PRMBENCH: A Fine-grained and Challenging Benchmark for
Process-Level Reward Models

Mingyang Song'?, Zhaochen Su?®, Xiaoye Qu?, Jiawei Zhou*’, Yu Cheng®"
'Fudan University, 2Shanghai Al Laboratory, 3Soochow University
4Stony Brook University, *The Chinese University of Hong Kong
mysong23@m. fudan.edu.cn; suzhaochen?110@gmail. com;
guxiaoye@pjlab.org.cn; jzhou@ttic.edu; chengyu@cse. cuhk.edu.hk;
Project Page: https://prmbench.github.io

Abstract

Process-level Reward Models (PRMs) are
crucial for complex reasoning and decision-
making tasks, where each intermediate step
plays an important role in the reasoning pro-
cess. Since large language models (LLMs)
suffer from various types of errors during the
reasoning process, PRMs are required to pos-
sess nuanced capabilities for detecting vari-
ous implicit error types in real-world scenar-
ios. However, current benchmarks primarily
focus on step correctness, failing to evaluate
PRMSs’ performance systematically. To address
this gap, we introduce PRMBENCH, a process-
level benchmark specifically designed to assess
the fine-grained error detection capabilities of
PRMs. PRMBENCH comprises 6,216 carefully
designed problems and 83,456 step-level labels,
evaluating models across multiple dimensions,
including simplicity, soundness, and sensitiv-
ity. In our experiments on 25 models, span-
ning across both open-source PRMs and LLMs
prompted as critic models, we uncover signifi-
cant weaknesses in current PRMs. These find-
ings reveal the challenges inherent in process-
level evaluation and highlight key directions
for future research, establishing PRMBENCH
as a robust testbed for advancing research on
PRM evaluation and development.

1 Introduction

Recent large language models (LLMs) (OpenAl,
2024a,b; Team, 2024a), trained on large-scale rein-
forcement learning, have achieved significant per-
formance in complex reasoning tasks such as math-
ematics and code generation (Yu et al., 2023; Guo
et al., 2024; DeepMind, 2024; Luo et al., 2023; Qu
et al., 2025). A key factor behind their successes is
the use of process reward models (PRMs) (Wang
et al., 2023; Lightman et al., 2023; Uesato et al.,
2022), which can help evaluate the correctness of

"Equal senior contribution

is a three-dimensional vector, prove that:
Vri1,72,3r1 < 7* < r such that
Question Q@ F(ry) — F(rz) = (r1 — r2) VE(r*) .

Given that F(r) = (f(r), g(r), h(r)) PO
(7] @ N

ReasonEval-34B MathShepherd-78

(g
real-valued functions: ¢ (a) — ¢(b) = (a — b)p/(c)
@
Step 3. Apply the scalar MVT to each component ... However, X 54

these points 77, 73, 73 might not coincide. We want a
0.53 @ 0.88 o

single r* that works for all components.

!
(02249
6

Step 1. Understand the Given Information ...
Step 2. Recall the classical Mean Value Theorem for

Step 4. In the one-dimensignal case, an elegant ...

Step 5. By the Mean Value Theorem (in its integral form
for real functions, there is a single 7* € (r1,72) such that

[T FO@ = -6 = (=) (767 07 K 0).
T2

Step 6. Conclusion F(r1) —F(r2) = (r1 —ra) VF(r").

Figure 1: (Left): Given a question (), the reasoning step
2 and 5 of OpenAl-ol model contains errors. (Right):
The step-level reward scores generated by ReasonEval-
34B (Xia et al., 2024b) and MathShepherd-7B (Wang
et al., 2023). Green scores indicate the PRM prefer
labeling this step as correct while red scores indicate the
PRM prefer identifying this step as incorrect.

reasoning steps and train LLMs with appropriate
rewards. (Qin et al., 2024; Zhang et al., 2024b).

However, during the reasoning process of the
LLM, it suffers from various types of errors, while
recent PRMs are not able to identify all these error
types precisely. For instance, as illustrated in Fig-
ure 1, given a question (), OpenAl ol model (Ope-
nAl, 2024b) generates a reasoning procedure con-
taining errors, where step 2 is redundant, step 5 is
inconsistent with step 3, and the theory used in step
5 is incorrect due to deception falling. Under these
circumstances, ReasonEval-34B (Xia et al., 2024b)
and Math-Shepherd-7B (Wang et al., 2023) fail to
identify these errors accurately. Math-Shepherd-
7B fails to recognize step 5 as an error, while
ReasonEval-34B correctly identifies step 5 but in-
correctly classifies step 4 as an error, indicating the
unreliability of current PRMs.

To evaluate the diverse error-detection capabili-
ties of PRMs, we present PRMBENCH, a compre-
hensive and fine-grained benchmark specifically

25299

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25299-25346

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://prmbench.github.io/

PRM Error Type Fine-grained Step Annotator Test Case Average

Benchmarks? Detection? classes’ Evaluation Size Steps
MR-GSMSK (Zeng et al., 2023) X X 1 v Human 2,999 8.3
RMBench (Liu et al., 2024) X 1 X Synthetic + Human 1,327 -
CriticBench (Lin et al., 2024) X X 1 X - -
MathCheck-GSM (Zhou et al., 2024) X X 1 v Synthetic 516 -
MR-Ben (Zeng et al., 2024b) X X 1 v Human 5,975 9.5
ProcessBench (Zheng et al., 2024) v X 1 v Human 3,400 7.1
PRMBENCH v v 9 v Synthetic + Human 6,216 13.4

Table 1: Comparison between our proposed PRMBENCH and other benchmarks or datasets related to reasoning
process assessment. ': Fine-grained classes mean the number of evaluation categories according to fine-grained

error types of model generation.

designed for assessing PRMs. In contrast to ex-
isting process-level benchmarks, which can only
evaluate the detection of a single error type (Zheng
et al., 2024; Zeng et al., 2024b), PRMBENCH of-
fers a more nuanced evaluation. Specifically, PRM-
BENCH systematically assesses the performance
of PRMs across diverse error categories, including
simplicity, soundness, and sensitivity. Our bench-
mark includes 6,216 fine-grained data instances
spreading across three major evaluation categories
and nine sub-categories, whose quality is ensured
by professional annotators. Additionally, we uti-
lize style-controlled data curation methods to en-
sure evaluation samples under consistent difficulty
levels, mitigating confounding variables.

In our study, we conduct extensive experiments
using PRMBENCH to evaluate 25 models, includ-
ing dedicated PRMs and SOTA general-purpose
or mathematical LLMs, prompted as critic models.
We observe that all PRMs partially grasp multi-
step process evaluation. Specifically, Gemini-2-
Thinking achieves the best performance of 68.8,
but still significantly falls behind the human per-
formance of 83.8. Through extensive analysis, we
discover a significant inconsistency between step-
level and outcome-level evaluations. By evaluating
models with PRMBENCH, we can assess PRMs’
ability to detect step-level errors and false positives,
reducing the risk of outcome hacking (Gao et al.,
2025). To sum up, our contributions are as follows:

* We present PRMBENCH, the first comprehensive
process-level reward model benchmark, compris-
ing 6,216 carefully curated samples and 83,456
step-level labels for a series of evaluations on
process-level reward models.

* PRMBENCH covers three carefully-crafted eval-
uation categories and nine sub-categories includ-
ing simplicity, soundness, and sensitivity. With
these fine-grained evaluation axes, we can con-
duct tailored assessments of models on their spec-

ified capabilities and reveal their potential weak-
nesses during the rewarding procedure.

* Based on our proposed PRMBENCH, we con-
duct in-depth pilot experiments on twenty-five
models including PRMs along with SOTA LLMs.
Our findings uncover critical weaknesses and pro-
vide valuable insights to guide future research to
improve the capabilities of PRMs.

¢ To facilitate future research, we release the PRM-
EVAL toolkit, offering an automated evaluation
framework and customizable data generation sys-
tem. We hope PRMBENCH will drive progress in
step-level reasoning for RLHF and foster further
development of more reliable PRMs.

2 Related Work

2.1 Process-level Reward Models

Process-level reward models (PRMs) have shown
improvements over traditional outcome-level re-
ward models (ORMs) in enhancing process-level
reasoning accuracy and long-process reasoning
abilities (Lightman et al., 2023; Uesato et al., 2022).
Recently, several PRMs have been proposed for
process-level RLHF (Wang et al., 2023; Xia et al.,
2024b; ol Team, 2024), with Lightman et al. (2023)
releasing a large dataset for multi-step reasoning,
and Wang et al. (2023) introducing an automatic
self-supervised pipeline for process-level labeling.
Xia et al. (2024b) uses PRMs as auto-evaluators for
multi-step reasoning accuracy. As PRM training
and data curation have grown, numerous PRMs
(o1 Team, 2024; Xiong et al., 2024; Team, 2024b;
Gao et al., 2024) have emerged, along with critic
models using LLM-generated feedback (McAleese
et al., 2024; Zhang et al., 2024a; Gao et al., 2024).
However, both PRMs and critic models remain falli-
ble, highlighting the need for comprehensive bench-
marks. In this paper, we propose PRMBENCH, a
comprehensive benchmark for evaluating PRMs on

25300

Select correct Empirical Soundness

Data Construction Procedure

A —>C —>(B
solution path A—>»(C —{B c £\ A —>B
PRM800K
% N A
(a). Original Data Instances G
1.2 3 ES. CL. Multi-Solution Consistency
Questions @ Steps § Answers A Step Consistency B~»>C
A—>B—>C Y N5
N
(b). Data Construction & Annotation \x/ B »>C -7
Perturbate on Original
Steps Domain Consistency Deception Resistance
< - o
LLMs -y W g 8 2(A-->A) 8
T] I
Filter Out Low-Quality 1= 2 v g G =
Annotator Samples and check DO BY)-- (B o OB ~B g
manually
N Confit Invariance Prerequisite Sensitivity
(" (c). Evaluation Data Instances a TS A
123 R—>E>C ’_//—> g S N —
9 Q" 0=0-0 ' Erroncous Steps ReasonEval-34B —@- Skywork-1.5B ol-mini RN — C
0 Q 1.2 3 S Correct Steps i ~m- MATHMinos-7B —#— Gemini-thinking ~ —®— GPT-40 '\M /
0-0-0 P Confident —&— MathShepherd-7B -

PRMBench: A Comprehensive Evaluation of PRMs

Non-Redundancy

Non-Circular Logic

Figure 2: An overview of our PRMBENCH. The left part illustrates our data curation procedure. In the right part of
the figure, we showcase demonstrations of our evaluation categories and the relative performance of tested models,
with green, yellow , and gray boxes indicating simplicity, soundness, and sensitivity respectively, where |red

circles represent erroneous steps and | green | circles indicate correct regular steps.

fine-grained subjects, establishing a strong founda-
tion for PRM evaluation.

2.2 Reasoning Benchmarks

Evaluating the reasoning capabilities of LLMs is
crucial for understanding their potential and limi-
tations. ROSCOE (Golovneva et al., 2022) intro-
duces a semantic comparison-based multi-step rea-
soning accuracy evaluation benchmark. However,
recent research suggests that labeled data cannot
be assumed to cover all possible solution paths ex-
haustively (Wang et al., 2023; Xia et al., 2024b).
To address this, Xia et al. (2024b) uses PRMs or
Critic models to evaluate step-level reasoning ac-
curacy. However, PRMs are not always accurate in
assessing process-level data, underscoring the need
for a comprehensive evaluation benchmark. While
other benchmarks (Liu et al., 2024; Li et al., 2024a;
Lin et al., 2024; Su et al., 2024b) exist, they are
not tailored for PRMs and can’t assess step-level
reasoning. Some works (Zeng et al., 2023, 2024b;
Yan et al., 2024) use LLMs to evaluate reasoning
steps, but they often overlook implicit error types.
Existing error classification works are not specific
to PRMs and lack fine-grained step-level labels (Li
et al., 2024b). To address these gaps, we propose
PRMBENCH, a solution that offers fine-grained
evaluation and detects various error types.

3 PRMBENCH

3.1 Evaluation Categories

In this section, we provide a detailed introduction
to the evaluation categories of PRMBENCH, which

is organized into three main domains:

* Simplicity evaluates the ability of PRMs to de-
tect redundancy in reasoning steps. Although
redundant steps do not affect correctness, they in-
crease computational costs and reduce efficiency.
Additionally, simplifying the reasoning process
enhances the clarity of the problem’s core and
improves overall understandability.

* Soundness assesses the accuracy of the rewards
produced by PRMs. As discussed in Section 1,
errors in reasoning can vary in both causes and
manifestations (Li et al., 2024b). Therefore, we
evaluate not only the correctness of rewards but
also the fine-grained performance across differ-
ent error types and their nuances.

* Sensitivity measures PRMs’ robustness to de-
tails, such as critical conditions or implicit re-
quirements. Sensitivity is vital for ensuring log-
ical completeness and resilience to misleading
information (Wen et al., 2025), contributing to
the overall robustness of PRMs.

Each domain is further divided into detailed sub-
categories for a more granular evaluation, which is
discussed in detail below. The overall structure of
PRMBENCH along with representative examples
of each sub-category are illustrated in Figure 2,
and the details of every evaluation category and
sub-category are shown in Appendix A.1.

3.1.1 Simplicity
Specifically, the simplicity evaluation category is
divided into two sub-categories: Non-Redundancy

25301

Overall NR. NCL. ES. SC. DC. CIL PS. DR. MS.
Avg. Steps 134 153 103 138 142 133 142 127 134 141
Avg. Error Steps 2.1 2.0 2.8 2.8 1.6 1.8 1.7 2.5 2.3 0.0
Avg. First Error Step 7.8 7.8 4.9 8.0 9.1 6.8 11.4 6.2 8.3 N/A
Avg. Question Length ~ 152.7 153.6 1525 1535 149.7 1525 1527 158.0 1535 1322
of Instances 6216 758 758 757 758 757 757 756 750 165

Table 2: Statistics of PRMBENCH. NR., NCL., ES., SC., DC., CI, PS., DR., and MS. represent for Non-
Redundancy, Non-Circular Logic, Empirical Soundness, Step Consistency, Domain Consistency, Confidence
Invariance, Prerequisite Sensitivity, Deception Resistance, and Multi-Solution Consistency respectively.

and Non-Circular Logic, with detailed descriptions
provided below:

Non-Redundancy evaluates the PRMs’ ability to
identify redundancy within the reasoning process.
Redundancy occurs when the reasoning includes
unnecessary steps that do not contribute to the solu-
tion, making the process less concise and efficient.
These steps can be removed without affecting the
correctness of the final solution path.

Non-Circular Logic assesses the PRMs’ abil-
ity to detect circular reasoning within the process.
Circular logic is a form of redundancy where the
reasoning eventually loops back to a previous step,
creating an infinite cycle. This sub-category is
treated separately due to the frequent occurrence
of circular logic in reasoning processes.

3.1.2 Soundness

We divide the Soundness category into four sub-
categories due to its complexity: Empirical Sound-
ness, Step Consistency, Domain Consistency, and
Confidence Invariance. The definition of each sub-
category is discussed below.

Empirical Soundness demands PRMs to detect
the counterfactual mistakes within the reasoning
process. A counterfactual step refers to a state-
ment within a reasoning chain that contradicts es-
tablished ground truth G.

Step Consistency expects PRMs to detect the
step-wise contradiction, which means a conflict
between a specific step and other steps within a
reasoning path. Given a reasoning path P
{S1,S52,...,5,}, a step contradiction exists if
S; L S, wherei,j € [1,n] and i # j.

Domain Consistency requires PRMs to detect
domain inconsistency mistakes, which is a special
type of counterfactual. It refers to a step within
the reasoning chain that uses a statement or theory

valid in other domains or cases but is not valid
within the current reasoning chain.

Confidence Invariance demands PRMs to de-
tect over-confident errors, a type of counterfactual
where an incorrect statement is made with high
confidence, contradicting established ground truth.

3.1.3 Sensitivity

This category includes three sub-categories: Prereq-
uisite Sensitivity, Deception Resistance, and Multi-
Solution Consistency, with detailed descriptions
provided below.

Prerequisite Sensitivity requires PRMs to main-
tain sensitivity to missing conditions or prerequi-
site mistakes, which means a flaw in the reason-
ing chain where critical premises, assumptions, or
necessary conditions are absent and this omission
results in logical gaps, incomplete reasoning, or
biased conclusions.

Deception Resistance demands PRMs to detect
the deception or trap within a reasoning process,
that is, statements that appear to be correct but
are subtly altered to introduce inaccuracies while
maintaining the illusion of correctness.

Multi-Solution Consistency expects PRMs to
maintain consistency when faced with different
solution paths of the same problem. Concretely,
we utilize multiple correct reasoning processes of
the same question to test whether the PRM can
perform correctly.

3.2 Data Curation

We curate the dataset by extracting metadata and
constructing test cases according to our category
definitions. Detailed statistics of PRMBENCH are
displayed in Table 2, with the curation procedure
outlined below.

25302

Meta Data Extraction Our metadata is built
upon PRMS800K (Lightman et al., 2023), which pro-
vides the questions (Q), ground truth answers (A),
and ground truth step-level solution processes (.5).
We select completely correct solutions from both
the training and test sets, filtering out low-quality
instances to establish our ground truth answers.

Test Case Construction Each test case instance
is represented as (Q’, A, S’), where @’ denotes the
test question and S’ represents the test solution
process, which may include errors. With class-
specific prompts, as demonstrated in Appendix E.1,
we query GPT-40 (OpenAl, 2024a) to modify the
ground-truth reasoning process into versions con-
taining erroneous steps. For the multi-solution, we
leverage the newly proposed multi-step reasoning
model QwQ! (Team, 2024a) to generate candidate
answers for the given questions. These answers
are then filtered to exclude unreasonable or incor-
rect ones, resulting in multi-solution reasoning pro-
cesses for a single question.

