 25.76 29.85 27.53
Phi-3-Medium-Instruct 41.59 40.91 34.85 35.63 36.91 36.84 36.38 28.31 36.43 33.84
Phi-3-Small-Instruct 41.61 41.61 41.61 35.58 37.17 37.73 36.91 35.33 38.44 36.65
Jamba-1.5-Mini 31.96 33.08 32.97 32.70 31.66 28.82 27.14 25.87 30.53 27.28
Gemini-1.5-Pro 57.87 63.39 64.15 66.78 68.02 67.78 66.14 66.42 65.07 66.78

Table 2: Model performance on SSL and ASL tasks. AVG. is the average model performance of all context
lengths. AVG.L. is the average model performance of 32k, 64k and 128k. Red indicates performance improvement
compared to 1k. Blue indicates performance downgrade compared to 1k. A darker color means higher improvement
or downgrade. BOLD number means the largest number of a column. Many models start downgrading their
performance after 32k on SSL tasks. On global context ASL tasks, many models start struggling even before 16k.

Mistral-Large (123B) shows optimal performance
from 1k to 32k but experiences a dramatic drop be-
yond 32k, which is worse than Phi-3-Mini (3.8B).
A similar trend is observed with Llama-3.1-70B at
128k. Both underscore the importance of targeted
training for long-context tasks. Although the large
models we test are quantized, we believe the trend
will hold even for the full-precision models.

Llama 3.1 performance and training limitations.
The Llama 3.1 models initially capitalize on addi-
tional demonstrations effectively up to 64k but suf-
fer significant performance declines at 128k. This
pattern aligns with trends observed in other long-
context evaluation benchmarks (Hsieh et al., 2024).
We suspect that these performance drops are linked
to insufficient training with long-context data dur-
ing the supervised fine-tuning (SFT) stage. Accord-
ing to Dubey et al. (2024), the average token count
for long-context datasets is around 38k, indicating
limited exposure for models to effectively learn
from data points at 128k lengths.

Gemini exhibits robustness. Similar to other
open-weight models, Gemini-1.5-Pro shows per-
formance degradation on SSL tasks beyond 32k
tokens. However, it uniquely maintains strong re-
trieval capabilities and stable performance up to
128k tokens, alongside models like Qwen-2-72B
and GLM-Chat-9B. On ASL tasks, Gemini-1.5-Pro
significantly surpasses other open-weight models,
demonstrating exceptional proficiency in utilizing
the global context effectively and leveraging all
provided demonstrations.

Additional analysis on all-sample learning. To
investigate whether ASL tasks genuinely benefit
from additional demonstrations and to assess the
models’ ability to understand the global context,
we compare their performance using unique versus
duplicated demonstrations. Our analysis reveals
that some ASL tasks do not benefit significantly
from additional unique demonstrations, suggesting
that models do not always fully leverage all avail-
able demonstrations during ICL. Further detailed
analyses are provided in Appendix G.

25611



1k 2k 4k 8k 16k 32k 64k 128k
Context Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Llama-3.1-70B on MATH Tasks

1k 2k 4k 8k 16k 32k 64k 128k
Context Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Llama-3.1-70B on Symbolic Tasks

1k 2k 4k 8k 16k 32k 64k 128k
Context Length

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Qwen2-72B on MATH Tasks

1k 2k 4k 8k 16k 32k 64k 128k
Context Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Qwen2-72B on Symbolic Tasks

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 3: Llama-3.1-70B-Instruct and Qwen2-72B-
Instruct aggregated performance on four MATH tasks
and two symbolic tasks from Section 6. For the MATH
tasks, we use the dataset’s difficulty labels. For the sym-
bolic tasks, we approximate difficulty based on word or
symbol length.

7 Error Analysis

7.1 Why LCLMs fail on ASL tasks?

To better understand how LCLMs fail on ASL tasks,
we analyze the performance of Llama-3.1-70B-
Instruct and compare it with Qwen-2-72B-Instruct.
We focus on non-multiple-choice tasks, including
four subtasks from MATH, two symbolic tasks
from BBH (word_sorting and dyck_languages),
and XLSUM. All the error analysis examples can
be found in Appendix I.

LCLMs’ reasoning ability downgrades at long
context lengths. As shown in Figure 3, when the
context length increases, Llama-3.1-70B-Instruct
tends to lose performance more significantly than
Qwen-2-72B-Instruct. Across both easier and more
difficult tasks, Qwen-2-72B-Instruct maintains rel-
atively stable performance. A notable observation
is that for both models, more difficult tasks degrade
at an earlier context length, while easier tasks show
a drop only at a later point. For instance, on sym-
bolic tasks, Llama-3.1-70B-Instruct starts losing
accuracy on level-4 and level-5 tasks before the
simpler level-1 task.

Llama-3.1-70B-Instruct loses reasoning capabil-
ity at 128k length. On MATH tasks at 128k to-
kens, Llama-3.1-70B-Instruct often produces repet-
itive reasoning and gets stuck in loops. Its chain
of thought becomes oversimplified, frequently re-

lying on basic sentence structures. In Table 5, the
solution at 128k tokens contains many repeated
segments, whereas Qwen-2-72B-Instruct still gen-
erates valid, consistent reasoning. Furthermore,
Llama-3.1-70B-Instruct’s mathematical accuracy
suffers: in Table 6, although it correctly calculates(
9
2

)
= 36 at shorter lengths, it incorrectly outputs

42 at 128k tokens.
On symbolic tasks, as test examples become

more complex with additional symbols and words,
Llama-3.1-70B-Instruct fails to solve problems it
could handle at shorter contexts. While Qwen-2-
72B-Instruct still performs well on easier examples
at 128k tokens, Llama-3.1-70B-Instruct shows a
noticeable drop.

Weaker instruction-following at 128k length.
For summarization tasks, the summaries generated
by Llama-3.1-70B-Instruct at 128k tokens become
longer and often contain details not present in the
reference. In Table 14, Qwen-2-72B-Instruct main-
tains concise, one-sentence outputs at both 16k
and 128k tokens, but Llama-3.1-70B-Instruct adds
extraneous information and deviates from the re-
quested one-sentence format. Figure 16 also il-
lustrates a significant increase in output length for
Llama-3.1-70B-Instruct at 128k tokens.

Overly long generation at 128k length. Fig-
ure 17 shows that Llama-3.1-70B-Instruct’s chain-
of-thought for MATH tasks grows excessively at
128k tokens, partly due to repetitive loops. This
trend indicates that beyond a certain context length,
the model’s reasoning becomes unfocused and ver-
bose.
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Figure 4: Aggregated performance of Llama-3.1-70B-
Instruct and Qwen2-72B-Instruct on Banking77 and
CLINC150 intent classification tasks. Full: All demon-
strations are used during evaluation. Remove 10% clos-
est: The 10% most similar demonstrations to each test
instance are removed from the full set. Only 10% clos-
est: Only the 10% most similar demonstrations are used.
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7.2 Why do LCLMs Perform Better on SSL
Tasks?

