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Abstract

Recent English Common Crawl datasets like
FineWeb-Edu and DCLM achieved significant
benchmark gains via aggressive model-based
filtering, but at the cost of removing 90% of
data. This limits their suitability for long token
horizon training, such as 15T tokens for Llama
3.1. In this paper, we show how to achieve
better trade-offs between accuracy and data
quantity by a combination of classifier ensem-
bling, synthetic data rephrasing, and reduced
reliance on heuristic filters. When training
8B parameter models for 1T tokens, using
a high-quality subset of our data improves
MMLU by 5.6 over DCLM, demonstrating
the efficacy of our methods for boosting
accuracies over a relatively short token horizon.
Furthermore, our full 6.3T token dataset
matches DCLM on MMLU, but contains
four times more unique real tokens than
DCLM. This unlocks state-of-the-art training
over a long token horizon: an 8B parameter
model trained for 15T tokens, of which 7.2T
came from our dataset, is better than the
Llama 3.1 8B model: +5 on MMLU, +3.1 on
ARC-Challenge, and +0.5 on average across
ten diverse tasks. The dataset is available at
https://data.commoncrawl.org/contrib/
Nemotron/Nemotron-CC/index.html.

1 Introduction

Internet crawl is the largest source of unique to-
kens for training LLMs and can be seen as serving
two main purposes: high-quality content and diver-
sity. Recent English datasets derived from Com-
mon Crawl1 such as FineWeb-Edu (Penedo et al.,
2024) and DCLM (Li et al., 2024) have empha-
sized high-quality content that boosts benchmark
accuracies over data quantity. They have demon-
strated significant strides in achieving benchmark
results competitive with some of the best closed
models at a small scale (e.g., DCLM’s 7B model

1https://commoncrawl.org/
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Figure 1: MMLU scores for 8B parameter models
trained for 1T tokens. Compared to DCLM, our meth-
ods enable us to either create a 4× larger dataset of
similar quality or increase the MMLU using a high qual-
ity subset of the tokens. Having a larger dataset, in the
sense of unique real tokens, is crucial when training
over long horizons such as 15T tokens.

trained over 2.6T tokens), primarily thanks to the
use of model-based filters to extract high-quality
educational and instructional content. However,
this comes at the cost of data quantity: they remove
around 90% of the data. Such aggressive pruning
may not be the most effective strategy when train-
ing larger models over longer token horizons (e.g.,
Llama 3.1 includes 8B–405B parameter models,
trained for 15T tokens (Dubey et al., 2024) and
Gemma 2 27B was trained for 13T tokens (Team
et al., 2024)). Both DCLM and FineWeb-Edu
contain around 80% near-duplicates (1T and 0.2T
unique tokens, respectively) (Ben Allal, 2024; Li
et al., 2024) and to train on these datasets for many
trillions of tokens implies seeing essentially the
same samples many times during training. This
could lead to inferior models, as Muennighoff et al.
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(2024) find there are diminishing returns after four
epochs compared to training on more unique to-
kens.

In this paper, we show how to achieve a better
trade-off between benchmark accuracy and data
quantity with a combination of classifier ensem-
bling, synthetic data generation, and reduced re-
liance on heuristic filters. Our main contributions
are:

1. We propose a method for transforming En-
glish Common Crawl into a 6.3T token long-
horizon pretraining dataset, consisting of 4.4T
globally deduplicated original tokens and 1.9T
synthetically generated tokens. We release the
dataset2 under the Common Crawl Terms of
Use and a reference implementation as part
of the Apache 2.0 open-source NeMo Curator
library.3 The quality classifier models have
been released as well.4

2. We prove the effectiveness of this method
by comparing to the state-of-the-art open En-
glish Common Crawl datasets DCLM and
FineWeb-Edu (Figure 1).

(a) A 1.1T-token high-quality subset of our
data achieves a 5.6 MMLU improvement
over DCLM, showing the superiority of
our method over a relatively short token
horizon.

(b) Our full dataset performs on par with
DCLM while having 4× as many unique
real tokens.

(c) This larger size enables state-of-the-art
results over long token horizons: An
8B parameter model trained for 15T to-
kens using a weighted version of our
dataset achieves higher overall accuracy
than Llama 3.1 8B, and in particular
MMLU 70.3 vs. Llama’s 65.3. Note
that Llama 3.1 8B was also trained on
15T tokens (Dubey et al., 2024).

3. We conduct ablation studies and find:

(a) Ensembling different model-based clas-
sifiers can help select a larger and more

2https://data.commoncrawl.org/contrib/Nemotron/
Nemotron-CC/index.html

3https://github.com/NVIDIA/NeMo-Curator
4https://huggingface.co/nvidia/nemocurator-

fineweb-nemotron-4-edu-classifier and https:
//huggingface.co/nvidia/nemocurator-fineweb-
mixtral-edu-classifier

diverse set of high quality tokens.

(b) Rephrasing can effectively reduce noise
and errors in low-quality data and pro-
duce diverse variants with fresh unique
tokens from high-quality data, leading to
better results in downstream tasks.

(c) Disabling traditional non-learned heuris-
tic filters for high-quality data can further
boost high quality token yield without
hurting accuracy.

Finally, we remark that our overall guiding prin-
ciple is to shift from a static, non-learned, heuristic
pipeline towards a more learned flywheel whose
performance will naturally get better over time. As
our data improves, so will the LLMs we train, and
these improved LLMs will in turn improve our data
as we use them to generate better synthetic data
and quality classifications.

2 Methods

In this section we explain our efforts to build the
best English Common Crawl pretraining dataset
for LLMs. Our efforts can be split into three folds.
First, we talk about our efforts in boosting token
yield by utilizing text extractor and heuristic filters
more properly in Section 2.1. Second, we introduce
the model-based quality labeling pipeline methods
in Section 2.2. Third, we introduce our synthetic
data generation method to further improve the data
quality in Section 2.3. For a schematic overview
of our final pipeline, please see Figure 3 in Ap-
pendix A.