3.3 Quality Control

To ensure a high-quality dataset, we implement
a series of steps to filter out unqualified data and
maintain data integrity. The specific procedures are
outlined below:

Feature Filtering Our data curation procedure
imposes strict structural requirements on the gen-
erated responses, where any outputs that do not
satisfy these specifications cannot be considered
valid for accurately assessing the performance of
PRMs. However, even with detailed instructions,
LLMs cannot consistently generate outputs that
fully adhere to the required structure (Asai et al.,
2024; Zeng et al., 2024a; Su et al., 2024a). To
maintain high data quality, we define stringent fil-
tering rules to exclude instances that fail to meet
the necessary structural criteria. Detailed structural
requirements are provided in Appendix E.1, and
the full description of our data generation process
can be found in the supplementary materials.

Human Verification Furthermore, to further en-
sure the quality of the data, we manually evaluate
10% of the total instances. We focus on two key
qualities for each data instance: @ Correctness
of modification: Whether the modifications made
to the data instance are correct and reasonable. @

'Qwen/QwQ-32B-Preview: https://huggingface.co/
Qwen/QwQ-32B-Preview

Difference in the modification: Whether the mod-
ified data instance differs from the original. We
recruited five volunteers to evaluate our proposed
PRMBENCH and observe over 92% qualification
rate on the correctness metric and over 98% qualifi-
cation rate on the difference metric. The details of
human annotation are provided in Appendix A.3.1,
and instructions for annotators are provided in Ap-
pendix D. This validation ensures the overall qual-
ity of our dataset and its suitability for studying
process-level language reward models.

4 Experiments

4.1 Models

To provide a comprehensive evaluation of various
models on PRMBENCH, we select a wide range of
models, including open-source PRMs like Qwen-
PRM (Zhang et al., 2025) and RLHFlowPRMs
(Xiong et al., 2024), as well as LLMs prompted
as critic models, such as o1-mini (OpenAl, 2024b)
and DeepSeek R1 (Guo et al., 2025). A complete
list of these models can be found in Appendix B.2.
Additionally, we present the human evaluation re-
sults, with details available in Appendix A.3.2.

All PRMs and LLMs are evaluated on the com-
plete PRMBENCH dataset, except for ol-mini and
DeepSeek-R1, which are evaluated on a subset of
PRMBENCH comprising 394 samples, proportion-
ally selected to reflect the class distribution, in or-
der to reduce evaluation costs.

Considering the complexity of the task, which
involves question comprehension, evaluation of
the provided processes, and adherence to format
constraints, few-shot demonstration setups are em-
ployed to help the model adapt to the output
format through In-Context Learning (ICL) exam-
ples. Specifically, we use two-shot examples when
prompting general-purpose LLMs. The impact of
few-shot settings is discussed in Section 5.4

4.2 Evaluation Metrics

Given our emphasis on evaluating the error detec-
tion capabilities, we use the negative F1 score as a
metric for error detection performance. However,
this metric may be affected by the inherent biases
of models. To mitigate this and provide a unified,
normalized score that reflects the overall compe-
tency of the evaluated model, following Zheng et al.
(2024), we introduce a metric called PRMScore,
defined formally in Equation 1.

25303

https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/Qwen/QwQ-32B-Preview

Simplicity Soundness Sensitivity
Model Overall | SR "NCL. Avg. | ES SC. DC. CI Avg | PS DR. MS. A
Human Performance 838 |80.2 817 81.0| 8.8 850 813 861 843 |81.6 821 962 86.0
Open-source Process Level Reward Models
Skywork-PRM-1.5B 61.1 52.0 564 542|648 649 633 665 649|575 633 91.1 70.7
Skywork-PRM-7B 65.1 564 628 59.6 | 694 67.1 677 699 685|609 658 932 733
Llemma-PRM800k-7B 520 | 493 534 514|564 471 467 533 509 |51.0 535 93.6 66.0
Llemma-MetaMath-7B 50.5 | 502 50.5 503|519 476 444 5211 49.0|50.5 513 96.0 66.0
Llemma-oprm-7B 50.3 | 48.7 493 49.0 | 542 468 445 535 498 492 513 91.8 64.1
MATHMinos-Mistral-7B 542 | 48.8 540 514|570 521 507 57.8 544|528 558 91.1 66.5
MathShepherd-Mistral-7B 47.0 |440 503 47.1 |494 445 413 477 457|472 48.6 86.1 60.7
ReasonEval-7B 60.1 61.0 50.1 55.6|62.1 659 615 66.0 639|557 580 995 71.1
ReasonEval-34B 60.5 | 548 48.1 515|664 603 578 67.5 630|577 643 972 73.1
RLHFlow-PRM-Mistral-8B 54.4 46.1 473 46.77 | 56.6 55.1 544 63.8 575|515 562 979 685
RLHFlow-PRM-Deepseek-8B 54.2 46.4 489 47.6 | 557 550 532 662 575|490 554 998 68.1
Qwen2.5-Math-PRM-7B 65.5 |49.0 551 521|718 673 663 785 71.0 | 57.6 69.1 99.7 755
Qwen2.5-Math-PRM-72B 68.2 | 504 58.8 546|737 711 722 78.6 739|603 712 994 77.0
Pure-PRM-7B 653 | 492 552 522 |71.1 688 640 769 702|603 692 98.0 758
Avg. 57.7 | 505 529 51.7| 615 58.1 563 642 60.0 544 595 953 69.7
Open LLMs, Prompted as Critic Models
MetaMath-7B 497 | 489 469 479|473 489 484 488 483|465 483 98.0 642
MetaMath-13B 494 | 503 444 473|478 474 494 48.1 482 |49.0 48.1 995 655
Qwen2.5-Math-72B 574 | 553 549 551|555 716 581 59.1 61.1|474 538 1000 67.1
QwQ-Preview-32B 63.6 | 572 556 564|674 723 662 669 682|578 627 100.0 73.5
R1-Distill-Llama3.1-70B 57.5 495 48.1 488 | 614 655 658 61.1 634 | 488 541 100.0 67.6
R1-Distill-Qwen-7B 52.6 329 379 354|473 541 484 480 494 | 456 468 100.0 64.1
DeepSeek-R17 67.8 | 63.0 627 629|682 685 735 754 714|633 68.0 100.0 77.1
Avg. 56.8 | 51.0 50.1 50.5| 564 612 585 582 58.6 512 545 99.6 68.5
Proprietary LLMs, Prompted as Critic Models
GPT-40 66.8 | 570 624 597|720 69.7 707 71.1 709 | 625 657 99.2 75.8
ol-mini 68.8 | 656 637 64.6|745 677 738 723 721 |61.8 648 100.0 75.5
Gemini-2.0-flash-exp 660 | 672 58.1 627|704 657 660 673 673|618 662 982 754
Gemini-2.0-thinking-exp-1219 68.8 68.5 638 66.2 729 713 710 71.8 71.8|603 657 99.8 753
Avg. 676 | 646 62.0 633| 724 68.6 704 707 705 61.6 656 993 755

Table 3: Performances comparison of popular models on PRMBENCH. The best performance for each category and
task is in bold, while the second-best performance is underlined. ': To reduce costs, we evaluated only a subset of

394 samples for o1-mini and DeepSeek-R1.

PRM-Score = wi * Flpeq +wo * F'1
(1
Where F1 and F1,,., refer to F1 scores and nega-
tive F1 scores respectively. w; and ws are weights
that are designed to maximize the differentiation
between different models. The detailed evaluation
procedure is provided in Appendix B.3. Besides,
we also provide results of all evaluation categories
in fine-grained metrics in Appendix B.4.

4.3 Main Results

The main results are shown in Table 3. Some ob-
servations can be summarized as follows:

The PRMs partially grasp multi-step process
evaluation Our analysis indicates that, although
Gemini-2-Thinking achieves the highest perfor-
mance among all evaluated models, its score is still
significantly lower than human performance (68.8

Accuracy PRM .
Model Pos. Neg. Score Sim.
ReasonEval-7B 955 212 600 916
ReasonEval-34B 79.1 484 60.5 82.8
Skywork-7B 30.1 79.7 362 743
RLHFlow-DeepSeek-8B 95.0 13.0 542 95.0
GPT-40 829 582 668 76.6
Gemini-2-thinking 89.0 49.8 68.8 82.0
Random 50.0 50.0 500 794

Table 4: Comparison of model performance on positive
and negative test cases, along with their similarities.

vs. 83.8), highlighting substantial room for im-
provement in multi-step process evaluation. Some
models even perform worse than random guess-
ing, highlighting their limited reliability and poten-
tial training biases. Notably, the best open-source
PRMs fail to match the performance of general-
purpose proprietary LLMs, which suggests that
even specifically trained PRMs still lag behind lead-
ing general-purpose models. We provide a detailed

25304

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

= Simplicity
307 —— Soundness
25 ——— Sensitivity
S —o-] —_— All
520 e DR
Q
2
£
g 151 o]
—
B
101
51T
o=
0L
2 4 6 8 10 12 14 16

Error Position

Figure 3: Distribution of error positions, truncated to 16
for better visualization, corresponding to the label field
as shown in Figure 2.

error analysis in Appendix C.1.

Simplicity is more challenging for PRMs Our
analysis highlights significant variations in model
reasoning capabilities across evaluation cate-
gories. For instance, in the Sensitivity category,
ReasonEval-34B performs relatively well, achiev-
ing an average score of 73.1. Especially in the
Multi-Solutions sub-category, it excels with a PRM-
Score of 97.2, approaching near-perfect classifica-
tion accuracy. This suggests models perform rel-
atively better on correct instance judgment. How-
ever, its performance declines markedly in more
complex scenarios. In the Simplicity category,
ReasonEval-34B’s PRMScore drops to 51.5, sug-
gesting partially reliable performance.

Furthermore, to broaden the domain coverage of
PRMBench, we additionally collect STEM-related
data and construct PRMBENCH-STEM, which
is designed to evaluate PRM performance across
other domains. The data construction methodology
and experimental results for PRMBench-STEM are
provided in the appendix B.5.

S Detailed Analysis
5.1 Inference Bias within PRMs

Takeaway 1. PRMs show a clear bias during
evaluation, often favoring positive rewards.

As shown in Table 3, most open-source PRMs
exhibit significant bias during evaluation, with
some models performing worse than random guess-
ing. suggesting the potential presence of bias
within the inference procedure for our test cases. To
validate this assumption, we compare the difference
of models’ performance on positive and negative

Accuracy(%)
—_ I3 3 B w [= -
(=} (=} (=} (=] (=} (=} [=}
1
I
1
I

2 3 4 5 6 7 8 9 10

Step
I ReasonEval-34B = MathShepherd-7B [GPT-40 [Gemini-thinking
Figure 4: The models’ error-detection accuracy across
different error steps, where step 1 and steps beyond 11

are truncated for improved visualization.

Model 0-shot 1-shot 2-shot
GPT-40 68.1 68.2 66.8
Gemini-2-flash 65.3 64.9 66.0
Gemini-2-thinking ~ 67.8 67.8 68.8

Table 5: The impact of ICL few-shot numbers on model
performance. The number reported here is PRMScore.

instances. As shown in Table 4, some models ex-
hibit a clear bias during evaluation, often favor-
ing positive rewards. For instance, ReasonEval-
7B and RLHFlow-DeepSeek-8B achieve over 95%
accuracy on positive-labeled steps but only attain
an average of 17% accuracy on negative-labeled
steps. Although proprietary LLMs outperform
open-source PRMs, they also exhibit bias with a
comparatively milder reward tendency.
Additionally, to further investigate inference
bias, we evaluate the reward similarity of models’
performance between completely correct reason-
ing processes and our test cases. The solution-
level similarity is defined as .S = 100 — |Accpos —
Accpeq|, where Acc denotes the average step accu-
racy within a solution. The results, shown in Table
4, reveal that certain models, such as ReasonEval-
7B and RLHFlow-DeepSeek-8B, exhibit signifi-
cantly higher similarity than the normal similarity
score (79.4), showcasing potential limitations in
differentiating positive and negative steps.

5.2 Performance across Different Steps

Takeaway 2. PRMs show a gradual improve-
ment in performance as the position of the steps
increases.

PRMBENCH includes a wide range of error step

25305

Method MATH OlymBen Avg. PRMScore

Pass@8 96.2 79.8 88.0 -

Maj@8 71.8 40.3 56.1 -

SkyworkPRM-7B 90.0 60.1 75.1 65.1
LlemmaPRM-7B 87.4 58.3 72.8 52.0
MATHMinos-7B 88.3 59.1 73.7 54.2
MathShepherd-7B 88.6 60.0 74.3 47.0
ReasonEval-7B 87.0 58.4 72.7 60.1
RLHFlowPRM-8B 87.6 58.5 73.0 54.2
Qwen2.5-PRM-7B 88.0 58.7 734 65.5
Standard Dev (c) 091 0.71 0.81 6.40
Somers’ D -0.05 0.05 -0.05 1.00

Table 6: Performance comparison on Best-of-8 using
different PRMs. o represents the standard deviation of
model performances across all benchmarks. Somers’” D
refers to the Somers’ D correlation between PRMScore
and specific benchmarks.

positions. The distribution of error positions is il-
lustrated in Figure 3. While differences exist across
categories, the overall pattern remains consistent:
all categories peak in frequency at step 5 and grad-
ually decrease thereafter. This raises an interesting
question: Does the variation in step positions
affect model performance? To investigate, we
focus on error steps to assess how erroneous step
positions influence model accuracy. As depicted
in Figure 4, proprietary LLMs maintain stable per-
formance across different error step positions. In
contrast, PRMs, including Math-Shepherd-7B and
ReasonEval-7B, show a gradual improvement in
performance as error step positions increase.

5.3 Impacts of ICL Settings

Takeaway 3. In-context learning has subtle im-
pact on models’ performance on PRMBENCH.

In this section, we investigate the impact of dif-
ferent ICL few-shot numbers on models’ perfor-
mance. We vary the number of ICL few-shots to
0, 1, and 2 to examine whether increasing the few-
shot number enhances the performance of genera-
tive models prompted as critic models. As shown
in Table 5, for the Gemini-series models, a subtle
improvement in performance is observed with a
few-shot setup. However, for GPT-40, no signifi-
cant improvement is detected, and in some cases,
a larger few-shot number even results in a decline
in performance. These findings suggest that a few-
shot approach exerts only a subtle impact on model
performance on PRMBENCH.

5.4 Comparison between BoN Evaluation and
PRMBench

Takeaway 4. PRMs struggle with detecting
false positives, exposing the potential for reward
hacking.

We compare the results between our PRMBench
and Best-of-N (BoN) evaluation to observe the
correlation. Following Zhang et al. (2025); Yang
et al. (2024a), we sampled eight responses (i.e.,
N=8) from Qwen-QwQ across multiple mathemati-
cal benchmarks, including GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), Olympiad
Bench (He et al., 2024a) and MMLU (Hendrycks
et al., 2020). During evaluation, the PRMs are
tasked with assigning a validity score to each step
within every candidate response. The overall score
for each candidate response is calculated by mul-
tiplying the individual step scores, as outlined in
Lightman et al. (2023). We also provide major-
ity voting as an baseline and pass @8 as the upper
bound. The experiment setting and full BoN evalu-
ation results are shown in Appendix C.2.

Although PRMs excel at selecting correct
outcomes, they struggle with step-level reward
hacking. As shown in Table 6, the average Somers’
D correlation between PRMBench and BoN is only
-0.05, highlighting the inconsistency between step-
level and outcome-level evaluation. For instance,
Math-Shepherd-7B achieves a PRMScore of 47.0
with 51.3% accuracy in false-positive scenarios
within PRMBench, but outperforms most PRMs,
including the state-of-the-art QwenPRM-7B, in the
BoN evaluation (74.3 vs. 73.4). This inconsistency
reveals that PRMs are suboptimal at detecting step-
level errors and false positives, exposing potential
reward hacking (Gao et al., 2025). Compared to
BoN, PRMBENCH provides a better distinction
between models, with a higher standard deviation
(6.40 vs. 0.81), indicating its greater sensitivity to
fine-grained differences in reasoning steps. Further-
more, based on the discoveries from PRMBench,
we provide further discussions including several
promising directions for future exploration, which
are included in the appendix F.

6 Conclusion

In this paper, we investigate a crucial question:
Can existing PRMs detect various types of erro-
neous reasoning steps and provide reasonable
rewards? To address this, we introduce PRM-

25306

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B

BENCH, a benchmark characterized by its fine-
grained evaluation categories and challenging re-
quirements. We carefully curate 6,216 data samples
with 83,456 step-level labels through LL.Ms and
human filtering. PRMBENCH can be used to eval-
uate different process-labeling models, ensuring
its general applicability. Through a comprehen-
sive evaluation of existing PRMs and generative
LLMs prompted as critic models, we can observe
that PRMs exhibit partial capability in multi-step
process evaluation, showcasing significant room
for improvement. Furthermore, we highlight the
critical need for detecting detailed error types and
conducting comprehensive evaluations of PRMs.
Despite these advances, enhancing the reward ac-
curacy of PRMs and improving models’ reasoning
abilities remain open research challenges. We en-
courage future work to leverage and expand upon
PRMBENCH to address these issues.