To better understand why LCLMs excel at SSL
tasks, we closely examine the performance of the
same two models, Qwen2-72B-Instruct and Llama-
3.1-70B-Instruct, on two representative intent clas-
sification tasks, BANKING77 and CLINC150. We
compare three distinct demonstration conditions:
(1) utilizing all available demonstrations (full), (2)
removing the 10% most similar demonstrations
from the full set, and (3) using only the 10% most
similar demonstrations to each test instance.

As illustrated in Figure 4, both models achieve
near-identical performance when using only the
10% most similar demonstrations compared to the
full set of demonstrations, particularly as the con-
text length increases. Notably, performance con-
verges at the 64k token context length, suggesting
that a small subset of relevant examples is suffi-
cient for strong accuracy on these SSL tasks. Con-
versely, excluding the most relevant 10% of demon-
strations significantly degrades the performance of
both models across all context lengths. This empha-
sizes that SSL tasks inherently depend on effective
retrieval and utilization of a small, highly relevant
subset of examples.

This behavior aligns with findings in recent lit-
erature (Bertsch et al., 2024), where retrieving as
little as 5% of the most similar demonstrations
can match or exceed the effectiveness of using ran-
domly sampled examples. Thus, even at extensive
context lengths (e.g., 128k tokens), models primar-
ily benefit from a focused subset of demonstrations,
highlighting the retrieval-dominated nature of SSL
tasks. In contrast, ASL tasks offer no retrieval
shortcuts, compelling models to comprehensively
integrate information from all provided demonstra-
tions to solve the tasks.

8 Conclusion

We investigated many-shot in-context learning
(ICL) across various tasks using different open-
weight models, assessing their suitability for evalu-
ating long-context language models (LCLMs). Our
findings indicate that classification and summa-
rization tasks consistently benefit from additional
demonstrations, while other tasks do not. To iden-
tify a set of tasks suitable for long-context evalua-
tion, we introduced the concept of sample learning
ratio (SLR) to assess the retrieval demands of differ-
ent tasks. This analysis revealed that classification

tasks predominantly rely on the model’s retrieval
capabilities. Based on these insights, we catego-
rized tasks into two distinct groups: similar-sample
learning (SSL) tasks and all-sample learning (ASL)
tasks. Furthermore, we introduced a novel many-
shot ICL benchmark, ManyICLBench, designed
to evaluate both retrieval and global context under-
standing skills of LCLMs. Benchmarking open-
weight LCLMs on ManyICLBench revealed that
most models struggle with ASL tasks at lengths
beyond 16k tokens. In contrast, performance on
SSL tasks tends to decline after 32k tokens.
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Limitation

Our study focuses solely on the in-context learning
setup and does not address other setups where long-
context abilities are important, such as retrieval-
augmented generation. Additionally, we restrict
our evaluation and benchmark to English ICL
tasks, as most existing long-context benchmarks
are English-centric. Expanding the benchmark to
include multilingual tasks is an important direction
for future work.

Moreover, we acknowledge that data contami-
nation is a crucial area to investigate; however, it
falls beyond the scope of our current study. We
argue that our conclusions remain valid irrespec-
tive of whether the model has previously encoun-
tered the data, as additional demonstrations should
ideally enhance, rather than hinder, performance.
Any observed performance degradation is likely
attributable to the model’s limitations in effectively
handling long-context content. A detailed analysis
of the effects of data contamination is an important
avenue for future research.

Lastly, given the rapid development and iteration
of LCLMs, our findings may not fully generalize
to newer models that may be trained to handle long
context differently from existing ones. Neverthe-
less, we believe our findings are useful for future
efforts toward building models with strong long-
context understanding.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

25615

https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2105.08209
https://arxiv.org/abs/2105.08209
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2309.00071
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084


David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqa: A graduate-level google-proof q&a bench-
mark. Preprint, arXiv:2311.12022.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Gemini Team. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman,
Avshalom Manevich, Barak Peleg, Ben Aviram, Chen
Almagor, Clara Fridman, Dan Padnos, Daniel Gissin,
Daniel Jannai, Dor Muhlgay, Dor Zimberg, Edden M
Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi,
Erez Schwartz, Gal Cohen, Gal Shachaf, Haim
Rozenblum, Hofit Bata, Ido Blass, Inbal Magar, Itay
Dalmedigos, Jhonathan Osin, Julie Fadlon, Maria
Rozman, Matan Danos, Michael Gokhman, Mor Zus-
man, Naama Gidron, Nir Ratner, Noam Gat, Noam
Rozen, Oded Fried, Ohad Leshno, Omer Antverg,
Omri Abend, Opher Lieber, Or Dagan, Orit Cohavi,
Raz Alon, Ro’i Belson, Roi Cohen, Rom Gilad, Ro-
man Glozman, Shahar Lev, Shaked Meirom, Tal Del-
bari, Tal Ness, Tomer Asida, Tom Ben Gal, Tom
Braude, Uriya Pumerantz, Yehoshua Cohen, Yonatan
Belinkov, Yuval Globerson, Yuval Peleg Levy, and
Yoav Shoham. 2024. Jamba-1.5: Hybrid transformer-
mamba models at scale. Preprint, arXiv:2408.12570.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.

2022. No language left behind: Scaling human-
centered machine translation.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. Preprint,
arXiv:2111.02080.

Jing Xu, Arthur Szlam, and Jason Weston. 2021. Be-
yond goldfish memory: Long-term open-domain con-
versation. Preprint, arXiv:2107.07567.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

Dian Yu, Kai Sun, Claire Cardie, and Dong Yu. 2020.
Dialogue-based relation extraction. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4927–4940, Online.
Association for Computational Linguistics.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2471–2484, Singapore. Association for Com-
putational Linguistics.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and
Maosong Sun. 2024. ∞bench: Extending long
context evaluation beyond 100k tokens. Preprint,
arXiv:2402.13718.

25616

https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2408.12570
https://arxiv.org/abs/2408.12570
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/2020.acl-main.444
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://arxiv.org/abs/2402.13718
https://arxiv.org/abs/2402.13718


A Additional Related Work

In-context learning (ICL) enables models to
quickly recognize and perform tasks during in-
ference by conditioning on a set of provided
demonstrations (Brown et al., 2020). Many pre-
vious works have sought to understand the mecha-
nisms behind in-context learning (ICL). Xie et al.
(2022) suggests that models implicitly perform
Bayesian inference during inference, retrieving rel-
evant skills learned during pretraining. Addition-
ally, Lin and Lee (2024) introduces the concept
of a dual operating mode in ICL: task learning
and task retrieval. With sufficient demonstrations,
models can adapt to unseen tasks learned during
pretraining, thereby enhancing performance as the
number of demonstrations increases. To explore
how many-shot ICL operates, Bertsch et al. (2024)
modified the attention patterns by restricting atten-
tion among individual examples. Their findings
suggest that performance improvements primarily
arise from retrieving similar examples rather than
comprehending the task. However, their experi-
ment is limited to classification tasks. It may also
be biased when comparing full attention and block
attention, as block attention allows access to more
demonstrations. Our work tries to design better
experiments to investigate during many-shot ICL
what skill each task mainly requires from LCLMs.