2.1 HTML-to-text Extractor & Filter

Extracted texts from HTMLs are the foundation
and major source of LLM pretraining dataset, so it
is of great significance to analyze and understand
the extraction tools for optimal data quality and
token yield. Moreover, heuristic filters are often
utilized to remove low-quality tokens with human-
designed heuristics (Li et al., 2024; Parmar et al.,
2024; Penedo et al., 2024; Dubey et al., 2024),
which may also put good tokens at the risk of being
removed. We carefully examine both aspects with
the assist of the FineWeb-Edu classifier (Penedo
et al., 2024), a model-based quality classifier that
had shown effectiveness in identifying high-quality
tokens that are significant in boosting the strength
of LLMs.
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#Tokens #HQ tokens #HQ +%

Trafilatura-filtered 994 80 -
Justext-filtered 1,380 104 28.6%
Justext 1,804 127 57.4%

Table 1: Extraction and filteration token count statistics
(billion). Tokens counted after deduplication.

HTML-to-text Extraction We test two HTML-
to-text extractors, Justext (Pomikálek, 2011) and
Trafilatura (Barbaresi, 2021). Qualitatively, we
view both extractors at the same level of quality.
Quantitatively, we calculate token yields of both
extractors on 13 selected snapshots of Common
Crawl (see Appendix F). The statistics are reported
in Table 1. We see that Justext can yield more to-
kens, notably more high-quality tokens (+28.6%)
by the standard of Fineweb-Edu classifier (score 3,
4, and 5). We highlight that boosting unique token
amount is of great importance when building long-
horizon pretraining dataset, e.g., 15T tokens for
Llama3.1. Even though there is a slight decline in
the percentage of HQ tokens for Justext vs. Justext-
filtered (7.0% vs. 7.5%), what we aim to maximize
here is the absolute number of HQ tokens (127B
vs. 104B). We will later sort the data into quality
buckets, which enables exact control of the propor-
tion of HQ vs. non-HQ data seen during training
instead of reliance on the natural distribution for
a particular extraction tool. After extraction, we
apply filtering to keep only English text, as deter-
mined by pycld25 and the FastText lid176 language
classifier6 with threshold 0.3 (Joulin et al., 2016,
2017). We then apply global fuzzy deduplication as
well as exact substring deduplication over eighths
of snapshots (Lee et al., 2022), using the NeMo
Curator library7 and the deduplicate-text-datasets
library,8 respectively.

Filtering Conventionally, heuristic filters are
leveraged to remove low-quality tokens from the
pretraining dataset as a post-processing step (Li
et al., 2024; Parmar et al., 2024; Penedo et al.,
2024; Dubey et al., 2024). We revisit the filter-
ing pipeline as in (Parmar et al., 2024). Such
pipeline sequentially consists of a set of heuris-
tic filters proposed by Raffel et al. (2020); Rae et al.

5https://pypi.org/project/pycld2/
6https://fasttext.cc/docs/en/language-

identification.html
7https://github.com/NVIDIA/NeMo-Curator
8https://github.com/google-research/

deduplicate-text-datasets

(2021) and a perplexity filter based on a KenLM
model (Heafield, 2011) trained on Wikipedia and
books data (Wenzek et al., 2020). To quantitatively
better understand the effectiveness of the filtering
pipeline, we calculate the token yield and report the
numbers in Table 1. We find the filtering pipeline
removes a non-trivial portion of high-quality to-
kens (-18.1%) classified by FineWeb-Edu classifier
from the dataset.

Given the impact that the heuristic filters have on
the high-quality token yield, we propose to NOT
apply such filters to the high-quality tokens dis-
tinguished by model-based quality classifers (de-
scribed in the next section), but only use those on
the low-quality splits. In the experiment section we
empirically verify the impact of both the extractor
and filter on pretraining data quality through down-
stream benchmarks. We refer readers to Section 3.3
for detailed results.

2.2 Model-based Quality Labeling

Recent work (Li et al., 2024; Penedo et al., 2024)
use model-based classifiers to extract high-quality
pretraining documents from English Common
Crawl. However, both of the two quality classi-
fiers have a limited recall (around 10%) of high-
quality tokens (see Table 9), and this will become
a bottleneck to train an LLM over a long horizon.
Also, the quality labels assigned by the quality
classifier are not necessarily aligned with LLM’s
downstream task performance. Therefore, we pro-
pose our ensemble-based quality labeling pipeline
method. Specifically, we first build three quality
classifiers, each of which has different high-quality
preferences. Then, we ensemble the three clas-
sifiers to score all the documents, and split the
crawl corpus into different quality buckets based
on the quality score. Finally, we regroup the fine-
grained document buckets into 5 different quality
levels based on their corresponding performance
on downstream task.

Quality Classifier Training Preparing pretrain-
ing documents with quality annotations is the first
key step in building a quality classifier (Dubey
et al., 2024; Abdin et al., 2024; Yang et al., 2024).
Similar to the work (Penedo et al., 2024)9, we
constructed two versions of quality annotation
data. We prompt Mistral 8x22B-instruct10 and

9We use the same 460K document samples as in the
FineWeb-Edu-Annotation dataset.

10https://mistral.ai/news/mixtral-8x22b/
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Nemotron-340B-instruct (Adler et al., 2024), to
score web documents from FineWeb based on
their educational value on a scale from 0 to 5.
We then fine-tune a linear regression model on
top of the Snowflake-arctic-embed-m embedding
model (Merrick et al., 2024) using the two different
version of training sets. The two models have been
trained for 20 epochs with a learning rate of 3e-
4, with the embedding and encoder layers frozen,
and we selected the checkpoint with the highest F1
score on the held-out validation set.