7 Acknowledgement

We gratefully acknowledge the support and re-
sources provided by the Shanghai Artificial Intel-
ligence Laboratory, which played a vital role in
enabling the successful completion of this research.

8 Limitations

There are still some limitations in our work, which
are summarized below:

* While the PRMBench is large and comprehen-
sive, comprising 6,216 samples and 83,456 step-
level labels, a larger dataset could provide more
robust evaluation and training opportunities. As
the data construction method is flexible and data-
agnostic, it can be adapted to more different data
sources. We will continuously expand our dataset
and explore PRM training in future versions.

* We evaluate the error-detection capabilities in
terms of accuracy. However, a more detailed
analysis, including the activation of the model’s
neurons and hidden states (Zhang et al., 2023),
would offer a deeper insight into improvements
for PRMs. This limitation is not unique to our
study and is common in most evaluations of
Large Language Models.

* PRMBENCH currently focuses on textual rea-
soning. In future work, we will further explore
its generalization to multimodal reasoning pro-
cesses, such as those involving the integration
of text and images (Su et al., 2025; Xia et al.,

2024a), to assess error detection capabilities in
cross-modal scenarios.

References

Akari Asai, Jacqueline He*, Rulin Shao*, Weijia
Shi, Amanpreet Singh, Joseph Chee Chang, Kyle
Lo, Luca Soldaini, Sergey Feldman, Tian, D’arcy
Mike, David Wadden, Matt Latzke, Minyang, Pan Ji,
Shengyan Liu, Hao Tong, Bohao Wu, Yanyu Xiong,
Luke Zettlemoyer, Dan Weld, Graham Neubig, Doug
Downey, Wen-tau Yih, Pang Wei Koh, and Hannaneh
Hajishirzi. 2024. OpenScholar: Synthesizing sci-
entific literature with retrieval-augmented language
models. Arxiv.

Jie Cheng, Lijun Li, Gang Xiong, Jing Shao, and
Yisheng Lv. 2025. Pure: Prm is still effective and
compute-efficient for llm math reasoning. https:
//github.com/CJReinforce/PURE.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

DeepMind. 2024. Gemini 2.0 flash experimen-
tal. https://deepmind.google/technologies/
gemini/flash/. Accessed: 2024-12-25.

Bofei Gao, Zefan Cai, Runxin Xu, Peiyi Wang,
Ce Zheng, Runji Lin, Keming Lu, Junyang Lin,
Chang Zhou, Wen Xiao, et al. 2024. Llm critics
help catch bugs in mathematics: Towards a better
mathematical verifier with natural language feedback.
CoRR.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu,
Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang, and
Yi Wu. 2025. On designing effective RL reward at
training time for LLM reasoning.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2022. Roscoe: A suite of
metrics for scoring step-by-step reasoning. arXiv
preprint arXiv:2212.07919.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—

the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

25307

https://github.com/CJReinforce/PURE
https://github.com/CJReinforce/PURE
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://openreview.net/forum?id=F0GNv13ojF
https://openreview.net/forum?id=F0GNv13ojF

Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li,
Zhengyuan Yang, Lijuan Wang, and Yu Cheng. 2025.
Can mllms reason in multimodality? emma: An

enhanced multimodal reasoning benchmark. arXiv
preprint arXiv:2501.05444.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, et al. 2024a. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Conghui He, Wei Li, Zhenjiang Jin, Chao Xu, Bin
Wang, and Dahua Lin. 2024b. Opendatalab: Empow-
ering general artificial intelligence with open datasets.
arXiv preprint arXiv:2407.13773.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Lei Li, Yuancheng Wei, Zhihui Xie, Xuqing Yang, Yi-
fan Song, Peiyi Wang, Chenxin An, Tianyu Liu,
Sujian Li, Bill Yuchen Lin, et al. 2024a. Vlre-
wardbench: A challenging benchmark for vision-
language generative reward models. arXiv preprint
arXiv:2411.17451.

Xiaoyuan Li, Wenjie Wang, Moxin Li, Junrong Guo,
Yang Zhang, and Fuli Feng. 2024b. Evaluating math-
ematical reasoning of large language models: A focus
on error identification and correction. arXiv preprint
arXiv:2406.00755.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
arXiv preprint arXiv:2402.14809.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou,
and Juanzi Li. 2024. Rm-bench: Benchmarking re-
ward models of language models with subtlety and
style. arXiv preprint arXiv:2410.16184.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch llm bugs. arXiv
preprint arXiv:2407.00215.

Skywork ol Team. 2024. Skywork-ol open series.
https://huggingface.co/Skywork.

OpenAl. 2024a. Gpt-4o system card. https://
cdn.openai.com/gpt-4o-system-card.pdf. Ac-
cessed: 2024-09-26.

OpenAl. 2024b. Learning to reason with
IIms. https://openai.com/index/
learning-to-reason-with-11lms/.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, et al. 2024. Ol replication journey:
A strategic progress report—part 1. arXiv preprint
arXiv:2410.18982.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shux-
ian Liang, Junxian He, et al. 2025. A survey of
efficient reasoning for large reasoning models: Lan-
guage, multimodality, and beyond. arXiv preprint
arXiv:2503.21614.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo
Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
Jiawei Gu, Juntao Li, Xiaoye Qu, et al. 2025. Open-
thinkimg: Learning to think with images via vi-
sual tool reinforcement learning. arXiv preprint
arXiv:2505.08617.

Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu
Li, Jiashuo Sun, Juntao Li, Min Zhang, and Yu Cheng.
2024a. Conflictbank: A benchmark for evaluating
the influence of knowledge conflicts in llm. arXiv
preprint arXiv:2408.12076.

Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao
Li, Min Zhang, and Yu Cheng. 2024b. Timo: To-
wards better temporal reasoning for language models.
arXiv preprint arXiv:2406.14192.

Qwen Team. 2024a. Qwq: Reflect deeply on the bound-
aries of the unknown.

ScalableMath Team. 2024b. Easy-to-hard gen-
eralization models. https://huggingface.co/
ScalableMath.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. CoRR,
abs/2312.08935.

25308

https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://huggingface.co/collections/ScalableMath/easy-to-hard-generalization-models-65fa5d9ec11eeb75104646fc
https://huggingface.co/collections/ScalableMath/easy-to-hard-generalization-models-65fa5d9ec11eeb75104646fc
https://huggingface.co/ScalableMath
https://huggingface.co/ScalableMath

Xueru Wen, Jie Lou, Yaojie Lu, Hongyu Lin, XingYu,
Xinyu Lu, Ben He, Xianpei Han, Debing Zhang, and
Le Sun. 2025. Rethinking reward model evaluation:
Are we barking up the wrong tree? In The Thirteenth
International Conference on Learning Representa-
tions.

Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Wei-
jia Shi, Sheng Wang, Linjun Zhang, James Zou, and
Huaxiu Yao. 2024a. Mmed-rag: Versatile multi-
modal rag system for medical vision language mod-
els. arXiv preprint arXiv:2410.13085.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024b. Evaluating mathemat-
ical reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang.
2024. An implementation of generative prm. https:
//github.com/RLHFlow/RLHF-Reward-Modeling.

Yibo Yan, Shen Wang, Jiahao Huo, Hang Li, Boyan Li,
Jiamin Su, Xiong Gao, Yi-Fan Zhang, Tianlong Xu,
Zhendong Chu, et al. 2024. Errorradar: Benchmark-
ing complex mathematical reasoning of multimodal
large language models via error detection. arXiv
preprint arXiv:2410.04509.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024b. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Dangi Chen. 2024a. Evaluating large
language models at evaluating instruction following.
In The Twelfth International Conference on Learning
Representations.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun
Jiang, and Jiaya Jia. 2023. Mr-gsm8k: A meta-
reasoning benchmark for large language model eval-
uation. arXiv preprint arXiv:2312.17080.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li,
Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu
Xu, Zehan Qi, Wanru Zhao, Linling Shen, Jiangiao
Lu, Haochen Tan, Yukang Chen, Hao Zhang, Zhan
Shi, Bailin Wang, Zhijiang Guo, and Jiaya Jia. 2024b.
Mr-ben: A meta-reasoning benchmark for evaluating
system-2 thinking in llms. CoRR, abs/2406.13975.

Di Zhang, Jingdi Lei, Junxian Li, Xunzhi Wang, Yujie
Liu, Zonglin Yang, Jiatong Li, Weida Wang, Suorong
Yang, Jianbo Wu, et al. 2024a. Critic-v: VIm critics
help catch vlm errors in multimodal reasoning. arXiv
preprint arXiv:2411.18203.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqgiang Li, et al. 2024b. Llama-berry: Pair-
wise optimization for ol-like olympiad-level mathe-
matical reasoning. arXiv preprint arXiv:2410.02884.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

25309

https://openreview.net/forum?id=Cnwz9jONi5
https://openreview.net/forum?id=Cnwz9jONi5
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc
https://arxiv.org/abs/2406.13975
https://arxiv.org/abs/2406.13975

A Detailed Information for PRMBENCH

A.1 Evaluation Categories

In this section, We provide detailed information
on our evaluation categories. The hierarchical cat-
egories, corresponding descriptions, and illustra-
tions are shown in Figure 5. We carefully curated
6,216 data samples and 83,456 step-level labels.
The benchmark spreads across three main evalua-
tion categories: simplicity, soundness, and sensitiv-
ity. Among them, Simplicity comprises two sub-
categories: non-redundancy and non-circular Logic.
Soundness includes four main sub-categories: em-
pirical soundness, step consistency, domain consis-
tency, and confidence invariance. Finally, Sensi-
tivity mainly evaluates models in three main parts:
prerequisite sensitivity, deception resistance, and
multi-solution consistency. The detailed descrip-
tions and illustrations of each sub-category are
shown in Figure 5.

A.1.1 Simplicity

Specifically, the Simplicity evaluation category is
divided into two sub-categories: Non-Redundancy
and Non-Circular Logic, with detailed descriptions
provided below:

Non-Redundancy requires PRM to detect the
redundancy within the reasoning procedure. The
redundancy situation refers to a process that is not
the most concise or efficient, as it includes one or
more redundant steps that can be removed with-
out affecting the correctness of the overall solu-
tion path. For example, as shown in Figure 5, if
A — B represents a correct inference chain, the
redundant reasoning procedure can be displayed as
A — C — B. where C represents one or more
redundant steps C' = {c|c is redundant}.

Non-Circular Logic In this sub-category, PRMs
are required to detect the potential circular logic
within the reasoning process. Circular logic is a
specific form of redundancy, distinct from general
redundancy, in that it finally loops back to a pre-
vious reasoning step. For example, as shown in
Figure 2, if A — B represents a correct infer-
ence chain, circular logic can be formulated as
A — C — A — B, where the reasoning starts at
step A, progresses through a sequence of steps, and
ultimately loops back to A. We list Non-Circular
Logic separately due to its common occurrence in
reasoning processes.

A.1.2 Soundness

We divide the Soundness category into four sub-
categories due to its complexity: Empirically
Soundness, Step Consistency, Domain Consistency,
and Confidence Invariance. The definition of each
sub-category is discussed below.

Empirically Soundness demands PRM to detect
the implicit counterfactual mistakes within the rea-
soning process. A counterfactual step refers to a
statement within a reasoning chain that contradicts
established ground truth G. Such contradictions
can arise from relying on outdated theories, omit-
ting critical constraints in theory, or incorporating
erroneous assumptions.

Step Consistency expects PRM to detect the
implicit step-wise contradiction, which means a
conflict between a specific step and other steps
within a reasoning path. Given a reasoning path
P ={51,95,...,5,}, astep contradiction exists
if S; L Sj, wherei,j € [1,n]and i # j.

Domain Consistency Under this circumstance,
PRMs are required to detect potential domain in-
consistency mistakes, where domain inconsistency
is a special type of counterfactual. It refers to a step
within the reasoning chain that uses a statement or
theory valid in other domains or cases but is not
valid within the current reasoning chain.

Confidence Invariance demands the PRM to de-
tect over-confident hallucinations, a type of counter-
factual where an incorrect statement is made with
unwarranted certainty, contradicting established
ground truth.

A.1.3 Sensitivity

This category includes three sub-categories: Prereq-
uisite Sensitivity, Deception Resistance, and Multi-
Solution Consistency, with detailed descriptions
provided below.

Prerequisite Sensitivity requires the PRM to
maintain sensitivity to missing conditions or pre-
requisite mistakes, which means a flaw in the rea-
soning chain where critical premises, assumptions,
or necessary conditions are absent. This omission
results in logical gaps, incomplete reasoning, or
biased conclusions. For example, when a missing
condition occurs, the model is required to solve
the problem through case analysis or further inves-
tigation. However, the answer becomes incorrect

25310

Step Descriptions GT ReasonE MathS GPT-40 Gemini
Question Compute (1 + cos g) (1 + cos "T) (1 + cos %”) (1 + cos %’T) . - - - - -
Step 1 Let’s call the expression we’re trying to compute . v 89.1 87.5 100.0 100.0
Step 2 Use the fact that cos(m — a) = —cos (L v 71.5 82.8 100.0 100.0
Step 3 Then we have © = (1 +cos Z) (1 +cos 3F) (1 +cos 5T) (1 +cos IF). v 71.4 76.7 100.0 100.0
Step 4 This equals (14 cos %) (1 + cos 37) (1 —cosZ) (1 —cos3T). v 20.5 76.9 100.0 100.0
Step 5 By the difference of squares, this equals (1 - cosQ T) (1 — cos® 38) v 56.0 83.7 100.0 100.0
Step 6 And by the Pythagorean identity, this equals (blrl% 8) (51112 %’“) v 63.5 80.4 100.0 100.0
Step 7 Ok, now we just need to compute the sines. v 84.1 79.1 50.0 50.0
Step 8 ‘We can use the formula for the sum of sines. X 73.6 74.1 0.0 0.0
Step 9 That formula is sin(a) + qin(b) = 2sin (252) cos (%52). X 79.1 78.5 0.0 100.0
Step 10 That means that sin T + sin 3% — 2bln (”/ 8+37/ 8) cos (”/ 8—dn/ 8) X 674 78.0 0.0 0.0
Step 11 This equals 2sin 72 cos(— #). X 681 72.1 0.0 100.0
Step 12 This equals 2 1- i X 49.2 73.8 0.0 100.0
Step 13 This equals \f X 35.1 73.8 0.0 100.0
Step 14 But this step doesn’t help us compute the original product of sines. X 72.5 64.3 -50.0 100.0
Step 15 So, (sin®Z) (sin? 2F) remains the same and = = . X 6.3 35.8 0.0 -100.0
Step 16 Therefore, the mistake didn’t change the value of x. v 22.6 43.5 -100.0 -100.0
Final Acc. 100 56.2 50.0 93.8 62.5

A counterfactual step was introduced in steps 8 through 13 by mistakenly using the formula

Reason for the sum of sines instead of the product of sines. This leads to incorrect intermediate calculations.

However, due to fortunate errors, the end result ironically matches the correct answer in step 15.

Table 7: An example of a data instance and error cases from PRMBENCH. The numbers reported are step-level
validity scores generated by models. Scores and labels in red indicate negative samples, while those in green
indicate positive samples. “GT” represents ground truth, while “ReasonE,” “MathS,” and “Gemini” correspond to
ReasonEval-7B, Math-Shepherd-7B, and Gemini-2.0-flash-thinking-exp, respectively.

Abbr. Full Name Evaluation Category
NR. Non-Redundancy Simplicity
NCL. Non-Circular Logic Simplicity
ES. Empirical Soundness Soundness
SC. Step Consistency Soundness
DC. Domain Consistency Soundness
CL Confidence Invariance Soundness
PS. Prerequisite Sensitivity Sensitivity
DR. Deception Resistance Sensitivity
MS. Multi-Solution Consistency Sensitivity

Table 8: The impact of ICL few-shot numbers on mod-
els’ final performance. The number reported here is
PRMScore.

if the model overlooks the missing condition and
proceeds with standard reasoning methods.

Deception Resistancy demands the PRM to de-
tect the implicit deception or trap within a reason-
ing process, that is, statements that appear to be
correct or align with ground truth but are subtly
altered to introduce inaccuracies while maintaining
the illusion of correctness.

Multi-Solution Consistency expects the PRM
to maintain consistency when faced with different
solution paths of the same problem. Concretely,
to evaluate the sensitivity and the generalizability
of PRMs, we utilize multiple correct reasoning
processes of the same question to test whether the

PRM can perform correctly.

A.2 Examples For Different Evaluation
Categories

In this section, we provide detailed examples of the
various evaluation categories and their correspond-
ing sub-categories. The data instance examples are
displayed in Figure 7-18. All datasets used in this
work are publicly available and have been released
by their original creators, who are responsible for
ensuring privacy protection. These datasets are uti-
lized in accordance with their respective licenses
and intended purposes, without introducing any
harmful or sensitive information.

A.3 Human Annotation Settings

A.3.1 Quality Control

In the second stage of the quality control process,
we recruited five volunteers, each holding a bache-
lor’s degree or an equivalent qualification, to assess
the correctness and validity of PRMBENCH. To
facilitate high-quality labeling, we utilize Label-
LLM (He et al., 2024b) to help the data annotation
procedure, as shown in Figure 6. The annotators’
instructions are shown in Appendix D.

25311

A.3.2 Human Performance Evaluation

For human performance evaluation, we recruited
three volunteers, each holding a bachelor’s degree
or an equivalent qualification, to assist with data an-
notation. Following Hao et al. (2025), we randomly
selected 50 instances from each sub-category, re-
sulting in a mini-test set of 450 samples. Each
annotator was responsible for three subsets, and
the results are presented in Table 3.