B Datasets

BANKING77 (Casanueva et al., 2020) is an intent
classification task in the banking domain. It has
over 10k customer service queries labeled with 77
intents.

GoEmotions (Demszky et al., 2020) contains 58
Reddit comments labeled for 27 emotion categories
or Neutral.

DialogRE (Yu et al., 2020) is a relation extrac-
tion dataset that is built based on transcripts of an
American TV show Friends. It comprises 10,168
relation triples for 1,788 dialogues and 36 total rela-
tions types. We only focus on relation classification
for this dataset.

TREC (Li and Roth, 2002; Hovy et al., 2001)
is a question classification dataset with six coarse
and 50 fine class labels. It contains 5,500 questions
in the training set and 500 in the test set.

CLINC150 (Larson et al., 2019) is an intent clas-
sification dataset with 150 intents from 10 domains.

MATH (Hendrycks et al., 2021) is a dataset of
12,5000 challenging completion mathematics prob-

lems. Each problem has a full step-by-step solution.
We use four subdomains from the dataset: algebra,
geometry, counting and probability, and number
theory.

GSM8K (Hendrycks et al., 2021) consists of
8.5K high quality grade school math problems cre-
ated by human problem writers. These problems
take between 2 and 8 steps to solve, and solutions
primarily involve performing a sequence of elemen-
tary calculations using basic arithmetic operations
(+ - / *) to reach the final answer.

BBH (Srivastava et al., 2022) is a subset of 23
challenging BIG-Bench tasks (Suzgun et al., 2022),
which include task categories such as mathematics,
commonsense reasoning, and question answering.
We use four subtasks from BBH-Hard: geomet-
ric shape, salient translation error detection, word
sorting, and dyck languages.

ARC (Clark et al., 2018) is a dataset of 7,787
genuine grade-school level, multiple-choice sci-
ence questions. The dataset is partitioned into a
Challenge Set and Easy Set, where the former con-
tains only questions answered incorrectly by both a
retrieval-based algorithm and a word co-occurrence
algorithm.

GPQA (Rein et al., 2023) is a dataset of 448
multiple-choice questions with detailed explana-
tions written by domain experts in biology, physics,
and chemistry.

XLSUM (Hasan et al., 2021) is a summarization
dataset that focuses on news articles from BBC. In
this work, we focus only on English news articles.

FLORES-200 (Team et al., 2022) is a transla-
tion benchmark that contains many low-resource
languages. We follow Agarwal et al. (2024) and
choose the translation task from Tamil to English.
Additionally, we also test models on Chinese and
Spanish.

C Models

Llama-3.1 8B and 70B (Dubey et al., 2024): We
use both the 8B and 70B Llama 3.1 Instruction
models. These multilingual models are trained on
a 128k context window using position interpola-
tion. The models are further fine-tuned with syn-
thetic long-text Supervised Fine-Tuning (SFT) data
and also undergo Direct Preference Optimization
(DPO) (Rafailov et al., 2024).

GLM-4-9B-Chat (GLM et al., 2024): This
is a 9-billion-parameter multilingual model, also
trained on a 128k context window with position
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interpolation. It is further fine-tuned with labeled
long-text SFT data and undergoes a DPO stage.

Mistral Family (Mistral AI, 2024): We use both
12-billion-parameter and 123-billion-parameter
multilingual models, trained on a 128k context win-
dow.

Qwen2 7B and 72B (Yang et al., 2024): These
two models are trained with a context size of 32k to-
kens, and their context window is extended to 128k
by YARN (Peng et al., 2023), a dynamic position
interpolation technique.

Phi-3 (Abdin et al., 2024): We use the mini
(3.8B), small (7B), and medium (14B) versions of
Phi-3 models. They are trained with the context
size of 4k tokens on high quality data, and Lon-
gRope (Ding et al., 2024) extends their context size
to 128k.

Jamba-1.5-Mini (Team et al., 2024): It’s a hy-
brid SSM-Transformer model with 12B of active
parameters and 52B of total parameters with a con-
text size of 256k tokens.

Gemini-1.5-Pro (Team, 2024): It is a commer-
cial model introduced by Google and has a context
size of 2 million tokens.

D Quantization vs. Regular

We compare the 4-bit quantized version and un-
quantized version of both Llama-3.1 8B and Llama-
3.1-70B. In both Figure 5 and Figure 6, we can ob-
serve that the quantized version experiences a little
performance drop but exhibits the same trend as
the unquantized version with the increasing context
length.
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Figure 5: Comparison between Llama-3.1-8B and 4-bit
quantized Llama-3.1-8B. There are some performance
gaps between two models on translation, science, and
math tasks, but with the increasing context size, the
performance trend is the same for both models.
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Figure 6: Comparison between Llama-3.1-70B and 4-bit
quantized Llama-3.1-70B. Similar to the smaller model,
the performance trends hold for both models except the
translation tasks. In our benchmark, we exclude all the
translation tasks because of the inconsistent multilingual
ability of LCLMs.

E More analysis on Section 4 many-shot
ICL

Subjective tasks do not benefit from more ex-
amples. The GoEmotions task, though being a
classification problem, exhibits a fluctuating per-
formance trend across all models with increasing
shots in Figure 10. We attribute this inconsistency
to the subjective nature of the task, where nuanced
emotional categories may lead to low annotator
agreement (Demszky et al., 2020). This variance in
the annotated labels may results in a weaker correla-
tion between context length and performance. This
finding highlights a limitation in using ICL tasks
with ambiguous ground truths to evaluate LCLMs,
as their performance does not improve with more
demonstrations.

Models’ performance fluctuates on transla-
tion tasks. As shown in Figure 11, the perfor-
mance curves for all models across different lan-
guages differ. For the low-resource language, mod-
els show larger performance gap than those in the
high-resource language, e.g., Spanish. In Chinese,
models become spikier than in other languages
across different context sizes. In Figure 1a, transla-
tion tasks show a very flat curve, with no significant
improvement as the number of demonstrations in-
creases. This result contrasts with Agarwal et al.
(2024), where the Gemini-1.5 Pro model demon-
strated consistent performance improvements in
Kurdish and Tamil translation tasks as the context
size increased. We think the performance incon-
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sistency is caused by the mismatched multilingual
capability of models and different model sizes.

