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Abstract

LMs’ alignment with human reading behavior
(i.e. psychometric predictive power; PPP) is
known to improve during pretraining up to a
tipping point, beyond which it either plateaus
or degrades. Various factors, such as word fre-
quency, recency bias in attention, and context
size, have been theorized to affect PPP, yet
there is no current account that explains why
such a tipping point exists, and how it interacts
with LMs’ pretraining dynamics more gener-
ally. We hypothesize that the underlying factor
is a pretraining phase transition, characterized
by the rapid emergence of specialized attention
heads. We conduct a series of correlational
and causal experiments to show that such a
phase transition is responsible for the tipping
point in PPP. We then show that, rather than
producing attention patterns that contribute to
the degradation in PPP, phase transitions alter
the subsequent learning dynamics of the model,
such that further training keeps damaging PPP.

1 Introduction

The rise of neural-network-based language models
(LMs) that can produce fluent, humanlike linguistic
outputs has led to their increased use as cognitive
models of human language processing (Warstadt
and Bowman, 2024). In particular, an active area of
research has studied how well LMs are aligned with
human incremental processing behaviors. This is
often measured by how well LMs’ output probabil-
ities predict various human reading time metrics,
and is referred to as a model’s psychometric predic-
tive power or PPP. PPP has been widely studied
for English (e.g., Wilcox et al., 2020; Shain et al.,
2024; Oh et al., 2022; Oh and Schuler, 2023b, inter
alia), Japanese (Kuribayashi et al., 2021), multi-
lingually (Wilcox et al., 2023b), and for nonnative
Englishes (Aoyama and Schneider, 2024), where
it has been found that LMs’ outputs are robustly
correlated with human reading times.
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Figure 1: Phase transition (x-axis) and PPP peaks (y-
axis) closely coincide with each other across the corpora
studied in this work, except for MECO. Numbers in the
parentheses are batch sizes; for Pythia models, regard-
less of the model size, the batch size is 1,024. Orange
dashed lines, blue solid lines, and gray dashed lines
represent the phase transition hypothesis, 2 billion
tokens hypothesis, and the observed trendline drawn
from the data, respectively. We find that the experi-
mental results closely align with our phase transition
hypothesis, meaning that the PPP peaks correspond to
LM phase transition, beyond which PPP starts degrad-
ing. *p < .05; **p < .01.

One outstanding puzzle in these data is the ob-
servation that transformer-based LMs become max-
imally aligned with human sentence processing
relatively early in pretraining, after which their fit
to human data either plateaus or decreases. We
will refer to the maxima of psychological fit during
training as model’s tipping point. Such tipping
points present a conundrum: Why does the fit to
human data decrease, even as the model’s language
modeling loss goes down? And what is the tipping
point’s underlying cause?

Previous work has observed that tipping points
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in models tend to occur after around 2 billion words
of pretraining, and has suggested that this number—
2 billion—is operative (Oh and Schuler, 2023a).
We refer to this as the 2 Billion Hypothesis. In
contrast, we suspect that the tipping point at 2
billion tokens is coincidental rather than causal.
Instead, we hypothesize that the reversal of PPP
is related to more general pretraining dynamics,
specifically the presence of phase transitions, or
periods in pretraining when new model capabilities
emerge rapidly. While phase transition can be a
general term used to describe any rapid change in
model behaviors, we focus on what we term spe-
cialized heads phrase transitions, characterized
by the emergence of specialized attention patterns
relatively early in pretraining (Olsson et al., 2022;
Chen et al., 2024a). For brevity, we refer to these
simply as “phase transition” (see Section 2.3 for a
more precise definition). We dub this hypothesis
the Phase Transition Hypothesis (see Hypothe-
sis 1) and conduct a series of experiments, both
correlational and causal, to test it (Figure 1).

Our key findings include: (1) the tipping points
of PPP are strongly correlated with phase transi-
tion (Section 4); (2) a series of ablation experi-
ments show some attention heads that formed dur-
ing phase transition have some effect on PPP, but
the overall results are mixed and the PPP degrada-
tion cannot be reliably attributed to specific circuits
that form during the phase transition (negates Hy-
pothesis 2a; see Section 5); and (3) regularization
during pretraining delays the phase transition, also
resulting in a delayed PPP tipping point, indicating
that phase transition alters the learning dynamics,
such that further training results in PPP degradation
(supports Hypothesis 2b; see Section 6).1

2 Relevant Work

2.1 Sentence Processing

One popular theory to explain human sentence pro-
cessing is surprisal theory. Surprisal theory posits
that the processing difficulty of a word is propor-
tional to its information content, quantified as its
surprisal, or in-context, negative log probability
(Levy, 2008; Hale, 2001). Surprisal theory is sup-
ported by numerous studies showing a tight lin-
ear relationship between incremental processing
times and surprisal, across various datasets (Smith
and Levy, 2013; Shain et al., 2024) and languages

1Code and data available at https://github.com/
picol-georgetown/pt-and-ppp.