B Detailed Experiment Results
B.1 Abbreviation Of Sub-Categories

The full names of abbreviations used in our tables
are shown in Table 8.

B.2 Models

To provide a comprehensive evaluation of var-
ious models on PRMBENCH, we select a di-
verse set of models, including both open-source
PRMs and different types of LLMs configured
as critic models. Specifically, the open-source
PRMs include Skywork-PRM-1.5B/7B (o1 Team,
2024), LlemmaPRMs (Team, 2024b), MathMi-
nosPRM (Gao et al., 2024), MathShepherd-Mistral-
7B (Wang et al., 2023), ReasonEval-7B/34B (Xia
et al.,, 2024b), Pure-PRM-7B (Cheng et al.,
2025) and Qwen-PRM-7B/72B (Zhang et al.,
2025). Additionally, we evaluate state-of-the-art
general-purpose LLMs, including the open-source
MetaMath-7B/34B (Yu et al., 2023), Qwen2.5-
Math-72B (Yang et al., 2024b), DeepSeek-R1 and
its distill series (Guo et al., 2025), as well as closed-
source LLMs such as GPT-40 (OpenAl, 2024a),
Gemini-2.0-flash (DeepMind, 2024), and multi-
step reasoning-enhanced LLMs like the ol series
models (OpenAl, 2024b) and Gemini-2-Thinking
(DeepMind, 2024).

All models used in this work are publicly avail-
able and have been released by their original au-
thors, who are responsible for ensuring privacy
protection. These models are utilized in accor-
dance with their respective licenses and intended
purposes, without any modifications.

B.3 Evaluation Procedure

For each annotated question-solution pair, the re-
ward models are tasked with evaluating the cor-
rectness and redundancy of each step, assigning
a step-level validity score and a step-level redun-
dancy score to each step. We subsequently utilize
the specified threshold of each model to obtain the

Domain # of Instances Avg. Step Num Avg. Error Num
Physics 1619 7.32 2.74
Chemistry 1543 7.74 2.78
Biology 2342 6.76 2.49

Table 9: Statistics of PRMBENCH-STEM.

prediction indicating whether the step is correct or
redundant. This task is therefore framed as a bi-
nary classification problem. Thus we can utilize the
evaluation metric defined in Section 4.2 to evaluate
the performance of models on PRMBENCH.

B.4 Detailed Results of PRMBENCH

In addition to PRMScore displayed in Table 3, we
also list the full results with different metrics across
different sub-categories here. The detailed evalua-
tion results are shown in Table 15-23.

B.5 Detailed Results of PRMBENCH-STEM

We extend our benchmark by collecting additional
data from various scientific domains, including
physics, chemistry, and biology, and construct
PRMBENCH-STEM using a similar data curation
methodology as described in the main paper. The
statistics of PRMBENCH-STEM are presented in
Table 9. We then evaluate several representative
PRMs on PRMBENCH-STEM, and the results
are summarized in Tables 10, 11, and 12 for the
Biology, Chemistry, and Physics subsets, respec-
tively. As shown, PRMs exhibit weaker perfor-
mance on PRMBENCH-STEM compared to their
performance on the original PRMBench. Notably,
the Simplicity category remains the most challeng-
ing, consistent with our earlier observations.

C Details for Further Analysis

C.1 Error Analysis

A representative test case and the corresponding
model performances are presented in Table 7. This
example involves a counterfactual reasoning pro-
cess, where steps eight through thirteen contain
information that contradicts the correct computa-
tional principles and should be classified as “nega-
tive”. However, most models fail to identify these
erroneous reasoning steps and assign relatively pos-
itive rewards, except for GPT-40. While GPT-40
provides a relatively accurate reward, its judgments
for key steps are only marginally negative, reflect-
ing low confidence. This highlights a significant
room for improvement in PRMs’ detailed error-
detection capabilities.

25312

Simplicity Soundness Sensitivity

Model Overall

NR. NCL. Avg. | ES SC. DC. CI Avg.| PS DR. Avg

Open-source Process Level Reward Models
Skywork-PRM-1.5B 473 | 467 41.6 442|450 54.1 553 49.6 51.0 | 432 417 424
Skywork-PRM-7B 674 | 546 53.6 541 |71.6 762 779 744 750|640 653 64.6
Llemma-PRM800k-7B 527 |49.1 524 507|523 494 539 551 527|511 526 519
Llemma-MetaMath-7B 415 | 437 39.1 414|393 448 443 420 42.6 | 38.5 382 384
Llemma-oprm-7B 50.7 | 444 373 409|545 503 53.0 56.8 536|510 53.6 523
MATHMinos-Mistral-7B 47.1 43.0 379 404 |48.0 51.6 47.1 53.6 50.1 | 45.1 453 452
MathShepherd-Mistral-7B 53.1 472 431 451|523 62.1 635 575 589|500 464 482
ReasonEval-7B 67.5 | 745 629 68.7 | 635 745 71.8 71.8 704|599 59.3 59.6
ReasonEval-34B 60.7 | 682 619 650 |61.0 538 520 599 567|578 626 602
RLHFlow-PRM-Mistral-8B 455 | 430 374 402|445 53.1 49.0 503 492 | 426 422 424
RLHFlow-PRM-Deepseek-8B 47.0 | 429 374 40.1 | 447 59.0 577 52.6 535|416 41.6 41.6
Qwen2.5-Math-PRM-7B 65.8 | 429 49.0 46.0|69.6 75.1 725 757 732|639 654 64.7
Qwen2.5-Math-PRM-72B 73.7 | 428 506 467|823 79.6 77.6 829 80.6 | 755 76.6 76.1
Avg. 554 | 495 46,5 48.0| 56.1 60.3 59.7 60.2 59.0| 52.6 53.1 529
Open LLMs, Prompted as Critic Models

MetaMath-7B 45.1 453 358 40.6 | 45.8 48.8 488 47.1 47.6 | 436 437 436
MetaMath-13B 43.6 | 447 358 40.2 | 422 463 47.1 450 452|424 411 417
Qwen2.5-Math-72B 423 1495 356 425 |38.0 56.1 457 428 456 |37.0 356 363
QwQ-Preview-32B 545 | 548 433 49.0 | 536 639 644 58,5 60.1 | 51.8 483 50.1
R1-Distill-Llama3.1-70B 53.8 | 49.8 41.7 457|534 636 717 578 61.6 | 46.7 445 45.6
R1-Distill-Qwen-7B 504 399 41.8 409 | 464 487 509 474 483|456 433 445
Avg. 483 | 473 390 432 466 546 548 498 514 | 445 427 436

Table 10: Performance comparison of popular models on the Biology subset of PRMBENCH-STEM. The best
performance for each category and task is in bold, while the second-best performance is underlined.

C.2 Details for BoN Evaluation

Following Zhang et al. (2025), we sample eight
responses (i.e., N=8) from Qwen-QwQ-Preview
32B (Team, 2024a). During evaluation, the PRMs
are tasked with assigning a validity score to each
step within every candidate response. The over-
all score for each candidate response is calculated
by multiplying the individual step scores, as out-
lined in Lightman et al. (2023). We then select
the highest-ranked candidate response, compare it
with the correct answer, and calculate the accuracy,
which we refer to as prm@8. Additionally, we re-
port the result of majority voting among the eight
sampled responses (maj@8) as the baseline, and
we define pass@8 as the proportion of test samples
where any of the eight samplings lead to the correct
final answer, which serves as the upper bound.

We conduct BoN evaluation across all models on
GSMSK (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), Olympiad Bench (He et al., 2024a)
and MMLU (Hendrycks et al., 2020). Due to the
limit of the space, We omit some results in Table 6.

Thus we provide the full results of all PRMs in Ta-
ble 13. Moreover, due to cost constraints, we select
a subset of 200 samples for each benchmark and
obtain a total of 800 samples to evaluate generative
LLMs of their BoN performance. The results are
shown in Table 14.

D Instructions for Human Annotators

D.1 Backgrounds

With the emergence of multi-step reasoning en-
hanced language models such as OpenAl o1, and
Deepmind Gemini-thinking, these models demon-
strate the ability to decompose complex problems
and solve them step by step. However, while their
solutions often appear correct, they may contain
errors in understanding, calculation, or reasoning
logic, which is also known as false positive situa-
tions. A popular way to evaluate the results gener-
ated by these models is by utilizing process-level
reward models (PRMs). Nevertheless, PRMs are
fallible and not always correct. Existing bench-
marks are not adequate for evaluating PRMs on

25313

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

Simplicity Soundness Sensitivity

Model Overall

NR. NCL. Avg. | ES SC. DC. CI Avg. PS DR. Avg

Open-source Process Level Reward Models
Skywork-PRM-1.5B 48.1 459 439 449 | 463 525 540 513 510|453 433 443
Skywork-PRM-7B 643 | 512 51.1 51.1 652 704 71.6 733 70.1 | 642 646 644
Llemma-PRM800k-7B 526 |47.1 532 502|565 488 479 557 522|526 552 539
Llemma-MetaMath-7B 452 | 453 415 434|449 482 463 47.6 46.7 | 423 428 425
Llemma-oprm-7B 483 | 447 38.1 414|535 46.6 41.6 562 495 |49.0 524 50.7
MATHMinos-Mistral-7B 49.6 | 440 388 414|508 519 463 582 51.8|49.7 504 50.0
MathShepherd-Mistral-7B 525 | 478 434 456|557 563 543 584 562|502 495 498
ReasonEval-7B 629 | 694 60.1 647|592 663 64.1 703 650|574 555 564
ReasonEval-34B 632 | 63.5 558 59.6|656 58.6 57.8 669 622|619 656 637
RLHFlow-PRM-Mistral-8B 45.6 | 433 385 409 | 442 509 477 512 485|441 423 432
RLHFlow-PRM-Deepseek-8B 47.3 | 43.5 383 409 | 469 51.8 505 563 514|454 43.1 442
Qwen2.5-Math-PRM-7B 663 | 435 499 467|709 668 688 80.0 71.6|67.0 68.1 675
Qwen2.5-Math-PRM-72B 714 | 448 532 49.0 (773 716 746 81.0 76.1 | 73.1 77,5 753
Avg. 55.2 | 488 46.6 47.7| 567 57.0 558 62.0 579 | 540 54.6 543
Open LLMs, Prompted as Critic Models

MetaMath-7B 456 | 442 375 409 | 46.0 485 48.0 473 474|456 455 455
MetaMath-13B 443 1429 37.0 40.0 | 447 48.6 47.0 453 464 | 452 422 437
Qwen2.5-Math-72B 432 | 505 348 42.6 376 61.7 43.8 433 46.6 | 375 36.6 37.0
R1-Distill-Llama3.1-70B 50.6 | 459 41.0 435|482 657 581 578 575|467 428 448
R1-Distill-Qwen-7B 51.8 | 356 41.0 383|475 51.0 50.1 492 49.5|47.1 46.2 46.7
Avg. 47.1 438 382 41.0| 448 55.1 494 48.6 49.5| 444 427 435

Table 11: Performance comparison of popular models on the Chemistry subset of PRMBENCH-STEM. The best
performance for each category and task is in bold, while the second-best performance is underlined.

different error types. Therefore, we are building
a comprehensive evaluation benchmark for PRMs
that can have a fine-grained detection of PRMs.

D.2 Task Definition

We begin by collecting completely correct multi-
solution data and leveraging state-of-the-art LLMs
to introduce various types of errors into these cor-
rect solutions, thereby generating our test cases.
The detailed error types are described in Section
3. All synthesized data instances undergo an initial
filtering process based on specific features.

Your task is to identify whether the modification
taken is reasonable and whether the modified data
instance is different from the original data instance.

Sub-task 1

The first sub-task is a binary classification task
whose options include yes and no. Your task is
to decide whether the modified step-by-step solu-
tion generated by LLMs is reasonable. The word
“reasonable” has two aspects for evaluation.

* The modified process generated by LLMs seems
like a possible solution path that could happen.

» The modified process generated by LLMs is ex-
actly wrong and the type of error is suitable for
the current “classification”.

Please assign a “yes” for this sub-task if both of
the answers to the above two questions are “yes”.
Otherwise, assign a “no” for this sub-task.

D.2.1 Sub-task 2

The second sub-task is a binary classification task
whose options include yes and no. Your task is
to decide whether the modified step-by-step solu-
tion generated by LLMs is different from the origi-
nal solution process. The word “different” means
the modified solution process is logically differ-
ent from the original one, or there exist different
statements compared to the original process.

Please assign a “yes” to this sub-task if your
answer to the above question is “yes”. Otherwise,
assign a “no” for this sub-task.

D.2.2 Error Types

Redundancy refers to a process that is not the
most concise or efficient, as it includes one or more

25314

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

Simplicity Soundness Sensitivity
NR. NCL. Avg. | ES SC. DC. CI Avg.| PS DR. Avg

Open-source Process Level Reward Models

Model Overall

Skywork-PRM-1.5B 503 | 447 418 433 |51.8 577 552 56.1 552|468 46.8 46.8
Skywork-PRM-7B 652 |51.1 519 515|683 703 727 764 719|648 651 650
Llemma-PRM800k-7B 53.8 [49.1 520 506|573 49.6 494 573 534|538 586 562
Llemma-MetaMath-7B 46.9 | 464 42.0 442 | 465 472 442 517 474|478 454 46.6
Llemma-oprm-7B 47.1 | 428 397 412|522 427 409 543 475 | 48.1 516 498

MATHMinos-Mistral-7B 46.5 | 436 389 412|469 478 442 578 492|453 433 443
MathShepherd-Mistral-7B 535 | 48.0 448 464|559 563 548 628 574|486 535 51.1

ReasonEval-7B 625 |71.5 572 644 | 60.1 669 622 706 650|569 539 554
ReasonEval-34B 642 | 685 520 602|685 593 564 698 635|637 666 652
RLHFlow-PRM-Mistral-8B 46.5 | 42.7 37.5 40.1 | 460 51.0 50.5 557 50.8 | 442 422 432
Qwen2.5-Math-PRM-7B 66.9 437 493 465|736 664 703 80.0 726 | 69.6 68.8 69.2
Qwen2.5-Math-PRM-72B 711 | 442 562 502|789 711 71.1 803 754|729 77.6 752
Avg. 55,6 459 463 46.1 58.1 56.8 557 642 58.7| 545 552 5438
Open LLMs, Prompted as Critic Models
MetaMath-7B 456 | 435 369 402|479 489 49.1 48.1 485|473 436 454
MetaMath-13B 43.8 427 36.6 39.7 | 445 46.7 48.0 463 464 | 415 419 417
Qwen2.5-Math-72B 448 |50.6 378 442|398 64.5 455 475 493|379 362 37.1
R1-Distill-Llama3.1-70B 533 | 445 404 425 |53.0 63.8 594 64.6 60.2 | 49.6 483 489
R1-Distill-Qwen-7B 51.0 | 29.7 348 323|441 48.1 457 489 467 |44.0 40.7 423
Avg. 47.7 422 373 39.8 459 544 495 51.1 502 | 44.0 422 431

Table 12: Performance comparison of popular models on the Physics subset of PRMBENCH-STEM. The best
performance for each category and task is in bold, while the second-best performance is underlined.

Method GSM8K MATH OlymBen MMLU Avg. PRMScore Method GSMSK MATH OlymBen MMLU Avg. PRMScore
Pass@8 98.9 96.2 79.8 96.7 92.9 - Pass@8 99.0 96.0 71.0 94.0 91.5

Maj@8 95.4 71.8 40.3 85.8 733 - Maj@8 96.5 68.0 41.0 86.0 72.9 -
Skywork-PRM-1.5B 96.7 89.2 58.8 90.2 83.7 61.1 QwQ-Preview-32B 96.5 83.5 56.5 87.5 81.0 63.6
Skywork-PRM-7B 97.1 90.0 60.1 90.3 84.4 65.1 MetaMath-7B 95.5 82.0 58.0 88.0 80.9 49.7
Llemma-PRM800k-7B 96.0 87.4 583 90.0 82.9 52.0 MetaMath-13B 95.0 84.5 57.5 86.5 80.9 494
Llemma-MetaMath-7B 96.0 88.2 58.6 90.0 83.2 50.5 MetaMath-70B 96.5 85.0 58.5 86.0 81.5 459
Llemma-oprm-7B 96.4 86.6 58.0 89.9 82.7 50.3 Qwen2.5-Math-7B 96.0 85.5 59.0 86.5 81.8 49.2
MATHMinos-Mistral-7B 95.8 88.3 59.1 89.1 83.1 54.2 Qwen2.5-Math-72B 97.5 82.0 53.5 88.5 80.4 574
MathShepherd-Mistral-7B 96.6 88.6 60.0 90.0 83.8 47.0 R1-Distill-Llama3.1-8B 96.5 84.5 53.5 87.5 80.5 52.7
ReasonEval-7B 96.4 87.0 58.4 90.0 82.9 60.1 R1-Distill-Llama3.1-70B 95.0 83.0 59.5 86.5 81.0 57.5
RLHFlow-PRM-Mistral-8B 96.5 88.4 59.1 90.4 83.6 54.4 R1-Distill-Qwen-7B 97.0 86.5 59.0 86.5 82.2 52.6
RLHFlow-PRM-Deepseek-8B 96.4 87.6 58.5 90.2 83.2 54.2 R1-Distill-Qwen-32B 97.0 82.0 60.5 84.5 81.0 60.2
ReasonEval-34B 96.4 86.9 56.9 90.0 82.6 60.5 WizardMath-7B 96.5 825 60.0 87.0 81.5 492
Qwen2.5-Math-PRM-7B 96.7 88.0 58.7 89.8 83.3 65.5 Gemini-2.0-flash-exp 97.0 81.5 56.5 86.5 80.4 66.0
Qwen2.5-Math-PRM-72B 96.7 89.3 60.5 90.0 84.2 68.2 Gemini-2.0-thinking-exp-1219 98.0 87.5 60.5 89.5 83.9 68.8
Standard Deviation (o) 0.35 0.97 0.93 029 053 6.41 Standard Deviation (o) 0.87 1.83 2.25 119 091 7.02
Somers’ D correlation 0.50 0.26 0.22 0.19 0.28 1.00 Somers’ D correlation 0.36 -0.21 0.03 024 -0.15 1.00

Table 13: Performance comparison on Best-of-8 using ~ Table 14: Performance comparison on Best-of-8 using
different PRMSs. o represents the standard deviation of ~ different LLMs as a Judge. o represents the standard
model performances across all benchmarks. Somers’ D deviation of model performances across all benchmarks.
refers to the Somers’ D correlation between PRMScore ~ Somers’ D refers to the Somers’ D correlation between
and specific benchmarks. PRMScore and specific benchmarks.