Math tasks benefit from additional demon-
strations, particularly for stronger models. In
math reasoning tasks, only the Llama-3.1 and
Qwen2 model families show significant perfor-
mance improvements with additional demonstra-
tions. Notably, Qwen2 performance plateaus at 16k
length, while Llama-3.1 continues to improve until
64k. The models with larger parameter sizes tend
to exhibit more consistent performance gains, sup-
porting findings from Agarwal et al. (2024) who
have demonstrated that Gemini 1.5 Pro improves
on math tasks with more examples.

F Sample Learning Ratio with
Replacement

To ensure the performance downgrade is not caused
by the absence of certain labels in the experiment
from Section 5, we replace similar examples with
distant examples with the same labels. The new
sample learning ratio formula is scoreoriginal

scorereplace
. We

use Llama-3.1 and Qwen2 models and conduct this
experiment from 1k to 32k with BM25 and from 1k
to 32k with SBERT (Reimers and Gurevych, 2019)
retrievers.

BM25: The trend in Figure 2 matches the results
of Figure 7. All the classification tasks downgrade
performance more when similar examples are re-
placed. However, the degree of downgrade is less
significant than removing similar examples.

SBERT: For SentenceTransformer, we use all-
MiniLM-L6-v2 as the base model. The trends ob-
served from Figure 2 and Figure 7 still hold in
Figure 8. That is, all the classification tasks still
have a higher ratio and the non-classification tasks
have a ratio close to 1.

G A deeper look into all-sample learning
task

In this section, we investigate which ASL tasks
tend to benefit more from additional demonstra-
tions and whether models use all the demonstra-
tions to understand the task during ICL.

To that end, we propose another metric,
Global Context Index, to measure the global con-
text understanding skill required by a task i.e., skills
required to learn from all samples. Specifically, for
each ASL task, we create two variants of demon-
strations, both starting with the same demonstra-
tions used in the 1k context-length experiment. For

context lengths l ranging from 2k to 64k, the unique
variant keeps adding unique demonstrations to the
prompt, whereas the duplicate variant repeats the
same demonstrations as in the 1k context. At each
length l, the performance of the unique variant is
denoted as Perf(l)unique, and the performance of the

duplicate variant as Perf(l)duplicate. We then average

the percentage difference between Perf(l)unique and

Perf(l)duplicate for l = 2k to l = 64k across 6 context
lengths as:

Global Context Index =
1

6

64k∑

l=2k


1−

Perf(l)duplicate

Perf(l)unique




If duplicating examples results in worse perfor-
mance on an ASL task than adding unique exam-
ples, the global context index will be positive and
suggests that the model benefits more from provid-
ing unique demonstrations. This means that per-
formance improvements come from learning from
diverse examples rather than simply picking up on
formatting patterns or relying on spurious corre-
lations between in-domain tokens and predictions.
We use Llama-3.1-70B for the preliminary analysis
because it is best at using additional demonstra-
tions out of all models we have tested so far, e.g., it
shows a high positive correlation between context
lengths and performance in Figure 1b.

In Figure 9, tasks such as the math problems,
summarization, Dyck languages, translation error
detection from BBH, and GPQA with explana-
tions all have worse performance with duplicated
demonstrations. This means that they necessitate
a greater degree of global context understanding
rather than relying on the retrieval of similar ex-
amples. These tasks are often complex reasoning
challenges, for which models may lack pretraining
skills to solve perfectly, underscoring the need for
additional demonstrations or deeper task compre-
hension.

ARC-Easy, ARC-Challenge, GPQA, and BBH
word sorting tasks are indifferent to duplicating
examples. This indicates that these tasks do not
benefit from additional demonstrations. Most of
these tasks assess the intrinsic abilities of the mod-
els reasoning with their parametric knowledge, thus
a few demonstrations suffice.

Adding more demonstrations may introduce dis-
tractions rather than improve performance. Inter-
estingly, GPQA with “chain-of-thoughts” benefit
from additional examples. We suspect that without
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Figure 7: Sample Learning Ratio under the replacement setting with BM25 on all tasks expect XLSUM from 1k to
32k tokens. The ratio of 1 indicates models are not doing retrieval during ICL because similar demonstrations don’t
help models perform better. Similar to Figure 2, classification is the only category of tasks that has a higher ratio,
which means classification tasks largely require model retrieval skills during ICL. The rest of the tasks are close to
1, and the models’ performance on these tasks does not rely on retrieving similar examples.

these solution steps, GPQA is too challenging for
the model to understand even after seeing many
demonstrations with answers only.

9 Strong ASL Tasks. Based on the analy-
sis of the global context index, we remove ARC-
Challenge and BBH word sorting tasks to create
a new category of tasks called strong ASL Tasks.
Evaluation results on strong ASL Tasks are sum-
marized in Table 3.

H Task Performance

In this section, we present the models’ performance
on individual tasks and group them by the task cat-
egories: classification (Figure 10), translation (Fig-
ure 11), summarization (Figure 10), and reasoning
(Figures 12, 13, and 14).

I Error Analysis

In this section, we include examples from MATH,
BBH, and XLSUM tasks, highlighting the per-
formance of Llama-3.1-70B and Qwen2-72B at
both 16k and 128k context lengths. We analyze
the strengths and shortcomings of each model’s
outputs, focusing on accuracy, consistency, and
the impact of extended context lengths on their
reasoning processes. MATH (Table 5, 6, and 7),
BBH-word_sorting (Table 11, 12, and 13), BBH-
dyck_languages (Table 8, 9, and 10), and XLSUM
(Table 14).

Qwen2 and GLM-4 show relatively robust capa-
bilities on both tasks. The Qwen2-72B model
consistently maintains performance across both
SSL and ASL tasks, demonstrating its adaptability
for longer contexts. Trained on data with up to
32k tokens, Qwen2 models employ modified RoPE
frequency and training-free positional interpola-
tion methods to handle longer contexts. However,
the Qwen2 family models drop their performance
from 16k to 32k in the ASL tasks but maintain
their performance after 32k. This raises the ques-
tion of whether the training-free length extension
methods enable models to use additional demon-
strations or merely maintain their performance in
the short context length and ignore additional ex-
amples during many-shot ICL. Meanwhile, GLM-
4-chat also shows a relatively robust performance
at a longer context size and is the only model to
experience a performance increase from 64k to
128k on SSL tasks. GLM-4’s training methodol-
ogy closely mirrors that of Llama 3.1 models, with
adjustments to the RoPE base and continuous train-
ing on long-context data. The difference is, during
SFT, GLM-4-9B follows LongAlign (Bai et al.,
2024), which determines the length distribution of
the long-context SFT data carefully. GLM-4-9B
also goes through the RLHF stage with both short
and long data.