We also employ the DCLM classifier which is a
fastText-based classifier released by Li et al. (2024).
The DCLM classifier is trained on a combination
of instruction-formatted data (Teknium, 2023) and
high-scoring posts data from ELI5 subreddit (Fan
et al., 2019), and has shown stronger performance
in identifying high-quality pretraining tokens, com-
pared to the FineWeb-Edu classifier (Penedo et al.,
2024). The DCLM classifier will offer a new per-
spective in labeling high-quality pretraining doc-
uments, and will help increase the recall of high-
quality tokens.

Quality Scoring and Bucketing First, we use
each of the three classifiers to predict the qual-
ity scores for all the documents. Then based on
the ranked quality score from each classifier, we
rounded the model’s output score to integers from
0 to 19. So that each score bucket will have around
5% of the documents, and bucket 19 will have the
top 5% highest quality documents. We then assign
the final quality score for each document by en-
sembling the three classifiers’ integer score by a
maximum operation. The number of documents
distribution in each buckets will be skewed by the
ensemble operation.

Quality Labeling In order to assign a quality la-
bel that is more aligned with their real performance
on downstream tasks, we further group the fine-
grained quality score predicted by three classifiers
into 5 downstream quality categories. We used an-
nealing to assess each data bucket’s downstream
task’s quality. Specifically, we measure the quality
of each bucket by continuous pretraining with 50B
tokens on a 70% trained 8B models. We assign
66% of weight to the default data mix and 34%
to the dataset that we are evaluating. By compar-
ing the average performance of each bucket over 9
tasks, we group the 20 buckets into 5 big categories,
with the final distribution shown in Table 2. For
more details, please see Appendix C.

Quality Label Buckets # Tokens (B) Token (%)

High 19 553 12.63
Medium-High 18 504 11.52
Medium 12-17 2,023 46.24
Medium-Low 7-11 894 20.43
Low 0-6 402 9.18

Table 2: Common Crawl quality labels statistics.

2.3 Synthetic Data Generation

Upon reviewing samples across the quality tiers,
we observe that documents with lower scores tend
to contain more noise and errors, while those scor-
ing higher generally exhibit good writing and for-
matting. Therefore, we employ different strategies
when generating data from low- and high-quality
documents.

For low-quality data, our goal is to improve the
quality by reducing noise and errors while preserv-
ing useful information, thereby decreasing train-
ing compute expenses. As shown by Maini et al.
(2024), rephrasing web data using a medium-sized
language model yields an enhanced parallel cor-
pus of synthetic data, thereby reducing model per-
plexity and boosting its accuracy on downstream
tasks. Unlike existing methods that create new
content such as textbooks and short stories (Wang
et al., 2023; Eldan and Li, 2023; Gunasekar et al.,
2023), our rephrasing-based approach does not uti-
lize the language model as a knowledge bank but
focuses on transforming provided texts into another
style, allowing it to operate with a lighter-weight
model. We adopt the Wikipedia style prompt
from (Maini et al., 2024) to rewrite low-quality
documents (Prompt 5 in Appendix H), which ef-
fectively reduces errors and redundancies and im-
proves formatting.

For high-quality data, we aim to obtain more
unique tokens and condense essential knowledge.
According to (Muennighoff et al., 2024), adding
repeated tokens yields a diminishing return, espe-
cially after 4 epochs. For high-quality documents,
we generate synthetic data using four additional
prompts: (1) Diverse Question-Answer (QA) pairs:
ask questions in various forms (e.g., yes/no ques-
tion, open-ended question, multi-choice question)
about factual information in the text and provide
the correct answers; (2) Distill: rewrite the text into
a concise and clear passage; (3) Extract knowledge:
rewrite knowledge from the text and disregard un-
informative content; (4) Knowledge list: extract
key information from the text as an organized list.
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We require the model to provide clear and concise
responses while preserving factual information and
concrete details such as numbers. The full prompts
are shown in Appendix H.

As we increase the length of provided text, the
model shows a tendency to produce over-simplified
outputs with reduced detail. Therefore, we chunk
each document into segments, each of which con-
tains one or more complete lines and is shorter than
a specific token limit.11 Over-length lines exceed-
ing the token limit are discarded.

Question: Which year did the United Nations
implement the 2030 agenda for SDGs?
Answer: January 1, 2016

Question: What are the three key dimensions of
sustainable development covered by the SDGs?
Answer: (a) economic growth, (b) social
inclusion, and (c) environmental protection

Question: Which of the following can flossing
prevent? A) Cavities B) Gum disease C) Both A and
B D) Neither A nor B
Answer: C) Both A and B

Question: Is flossing important even if you
brush your teeth twice a day?
Answer: Yes, flossing is important as it reaches
areas that brushing alone cannot.

Figure 2: Examples of generated question-answer pairs.

Our post-processing steps include removing in-
complete results, eliminating specific Markdown
formatting (e.g., double asterisks), stripping away
prefixes of certain patterns (e.g., “Here is a para-
phrased version:” and “Paraphrased Text:”), re-
moving quotation marks enclosing the entire re-
sponse, and filtering out under-length outputs (i.e.,
shorter than 50 tokens). For Wikipedia results, we
concatenate passages generated from segments be-
longing to the same original document. For Diverse
QA Pairs results, we shuffle the generated question
and answer pairs, retain up to a number based on
the length of the segment, and append the pairs to
the end of the segment.

Using the instruct version of Mistral NeMo
12B12 with FP8 inference, a top-p value of 0.9, and
a sampling temperature of 0.5, we synthesize over
1.8T tokens as Table 3 shows, including 336.3B
tokens from low-quality documents and 1.5T to-
kens from high-quality documents. We do not use
medium-quality documents for synthetic data gen-

11The token limit is set to 512 for Wikipedia, 2,000 for
Distill, 1,400 for Extract Knowledge and 1,000 for Diverse
QA Pairs and Knowledge List, including tokens from the
prompt and chat format.