25315

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/meta-math/MetaMath-70B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.0
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

redundant steps that can be removed without affect-
ing the correctness of the overall solution path. For
example, if A — B represents a correct inference
chain, your task is to introduce one or more redun-
dant steps C' = {c|c is redundent} and reformulate
the solution chainas A — C — B.

Circular logic is a specific form of redundancy,
characterized by a reasoning chain that starts at a
step .S, progresses through a sequence of steps, and
ultimately loops back to S. Symbolically, this can
be expressed as S — A — B — S, where S, A,
and B represent individual reasoning steps. Your
task is to modify the reasoning process to introduce
such circular logic.

Counterfactual A counterfactual step refers to
a statement within a reasoning chain that contra-
dicts ground truth or established theories. Such
contradictions can arise from relying on outdated
theories, omitting critical constraints in a theory, or
incorporating erroneous assumptions. Your task is
to modify the reasoning process to introduce such
counterfactual steps.

Step contradiction refers to a conflict between a
specific step and other steps within a reasoning path.
Given a reasoning path P = 51,55, ...,Sy, a step
contradiction exists if S; L S;, where i, j € [1,n]
and 7 # j. Your task is to modify the reasoning
process to introduce such step contradiction steps.

Domain inconsistency is a special type of coun-
terfactual. It refers to a step or a few steps within
the reasoning chain that uses a statement or the-
ory valid in other domains or cases but is not valid
within the current reasoning chain. Your task is to
modify the reasoning process to introduce steps for
such domain inconsistency.

Confident hallucination is a special type of
counterfactual. It refers to a statement within the
reasoning chain that contradicts established ground
truth and is presented with an overly confident tone.
In other words, it involves stating an incorrect state-
ment with unwarranted certainty. Your task is to
modify the reasoning process to introduce such
confident hallucination steps.

Missing condition or prerequisite refers to a
flaw in the reasoning chain where critical premises,
assumptions, or necessary conditions are absent.
This omission results in logical gaps, incomplete
reasoning, or biased conclusions. For example,

when a missing condition occurs, the model must
solve the problem through case analysis or further
investigation. However, the answer becomes in-
correct if the model overlooks the missing condi-
tion and proceeds with standard reasoning methods.
Your task is to modify the reasoning process to
introduce such missing condition errors.

Deception or traps refer to statements that ap-
pear to be correct or align with ground truth but
are subtly altered to introduce inaccuracies while
maintaining the illusion of correctness. Your task is
to modify the reasoning process to introduce such
deception or trap error steps.

E Prompts

E.1 Prompts For Generating Data

As introduced in Section 3.2, we query GPT-40
(OpenAl, 2024a) to synthesize the metadata at the
very first step of our test case construction proce-
dure. To better prompt LLMs to generate high-
quality data instances, we carefully designed our
prompts, which are displayed in Figure 19-22. We
display only one example here due to limitations
in space. And the prompts can be found in our
supplementary materials.

E.2 Prompts For Evaluating Generative
LLMs

As introduced in Section 4.1, we prompt some state-
of-the-art generative LLMs as critic models to eval-
uate their rewarding capabilities on PRMBENCH.
To make a fair comparison between different mod-
els, we carefully design the prompts and utilize a
unified prompt to query them. The prompt used is
displayed in Figure 23 and 24.

F Further Discussion

Inspired by the results and discoveries on PRM-
BENCH, we further propose several promising di-
rections for future research, which we hope can
offer valuable insights and contribute to the ad-
vancement of the research community.

Anti-redundancy training: As stated in Section
4.3, our work highlights a specific weakness of cur-
rent PRMs in identifying redundant reasoning steps.
To mitigate this, one possible approach is to modify
the label distribution during training. PRM training
data is typically labeled as Correct, Neutral, or In-
correct, where the Neutral label often corresponds
to redundant steps. By reducing the proportion of

25316

Neutral samples in the training data, we can train
PRMs with stronger anti-redundancy capabilities.

Contrastive training: A high-quality data cura-
tion pipeline is introduced in Section 3.1, which
can also be adapted to curate training samples la-
beled with fine-grained error types. By leveraging
contrastive learning or preference alignment with
the curated data, the error sensitivity and detection
capabilities of PRMs can be further improved.

Step-level evaluation for LLMs: As introduced
in Section 5.4, the inconsistency between PRM-
Bench and BoN evaluation reveals the false positive
situation and the risk of reward hacking within LM
post-training. Therefore, traditional outcome-level
label-based evaluation is not enough, highlighting
the need for a comprehensive step-level evaluation
of LLM’s reasoning procedure.

25317

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 61.1 88.6 33.6 80.6 88.8 332 44.7 91.7
Skywork-PRM-7B 65.1 89.2 40.9 81.7 88.5 42.7 56.6 90.1
Llemma-PRM800k-7B 52.0 75.7 28.3 63.7 66.4 48.5 222 79.5
Llemma-MetaMath-7B 50.5 80.4 20.7 68.5 75.6 27.7 15.1 84.2
Llemma-oprm-7B 50.3 77.3 233 64.9 69.9 36.1 16.6 83.7
MATHMinos-Mistral-7B 54.2 79.2 29.1 67.9 72.8 41.7 38.0 84.6
MathShepherd-Mistral-7B 47.0 64.9 29.2 53.0 51.5 61.1 54.6 83.5
ReasonEval-7B 60.1 90.8 29.3 83.8 95.5 21.2 30.3 91.6
ReasonEval-34B 60.5 83.8 37.2 74.2 79.1 48.4 50.8 82.8
RLHFlow-PRM-Mistral-8B 544 87.7 21.1 78.8 90.2 17.9 22.1 92.8
RLHFlow-PRM-Deepseek-8B 54.2 89.9 18.6 82.0 95.0 13.0 17.0 95.0
Qwen2.5-Math-PRM-7B 65.5 91.5 39.4 85.1 95.4 30.6 37.8 89.0
Qwen2.5-Math-PRM-72B 68.2 91.4 45.1 85.1 93.8 38.7 48.5 86.8
Pure-PRM-7B 65.3 90.1 40.5 83.0 91.8 36.6 41.8 86.6
Avg. 57.7 84.3 31.2 75.2 82.4 355 354 87.3
Open LLMs, Prompted as Critic Models
MetaMath-7B 49.7 88.2 11.2 79.1 90.9 9.1 7.6 91.6
MetaMath-13B 49.4 89.6 9.1 81.4 94.4 6.3 4.8 94.8
Qwen2.5-Math-72B 57.4 90.3 24.4 82.9 96.9 159 19.8 92.4
QwQ-Preview-32B 63.6 87.6 39.6 79.4 89.2 364 40.2 83.1
R1-Distill-Llama3.1-70B 57.5 91.4 23.5 84.6 974 15.2 19.0 93.8
R1-Distill-Qwen-7B 52.6 83.2 22.0 72.3 80.5 26.0 23.9 79.3
DeepSeek-R17 67.8 87.2 48.4 79.5 83.1 60.5 63.7 77.9
Avg. 56.8 88.2 254 79.9 90.3 242 25.6 87.5
Proprietary LLMs, Prompted as Critic Models
GPT-40 66.8 86.9 46.7 79.0 82.9 58.2 64.4 76.6
ol-mini' 68.8 89.2 48.3 82.1 86.9 55.4 564 804
Gemini-2.0-flash-exp 66.0 86.5 45.5 78.4 823 57.2 64.3 80.0
Gemini-2.0-thinking-exp-1219 68.8 89.7 47.8 82.8 89.0 49.8 57.0 82.0
Avg. 67.6 88.1 47.1 80.6 85.3 55.2 60.5 79.7

Table 15: A performance comparison of popular models across detailed metrics in ALL categories of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25318

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Simplicity

Soundness

Sensitivity

Categories

Non-Redundancy

Non-Circular Logic

Empirical
Soundness

Step Consistency

Domain Consistency

Confidence Invariance

Prerequisite Sensitivity

Deception Resistance

Multi-Solution
Consistency

Descriptions [llustration

Non-Redundancy requires the PRM to detect redundant situatoins,

that is, a process that includes one or more redundant steps that can A —>C —>B
be removed without affecting the correctness of the overall
solution.
Circular logic is a specific form of redundancy, characterized by a K\
reasoning chain that starts at a step A , progresses through a C A —> B
sequence of steps, and ultimately loops back to A. A
Empirical Soundness requires the prm to detect a counterfactual A —>(C —>B
step, concretly, a statement within a reasoning chain that contradicts $
established ground truth. G
Step Consistency requires the PRM to detect a conflict between a A —>B —>(C

specific step and other steps within a reasoning path. \—x/

Domain Consistency requires the PRM to maintain robust when < g
faced with a step that uses a statement or theory valid in other -% A A 3
domains or cases but is not valid within the current reasoning cE> \ \ %‘

scene. o BB w
Confidence Invariance requires the PRM to maintain invariant
when faced with a statement within the reasoning chain that ng g
contradicts established ground truth and is presented with an overly Confident
confident tone.
Prerequisite Sensitivity requires the PRM to detect the flaw in the A -
reasoning chain where critical premises, assumptions, or necessary e B —(C
conditions are absent and the absense would cause errors. '\M,’y
Deception Resistance requires the PRM to detect statements that Y W S
appear to be correct or align with ground truth but are subtly altered © & 3
to introduce inaccuracies while maintaining the illusion of SR \ =
OF(B--»>B" ©
correctness. =
Multi . . . L. B->C
ulti-Solution Consistency requires the PRM to maintain P4 N

consistent when faced with different solution paths of the same A P o D

problem. B ~>C

Figure 5: Examples of an in-depth evaluation of PRMBench.

25319

[\] human_missing2

o]
Please judge the correctness of vey step n the [P number, it by comma,
@ Question @ Modified Process
Wratis by botn therr digis? . Strt by calling the double-Gigtinteger zy. The-value ofthe integers 10z +y.
2 The sum of the digits sz + 3.
3. And the product of the digitsis 2 - 3.
ave v
5.0rin other words, both \ac{10x ¥+ y} and rac{10x + i \cdot) must e inegers.
6. Let's ty to find integers for which both fractons give integers
7. Consider 10z + y is divisile by z +y, therefore 10z +y — k(z +) for some integer k.
& This smplifies o 10z + 1 > = + y, leading s toz > %
9. Consider 10z -+ y divisible by 2 -y, therefore 10z + y — I(z - y) for some integer L.
10, This expresson gves & - < 90 as 10z + y s lessthan 100.
1. Hence,we nesd to find z and y such tht an nteger k(z + y) and integer (- y) exstfor 10z + .
12. Thre are imited 7, pairs because lboth and y need to satisy these conditions for integers e than 100,
S i , the only 102+ y =0 (mod z +y)enc 10z +y =0 (mod zy) are: 12,
Land 30,
14 These comesnondt = = 15— %2 = 2 1 — & anctfor = = 3 11— 0 resnectiveh:
«Please wrte the error steps down here. Leave it blank ifyou find o errors i the reasoring process
455
L]

Figure 6: The data annotation platform.

25320

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 52.0 88.4 15.6 79.6 88.8 15.1 18.7 95.0
Skywork-PRM-7B 56.4 89.0 239 80.7 88.8 242 31.3 94.5
Llemma-PRM800k-7B 49.3 71.7 20.9 65.2 69.2 369 20.5 86.4
Llemma-MetaMath-7B 50.2 85.3 15.0 75.0 83.2 17.6 153 94.4
Llemma-oprm-7B 48.7 80.3 17.2 68.1 74.1 26.5 16.0 92.0
MATHMinos-Mistral-7B 48.8 82.7 14.9 71.2 79.2 19.0 20.8 95.7
MathShepherd-Mistral-7B 44.0 67.7 20.2 54.0 55.6 43.7 39.7 93.8
ReasonEval-7B 61.0 91.5 30.5 84.9 94.0 25.1 32.8 89.8
ReasonEval-34B 54.8 86.7 229 77.4 85.3 25.3 31.6 83.8
RLHFlow-PRM-Mistral-8B 46.1 89.1 32 80.3 923 2.4 34 98.5
RLHFlow-PRM-Deepseek-8B 46.4 91.0 1.9 83.5 96.1 1.2 1.5 99.0
Qwen2.5-Math-PRM-7B 49.0 92.1 5.9 85.4 98.0 35 33 98.2
Qwen2.5-Math-PRM-72B 50.4 91.9 8.8 85.2 97.4 5.4 6.2 98.2
Pure-PRM-7B 49.2 90.8 7.6 83.3 95.2 5.2 5.4 96.2
Avg. 50.5 86.0 14.9 76.7 85.5 17.9 17.6 94.0
Open LLMs, Prompted as Critic Models
MetaMath-7B 48.9 80.7 17.0 68.7 74.9 25.5 232 76.3
MetaMath-13B 50.3 86.5 14.0 76.7 85.7 14.9 11.8 854
Qwen2.5-Math-72B 553 90.3 20.3 82.7 93.9 154 17.0 90.1
QwQ-Preview-32B 57.2 85.8 28.7 76.3 84.3 314 339 81.9
R1-Distill-Llama3.1-70B 49.5 92.5 6.5 86.1 98.8 3.6 5.4 98.0
R1-Distill-Qwen-7B 329 439 21.9 34.7 29.4 70.1 68.6 315
DeepSeek-R17 63.0 86.9 39.2 78.4 82.2 533 62.5 76.5
Avg. 51.0 80.9 21.1 71.9 78.5 30.6 31.8 77.1
Proprietary LLMs, Prompted as Critic Models

GPT-40 57.0 77.8 36.3 67.0 66.5 70.4 77.1 68.9
ol-minif 65.6 90.8 40.4 84.1 90.4 41.5 45.8 84.1
Gemini-2.0-flash-exp 67.2 91.5 42.9 85.1 91.8 41.7 49.7 824
Gemini-2.0-thinking-exp-1219 68.5 914 45.6 85.1 90.9 47.1 56.5 84.7
Avg. 64.6 87.9 41.3 80.4 84.9 50.2 57.3 80.0

Table 16: A performance comparison of popular models across detailed metrics in NR. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25321

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 35.8 34.7 36.9 35.8 22.7 75.2 71.4 72.9
Skywork-PRM-7B 41.2 442 38.1 41.3 30.9 72.6 71.6 73.5
Llemma-PRM800k-7B 534 65.5 41.3 56.6 54.9 61.4 15.7 65.6
Llemma-MetaMath-7B 50.5 70.8 30.3 58.8 66.4 36.0 15.7 74.8
Llemma-oprm-7B 493 66.3 322 55.0 59.0 42.9 10.2 73.3
MATHMinos-Mistral-7B 54.0 70.8 37.2 60.2 66.6 432 40.6 79.1
MathShepherd-Mistral-7B 50.3 60.4 40.2 52.3 49.9 58.6 50.3 79.0
ReasonEval-7B 50.1 80.8 19.4 69.0 89.8 13.6 19.0 88.1
ReasonEval-34B 48.1 76.7 19.5 63.9 81.9 16.0 19.9 83.4
RLHFlow-PRM-Mistral-8B 473 79.8 14.9 67.3 88.7 10.5 18.9 93.7
RLHFlow-PRM-Deepseek-8B 48.9 82.3 15.4 70.7 93.6 9.8 15.6 94.6
Qwen2.5-Math-PRM-7B 55.1 84.5 25.7 74.3 96.1 16.3 22.7 91.6
Qwen2.5-Math-PRM-72B 58.8 84.5 33.1 74.8 94.3 22.8 335 89.4
Pure-PRM-7B 55.2 82.6 27.8 72.0 91.6 19.7 24.3 88.0
Avg. 49.9 70.3 29.4 60.9 70.5 35.6 30.7 81.9
Open LLMs, Prompted as Critic Models

MetaMath-7B 46.9 74.9 19.0 61.7 752 18.7 13.6 77.8
MetaMath-13B 44.4 76.4 12.4 62.8 81.0 10.2 7.3 83.8
Qwen2.5-Math-72B 54.9 81.2 28.6 70.2 89.5 21.1 27.7 81.5
QwQ-Preview-32B 55.6 76.1 352 65.0 77.9 33.1 37.2 75.8
R1-Distill-Llama3.1-70B 48.1 84.4 11.8 73.5 98.1 6.6 8.5 95.6
R1-Distill-Qwen-7B 37.9 38.2 37.7 37.9 25.8 73.4 73.3 27.2
DeepSeek-R17 62.7 76.4 49.0 67.7 71.6 57.3 61.7 -

Avg. 50.1 72.5 27.7 62.7 74.2 31.5 32.8 73.6

Proprietary LLMs, Prompted as Critic Models

GPT-40 62.4 73.5 51.3 65.6 65.4 66.2 80.6 59.9
ol-minif 63.7 80.4 47.0 714 80.6 46.6 479 -

Gemini-2.0-flash-exp 58.1 81.8 34.5 71.5 88.1 274 34.7 79.4
Gemini-2.0-thinking-exp-1219 63.8 81.2 46.4 72.2 82.8 44.0 54.8 74.6
Avg. 62.0 79.2 44.8 70.2 79.2 46.1 54.5 71.3

Table 17: A performance comparison of popular models across detailed metrics in NCL. sub-category of PRM-
BENCH. The best performance for each metric is highlighted in bold, while the second-best performance is
underlined. T: To reduce costs, we evaluated only a subset of 394 samples for o1-mini and Deepseek-R1.