Does LCLM’s poor performance beyond 16k
limit their potential in the world application?
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Figure 8: Sample Learning Ratio under the replacement setting with SBERT on selective tasks from 1k to 32k
tokens. A ratio of 1 signifies that models do not perform retrieval during in-context learning (ICL), as similar
demonstrations do not enhance their performance. As shown in Figure 2, classification tasks are the only category
with a higher retrieval load ratio, indicating a strong dependence on retrieval during ICL. In contrast, other tasks
exhibit ratios close to 1, suggesting minimal reliance on retrieval, with models’ performance largely unaffected by
retrieval-based demonstrations.

In our ASL task evaluation, we distinguish between
more practical tasks, such as XLSUM and MATH,
and less real-world-relevant tasks, such as sym-
bolic reasoning and ARC. To assess whether poor
ASL performance beyond 16K tokens translates to
real-world limitations, we analyzed the correlation
between these tasks for three models that exhibit
significant degradation after 16K tokens. In Figure
15, for Phi-3-Medium and Mistral-Large, we ob-
served strong correlations across all tasks, which
likely stems from their uniformly poor performance
across the board. In contrast, Llama-3.1-70B ex-
hibits a distinct pattern: while word sorting (a less
practical task) does not correlate well with other
tasks, all other ASL tasks show strong mutual cor-
relations. Based on these findings, we believe that
LCLMs’ poor performance on ASL tasks beyond
16K tokens is a fair indicator of their limitations in
real-world applications, where long-context under-
standing is often essential.
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Figure 9: Global context index is the average % difference between adding duplicated vs. unique examples from 2k
to 64k context for non-retrieval tasks. 0% means duplicating does not harm the model’s performance. Easy tasks
such as ARC and word sorting do not benefit from additional information. When a task is too difficult, e.g., GPQA,
the model cannot effectively learn all demonstrations unless explanations are provided.

ASL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 36.79 36.23 38.30 39.30 37.60 37.94 36.53 35.45 37.27 36.64
Mistral-Nemo-Instruct 33.94 34.88 34.92 34.72 28.22 28.64 26.28 23.23 30.60 26.05
Mistral-Large-Instruct-AWQ 57.09 56.30 56.21 56.12 56.43 53.33 42.98 13.10 48.94 36.47
Llama-3.1-8B-Instruct-AWQ 31.31 32.79 33.02 34.50 34.25 35.22 33.71 27.88 32.84 32.27
Llama-3.1-70B-Instruct-AWQ 45.53 47.60 48.39 49.08 49.64 49.83 47.74 13.88 43.99 37.23
Qwen2-7B-Instruct-AWQ 37.75 39.47 43.86 44.55 42.83 35.17 33.00 32.70 38.67 33.62
Qwen2-72B-Instruct-AWQ 47.38 49.03 50.32 50.69 50.78 48.56 48.18 48.68 49.20 48.47
Phi-3-Mini-Instruct 29.86 29.20 26.61 26.95 27.65 26.34 25.54 23.08 26.90 24.98
Phi-3-Medium-Instruct 37.74 37.15 31.49 32.02 33.04 33.19 33.06 24.56 32.78 30.27
Phi-3-Small-Instruct 38.40 38.40 38.35 31.69 34.04 34.59 33.74 32.46 35.21 33.60
Jamba-1.5-Mini 27.86 29.04 28.93 28.86 27.86 24.92 23.12 22.42 26.63 23.48
Gemini-1.5-Pro 58.26 60.88 61.30 65.20 65.05 65.12 62.38 63.61 62.73 63.70

Table 3: Model performance on strong ASL tasks. AVG. is the average model performance of all context lengths.
AVG.L. is the average model performance of 32k, 64k and 128k. Red indicates performance improvement com-
pared to 1k. Blue indicates performance downgrade compared to 1k. A darker color means higher improvement
or downgrade. BOLD number means the largest number of a column.
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Figure 10: Models’ performance on all classification tasks. All tasks except GoEmotions show a very consistent
gain with increasing context size. We excluded GoEmotions from our benchmark because of the data’s strong
subjectivity.
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Figure 11: Models’ performance on all translation tasks and the summarization task. For translation tasks, we
do not observe a clear pattern among different languages and models, which can be caused by LCLMs’ different
multilingual abilities. We can see a slightly positive trend for the summarization task.
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Figure 12: Models’ performance on all math tasks. Overall, the larger and stronger models benefit more from the
increasing context window size on math tasks.
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Figure 13: Models’ performance on all science tasks. For the ARC task, the performance of all models stays
the same across all context sizes. For GPQA, we can see larger and more robust LCLMs keep or increase their
performance with the increasing context size.
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Figure 14: Models’ performance on all symbolic tasks. For the geometric shape and translation error detection tasks,
we can all model benefit from the increasing context length. We suspect the word sorting task may too easy for the
models, so the lines are flat. For the dyck language task, the models experience performance gain up 16k context
length but start downgrading afterward.

25623



(a) Llama-3.1-70B-Instruct’s correlation (b) Mistral-Large’s correlation

(c) Phi-3-Medium’s correlation

Figure 15: Correlation table among ASL tasks.

(a) Llama-3.1-70B-Instruct’s generation length on XLSUM (b) Qwen2-72B-Instruct’s generation length on XLSUM

Figure 16: XLSUM generation length
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(a) Llama-3.1-70B-Instruct’s generation length on MATH
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(b) Qwen2-72B-Instruct’s generation length on MATH

Figure 17: MATH generation length
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Task Example

banking77 Query: I have multiple of the same transaction
Intent: transaction_charged_twice

goEmotions Comment: It is bad tho.
Category: disapproval

dialogRE Dialogue: Speaker 1: I’m divorced! I’m only 26 and I’m divorced! Speaker 2:
Shut up! Speaker 3: You must stop! Speaker 1: That only took me an hour.
The list of 1 relations are (Speaker 1,26)
The respective relations between each entity pair are: per:age

trec_50 Question: Describe the Finnish music personality Salonen ’s appearance .
Type: DESC:desc

clinc150 Query: i need a good joke about office parties
Intent: tell_joke

MATH-algebra Problem: How many cubic feet are in three cubic yards?
Solution: Cubing both sides of 1 yard = 3 feet we find that 1 cubic yard equals
27 cubic feet. Therefore, 3 cubic yards are equal to 27 · 3 = 81 cubic feet.

MATH-geometry Problem: In quadrilateral ABCD, BC = 8, CD = 12, AD = 10, and
m ̸ A = m̸ B = 60◦. Given that AB = p +

√
q, where p and q are positive

integers, find p+ q.