12https://mistral.ai/news/mistral-nemo

eration due to time and resource constraints. We
employ TensorRT-LLM13 and NeMo-Skills14 to
enable large-scale data synthesis.

Source #Raw Prompt #Synthetic

Low 403.0 Wikipedia 336.3

High 451.3

Wikipedia 372.9
Diverse QA Pairs 499.5
Distill 157.6
Extract Knowledge 303.6
Knowledge List 203.2

Table 3: Synthetic data token count statistics (billion).

2.4 Putting It All Together

Dataset Total Unique Synthetic

FineWebEdu-2 5.4 1.1 -
FineWebEdu 1.3 0.2 -
DCLM 3.8 1.0 -
Nemotron-CC 6.3 4.4 1.9
Nemotron-CC-HQ 1.1 0.6 0.5

Table 4: Dataset sizes in trillions of tokens. "Unique"
shows the estimated number of tokens after global fuzzy
deduplication of the real tokens.

Combining the techniques above to the 99
snapshots CC-MAIN-2013-20 through CC-MAIN-
2024-30 of Common Crawl, we create a 6.3T token
dataset (Nemotron-CC), consisting of 4.4T globally
deduplicated tokens and 1.9T synthetically derived
tokens. This dataset has roughly 4× more unique
tokens than FineWebEdu-2 and DCLM, since both
of those datasets only underwent a sharded form
of approximate deduplication and contain roughly
80% fuzzy duplicates (Ben Allal, 2024; Li et al.,
2024). To enable a fairer comparison over relatively
short token horizons, we thus also consider a 1.1T
token high quality subset of our data (Nemotron-
CC-HQ), consisting of just the highest-scoring real
and diverse QA pairs synthetic data. The size break-
down of the datasets is shown in Table 4.

3 Experiments

3.1 Experiment Setup

Training Setup We use the open source
Megatron-LM library15 (Shoeybi et al., 2019) to
train standard 8B parameter transformer LLMs.

13https://github.com/NVIDIA/TensorRT-LLM
14https://github.com/NVIDIA/NeMo-Skills
15https://github.com/NVIDIA/Megatron-LM
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Dataset ARC-E ARC-C H W RACE PIQA SIQA CSQA OBQA MMLU Avg

FineWebEdu-2 71.9 44.7 75.4 67.0 36.8 79.5 45.2 25.5 43.8 42.4 53.2
FineWebEdu 73.6 48.0 70.7 64.6 38.0 76.4 43.5 30.0 44.4 42.9 53.2
DCLM 74.7 47.0 76.3 69.1 36.5 79.7 45.6 44.1 44.0 53.4 57.0
Nemotron-CC 75.3 50.7 75.9 67.8 37.9 80.5 45.1 47.7 44.2 53.0 57.8
Nemotron-CC-HQ 78.8 52.9 76.6 69.4 36.4 80.1 46.6 55.8 45.4 59.0 60.1

Table 5: Results for 8B parameter models trained on 1T tokens (73% English Common Crawl from the tested
dataset, 27% the same, fixed non-Crawl datasets). The models were evaluated on ARC-Easy, ARC-Challenge,
Hellaswag, Winogrande, RACE, PIQA, Social IQA, Commonsense QA, Openbook QA, and MMLU.

Model ARC-E ARC-C H W RACE PIQA SIQA CSQA OBQA MMLU Avg

Llama 3.1 82.4 55.0 79.3 74.7 39.1 81.2 48.3 70.6 46.0 65.3 64.2
Ours 82.7 58.1 80.8 73.8 37.8 81.1 47.4 69.9 45.4 70.3 64.7

Table 6: Comparison of our 8B parameter model vs Llama 3.1 8B. Both were trained for 15T tokens. The numbers
for Llama 3.1 are from our own lm-evaluation-harness setup described in Section 3.1 and may not match Meta’s
publicly reported numbers, as Meta made various customizations to the benchmarks.

The hyperparameter details are shown in Ap-
pendix D.

Data Blend Unless otherwise noted, we train
for 1T tokens on a blend of 73% English Com-
mon Crawl data and 27% a fixed mix of special-
ized code, papers, books, patents, and Wikipedia
datasets (Adler et al., 2024). When comparing
datasets, we vary only the 73% English Common
Crawl portion. See Table 12 in Appendix D.

Evaluation Setup We use the open source LM
Evaluation Harness library16 (Gao et al., 2023)
to evaluate on the following ten common sense
and reasoning tasks (reported metric in parenthe-
ses): ARC-Easy and ARC-Challenge (normalized
accuracy) (Clark et al., 2018), Hellaswag (nor-
malized accuracy) (Zellers et al., 2019), Wino-
grande (accuracy) (Sakaguchi et al., 2021), RACE
(accuracy) (Lai et al., 2017), PIQA (normalized
accuracy) (Bisk et al., 2020), Social IQA (accu-
racy) (Sap et al., 2019), Commonsense QA (accu-
racy) (Talmor et al., 2019), Openbook QA (normal-
ized accuracy) (Mihaylov et al., 2018), and MMLU
(accuracy) (Hendrycks et al., 2021).

3.2 Main Results

Short Token Horizon (1T) To validate the qual-
ity of our datasets, we first train standard 8B pa-
rameter transformer LLMs over a relatively short
1T token horizon. The results are shown in Ta-
ble 5. Our high quality dataset (Nemotron-CC-HQ)

16https://github.com/EleutherAI/lm-evaluation-
harness

shows accuracy gains over DCLM and FineWeb-
Edu on all tasks except RACE. In particular, there
is a 5.6 MMLU and 3.1 average gain over DCLM.
This shows the effectiveness of our classifier en-
sembling and synthetic data even in the non-data-
constrained setting. Our complete 6.3T token
dataset (Nemotron-CC) gives MMLU and average
accuracies roughly on par with DCLM. But since
this dataset contains 4× more unique real tokens,
we expect it to be superior in data-constrained set-
tings like 15T token training runs.