25322

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 324 329 32.0 324 20.3 85.4 76.4 72.2
Skywork-PRM-7B 36.7 39.1 344 36.8 24.9 88.9 82.5 67.6
Llemma-PRM800k-7B 56.4 76.8 36.1 65.9 69.2 51.7 20.0 81.2
Llemma-MetaMath-7B 51.9 78.0 25.8 66.0 73.9 31.7 154 83.3
Llemma-oprm-7B 54.2 77.3 31.1 65.9 714 41.6 15.6 83.5
MATHMinos-Mistral-7B 57.0 77.3 36.7 66.6 71.1 48.6 39.7 82.0
MathShepherd-Mistral-7B 494 62.4 36.4 52.7 48.9 68.0 58.0 81.6
ReasonEval-7B 62.1 89.7 34.6 82.2 96.6 23.7 374 91.2
ReasonEval-34B 66.4 83.3 494 74.9 78.1 61.9 61.1 81.5
RLHFlow-PRM-Mistral-8B 56.6 85.8 274 76.2 89.6 22.5 24.5 90.5
RLHFlow-PRM-Deepseek-8B 55.7 87.8 23.5 79.0 94.6 16.2 214 93.5
Qwen2.5-Math-PRM-7B 71.8 90.8 52.8 84.6 94.8 433 56.2 83.7
Qwen2.5-Math-PRM-72B 73.7 90.7 56.8 84.7 93.2 50.6 66.9 814
Pure-PRM-7B 71.1 89.5 52.6 82.9 91.5 48.0 55.1 82.6
Avg. 56.8 75.8 37.8 67.9 72.7 48.7 45.0 82.6
Open LLMs, Prompted as Critic Models

MetaMath-7B 473 89.8 4.7 81.6 97.3 2.7 1.3 97.2
MetaMath-13B 47.8 90.0 5.6 81.9 98.4 3.1 3.1 98.6
Qwen2.5-Math-72B 55.5 88.6 22.4 80.2 99.1 13.1 16.2 94.7
QwQ-Preview-32B 67.4 87.6 47.2 79.9 92.8 38.1 42.5 83.5
R1-Distill-Llama3.1-70B 61.4 89.8 33.0 82.3 97.1 22.1 26.8 90.9
R1-Distill-Qwen-7B 473 90.2 44 82.3 99.1 24 33 98.2
DeepSeek-R1T 68.2 84.3 52.0 76.3 78.0 69.0 77.1 -

Avg. 56.4 88.6 24.2 80.6 94.5 21.5 24.3 93.9

Proprietary LLMs, Prompted as Critic Models

GPT-40 72.0 88.9 55.2 82.2 88.8 55.4 63.2 78.7
ol-mini' 74.5 88.9 60.0 82.7 85.6 69.8 75.0 -

Gemini-2.0-flash-exp 70.4 85.3 554 77.9 80.0 69.4 76.3 77.1
Gemini-2.0-thinking-exp-1219 729 89.4 56.4 83.0 89.8 55.5 64.8 79.5
Avg. 72.4 88.1 56.7 81.4 86.0 62.5 69.8 78.4

Table 18: A performance comparison of popular models across detailed metrics in ES. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25323

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 64.9 91.1 38.7 84.4 88.7 47.1 58.3 91.2
Skywork-PRM-7B 67.1 91.0 432 84.4 87.7 56.6 69.6 88.9
Llemma-PRM800k-7B 47.1 75.2 18.9 62.1 64.3 425 24.1 80.5
Llemma-MetaMath-7B 47.6 81.3 13.9 69.2 74.5 23.9 15.5 85.0
Llemma-oprm-7B 46.8 77.6 16.1 64.6 68.3 32.6 16.8 834
MATHMinos-Mistral-7B 52.1 80.7 235 69.2 72.6 424 39.4 85.5
MathShepherd-Mistral-7B 44.5 64.9 24.2 52.0 49.9 68.6 63.0 81.9
ReasonEval-7B 65.9 94.1 37.6 89.2 96.6 29.4 40.1 92.0
ReasonEval-34B 60.3 83.7 36.9 74.1 74.8 68.2 70.6 81.5
RLHFlow-PRM-Mistral-8B 55.1 90.0 20.2 82.2 90.0 20.1 229 92.3
RLHFlow-PRM-Deepseek-8B 55.0 924 17.7 86.1 95.2 13.4 16.6 95.1
Qwen2.5-Math-PRM-7B 67.3 934 41.2 88.1 94.4 37.6 43.8 87.9
Qwen2.5-Math-PRM-72B 71.1 92.9 49.2 87.5 91.6 54.5 61.6 83.1
Pure-PRM-7B 68.8 91.7 45.8 85.7 89.6 54.5 61.0 83.5
Avg. 58.1 85.7 30.5 77.1 81.3 422 43.1 86.6
Open LLMs, Prompted as Critic Models
MetaMath-7B 48.9 92.6 5.1 86.3 94.7 4.0 4.1 96.3
MetaMath-13B 474 93.6 1.2 88.1 97.8 0.7 0.9 99.6
Qwen2.5-Math-72B 71.6 93.5 49.6 88.5 95.1 43.8 49.5 86.9
QwQ-Preview-32B 72.3 91.3 53.3 85.3 88.8 62.4 65.0 79.7
R1-Distill-Llama3.1-70B 65.5 934 37.6 88.1 95.3 31.6 37.2 89.6
R1-Distill-Qwen-7B 54.1 94.0 14.1 88.8 98.9 8.2 9.2 97.0
DeepSeek-R17 68.5 90.5 46.5 83.8 86.0 65.7 63.2 75.0
Avg. 61.2 92.7 29.6 87.0 93.8 30.9 32.7 89.2
Proprietary LLMs, Prompted as Critic Models
GPT-40 69.7 89.9 49.6 83.1 84.3 74.3 76.9 76.3
ol-minif 67.7 89.7 45.7 82.7 84.4 68.6 70.8 74.2
Gemini-2.0-flash-exp 65.7 86.0 454 71.7 77.0 83.1 85.6 77.3
Gemini-2.0-thinking-exp-1219 71.3 91.4 51.2 85.4 87.6 68.5 72.8 81.0
Avg. 68.6 89.3 48.0 82.3 83.3 73.6 76.5 772

Table 19: A performance comparison of popular models across detailed metrics in SC. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25324

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 63.3 89.6 37.0 82.2 87.9 42.1 49.9 90.5
Skywork-PRM-7B 67.7 90.2 45.2 83.3 87.3 554 65.4 88.3
Llemma-PRM800k-7B 46.7 71.6 21.9 58.3 59.9 47.1 20.5 74.3
Llemma-MetaMath-7B 44.4 76.0 12.9 62.3 68.0 22.5 12.9 79.1
Llemma-oprm-7B 44.5 73.4 15.6 59.6 63.8 30.2 13.6 79.4
MATHMinos-Mistral-7B 50.7 76.1 25.3 63.8 66.6 45.8 39.0 80.6
MathShepherd-Mistral-7B 413 59.2 233 46.7 44.6 60.5 522 79.8
ReasonEval-7B 61.5 92.1 31.0 85.8 954 23.8 30.5 91.2
ReasonEval-34B 57.8 80.3 353 69.7 71.0 61.9 57.9 77.5
RLHFlow-PRM-Mistral-8B 544 87.8 21.0 78.9 87.8 20.9 18.8 90.4
RLHFlow-PRM-Deepseek-8B 53.2 90.4 15.9 82.8 93.7 12.2 11.6 94.2
Qwen2.5-Math-PRM-7B 66.3 91.5 41.2 85.1 92.2 39.1 42.0 85.0
Qwen2.5-Math-PRM-72B 72.2 91.7 52.7 85.9 90.1 58.7 65.5 80.5
Pure-PRM-7B 64.0 89.8 383 82.5 89.0 40.7 42.5 84.2
Avg. 56.3 82.8 29.8 73.4 78.4 40.1 37.3 83.9
Open LLMs, Prompted as Critic Models
MetaMath-7B 48.4 90.9 5.8 83.5 96.5 3.6 38 96.7
MetaMath-13B 49.4 92.1 6.7 85.4 98.1 39 38 98.8
Qwen2.5-Math-72B 58.1 91.8 24.3 85.3 97.0 16.4 15.0 92.6
QwQ-Preview-32B 66.2 87.0 45.5 78.9 82.9 57.0 51.6 74.4
R1-Distill-Llama3.1-70B 65.8 91.9 39.7 85.7 934 354 355 86.1
R1-Distill-Qwen-7B 48.4 92.1 4.7 85.4 98.4 2.7 2.8 98.4
DeepSeek-R17 73.5 91.3 55.6 85.5 85.7 84.1 77.1 754
Avg. 58.5 91.0 26.0 84.2 93.1 29.0 27.1 88.9
Proprietary LLMs, Prompted as Critic Models
GPT-40 70.7 88.2 533 81.2 81.3 80.4 814 71.4
ol-minif 73.8 92.2 55.5 86.7 87.7 77.8 74.5 80.0
Gemini-2.0-flash-exp 66.0 83.6 48.4 75.1 73.2 87.5 87.3 70.8
Gemini-2.0-thinking-exp-1219 71.0 88.8 53.2 81.9 82.6 77.2 79.2 73.7
Avg. 70.4 88.2 52.6 81.2 81.2 80.7 80.6 74.0

Table 20: A performance comparison of popular models across detailed metrics in DC. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for the ol-mini and Deepseek-R1.

25325

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 66.5 91.3 41.7 84.8 89.7 47.3 62.2 92.5
Skywork-PRM-7B 69.9 91.5 48.2 85.4 88.8 59.3 71.5 90.8
Llemma-PRM800k-7B 533 79.9 26.6 68.5 70.9 50.0 29.4 86.2
Llemma-MetaMath-7B 52.1 83.7 20.4 73.0 78.5 30.3 15.6 88.9
Llemma-oprm-7B 53.5 81.7 254 70.6 74.0 43.8 27.2 89.0
MATHMinos-Mistral-7B 57.8 82.5 33.1 72.3 74.5 56.3 53.8 87.3
MathShepherd-Mistral-7B 47.7 66.6 28.7 54.5 51.7 75.1 72.2 87.3
ReasonEval-7B 66.0 93.7 38.3 88.6 96.9 29.0 40.6 92.8
ReasonEval-34B 67.5 87.7 472 80.1 81.0 733 733 86.9
RLHFlow-PRM-Mistral-8B 63.8 91.0 36.7 84.2 90.7 37.5 45.0 90.9
RLHFlow-PRM-Deepseek-8B 66.2 93.0 39.5 87.5 94.9 335 433 92.1
Qwen2.5-Math-PRM-7B 8.5 94.9 62.0 91.0 95.2 60.5 70.4 854
Qwen2.5-Math-PRM-72B 78.6 94.7 62.5 90.7 94.3 64.1 73.7 84.8
Pure-PRM-7B 76.9 93.9 59.9 89.5 92.9 64.7 70.8 86.3
Avg. 64.2 87.6 40.7 80.0 83.9 51.8 535 88.7
Open LLMs, Prompted as Critic Models
MetaMath-7B 48.8 93.9 3.7 88.5 97.1 2.4 2.1 97.7
MetaMath-13B 48.1 94.7 1.5 89.9 99.1 0.8 0.6 99.0
Qwen2.5-Math-72B 59.1 93.1 25.1 87.4 99.6 14.7 19.8 96.2
QwQ-Preview-32B 66.9 91.7 42.2 85.4 94.8 34.2 43.1 89.1
R1-Distill-Llama3.1-70B 61.1 93.9 28.2 88.8 98.3 18.5 22.0 94.8
R1-Distill-Qwen-7B 48.0 94.6 1.3 89.8 99.8 0.7 0.7 99.5
DeepSeek-R17 75.4 92.7 58.1 87.6 88.8 78.1 824 82.7
Avg. 58.2 93.5 22.9 88.2 96.8 21.4 24.4 94.2
Proprietary LLMs, Prompted as Critic Models
GPT-40 71.1 92.1 50.2 86.3 90.4 56.5 60.4 85.2
ol-minif 72.3 91.6 53.1 85.7 87.3 72.7 75.0 80.1
Gemini-2.0-flash-exp 67.3 88.3 46.4 80.8 824 68.8 76.0 84.9
Gemini-2.0-thinking-exp-1219 71.8 92.6 51.1 87.1 91.4 55.8 60.5 86.1
Avg. 70.7 91.1 50.2 85.0 87.9 63.5 68.0 84.1

Table 21: A performance comparison of popular models across detailed metrics in CI. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25326

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 33.1 36.2 30.1 333 232 78.4 73.9 70.2
Skywork-PRM-7B 36.8 429 30.8 374 28.8 76.0 72.8 70.2
Llemma-PRM800k-7B 51.0 71.7 30.3 59.7 62.3 47.9 24.4 75.0
Llemma-MetaMath-7B 50.5 78.7 22.4 66.5 75.5 26.5 15.6 82.8
Llemma-oprm-7B 49.2 74.4 24.1 61.7 68.0 334 16.1 81.2
MATHMinos-Mistral-7B 52.8 71.5 28.0 65.7 73.3 34.2 29.5 83.1
MathShepherd-Mistral-7B 472 63.6 30.9 523 51.8 54.5 45.0 81.4
ReasonEval-7B 55.6 88.4 229 79.8 95.4 15.4 17.3 92.8
ReasonEval-34B 57.7 80.5 35.0 70.0 76.8 41.6 352 82.6
RLHFlow-PRM-Mistral-8B 515 85.3 17.6 75.0 89.9 13.7 16.2 93.1
RLHFlow-PRM-Deepseek-8B 49.0 87.0 10.9 77.4 94.4 7.1 6.7 95.9
Qwen2.5-Math-PRM-7B 57.6 88.8 26.5 80.5 95.6 18.1 17.7 91.7
Qwen2.5-Math-PRM-72B 60.3 88.5 322 80.3 93.8 24.1 249 89.4
Pure-PRM-7B 60.3 87.4 33.1 78.8 91.4 27.0 24.0 87.3
Avg. 50.9 75.0 26.8 65.6 72.9 35.6 29.9 84.0
Open LLMs, Prompted as Critic Models

MetaMath-7B 46.5 88.0 5.0 78.7 96.3 3.0 23 96.2
MetaMath-13B 49.0 88.6 9.4 79.7 97.6 5.4 3.1 96.7
Qwen2.5-Math-72B 474 88.5 6.3 79.5 99.9 33 3.1 98.8
QwQ-Preview-32B 57.8 86.4 29.1 77.2 92.8 21.5 18.3 88.3
R1-Distill-Llama3.1-70B 48.8 88.9 8.7 80.3 98.7 4.8 4.8 97.2
R1-Distill-Qwen-7B 45.6 89.5 1.6 81.0 99.3 0.8 1.1 99.1
DeepSeek-R17 63.1 82.7 43.5 73.5 82.6 43.7 34.8 -

Avg. 51.2 87.5 14.8 78.6 95.3 11.8 9.6 96.1

Proprietary LLMs, Prompted as Critic Models

GPT-40 62.5 86.8 38.3 78.2 88.8 347 333 83.8
ol-minif 61.8 84.9 38.7 75.7 88.6 33.1 18.8 -

Gemini-2.0-flash-exp 61.8 83.2 404 73.8 80.5 45.7 44.2 81.4
Gemini-2.0-thinking-exp-1219 60.3 87.1 335 78.4 90.5 28.0 27.0 87.0
Avg. 61.6 85.5 37.7 76.5 87.1 354 30.8 84.0

Table 22: A performance comparison of popular models across detailed metrics in PS. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25327

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

Model Name PRMScore F1 Negative F1 Acc Positive Acc Negative Acc First similarity

Open-source Process Level Reward Models

Skywork-PRM-1.5B 323 36.3 28.2 325 22.8 84.0 79.1 74.5
Skywork-PRM-7B 37.4 44.9 29.9 38.3 29.8 833 71.8 73.3
Llemma-PRM800k-7B 53.5 77.8 29.1 66.2 70.4 43.8 23.1 85.1
Llemma-MetaMath-7B 51.3 80.6 22.1 68.9 76.6 27.9 15.1 85.6
Llemma-oprm-7B 51.3 78.4 24.1 66.4 72.5 33.8 17.2 86.6
MATHMinos-Mistral-7B 55.8 79.1 324 68.1 72.8 452 414 83.7
MathShepherd-Mistral-7B 48.6 65.6 31.7 54.2 52.5 62.8 57.1 84.0
ReasonEval-7B 58.0 90.6 254 83.2 96.7 16.9 24.6 93.8
ReasonEval-34B 64.3 84.4 443 75.6 79.4 57.3 56.8 83.6
RLHFlow-PRM-Mistral-8B 56.2 87.5 24.9 78.6 90.3 21.0 27.1 92.2
RLHFlow-PRM-Deepseek-8B 554 89.5 214 81.5 95.1 14.9 194 95.0
Qwen2.5-Math-PRM-7B 69.1 91.7 46.6 85.6 95.4 37.3 46.9 87.0
Qwen2.5-Math-PRM-72B 71.2 91.5 50.9 85.5 93.9 443 55.9 85.2
Pure-PRM-7B 69.2 90.2 48.3 83.6 91.3 453 51.7 84.5
Avg. 553 77.7 32.8 69.2 74.3 44.1 424 85.3
Open LLMs, Prompted as Critic Models

MetaMath-7B 48.3 90.4 6.2 82.5 95.3 4.1 35 96.6
MetaMath-13B 48.1 91.4 4.8 84.3 98.7 2.6 4.0 99.6
Qwen2.5-Math-72B 53.8 90.5 17.1 82.9 99.3 9.6 11.5 96.3
QwQ-Preview-32B 62.7 89.2 36.1 81.6 94.9 26.6 29.8 88.8
R1-Distill-Llama3.1-70B 54.1 91.0 17.2 83.7 99.0 9.9 12.0 96.1
R1-Distill-Qwen-7B 46.8 91.8 1.9 84.9 99.5 1.0 1.2 99.3
DeepSeek-R17 69.2 89.0 49.5 81.9 87.3 54.1 59.5 -

Avg. 54.7 90.5 19.0 83.1 96.3 15.4 17.4 96.1

Proprietary LLMs, Prompted as Critic Models

GPT-40 65.7 89.2 422 81.8 90.5 39.3 413 84.8
ol-minif 64.8 86.7 429 78.4 84.5 48.2 43.8 -

Gemini-2.0-flash-exp 66.2 86.3 46.1 78.1 82.7 55.5 60.2 83.4
Gemini-2.0-thinking-exp-1219 65.7 89.7 41.8 82.5 91.8 37.0 40.2 86.4
Avg. 65.6 88.0 432 80.2 87.4 45.0 46.4 84.9

Table 23: A performance comparison of popular models across detailed metrics in DR. sub-category of PRMBENCH.
The best performance for each metric is highlighted in bold, while the second-best performance is underlined. : To
reduce costs, we evaluated only a subset of 394 samples for ol-mini and Deepseek-R1.