Solution: [asy]draw((0,0)–(20.87,0)–(15.87,8.66)–(5,8.66)–cycle);
draw((5,8.66)–(5,0)); draw((15.87,8.66)–(15.87,0)); draw((5,8.66)–
(16.87,6.928)); label("A",(0,0),SW); label("B",(20.87,0),SE);
label("E",(15.87,8.66),NE); label("D",(5,8.66),NW); label("P ",(5,0),S);
label("Q",(15.87,0),S); label("C",(16.87,7),E); label("12",(10.935,7.794),S);
label("10",(2.5,4.5),W); label("10",(18.37,4.5),E); [/asy]
Draw line segment DE such that line DE is concurrent with line BC. Then,
ABED is an isosceles trapezoid so AD = BE = 10, and BC = 8 and
EC = 2. We are given that DC = 12. Since ̸ CED = 120◦, using the Law
of Cosines on △CED gives

122 = DE2 + 4− 2(2)(DE)(cos 120◦),

which simplifies to 144 − 4 = DE2 + 2DE. Adding 1 to both sides yields
(DE + 1)2 = 141, so DE =

√
141− 1. In the 30−60−90 triangles △DAP

and △EBQ, we have AP = BQ = 5. Since PQ = DE, it follows that

AB = AP + PQ+BQ = 5 + (
√
141− 1) + 5 = 9 +

√
141,

so (p, q) = (9, 141) and p+ q = 150 .

MATH-counting Problem: Sarah wants to order a pizza with 2 different toppings. She has 9
different toppings to choose from. How many different pizzas could she order?
Solution: There are 9 choices of toppings, and we need to choose 2 distinct
toppings. This is represented by the number of 2-element subsets of a 9-element
set. We use the binomial coefficient

(
9
2

)
= 36 to compute this.

MATH-
number_theory

Problem: Express eleven in base 2.
Solution: We have 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20, so 11 = 1011_2 .
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BBH-
geometric_shapes

Input: This SVG path element <path d="M 53.64,29.71 L 61.55,33.55
M 61.55,33.55 L 65.49,42.75 M 65.49,42.75 L 60.75,49.85
M 60.75,49.85 L 54.92,52.75 L 48.80,50.52 M 48.80,50.52
L 44.97,43.03 M 44.97,43.03 L 46.15,33.55 M 46.15,33.55 L
53.64,29.71"/> draws a
Options: (A) circle, (B) heptagon, (C) hexagon, (D) kite, (E) line, (F) octagon,
(G) pentagon, (H) rectangle, (I) sector, (J) triangle
Target: (F)

BBH-
salient_translation_
error_detection Input: The following translations from German to English contain a particular

error. That error will be one of the following types: Named Entities (an entity
is changed), Numerical Values (values or units are changed), Modifiers or Ad-
jectives (modifiers are changed), Negation or Antonyms (negations or opposites
are altered), Facts (trivial factual errors), Dropped Content (significant content
is removed). Please identify that error.
Source: Die unvollständige Liste der Baudenkmale in Barsinghausen enthält
Baudenkmale der Barsinghausener Kernstadt sowie der Ortsteile Bantorf, Bar-
rigsen, Eckerde, Egestorf, Göxe, Großgoltern, Groß Munzel, Hohenbostel,
Holtensen, Kirchdorf, Landringhausen, Langreder, Nordgoltern, Ostermunzel,
Stemmen, Wichtringhausen und Winninghausen.
Translation: The complete list of architectural monuments in Barsinghausen
contains architectural monuments of the Barsinghausen core town as well as
the districts bantorf, Barrigsen, Eckerde, Egestorf, Göxe, Großgoltern, Groß
Munzel, Hohenbostel, Holtensen, Kirchdorf, Landringhausen, Langreder, Nord-
goltern, Ostermunzel, Stemmen, Wichtringhausen and Winninghausen.
The translation contains an error pertaining to
Options: (A) Modifiers or Adjectives, (B) Numerical Values, (C) Negation or
Antonyms, (D) Named Entities, (E) Dropped Content, (F) Facts
Target: (C)

BBH-word_sorting Input: Sort the following words alphabetically: List: thrill splutter panicking
scorch same dot prod obstetric malton onus drumhead delmarva barn embezzle
it&t damp guru subsist entirety greene
Target: barn damp delmarva dot drumhead embezzle entirety greene guru it&t
malton obstetric onus panicking prod same scorch splutter subsist thrill

BBH-
dyck_languages

Input: Complete the rest of the sequence, making sure that the parentheses are
closed properly. Input: ( [ [ [ ] ] < [ < [ ] > ] >
Target: ] )

GPQA Question: Determine which set of states mentioned below are only entangled
states:
(a) 1√

30
(|00⟩+ 2i|01⟩ − 3|10⟩ − 4i|11⟩)

(b) 1
5 (|00⟩+ 2i|01⟩ − 2|10⟩ − 4i|11⟩)

(c) 1
2 (|00⟩+ |01⟩+ |10⟩ − |11⟩)

(d) 1
2 (|00⟩+ |01⟩ − |10⟩ − |11⟩)

Options: A. a,b B. b,d C. c,d D. a,c
Answer: D
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GPQA_cot Question: Determine which set of states mentioned below are only entangled
states:
(a) 1√

30
(|00⟩+ 2i|01⟩ − 3|10⟩ − 4i|11⟩)

(b) 1
5 (|00⟩+ 2i|01⟩ − 2|10⟩ − 4i|11⟩)

(c) 1
2 (|00⟩+ |01⟩+ |10⟩ − |11⟩)

(d) 1
2 (|00⟩+ |01⟩ − |10⟩ − |11⟩)

Options: A. a,b B. b,d C. c,d D. a,c
Answer: D
Explanation: For a state a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, separability requires
a · d = b · c. This condition is not met for option a,c; hence both states are
entangled.

ARC-Challenge Question: One important difference between living things and nonliving things
is that only living things have
1. compounds 2. elements 3. molecules 4. cells
Answer: 4

ARC-Easy Question: Infections may be caused by
1. mutations 2. microorganisms 3. toxic substances 4. climate changes
Answer: 2

MT_Kurdish English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Kurdish: ...

MT_Chinese English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Chinese: ...

MT_Spanish English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Spanish: En las tiendas de cada esquina hay una enorme y confusa
variedad de tarjetas de telefonía prepagas que pueden utilizarse en teléfonos
públicos o comunes.

GSM8K Question: If one Burmese python can eat one 50-cm alligator per week, how
many Burmese pythons would it take to eat fifteen 50-centimeter alligators in
three weeks?
Answer: 15 alligators eaten over 3 weeks gives a rate of 15/3 = 5 alligators
per week. Thus, at 1 alligator per week per python, it would take 5 pythons to
eat 15 alligators.
5

Table 4: Input and output example from each task
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Task: Math-Algebra

Problem:
A triangle has vertices at coordinates (11, 1), (2, 3) and (3, 7). What is the number of units in the
length of the longest side of the triangle?