Long Token Horizon (15T) Our dataset con-
tributed 7.2T of the tokens used to train an 8B
model for 15T tokens. As shown in Table 6, our
model achieves a higher average accuracy than
Llama 3.1 8B, which was also trained for 15T
tokens, including an MMLU score of 70.3 vs.
Llama’s 65.3. This shows that our dataset is in-
deed suitable for state-of-the-art training over long
token horizons. For more details on this experi-
ment, please see Appendix E.

3.3 Ablation Study

To further investigate the contribution and effect
of each module in our method, we conducted thor-
ough ablation studies.

Extractor & Filter Comparison As we have dis-
cussed in Section 2.1, by deploying Justext instead
of Trafilatura and removing filter from the post-
processing step, we can attain significantly 57.4%
more high-quality tokens. We also conduct abla-
tion studies to better understand the impact of the
extractor selection and the removal of filter through
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downstream benchmarks. We carry out four 8B-1T
experiments. We report the benchmark scores in
Table 7. Beyond the token-yield benefit by lever-
aging Justext instead of Trafilatura and not using
heuristic filters, we see that combining these two
does not impact the downstream task accuracies
with only marginal differences (comparing Trafi-
latura filtered vs. Justext unfiltered). Moreover,
when we ONLY remove filter from high-quality
tokens, the results get further improved (comparing
Justext unfiltered vs. Justext HQ unfiltered). In
particular, MMLU gets boosted by +2%. Note that,
the motivation behind removing filter is to boost
token yield, especially on high-quality tokens due
to the notable scarcity of such. Given the experi-
mental results and considering the overall growth
in token yield, we opt to only remove filter from
high-quality tokens.

Exp name MMLU Avg (non-MMLU)

Trafilatura filtered 55.4 60.6
Justext filtered 54.1 60.9
Justext unfiltered 55.5 60.3
Justext HQ-unfiltered 57.5 60.6

Table 7: Ablation studies on extractor and filter. HQ
means high-quality data judged by FineWeb-Edu clas-
sifier (score 3,4,5). HQ-unfiltered means filtering is
applied only to LQ data. See Appendix G for more
details.

Classifiers Comparison Assembling different
classifiers to label the document quality is one of
the key steps in constructing our datasets, so we
did thorough analysis and comparison of the com-
ponent.

We did a detailed comparison of two types of
classifiers that we employ in our method: the
FineWeb-Edu classifier which score document
quality based on their educational-level, and the
DCLM-based classifier which value the informa-
tiveness of the document. We compare the high-
quality documents predicted by the two classifiers
on a randomly selected Common Crawl Snapshot
(CC-MAIN-2021-21). Table 8 shows the document
statistics comparison. We can see that only 10% of
the documents are predicted as high quality by both
classifiers, while 35.4% documents are predicted
as high quality by FineWeb-Edu classifier only, and
54.4% of documents are predicted as high-quality
by DCLM classifier. Therefore, ensembling differ-
ent classifiers can increase the recall of high-quality

documents from Common Crawl.17

We further compare each of the classifiers with
the ensembled method18 by their downstream
tasks’ performances. We pretrain 8B parameters
LLMs with 1T tokens, using the high-quality docu-
ments labeled by different classifiers on randomly
selected 13 Common Crawl snapshots (see Ap-
pendix F). Table 9 shows the detailed comparison
on different evaluation tasks. We can see that the
ensembled method greatly boost the high-quality
tokens percentage from 9% to 25%, while still
achieving the highest general language understand-
ing performance on average on all the tasks. The
ensembled method also outperforms the FineWeb-
Edu classifier and the DCLM classifier, in terms
of the high-quality token percentage, and is on-par
or slightly better on the 9 evaluation tasks. This
is very important since more unique high-quality
tokens is the key in pretraining larger LLMs on
longer tokens horizons.

What #Docs Total unique(%)

Total unique in union 11,359,655 100.0%
In intersection 1,152,821 10.1%
In FineWeb-Edu only 4,022,294 35.4%
In DCLM only 6,184,540 54.4%

Table 8: High-quality documents overlap analysis.

Evaluating Synthetic Data As Table 10 shows,
this ablation study aim to answer two questions: (1)
Does rephrasing low-quality improve accuracies on
downstream tasks? (2) Can synthetic data help off-
set the decreasing value of duplicated data reported
in (Muennighoff et al., 2024)? To answer these
questions, we train four 8B models with the same
hyperparameters on different blends of 1T tokens:
(1) LQ-Base: original Common Crawl data in-
cluding low-quality documents; (2) LQ-Synthetic:
an augmented version of LQ-Base where the low-
quality documents are rephrased; (3) HQ-Base: a
blend containing eightfold high-quality documents
and less low- and medium-quality documents; (4)
HQ-Synthetic: a variant of HQ-Base where 4 repe-
titions of the high-quality documents are swapped
out for synthetic datasets.

By comparing the results between LQ-Base and
LQ-Synthetic, we can see that rephrasing low-

17Detailed URL domain comparison can be found in Ap-
pendix B

18Note that we did not employ FineWeb-Edu classifier in
our ensemble for license issue, since it is trained with annota-
tions from Llama3.
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Classifier HQ(%) ARC-E ARC-C H W RACE PIQA SIQA CSQA OBQA MMLU Avg

FineWeb-Edu 8% 77.7 50.1 74.9 67.3 39.5 78.8 45.8 53.6 43.0 55.4 59.0
DCLM 11% 76.0 49.2 76.5 70.2 38.2 80.8 33.9 55.2 45.8 56.0 58.4
Ours-mistral 9% 75.8 49.2 75.9 66.9 37.5 80.1 46.2 46.9 44.8 53.2 58.1
Ours-nemotron-340B 14% 76.3 50.3 75.6 67.5 37.8 80.2 34.3 54.0 46.2 54.9 58.0
Ours-ensembled 25% 78.0 49.7 75.3 67.1 37.2 79.6 45.7 56.8 44.8 56.4 59.4

Table 9: Different classifiers comparison. Our ensemble method includes the three classifiers: Ours-mistral, Ours-
nemotron-340B and DCLM.