25328

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-prm-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-oprm-prm800k-level-1to3-hf
https://github.com/KbsdJames/MATH-Minos
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Mistral-Data
https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-7B
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/jinachris/Qwen2.5-Math-7B-PRM800K
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/meta-math/MetaMath-13B-V1.0
https://huggingface.co/Qwen/Qwen2.5-Math-PRM-72B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://github.com/deepseek-ai/DeepSeek-R1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode

1. Original Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000% {520

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. % = 0.00125.

Step 4: That’s true. Now we just have to solve the equation x=1000000%0.00125.

Step 5: So x=1250.

Step 6: That’s the final answer.

Step 7: Right. So 1,000,000 lire is equivalent to $1250.

2. Modified Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000%* 129

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. B—%% = 0.00125.

Step 4: That’s true. But let’s confirm the computation again: % = 0.00125.

Step 5: Now we just have to solve the equation x=1000000%0.00125.

Step 6: So x=1250.

Step 7: Let’s double-check by performing the multiplication again: 1000000*0.00125=1250.
Step 8: That’s the final answer.

Step 9: Right. So 1,000,000 lire is equivalent to $1250.

3. Reason

Step 4 unnecessarily repeats the computation of %é—%%, which was already completed in Step 7

redundantly re-checks the multiplication, adding no new information. These redundant steps make
the reasoning process less concise without affecting correctness.

Figure 7: An example data instance for NR. category.

25329

1. Original Process

Question: If > — z — 1 = 0, what is the value of z° — 2z + 1?

Step 1: Let’s start with the first equation and see if we can solve for x.

Step 2: Ok. We can use the quadratic formula to find x.

Step 3: The quadratic formula is 2 = =& e b2 dac

Step 4: Yes, that’s correct. In this case a, b, and care 1, -1, and 1, respectively.

1£v12—4x1%—1

Step 5: So if we plug those values in, we get x = o

Step 6: That simplifies to x = %‘/5 So x can be either HTf or 1;5/5

Step 7: Now let’s move to the second equation.

Step 8: Yes, we need to find 3 —2r + 1.

Step 9: Right. Well since we now know that 22—z —1 =0, we can replace 22 in the second
equation with x + 1.

Step 10: That means that 23 — 2x + 1 = x(x + 1) — 2z + 1.

Step 11: And if we substitute in the possible values of x that we found earlier, we get either
L5 (145 4 1) olb/5 4 or 1oV5 (1B 4 1) —91o¥5 4 g,

Step 12: Let’s start with the first case: %(# +1)— 2% + 1.

Step 13: There’s a shorter way. We have 73 — 22 + 1 = x(z + 1) — 2z + 1.

Step 14: 22 — 20 + 1 = (2? +) — 22 + 1.

Step 15: And we know that 22 —x — 1 = 0,s0 22 = x + 1.

Step 16: So we can just substitute + 1 for 2.

Step 17: So 2% — 22 + 1 = (2% +) — 2z + 1 becomes 2® — 2z +1 = (z + 1+ x) — 22 + 1.
Step 18: And that simplifies to #3 — 22 + 1 = (2v + 1) — 2z + 1.

Step 19: So 2% — 22 + 1 = 2.

Step 20: So, we don’t need to do the second case because we already have the answer.

Step 21: Right. Soif > —x — 1 =0 then 23 — 2z + 1 = 2.

2. Modified Process

Question: If 2 — z — 1 = 0, what is the value of z° — 2z + 1?

Step 1: Let’s start with the first equation and see if we can solve for x.

Step 2: Ok. We can use the quadratic formula to find x.

Step 3: The quadratic formula is 2 = =& = —ae b2 dac

Step 4: Yes, that’s correct. In this case a, b, and care 1, -1, and 1, respectively.

_ 1+:vV12—4x1x—1 12 4x1%—
Step S: So if we plug those values in, we get x = o

Step 6: That simplifies to z = %‘/5 So x can be either 1+T\f or 1_—2\/5

Step 7: Now let’s move to the second equation.

Step 8: Assume 3 — 22 + 1 = 2 for verification.

Step 9: Substituting 3 — 22 4+ 1 = 2 into the equation, it implies z(z?) — 2z + 1 = 2.
Step 10: Since 22 =z + 1, z(x +1) — 2z + 1 = 2.

Step 11: Simplifying confirms 3 — 2z + 1 = 2, verifying the assumption.

Step 12: Therefore, x> — 2z + 1 = 2 is correct.

3. Reason

Steps 8 and 9 assume the result (23 — 22 + 1 = 2) before deriving it, and step 11 uses circular
logic to verify the assumption by substituting it back into the equation. This process does not
independently solve the problem and creates a flawed reasoning chain.

Figure 8: An example data instance for NCL. category.

25330

1. Original Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000% 139

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. % = 0.00125.

Step 4: That’s true. Now we just have to solve the equation x = 1000000 = 0.00125.

Step 5: So x=1250.

Step 6: That’s the final answer.

Step 7: Right. So 1,000,000 lire is equivalent to $1250.

2. Modified Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x = 1000000 * 125

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. % = 0.00125.

Step 4: That’s true. Now we just have to solve the equation x = 1000000 = 0.00125.

Step 5: So x=1250.

Step 6: But wait, we need to account for transaction fees that add an additional 10%.

Step 7: So x = 1250 + 0.10 * 1250.

Step 8: That gives x=1375.

Step 9: Right. So 1,000,000 lire is equivalent to $1375.

3. Reason

A counterfactual step was introduced in step 6 by claiming the need to account for an additional
10% transaction fee, which is not mentioned in the problem. This erroneous assumption leads to
the incorrect result of $1375 instead of $1250.

Figure 9: An example data instance for ES. category

25331

1. Original Process

Question: If 22 — z — 1 = 0, what is the value of 23 — 2z + 1?
Step 1: Let’s start with the first equation and see if we can solve for z.
Step 2: We can use the quadratic formula to find x.

Step 3: The quadratic formula is 2 = =2V —dac VQZLMC.

Step 4: Substitutinga =1,b= —1,and c = —1, we get x = #
Step 5: Since 2 —x—1=0,we replace 22 withz + 1in 23 — 22 + 1.
Step 6: Substituting, 73 — 2z + 1 = z(z + 1) — 2z + 1.

Step 7: Simplify: 3 — 22 + 1 = (2% + x) — 2z + 1.

Step 8: Substitute 22 =z +1: 2% — 20+ 1= (z +1+x) — 22+ 1.
Step 9: Simplify: 23 — 2z + 1 = 2.

2. Modified Process

Question: If 2 — z — 1 = 0, what is the value of z° — 2z + 1?

Step 1: Let’s start with the first equation and see if we can solve for x.

Step 2: We can use the quadratic formula to find z.

Step 3: The quadratic formula is ¢ = —bEv-—dac V;f“mc.

Step 4: Substitutinga = 1,b= —1,and ¢ = —1, we get x =

Step 5: Since 22 — x — 1 = 0, we replace 22 with 2 + linz3 — 2z + 1.

Step 6: Substituting, 3 — 2z + 1 = x(x + 1) — 2z + 1.

Step 7: Simplify: 23 — 2z + 1 = (22 +z) — 22 + 1.

Step 8: Incorrectly substitute 22 = x — linstead of 2 + 1: 2% — 22+ 1 = (z — 1 + x) — 22 + 1.
Step 9: Simplify: 2% — 22 +1 = 0.

1+V5

3. Reason

Step 8 introduces a step contradiction by incorrectly substituting 2> = 2 — 1 instead of the correct

22 = x + 1. This conflicts with the earlier derivation from 22 — x — 1 = 0, where 22 = z + 1. As

a result, the final answer becomes 0 instead of the correct value, 2.

Figure 10: An example data instance for SC. category.

25332

1. Original Process

Question: If 22 — x — 1 = 0, what is the value of 23 — 2z + 1?
Step 1: Let’s start with the first equation and see if we can solve for x.
Step 2: We can use the quadratic formula to find x.

Step 3: The quadratic formula is o = —bEVb"—4ac VQZLMC.

Step 4: Substitutinga =1,b= —1,andc = —1, we getx = %\/5
Step 5: Since 22 — x — 1 = 0, we replace 2 with + 1 in 23 — 2z + 1.
Step 6: Substituting, 23 — 22 + 1 = z(z + 1) — 2z + 1.

Step 7: Simplify: 2% — 2z + 1 = (22 + 2) — 22 + 1.

Step 8: Substitute 22 = 2+ 1: 2% — 224+ 1= (z + 1+) — 22 + 1.
Step 9: Simplify: 23 — 2z + 1 = 2.

2. Modified Process

Question: If 22 — x — 1 = 0, what is the value of 23 — 2z + 1?
Step 1: Let’s start with the first equation and see if we can solve for x.
Step 2: We can use the quadratic formula to find x.

Step 3: The quadratic formula is = —bEVb"—dac VQZLMC.

Step 4: Substitutinga =1,b= —1,andc = —1, we getx = M.

Step 5: Since 22 — x — 1 = 0, we replace 2 with + 1 in 3 —22x + 1.

Step 6: Substituting, 23 — 22 + 1 = z(z + 1) — 2z + 1.

Step 7: To simplify 23, use the property of cubic roots: 23 = /.

Step 8: Substitute 23 = Yz and 22 =z + linto 2> — 22 + 1: 23 — 22 + 1 = Yz — 22 + 1.
Step 9: Simplify further: 23 — 2z + 1 = Jz — x + 1.

3. Reason

A domain inconsistency was introduced in Step 7 by incorrectly assuming that 3 = /z. This
assumption is valid for root-based equations but not in the context of solving a polynomial equation.
This error propagates through the rest of the reasoning, leading to a flawed solution.

Figure 11: An example data instance for DC. category.

25333

1. Original Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000%$520.

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. % = 0.00125.

Step 4: That’s true. Now we just have to solve the equation z = 1000000 * 0.00125.

Step 5: So x=1250.

Step 6: That’s the final answer.

Step 7: Right. So 1,000,000 lire is equivalent to $1250.

2. Modified Process

Question: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato
would have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?

Step 1: Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000%$520.

Step 2: There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3: I think the second way will be easier. % = 0.00125.

Step 4: That’s true. Now we just have to solve the equation x=1000000%0.00125.

Step 5: So x=1250.

Step 6: That’s the final answer.

Step 7: Actually, after a closer look, z = 0.00125 x 1000000 should be 12500. I must have
miscalculated earlier.

Step 8: So 1,000,000 lire is equivalent to $12500.

3. Reason

Step 7 introduces a confident hallucination. It contradicts the correct value of 1250 by recalculating
and asserting that the result is 12500, which is false. This error is presented with unwarranted
certainty to simulate confident misjudgment.

Figure 12: An example data instance for CI. category.

25334

1. Original Process

Question: Find all values of such that |z — 3| = 5.
Step 1: Start with the equation |z — 3| = 5.

Step 2: Recognize that the absolute value equation |a| = b implies two cases: a = b or a = —b.
Step 3: Apply this rule to | — 3| = 5, resulting in two equations: x —3 =5 orxz — 3 = —5.
Step 4: Solve each equation: z = 8 fromx — 3 =5and z = —2 fromz — 3 = —5.

Step 5: The solutions are x = 8 and z = —2.

2. Modified Process

Question: Find all values of z such that (v/z — 3)? = 5.
Step 1: (v/z — 3)2 = 5 can be represented as a special form of |z — 3| = 5.
Step 2: Start with the equation |x — 3| = 5.

Step 3: Recognize that the absolute value equation |a| = b implies two cases: a = b or a = —b.
Step 4: Apply this rule to |z — 3| = 5, resulting in two equations: x —3 =5 orx — 3 = —5.
Step 5: Solve each equation: z = § fromx —3 =5and x = —2 from x — 3 = —5.

Step 6: The solutions are x = 8 and x = —2.

3. Reason

The first step introduces a missing condition by changing the equation to |2 — 3| = 5, which ignores
the implicit requirement that z — 3 must be non-negative. The final step incorrectly asserts that the
solutions are = 8 and x = —2 without considering the domain restriction.

Figure 13: An example data instance for PS. category.

25335

1. Original Process

Question: Given that F(r) = (f(r),g(r),h(r)) is a three-dimensional vector, prove that:
Vry,re, Iry < r* < rg such that F(ry) — F(ry) = (r1 — ro) VF ().

Step 1: Understanding the Given Information and Problem We have a vector function F(r) =
(f(r),g(r), h(r)), where f, g, and h are real-valued functions of the real variable . We need to
prove that for any 71, r, there exists an r* such that r; < r* < ro and

F(ry) — F(ry) = (r1 — ro) VF (1),

where VF(r*) denotes the gradient of F at r* (i.e., a vector composed of the derivatives of each
component with respect to r).

Step 2: Breaking Down the Problem into Components Express the vector equation in terms of its
components:

(f(r1) = f(r2), g(r1) = g(r2), h(r1) — h(ra)) = (r1 —r2) (f7(r*), g/(r"), h1(r")) .
Thus, we need to find an r* € (ry, r2) such that for each component:

flr) = f(r2) — (), g(r1) —g(r2) = gi(r"), h(r1) = h(rz) = h(r*).

rL—1T2 1= T2 ri— T2

Step 3: Considering the Application of the One-Dimensional Mean Value Theorem In one di-
mension, the Mean Value Theorem (MVT) states that for a function f continuous on [a, b] and
differentiable on (a, b), there exists ¢ € (a, b) such that:

f(0) = f(a) = fr(c)(b - a).

Applying the MVT to each component function f, g, and h, we obtain corresponding points cy,
cg, and c;. However, these points generally differ (cy # ¢4 # cp), so we cannot guarantee the
existence of a common 7* where all component equations hold simultaneously.

Step 4: Considering a Counterexample Since we cannot guarantee a common 7* satisfying all
components, let’s attempt to find a specific counterexample to demonstrate that the original
proposition may not hold.

Step 5: Trying the Function F(r) = (sinr,cosr,r) Let F(r) = (sinr,cosr,r). Choose two
distinct real numbers, for example, r; = 0 and 2 = 7.

Step 6: Compute F(r) — F(r2):

F(0) — F(n) = (sin0 — sinm, cos0 —cosm,0 —7) = (0—0,1— (-1), —7) = (0,2, — 7).
Step 7: Compute (11 — r2) VF (r*):
(r1 —rg) (cosr*, —sinr*,; 1) = (0 — 7) (cosr*, —sinr*, 1) = (=) (cosr*, —sinr*,1).
Step 8: We need to find 7* € (0, 7) such that:
(0,2, —) = (—mcosr*, wsinr*, —).
Step 9: This leads to the equations:
—mcosr* =0, wsint* =2, —w=-m.

Step 10: The third equation is always true. Simplifying the first two equations: From — cos r* = 0:
cosr* = 0.

Figure 14: An example data instance for DR. category (1).
25336

Step 11: From 7 sinr* = 2:

sinr* = —.
T

Step 12: However, cos r* = 0 implies r* = 7. Substituting r* = 7 into the second equation:
2
sin (f) =1#—.
2 T

Step 13: Since % ~ 0.6366, the equality does not hold. Therefore, there is no r* in (0,) that
satisfies both equations simultaneously.