Difficulty: Level 3

Solution:
We must find the distance between each pair of points by using the distance formula. The distance
between (11, 1) and (2, 3) is

√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85. The distance between

(2, 3) and (3, 7) is
√
(2− 3)2 + (3− 7)2 =

√
1 + 16 =

√
17. The distance between (3, 7) and

(11, 1) is
√

(11− 3)2 + (1− 7)2 =
√
64 + 36 =

√
100 = 10. 10 is larger than

√
85 and

√
17.

Thus, the longest side of the triangle has length 10 .

Model: Llama-3.1-70B

16k Solution:
The longest side of the triangle is the side with the greatest length. The length of a side can be
found using the distance formula, which is

√
(x2 − x1)2 + (y2 − y1)2.

We can use this formula to find the lengths of the three sides of the triangle. The first side has a
length of √

(11− 2)2 + (1− 3)2 =
√
92 + 22 =

√
85.

The second side has a length of
√
(11− 3)2 + (1− 7)2 =

√
82 + 62 =

√
100 = 10.

The third side has a length of
√

(2− 3)2 + (3− 7)2 =
√
12 + 42 =

√
17.

The longest side of the triangle is the side with the greatest length, which is the second side with a
length of 10 units.

128k Solution:
We use the distance formula:

√
(−1− 2)2 + (2− 3)2 + (3− 7)2 =

... Repeat 13 times
√
(−1− 2)2 + (2− 3)2 + (3− 7)2 = 10 .

Model: Qwen2-72B

16k Solution:
We must find the distance between each pair of points.

The distance between (11, 1) and (2, 3) is
√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85.

The distance between (11, 1) and (3, 7) is
√
(11− 3)2 + (1− 7)2 =

√
64 + 36 =

√
100 = 10.

The distance between (2, 3) and (3, 7) is
√
(2− 3)2 + (3− 7)2 =

√
1 + 16 =

√
17.
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Thus, the longest side of the triangle has length 10 .

128k Solution:
We find the distance between each pair of points. The distance between (11, 1) and (2, 3)
is

√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85. The distance between (11, 1) and (3, 7) is√

(11− 3)2 + (1− 7)2 =
√
64 + 36 =

√
100 = 10. The distance between (2, 3) and (3, 7)

is
√
(2− 3)2 + (3− 7)2 =

√
1 + 16 =

√
17. Therefore, the longest side of the triangle has length

10 .

Analysis: At 128k, Llama-3.1-70B misapplies the distance formula and repeats the same incorrect
computation multiple times. Although the final boxed answer is correct, the reasoning is completely
flawed. In contrast, Qwen2-72B maintains consistent reasoning in both 16k and 128k solutions and
arrives at the correct answer 10 .

Table 5: An example problem from MATH_algebra
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Task: MATH-counting_and_probability

Problem:
Sarah wants to order a pizza with 2 different toppings. She has 9 different toppings to choose from.
How many different pizzas could she order?

Difficulty: Level 1

Solution:
There are 9 choices of toppings, and we need to choose 2 distinct toppings. This is represented by
the number of 2-element subsets of a 9-element set. We use the binomial coefficient

(
9
2

)
= 36 to

compute this.

Model: Llama-3.1-70B

16k Solution:
There are

(
9
2

)
= 36 different pizzas she could order.

Solution at 128k:
Sarah can choose 2 different toppings from 9 different toppings. There are

(
9
2

)
= 42 ways to choose

2 different toppings. For each of these 42 different toppings, there are 2 different pizzas, one with
the first topping first and the other with the second topping first. Therefore, there are 42 · 2 = 84
different pizzas.

Model: Qwen2-72B

16k Solution:
Sarah can choose 2 toppings from 9 in

(
9
2

)
= 36 ways.

Solution at 128k:
Sarah can choose her first topping in 9 ways. For the second topping, she has 8 choices left. So,
there are 9× 8 = 72 ways to choose the toppings. However, since the order of the toppings does
not matter, we have counted each pair of toppings twice. Therefore, the number of different pizzas

she can order is
9× 8

2
= 36 .

Analysis:
Llama-3.1-70B’s 128k solution incorrectly computes the number of ways to choose 2 toppings by
mistakenly taking

(
9
2

)
as 42 and then multiplying by 2, resulting in an incorrect answer of 84 . In

contrast, Qwen2-72B’s 128k solution correctly accounts for the unordered nature of the topping
selection, arriving at the correct answer of 36 .

Table 6: An example problem from MATH_counting_and_probability
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Task: MATH-number_theory

Problem:
Tim is doing a cakewalk with 11 steps. He takes his first step on step 1 and takes a total of 139
steps, walking in a circle (so that after the 11th step he reaches the first step again). Which step of
the cakewalk does he end on?

Difficulty: Level 2

Solution:
When you divide 139 steps by 11 steps, you get 12 with a remainder of 7. Therefore, Tim lands on
step 7 .

Model: Llama-3.1-70B

16k Solution:
We can write 139 = 11 · 12 + 7. Thus, after 12 full cycles, he will end up 7 steps from the first
step. Since 7 is less than 11, he will end up on the 7th step of the cakewalk. Thus, the answer is 7 .

Solution at 128k:
Since 139 is divisible by 11, the number of steps is a multiple of 11. Since 139 is less than 200, the
number of steps is less than 200 and therefore is 139 or 139− 1 or 139− 2 or 139− 3 or 139− 4
or 139− 5 or 139− 6 or 139− 7 or 139− 8 or 139− 9 or 139− 10 or 139− 11 or 139− 12 or
139− 13 or 139− 14 or 139− 15 or 139− 16 or 139− 17 or 139− 18 or 139− 19 or 139− 20 or
139− 21 or 139− 22 or 139− 23 or 139− 24 or 139− 25 or 139− 26 or 139− 27 or 139− 28 or
139− 29 or 139− 30 or 139− 31 or 139− 32 or 139− 33 or 139− 34 or 139− 35 or 139− 36 or
139− 37 or 139− 38 or 139− 39 or 139− 40 or 139− 41 or 139− 42 or 139− 43 or 139− 44 or
139− 45 or 139− 46 or 139− 47 or 139− 48 or 139− 49 or 139− 50 or 139− 51 or 139− 52
or 139− 53 or . . . (incomplete reasoning)

Model: Qwen2-72B

16k Solution:
We can think of this problem as finding the remainder when 139 is divided by 11. Dividing 139
by 11, we get a quotient of 12 and a remainder of 7. This means that after taking 139 steps, Tim
will have completed 12 full circles of 11 steps each, and will be on the 7th step of the next circle.
Therefore, Tim ends on step 7 .

Solution at 128k:
We can write 139 ≡ 3 (mod 11), so Tim ends on step 3 .

Analysis:
Both models correctly solved the problem in their 16k solutions. However, the 128k solution from
Llama-3.1-70B devolves into a repetitive and incorrect calculation process, while Qwen2-72B’s
128k solution misapplies modular arithmetic, leading to an incorrect result.