Blend ARC-E ARC-C H W RACE PIQA SIQA CSQA OBQA MMLU Avg

LQ-Base 67.7 41.8 75.2 67.1 37.4 78.8 45.3 36.9 41.0 48.2 52.5
LQ-Synthetic 71.3 45.2 75.0 66.9 37.4 79.4 46.2 41.6 42.8 47.1 54.0

HQ-Base 74.2 47.7 74.8 66.9 37.3 78.2 46.0 47.3 43.6 53.4 55.8
HQ-Synthetic 76.7 49.2 74.5 67.3 38.2 78.8 45.2 47.9 45.8 53.6 56.7

Table 10: Impact of incorporating synthetic data.

quality data leads to 1.50 absolute gains on average
score. We also observe noticeable boosts from
1.80% to 4.75% on ARC-Easy, ARC-Challenge,
OpenbookQA, CommonsenseQA; however, we
also encounter slight accuracy drops on some tasks,
which may indicate potential misinformation intro-
duced by data synthesis. Current practices typically
utilize data curation approaches to detect and elim-
inate noisy examples. Due to time and resource
constraints, we leave the detailed exploration of
this issue for future efforts.

The comparison between HQ-Base and HQ-
Synthetic shows that swapping 4 out of 8 epochs of
high-quality data with a mix of synthetic datasets
improves accuracy on most benchmarks. This im-
provement could potentially result from two fac-
tors: the incorporation of fresh unique tokens and
styles that enable the model to learn specific abili-
ties (e.g., question answering) or absorb knowledge
more efficiently.

4 Related Work

The Phi series of models pioneered training on
small amounts of very high quality data, includ-
ing curated Web and synthetic data (Gunasekar
et al., 2023; Li et al., 2023; Abdin et al., 2024).
However, their focus is on shorter token hori-
zons and they share limited details. FineWeb-
Edu and DCLM are the main points of compar-
ison for our paper (Li et al., 2024; Penedo et al.,
2024). We build upon their core idea of model-
based filtering, but show how to improve the fil-
tering and data quantity through a combination of
other techniques. Other English Common Crawl
datasets such as C4, DOLMA, Gopher, Refined-

Web, TxT360 largely focus on extraction and non-
learned heuristics (Penedo et al., 2023; Soldaini
et al., 2024; Rae et al., 2021; Raffel et al., 2020;
Tang et al., 2024). Just as for FineWeb-Edu and
DCLM, the core pipeline we started from incorpo-
rates many of these ideas, but our paper describes
how to modify and go beyond these non-learned
techniques to achieve state-of-the-art accuracy and
diversity. Concurrent work Zyda-2 shows how to
filter, cross-deduplicate, and combine the FineWeb-
Edu, DCLM, Zyda-1, and Dolma-CC datasets
into a higher-accuracy and larger whole (Tokpanov
et al., 2024). In contrast, we focus on techniques
for the creation of a new English Common Crawl
dataset rather than combinations or modifications
of existing datasets. Finally, many works have fo-
cused on creating multilingual datasets (Xue et al.,
2021; Brack et al., 2024; Abadji et al., 2022; Wen-
zek et al., 2020; Kudugunta et al., 2023). We leave
extension of our ideas beyond English to the future.

Synthetic datasets have been widely used in
language model pre-training and post-training.
In (Cheng et al., 2024), instruction-response pairs
are synthesized for pre-training. In (Eldan and
Li, 2023), the authors show that smaller or sim-
pler models trained on a synthetic dataset of short
stories are capable of generating fluent and con-
sistent stories. Similarly, smaller models trained
using high-quality synthetic textbook and exercise
datasets can achieve impressive high accuracy on
coding benchmarks (Gunasekar et al., 2023; Li
et al., 2023). These approaches typically require
a powerful language model, such as GPT-3.5 and
GPT-4 in (Eldan and Li, 2023), to synthesize new
contents. Instead, (Maini et al., 2024) shows that
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compact models such as Qwen-1.8B and Mistral-
7B are adequate to rephrase web data. This ap-
proach generates diverse, high-quality synthetic
data that effectively lowers model perplexity and
boosts performance across benchmarks. We adopt
this main idea, but explore more prompts and show
how to specialize them for low and high quality
data.

5 Conclusion

For producing long-horizon pretraining tokens for
LLMs from English Common Crawl data, we
showed how to improve upon the state of the art
and achieve better trade-offs between benchmark
accuracy and data quantity, as measured by number
of unique real tokens. Specifically, we showed the
efficacy of ensembling model-based quality filters,
rephrasing low and high quality documents, and re-
ducing the reliance on non-learned heuristics. The
dataset is public and split by quality level and type
(actual data vs. different types of synthetic data),
enabling the community to do further experiments
on quality vs. diversity and how to build effective
short and long horizon curricula.

6 Limitations

Some of the key limitations of our work are as
follows. For the model-based filter ensembling
and quality bucketing, we only had time and re-
sources to try a single strategy. Though it is ef-
fective, it is possible this could be improved upon
in future work, especially to improve the sensitiv-
ity at the higher-quality end of the spectrum. For
the rephrased data, we did not verify the factual
accuracy or fidelity to the original contents. More
work is required to understand the risks of halluci-
nations or loss of content diversity in this setting
and how to mitigate them. We also only looked at
rephrasing low and high quality data. It could be
interesting to explore how to best rephrase medium
quality data as well. We did not do ablations on
all parts of the pipeline. There is probably room
for improvement with, for example, the language
identification. Overall, we tried our methods only
on English text. More work is needed to adapt our
methods to other languages.