Step 14: The above calculations show that for the function F(r) = (sinr, cosr,), there does not
exist an 7* € (11, 72) such that:

F(Tl) — F(?"Q) = (Tl — TQ)VF(T‘*).
2. Modified Process

Question: Given that F(r) = (f(r),g(r),h(r)) is a three-dimensional vector, prove that:
Vri, 19, 3r1 < 1r* < rgsuch that F(r) — F(ry) = (r1 — r2) VF ().
Step 1: Understanding the Given Information and Problem We have a vector function F(r) =
(f(r),g(r), h(r)), where f, g, and h are real-valued functions of the real variable . We need to
prove that for any r1, r9, there exists an r* such that r; < r* < ry and

F(r1) — F(r2) = (r1 — r2) VF(r),

where VF(r*) denotes the gradient of F at 7* (i.e., a vector composed of the derivatives of each
component with respect to r).

Step 2: Breaking Down the Problem into Components Express the vector equation in terms of its
components:

(f(r1) = f(r2),9(r1) — g(r2), h(r1) — h(r2)) = (r1 —r2) (f1(r"), g/(r*), W(r")).
Thus, we need to find an 7* € (71, r2) such that for each component:

flr) = flra) _ fr(r), 9(r) = 9(r2) _ gr(r*), hir) = hira) _ hr(r*).

=2 rE—"2 rE ="

Step 3: Applying the Mean Value Theorem for Vector-Valued Functions The Mean Value Theorem
(MVT) can be extended to vector-valued functions. Specifically, if F(r) is continuous on [rq, 73]
and differentiable on (71, r2), then there exists some r* € (r1,72) such that:

F(ro) — F(r1) = F'(r*)(r2 — 11).

Step 4: Expressing the Derivative and Rearranging the Equation Recall that the derivative F'(r) is
given by:
F'(r) = (f’(r%g'(r), h/(r)) = VF(r).

Rewriting the equation from Step 3:
F(r1) — F(r2) = (r1 — ro)F'(r").

Step 5: Confirming the Equality Holds Component-Wise This equation holds for each component:
flr1) = f(ra) = (1 —r2) f'(r7),

g(r1) — g(ra) = (r1 —r2)g'(r"),
h(r1) — h(ra) = (r1 — ro)h' (r).

Figure 15: An example data instance for DR. category (2).
25337

Step 6: Concluding the Proof Since all components satisfy the Mean Value Theorem at the same
point r*, we have:
F(ry) — F(ra) = (r1 — ro) VF (1),

where r* € (11, r2).
Step 7: Final Statement Therefore, for any 71 and ro, there exists an r* between them such that the
original equation holds, which completes the proof.

3. Reason

MVT cannot be used in 3D space, which is a deception or trap, and the counterexample is a good
way to show that the proposition may not hold. But we changed it to a correct proof by extending
MVT to vector-valued functions and ignoring the restrictions of MVT

Figure 16: An example data instance for DR. category (3).

25338

1. Process 1

Question: Three pencils and a jumbo eraser cost $1.24. Five pencils and a jumbo eraser cost $1.82.
No prices include tax. In cents, what is the cost of a pencil?

Step 1: Let’s call the price of a pencil p and the price of a jumbo eraser e. Then we can write two
equations.

Step 2: We have 3p + e = 1.24 and 5p + e = 1.82.

Step 3: To solve this system, let’s subtract the first equation from the second equation. This will
eliminate e.

Step4: 5p+e—3p—e=1.82—1.24.

Step 5: This simplifies to 2p = 0.58. So p = 0.29.

Step 6: That means a pencil costs 29 cents.

Answer

29

2. Process 2

Question: Three pencils and a jumbo eraser cost $1.24. Five pencils and a jumbo eraser cost $1.82.
No prices include tax. In cents, what is the cost of a pencil?

Step 1: I need to solve this problem to find the cost of a pencil in cents. The problem gives me two
scenarios involving pencils and jumbo erasers, along with their total costs. Let’s first understand
what’s being asked.

Step 2: The problem states:

- Three pencils and one jumbo eraser cost $1.24.

- Five pencils and one jumbo eraser cost $1.82.

And it asks for the cost of a pencil in cents.

Step 3: Since the prices are given in dollars, I should convert them to cents to make calculations
easier because the answer is required in cents.

- $1.24 is equal to 124 cents.

- $1.82 is equal to 182 cents.

So, I can rephrase the problem as:

- 3 pencils + 1 jumbo eraser = 124 cents

- 5 pencils + 1 jumbo eraser = 182 cents

Step 4: Now, I need to find the cost of one pencil. Let’s denote:

- Let p be the cost of one pencil in cents.

- Let e be the cost of one jumbo eraser in cents.

So, I can write the equations based on the given information:

Equation 1: 3p + e =124

Equation 2: 5p + e =182

Step 5: I have a system of two equations with two variables (p and e). To find the value of p, I can
use the method of elimination or substitution. I think elimination might be straightforward here.
Step 6: If I subtract Equation 1 from Equation 2, the e (eraser cost) will cancel out, and I can solve
for p.

So, Equation 2 - Equation 1:

(Sp+e)-(Bp+e)=182-124

Simplifying:

Sp+e-3p-e=58

Which reduces to:

2p =58

Step 7: Now, solving for p:

p=58/2

p =29 cents

Figure 17: An example data instance for MS. category (1).

25339

Step 8: So, the cost of one pencil is 29 cents. But to make sure, I should check if this makes sense
with both original equations.

Step 9: Plugging p = 29 into Equation 1:

329) +e=124

87 +e=124
e=124-87
e = 37 cents

Step 10: Now, plugging p = 29 and e = 37 into Equation 2 to verify:
5(29) + 37 = 145 + 37 = 182 cents, which matches the second equation.
Step 11: Everything checks out, so the cost of a pencil is indeed 29 cents.
Final Answer

Figure 18: An example data instance for MS. category (2).

25340

1. System Prompt

Task Description You are a helpful Al assistant who is very good at reasoning and data construction.
Now I want to test the ability of process-level reward models to judge whether a step within the
reasoning process is correct. To do this, please help me build flawed cases by introducing specific
types of errors into a given reasoning process.

You will be provided with:

1. A mathematical problem.

2. Its standard correct answer.

3. A correct step-by-step reasoning process used to solve it.

Your task is to modify the question, adjust one or more steps, or introduce additional steps into the
original process chain to create a reasoning process that appears plausible but is incorrect. The
objective is to simulate flawed solutions by incorporating the specified error detailed after "Error
Type to Introduce".

Error Type to Introduce

Redundancy refers to a process that is not the most concise or efficient, as it includes one or more
redundant steps that can be removed without affecting the correctness of the overall solution path.
For example, if A — B represents a correct inference chain, your task is to introduce one or more
redundant steps C' = {c|c is redundent} and reformulate the solution chain as A — C' — B.
Formatting Instructions

After making the modifications, provide the following structured output:

{
"original_question”: "The original mathematical problem.",
"modified_question”: "The modified problem or original problem
"original_process”: ["original_step 1", "original_step 2", ...],
"modified_process”: ["modified_step 1", "modified_step 2", ...1,
"modified_steps”: [1, 5, 7, ...1,
"error_steps”: [5, 6, ...],
"reason”: "Explanation for the changes.”

3

Detailed Requirements:

1. original_question: A string representing the original mathematical problem as provided.

2. modified_question: A string representing the modified problem after your changes. If the
problem remains the same, you can copy the original question.

3. original_process: A non-empty list of strings representing the original reasoning steps provided
as input.

4. modified_process: A non-empty list of strings representing the reasoning process after your
modifications.

5. modified_steps: A non-empty list of integers indicating the indexes of all modified steps.
Indexing starts at 1.

6. error_steps: A non-empty list of integers representing the steps that contain hallucinations or
errors. These should also be part of modified_steps.

7. reason: A clear explanation of the modifications made, why they were introduced, and how they
align with the specified error types.

Notes:

1. Ensure all lists are non-empty. 2. Use the LaTeX format for all mathematical symbols (e.g., 22
for z squared). Do not use Unicode symbols such as \u2248 or \u0Of7. 3. Ensure the JSON object
is well-formed, with proper escaping for special characters like backslash n (e.g., use backslash
backslash n for newlines). 4. All indexes start from 1, that is, the first step’s index is 1, not 0. 5.
You can choose to modify the question or not, if the question remains the same, you can copy the
original question. But if the question is modified, ensure that the steps are judged based on the
modified question. 6. Please give the original process as provided by the prompt, do not modify it.

Figure 19: Prompts used for test case construction during data generation (1).

25341

2. Few Shots
User 1
Question:
If 22 — x — 1 = 0, what is the value of 23 — 2z + 1?
Steps:
Step 1. Let’s start with the first equation and see if we can solve for x.
Step 2. We can use the quadratic formula to find x.
. . B2
Step 3. The quadratic formula is z = W.
Step 4. Substitutinga = 1,0 = —1,and c = —1, we get x = 1i2‘/5.
Step 5. Since 22 — x — 1 = 0, we replace 2 with x + 1in 2® — 2z + 1.
Step 6. Substituting, 3 — 22 4+ 1 = z(z + 1) — 2z + 1.
Step 7. Simplify: 2® — 2z +1 = (22 +2) — 22 + 1.
Step 8. Substitute 2 =z + 1: 23 =22+ 1= (z + 1+) — 2z + 1.
Step 9. Simplify: 23 — 22 + 1 =2."
Answer
2
Assistant 1
{
"original_question”: "If $x*2 - x - 1 = 0%, what is the value of $x*3 - 2x
+ 1$?",
"modified_question”: "If $x*2 - x - 1 = 0%, what is the value of $x*3 - 2x
+ 1$?",

"original_process": [

"Let's start with the first equation and see if we can solve for x.",

"We can use the quadratic formula to find x.",

"The quadratic formula is $x = \\frac{-b \\pm \\sqrt{b*2 - 4ac}}{2a}$

"Substituting $a = 1%, $b = -1%, and $c = -1$%, we get $x = \\frac{1l \\
pm \\sqrt{5}3{23}%$.",

"Since $x*2 - x - 1 = 0%, we replace $x"2$ with $x + 1$ in $x*3 - 2x +

1$.",

"Substituting, $x%3 - 2x + 1 = x(x + 1) - 2x + 1$.",

"Simplify: $x*3 - 2x + 1 = (x*2 + x) - 2x + 1%.",

"Substitute $x%2 = x + 1$: $x*3 - 2x + 1 = (x + 1 + x) - 2x + 1$.",

"Simplify: $x*3 - 2x + 1 = 2%$."

s

"modified_process”: [

"Let's start with the first equation and see if we can solve for x.",

"We can use the quadratic formula to find x.",

"The quadratic formula is $x = \\frac{-b \\pm \\sqrt{b*"2 - 4ac}}{2a}$

"Substituting $a = 1%, $b = -1%, and $c = -1$, we get $x = \\frac{1 \\
pm \\sqrt{5}}{23}%$.",

"Since $x*2 - x - 1 = 0%, we replace $x"2$ with $x + 1% in $x*3 - 2x +

1%$.",

"Substituting, $x"3 - 2x + 1 = x(x + 1) - 2x + 1$.",

"Simplify: $x%3 - 2x + 1 = (x*2 + x) - 2x + 1%.",

"Now let's verify that $x*2 = x + 1$ by re-solving $x*2 - x - 1 = 0%
again."”,

"Substitute $x%2 = x + 1%: $x"3 - 2x + 1 = (x + 1 + x) - 2x + 1%.",

"Simplify: $x*3 - 2x + 1 = 2%$."

"modified_steps”: [8],

"error_steps”: [8],

"reason”: "Step 8 re-solves $x"2 - x - 1 = 0% unnecessarily, introducing
redundancy. This step does not provide new information, as $x%2 = x + 1
$ was already established in The reasoning is still correct but less
efficient.”

b
User 2

Figure 20: Prompts used for test case construction during data generation (2).

25342

Question:

In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato would have
cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar, how many
dollars would be equivalent to 1,000,000 lire?

Steps :

Step 1. Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000*

frac1.501200.

Step 2. There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3. I think the second way will be easier.

fracl.501200 = 0.00125.

Step 4. That’s true. Now we just have to solve the equation x=1000000%0.00125.

Step 5. So x=1250.

Step 6. That’s the final answer.

Step 7. Right. So 1,000,000 lire is equivalent to $1250.

Answer

1250

Assistant 2

{
"original_question”: "In 1992, a scoop of gelato could be purchased in
Italy for 1200 lire. The same gelato would have cost $\\$1.50$ in the U
.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?",
"modified_question”: "In 1992, a scoop of gelato could be purchased in
Italy for 1200 lire. The same gelato would have cost $\\$1.50$% in the U
.S. At the equivalent exchange rate between the lire and the dollar,
how many dollars would be equivalent to 1,000,000 lire?",
"original_process": [
"Let's call the number of dollars x. So, the problem is asking us to
solve the equation x=1000000*$\\frac{1.50}{12003}$.",
"There are two ways to solve this equation. We could either divide 100
0000 by 1200 and then multiply the result by 1.50 or we could
divide 1.50 by 1200 and then multiply the result by 1000000.",
"I think the second way will be easier. $\\frac{1.50}{1200}=0.00125%."

"That's true. Now we just have to solve the equation x=1000000%0.00125
"So x=%$1250%.",

"That's the final answer.”,

"Right. So 1,000,000 lire is equivalent to $\\$1250%."

"modified_process”: [
"Let's call the number of dollars x. So, the problem is asking us to
solve the equation x=1000000*x$\\frac{1.50}{12003}$.",
"There are two ways to solve this equation. We could either divide 100
0000 by 1200 and then multiply the result by 1.50 or we could
divide 1.50 by 1200 and then multiply the result by 1000000.",
"I think the second way will be easier. $\\frac{1.50}{1200}=0.00125%."

"That's true. But let's confirm the computation again: $\\frac{1.50}{1
200}=0.00125%.",
"Now we just have to solve the equation x=1000000%0.00125.",
"So x=%$1250%.",
"Let's double-check by performing the multiplication again: 1000000%*0.
00125=$1250%.",
"That's the final answer.”,
"Right. So 1,000,000 lire is equivalent to $\\$1250%."
1
"modified_steps”: [4, 7, 8],

Figure 21: Prompts used for test case construction during data generation (3).

25343

"error_steps”: [4, 7, 8],

"reason": "Step 4 unnecessarily repeats the computation of $\\frac{1.503}{1
200}%, which was already completed in Step 7 redundantly re-checks the
multiplication, adding no new information. These redundant steps make
the reasoning process less concise without affecting correctness.”

Figure 22: Prompts used for test case construction during data generation (4).

25344

1. System Prompt

You are a mathematical reasoning evaluator. Your task is to analyze mathematical problem-solving
steps and provide structured assessments in JSON format.
For each solution step, you need to evaluate two aspects:
1. Validity Score (-1 to +1):

* +1: Completely correct mathematical reasoning

*0: Partially correct with some mistakes

* -1: Completely incorrect

* Use any value in between to indicate varying degrees of correctness
2. Redundancy Score (-1 to +1):

* -1: Critical step, absolutely necessary for the solution

* 0: Moderately important step

* +1: Completely redundant, can be omitted

* Use any value in between to indicate varying degrees of redundancy
Requirements:

- Evaluate each step independently

- Provide scores as floating-point numbers

- Return results in strict JSON format: "validity": [scores], "redundancy": [scores]

- Ensure both arrays have the same length as the number of steps

- Maintain mathematical rigor in your evaluation

- Consider mathematical accuracy, logical coherence, and solution efficiency
Example output format:

{"validity": [0.8, -0.5, 1.0], "redundancy”: [-1.0, 0.3, 0.71}

2. Few Shots

User 1

Question:

In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato would have
cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar, how many
dollars would be equivalent to 1,000,000 lire?

Solution:

Step 1. Let’s call the number of dollars x. So, the problem is asking us to solve the equation
x=1000000% 120

Step 2. There are two ways to solve this equation. We could either divide 1000000 by 1200 and
then multiply the result by 1.50 or we could divide 1.50 by 1200 and then multiply the result by
1000000.

Step 3. I think the second way will be easier. 112—%% = 0.00125.

Step 4. That’s true. Now we just have to solve the equation x=1000000%0.00125.

Step 5. So x=1250.

Step 6. So x=1250.

Step 7. That’s the final answer.

Step 8. Right. So 1,000,000 lire is equivalent to $1250.

Answer

1250

Assistant 1

{\"validity\": [1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],\"redundancy\": [-1.0,
0.5, -0.5, -0.5, -1.0, 1.0, 0.5, 1.01}

User 2

Figure 23: Prompts used for evaluating generative LLMs (1).

25345

Question:

Four points, A, B, C, and D, are chosen randomly and independently on the circumference of a
circle. What is the probability that segments AB and C'D intersect?

Solution:

Step 1. Let’s think about what it means for the segments to intersect.

Step 2. Whether they intersect is entirely a function of the order of B, C, D on the circle, when we
look at it counterclockwise and consider A to come first.

Step 3. Exactly. So let’s consider the different possible orders of B, C, D.

Step 4. The number of possible orders is 3! = 6.

Step 5. Yes, that’s right. Now, we need to figure out how many of these result in the segments
intersecting.

Step 6. If C is in between B and D, then the segments will intersect.

Step 7. If B is in between C' and D, then the segments will intersect.

Step 8. Right. That’s two of the possible orders.

2 1
Step 9. So, the probability that the segments intersect is 5= 3

Step 10. And that’s our answer.
Answer

1/3

Assistant 2

{\"validity\": [1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 0.8, 1.0, 1.0, 1.01,\"
redundancy\”: [-1.0, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -1.0, 1.01}

Figure 24: Prompts used for evaluating generative LLMs (2).

25346