Table 7: An example problem from MATH-number_theory
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Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: <<{{{<[(<>{()})]>}}}

Difficulty: Level 4

Solution:
> >

Model: Llama-3.1-70B

16k Solution:
> >

Solution at 128k:
> >

Model: Qwen2-72B

16k Solution:
> >

Solution at 128k:
> >

Analysis:
Both models, Llama-3.1-70B and Qwen2-72B, consistently provide the same answer > > for all
context lengths. Their responses correctly complete the given Dyck language sequence by closing
the parentheses appropriately.

Table 8: An example problem from BBH-dyck_languages

25633



Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: [<<[{<>([{}{{<>}{}}])}[[[([()[[{<[{{}}]>]>}]]])<<[[(<<()>>)]>>[]]]<([])>
{((<{}>))}>>

Difficulty: Level 5

Solution:
]

Model: Llama-3.1-70B

16k Solution:
]

Solution at 128k:
> )

Model: Qwen2-72B

16k Solution:
]

Solution at 128k:
]

Analysis:
The expected correct solution to complete the sequence is ]. Both models provide the correct
answer in their 16k solutions. However, at 128k, Llama-3.1-70B deviates from its earlier correct
response and outputs > ), which is incorrect. Qwen2-72B remains consistent across both context
lengths by providing the correct solution ].

Table 9: An example problem from BBH-dyck_languages
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Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: [<<[[](){}{<>([{}{{<>}{}}])}[[[([()[[{<[{{}}<{{<()>}}>]>}]]])<<[[(<<()>>)]
>>[]]]<([])>{((<{}>))}>>

Difficulty: Level 5

Solution:
]

Model: Llama-3.1-70B

16k Solution:
]

Solution at 128k:
> )

Model: Qwen2-72B

16k Solution:
]

Solution at 128k:
]

Analysis:
The expected correct solution to complete the sequence is ]. Both models provide the correct
answer in their 16k solutions. However, at 128k, Llama-3.1-70B deviates from its earlier correct
response and outputs > ), which is incorrect. Qwen2-72B remains consistent across both context
lengths by providing the correct solution ].

Table 10: An example problem from BBH-dyck_languages
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Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: sediment varsity towel fracture

Difficulty: Level 1

Solution:
frature sediment towel varsity

Model: Llama-3.1-70B

16k Solution:
fracture sediment towel varsity

Solution at 128k:
fracture sediment towel varsity

Model: Qwen2-72B

16k Solution:
fracture sediment towel varsity

Solution at 128k:
fracture sediment towel varsity

Analysis:
Both models, Llama-3.1-70B and Qwen2-72B, consistently produce the correct alphabetical order:
fracture sediment towel varsity, regardless of the context length (16k or 128k). Their
responses are accurate and demonstrate stable performance for this word-sorting task.

Table 11: An example problem from BBH-word_sorting
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Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: papaw perfidious frugal labial feel sonar blunderbuss box dinnertime oresteia

Difficulty: Level 3

Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Model: Llama-3.1-70B

16k Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Solution at 128k:
box dinnertime labial oresteia papaw perfidious frugal labial sonar perfidious

Model: Qwen2-72B

16k Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Solution at 128k:
blunderbuss box dinnertime feel frugal labial oresteia papaw

Analysis:
Both models correctly produce the alphabetical ordering in their 16k solutions: blunderbuss box
dinnertime feel frugal labial oresteia papaw perfidious sonar.
However, at the 128k context length, Llama-3.1-70B returns an incorrect and inconsistent ordering
(box dinnertime labial oresteia papaw perfidious frugal labial sonar perfidious),
while Qwen2-72B provides an incomplete solution (blunderbuss box dinnertime feel frugal
labial oresteia papaw).

Table 12: An example problem from BBH-word_sorting

25637



Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: logarithm robertson inanimate uganda micron incurring wilcox lumber sammy souvenir
newman profuse maladapt cone butch airlift homeowner

Difficulty: Level 4

Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Model: Llama-3.1-70B

16k Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Solution at 128k:
airlift cone butch inanimate homeowner incurring logarithm micron newman profuse robertson
uganda wilcox

Model: Qwen2-72B

16k Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Solution at 128k:
airlift butch cone homeowner inanimate incurring logarithm maladapt micron newman profuse
robertson sammy souvenir uganda wilcox

Analysis:
Both models correctly output the full alphabetical ordering in their 16k solutions: airlift butch
cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox.

At 128k, Llama-3.1-70B produces an output that is missing several words (e.g., lumber, sammy,
and souvenir) and reorders some items incorrectly, while Qwen2-72B’s 128k solution is mostly
correct but also omits lumber compared to the expected solution.

These discrepancies indicate that both models encounter difficulties maintaining full consistency at
the extended 128k context length for this word sorting task.

Table 13: An example problem from BBH-word_sorting
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News Article:
’Philip Bevington, of Camborne, admitted two counts of cultivating cannabis at Truro Crown
Court. He told police they were for medicinal purposes to alleviate pain from kidney failure, after
being caught by officers twice in two months. Bevington was sentenced to a two-year conditional
discharge by Judge Simon Carr, who ordered the drugs destroyed. Officers went to Bevington’s
home to investigate a "strong smell of cannabis" in November 2019, the court heard. The 80-
year-old showed them a sophisticated hydroponic growing set up in his garage housing 30 plants,
including a ventilation system, lamps hanging from his ceiling and plastic sheets lining the walls.
These plants had the potential to grow three crops a year, which would have had a street selling
value of £12,600 to £37,800, the court was told. The same police officers returned two months later
in January 2020 and found 44 plants. Judge Simon Carr acknowledged Bevington was growing
the cannabis for his "own personal use to alleviate pain", while suffering from his condition and
mobility issues, which left him housebound. Related Internet Links HM Courts & Tribunals Service
- GOV.UK

Reference Summary:
’An 80-year-old man caught twice by police with dozens of cannabis plants claimed he used them
to treat pain.’

Model: Llama-3.1-70B

16k Summary:
An 80-year-old man has been given a two-year conditional discharge for growing cannabis for
medicinal purposes.

Summary at 128k:
A man in Camborne has been sentenced to a two-year conditional discharge for cultivating cannabis.
He told police the plants were for medicinal purposes to alleviate pain from kidney failure.

Model: Qwen2-72B

16k Summary:
An 80-year-old man who grew cannabis to alleviate pain from kidney failure has been given a
conditional discharge.

Summary at 128k:
An 80-year-old man who grew cannabis to ease the pain of kidney failure has been given a
conditional discharge.

Analysis:
Llama-3.1-70B’s 128k output provides additional location context ("Camborne") and repeats the
reason for cultivation, while Qwen2-72B maintains consistency between the 16k and 128k outputs
with only minor stylistic differences in phrasing.

Table 14: An example news article generation from Llama-3.1-70B and Qwen2-72B
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