Finally, we did not decontaminate the dataset, as
there is not yet a strong consensus on how to best do
this and the impact is uncertain and debated, espe-
cially for large models trained over large token hori-
zons. We note that the datasets we compare against

(FineWeb-Edu, DCLM) were released without de-
contamination, and the model we compare against
(Meta Llama 3.1) was also trained on contaminated
data. DCLM reports some contamination analy-
sis, but the findings suggest contamination is not
a key factor: e.g., MMLU actually increases af-
ter decontamination, and DCLM does better than
FineWeb on MMLU, even though FineWeb has
more MMLU contamination (see Section 4.6 and
Appendix N in Li et al. (2024)). Still, it would be
interesting to better understand the impact of con-
tamination for different model sizes and different
token horizons, and we hope the community can
explore such questions on this public dataset.
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A Pipeline Overview

An overview of the pipeline is shown in Figure 3.

B Comparison of FineWeb-Edu and
DCLM Classifier

Different classifiers have different standards for
high-quality documents. Thus, ensemble multi-
ple classifiers will help increase the recall of high-
quality documents. We did a detailed compari-
son of two of the classifiers that we employ in our
method: the FineWeb-Edu classifier which score
document quality based on their educational-level,
and the DCLM based classifier which value the
informativeness of the document.

We compare the high-quality documents pre-
dicted by the two classifiers on one Common Crawl
snapshot (dated 2021-21). Table 8 show the doc-
ument statistics comparison. We further show the
detailed URL domains comparison between the
two classifiers’ predictions in Table 11. We can
see that each classifier has their own high-quality
domain preferences. Among the top 1k domains,
only 368 domains are in the intersection. Therefore,
ensemble of different classifiers can help increase
retrieving more high-quality documents from Com-
mon Crawl.

C Bucket Comparison

To better understand the quality of data in each of
our 20 data buckets, we carry out ablation studies to
test their benchmark accuracies. For each study, we
take a 900B-token checkpoint and continue the pre-
training for 50B more tokens. For 34% of the 50B
tokens we used the bucket data being tested, while
we fixed the other 66% as the same data distribution
of the 900B pretraining process to make sure the
distribution did not shift too much. See Figure 4
for the results. The average accuracy is calculated
across 13 downstream tasks. Note that Bucket 19
greatly outperforms all other buckets and the differ-
ences within bucket 12-18 are marginal. We used
the results here as a reference when designing the
quality labels in Table 2.

D Training Details: Ablations

As mentioned in Section 3.1, we use the open
source Megatron-LM library19 (Shoeybi et al.,
2019) to train 8B parameter transformer LLMs
for 1T tokens. The key hyperparameters are

19https://github.com/NVIDIA/Megatron-LM
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Top domains and domain overlap analysis =>368 domains are in top 1k domains of both
Top 1k DomainsFineWeb-Edu

Top Domains Count DCLM
Top Domains Count

Intersection (368) In FineWeb-Edu only In DCLM only
wordpress.com 39228 wordpress.com 85378 123helpme.com 111papers.com 4archive.org
thefreedictionary.com 20420 stackexchange.com 64831 24houranswers.com 3dprint.com 4channel.org
stackexchange.com 17853 livejournal.com 36521 abc.net.au aafp.org 4hw.com.cn
britannica.com 14761 medium.com 27347 abovetopsecret.com aappublications.org 5winebar.com
ipl.org 13132 fandom.com 13986 academickids.com abs.gov.au aawsat.com
medium.com 11539 ipl.org 12282 adafruit.com accessgenealogy.com abc11.com
nih.gov 10624 answers.com 10790 adobe.com achrnews.com abc30.com
igi-global.com 9136 nih.gov 9091 alchetron.com acm.org abc7chicago.com
slideplayer.com 8460 typepad.com 8078 aljazeera.com adidasshoesoutletwholesale.com able2know.org
answers.com 8103 commonsensemedia.org 7772 allegancountyedc.com adslspeedtest.net aceshowbiz.com
wikipedia.org 6867 wsj.com 7652 allinterview.com aero-net.org activerain.com
dictionary.com 6763 imdb.com 7263 amazon.com agwired.com addicted2success.com
en-academic.com 5292 theatlantic.com 7008 americanbar.org ahdictionary.com additudemag.com
sciencemag.org 5254 yahoo.com 5921 angelfire.com ajol.info agingcare.com
brainscape.com 5129 fanfiction.net 5499 answers.com akjournals.com agnostic.com
encyclopedia.com 4698 huffpost.com 5471 antiessays.com aleteia.org airmilescalculator.com
nasa.gov 4615 adobe.com 5182 apple.com alison.com airportia.com
slideserve.com 4538 scribd.com 4948 archive.org all-creatures.org alarabiya.net
scribd.com 4430 thefreedictionary.com 4847 arduino.cc allaboutheaven.org alex-in-wonderland.com
kiddle.co 4323 mathworks.com 4655 arstechnica.com allthatsinteresting.com alexa-gueguen.com

Table 11: High Quality Documents Domains Comparison. 368 Top Domains are in the intersection.
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Figure 4: Ablation study on the buckets.

Category Blend %

English Common Crawl 73
Books and patents 9
Papers 9
Code 5
Conversational 3
Wikipedia 1

Table 12: Data blend for the experiments with 8B pa-
rameter transformer LLMs trained for 1T tokens. Ex-
periments in this paper varied only the 73% English
Common Crawl portion.

as follows: We use 32 transformer layers with
hidden dimension 4096, 32 attention heads, and
SwiGLU activations (Shazeer, 2020). For the atten-
tion, we use grouped query attention with 8 query
groups (Ainslie et al., 2023). We use the Adam
optimizer with β1 = 0.9, β2 = 0.95, ϵ = 1e−8,
weight decay 0.1, and the cosine learning rate
schedule with peak learning rate at 3e-4 and min-
imum learning rate at 3e-6. A single training run
takes about 40 hours using 1024 NVIDIA H100
GPUs.

The data blend breakdown for these experiments
is shown in Table 12. Experiments in this paper
varied only the 73% English Common Crawl por-
tion.

E Long-Horizon Curriculum Details

For the 15T token training run, a two-phase curricu-
lum was employed that is described in more detail
in Feng et al. (2024). The first phase of 9T tokens
used 59% English Common Crawl data (5.31T) and
the second phase of 6T tokens used 31% (1.86T),
for a combined total of 47.8% (7.17T). In the first
phase, we used medium, medium-high, and high
quality data (real and synthetic), and in the sec-
ond phase we used only high quality data (real and
synthetic).

F Common Crawl Snapshots

For the main datasets, we used the 99 snapshots
CC-MAIN-2013-20 through CC-MAIN-2024-30.

The thirteen Common Crawl snapshots we use
in some of the analysis and 1T token experiments
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are CC-MAIN-2023-23, CC-MAIN-2023-14, CC-
MAIN-2023-06, CC-MAIN-2022-49, CC-MAIN-
2022-27, CC-MAIN-2022-05, CC-MAIN-2021-
43, CC-MAIN-2021-21, CC-MAIN-2021-04, CC-
MAIN-2020-45, CC-MAIN-2020-29, CC-MAIN-
2020-05, CC-MAIN-2019-35.

G Extractor & Filter Ablation

The Avg tasks include ARC-Easy, ARC-Challenge,
Hellaswag, Winogrande, RACE, PIQA, Common-
sense QA, Openbook QA.

Note that we only use FineWeb-Edu classifier
for the quality labels of this ablation study and
analysis. We do not use it in the final preparation
of our dataset. See Section 2.2 for the details of
our classifiers being used eventually to prepare the
data.

H Prompt Templates

Prompts 1-5 show the prompt templates we use for
synthetic data generation.
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Task: Read the text, ask questions and answer them.

Follow these instructions:
1. Ask diverse questions that require different cognitive skills or cover different aspects of the
text.
2. Ask questions in various forms such as:
- Yes/No questions that require determining whether a statement is true or false.
- Open-ended questions that begin with words like what, how, when, where, why and who.
- Multi-choice questions that offers two or more options to choose from. Include the options in the
question.
- Comparison questions that compare two quantities or objects and determine the relationship
between them.
- Reading comprehension questions that test the ability to understand and analyze the text.
- Problem-solving questions that test the ability to solve mathematical, physical, or logical
problems.

3. Focus on asking questions about factual information, important knowledge, or concrete details in
the text.
4. Write questions and answers using clear and concise language.
5. Use plain text. Do not use Markdown.
6. Each question and answer pair should be on a separate line. Tag the question with "Question:" and
the answer with "Answer:".

Text:
[DOCUMENT SEGMENT]

Task:
After reading the above text, ask up to 8 questions and provide the correct answers following the
instructions. Give your response in this format:

Here are the questions and answers based on the provided text:
- Question: [first question] Answer: [first answer]
- Question: [second question] Answer: [second answer]
....

Prompt 1: Prompt template: Diverse QA pairs

Your task is to read and paraphrase the provided text following these instructions:
- Aim to create a condensed but accurate and informative version of the original text, not a
simplistic summary.
- Capture and preserve the crucial information, key concepts, important values, and factual details
in the original text, while making it more readable and accessible.
- Retain technical terms, specialized vocabulary, and complex concepts.
- Retain examples, explanations of reasoning processes, and supporting evidence to maintain the text'
s depth and context.
- Only include information that is present in the original text. Do not adding new or unsubstantiated
claims.
- Write in plain text.

Here is the text:
[DOCUMENT SEGMENT]

Task:
After thoroughly reading the above text, paraphrase it in high-quality and clear English following
the instructions.

Prompt 2: Prompt template: Distill.
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Review the text and extract the key information. Follow these instructions:
- Carefully read the above text and provide a concise and organized list of factual information,
concrete details, key concepts, and important numbers and statistics extracted from the text.
- Ensure each point is clear, specific, and supported by the original text.
- Ensure the extract text is information-dense and easier to learn from.
- Do not add titles or headings.

Text:
[DOCUMENT SEGMENT]

Task:
Extract the factual information, concrete details, and key concepts from the above text following the
instructions.

Prompt 3: Prompt template: Knowledge list.

Your task is to rewrite knowledge from the provided text following these instructions:
- Rewrite the text as a passage or passages using easy-to-understand and high-quality English like
sentences in textbooks and Wikipedia.
- Focus on content in disciplines such as humanities, social sciences, natural sciences, technology,
engineering, math, law and legal, business, management, art, education, agricultural sciences,
politics, and history.
- Disregard content that does not contain useful facts or knowledge.
- Retain examples, explanations of reasoning processes, and supporting evidence to maintain the text'
s depth and context.
- Do not add or alter details. Only restate what is already in the text.
- Write in plain text.
- Do not add titles, subtitles, note, or comment.

Text:
[DOCUMENT SEGMENT]

Task:
Rewrite facts and knowledge from the above text as a passage or passages following the instructions.

Prompt 4: Prompt template: Extract knowledge.

For the following paragraph give me a diverse paraphrase of the same in high quality English language
as in sentences on Wikipedia. Begin your answer on a separate line with "Here is a paraphrased
version:".

Text: [DOCUMENT SEGMENT]

Prompt 5: Prompt template: Wikipedia-style rephrasing (Maini et al., 2024).
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