(Wilcox et al., 2023b).2

Rather than using LMs as a gold proxy for word
predictability, other studies have compared how
surprisals obtained from various LMs show dif-
ferent fits to human reading data. Goodkind and
Bicknell (2018) find that LM quality, as measured
in perplexity, linearly correlates with PPP, such that
surprisals obtained from better LMs are more pre-
dictive of human reading time. This relationship
between LM quality and PPP has been dubbed the
quality-power hypothesis and replicated with dif-
ferent sets of LMs (Wilcox et al., 2020; Oh et al.,
2022; Oh and Schuler, 2023b), and cross-lingually
(Wilcox et al., 2023a).

Instead of comparing fully trained LMs, Oh and
Schuler (2023a) find that the quality-power relation-
ship changes during pretraining, which motivates
the current study. Specifically, they find that PPP
keeps improving until around 2 billion tokens of
pretraining (for all Pythia variants) and then starts
degrading beyond that point, although perplexity
keeps improving. In other words, the quality-power
correlation is positive (better the model, higher
the PPP) until a certain point and negative (better
the model, lower the PPP) after it. We call this
point a tipping point in this paper, and define it
as the maximum PPP obtained during pretraining.
In fact, Kuribayashi et al. (2021) seems to be the
first to report this trend, where they find similar
tipping points for English and Japanese. This tip-
ping point has been questioned in Aoyama and
Schneider (2024), where they observe a negative
quality-power correlation at orders of magnitude
smaller pretraining amounts for crosslingual LMs.

2.2 Factors Affecting LMs’ PPP

Besides the amount of pretraining, several other
factors have been found to affect LMs’ PPP.3 One
key factor is model size, where larger models tend
to perform worse in modeling human sentence pro-
cessing compared to smaller models. Oh et al.
(2022) found that structural parsers and n-gram
models often matched or outperformed GPT2 mod-
els, with the smallest GPT2 variant yielding the
best results. Oh and Schuler (2023b) tested addi-
tional GPT and OPT variants confirming this trend.
Another crucial factor is context size, as limiting
the inference-time context window has been shown

2Although cf. Meister et al., 2021 who find a slightly
super-linear relationship.

3For a more extensive list, we refer the readers to Table 1
of Kuribayashi et al., 2022
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to improve PPP. Kuribayashi et al. (2022) observed
that shorter contexts, particularly bigrams, resulted
in better PPP, especially for Japanese. Additionally,
introducing recency bias in attention mechanisms
improves PPP (De Varda and Marelli, 2024), par-
ticularly when applied during both training and
inference (Clark et al., 2024).

Lexical factors also play a role in PPP degrada-
tion among larger models. Oh and Schuler (2023b)
found that larger models tend to assign lower sur-
prisals to open-class words (e.g., nouns and ad-
jectives) and named entities, deviating more from
human reading patterns. Oh et al. (2024) further
linked this effect to token frequency, showing that
larger models exhibit particularly low alignment
with human reading time for infrequent tokens, es-
pecially beyond a certain point in pretraining (2B
tokens). These studies suggest that model size,
long context utilization, and pretraining dynamics
interact with each other to produce PPP degrada-
tion. We propose that one way to tie these pieces
together is by finding a common cause, which we
hypothesize to be phase transitions.

2.3 Phase Transition

What exactly is a phase transition, and how is it
measured? Abrupt changes in model behaviors,
which cannot be predicted by a scaling law (Kaplan
et al., 2020),4 have been studied widely (e.g., Wei
et al., 2022; bench authors, 2023). In this paper,
we specifically focus on what we call specialized
heads phase transition, which is characterized
by the rapid emergence of specialized attention
patterns (Elhage et al., 2021; Olsson et al., 2022;
Chen et al., 2024a), relatively early in pretraining.
For brevity, we use the term “phase transition.”

We operationalize the phase transition using two
well-studied phenomena, the presence of induction
heads (Elhage et al., 2021; Olsson et al., 2022)
and syntactic attention structure (SAS; Chen et al.,
2024a). Elhage et al. (2021); Olsson et al. (2022)
find that a specialized head called an induction
head emerges at a certain point during pretraining,
and that this head is characterized by its distinc-
tive copying behavior, where the head attends to
the previous occurrence of the same or similar bi-
gram within the context. We introduce the metric
used to detect induction heads in Equation (2). Ols-
son et al. (2022) further claim that the emergence
of this induction head is primarily responsible for

4See Caballero et al., 2023 for a scaling law with ‘breaks’.

most of the in-context learning (ICL) abilities (see
Equation (8)).

Similarly, Chen et al. (2024a) find that LMs
demonstrate a sudden emergence of attention
patterns that mirror syntactic dependency edges,
which they call SAS. Similar to induction heads,
the emergence of SAS is followed by an abrupt
improvement in syntactic abilities as measured by
performance on a syntactic probing benchmark,
BLiMP (Warstadt et al., 2020).

2.4 Research Questions

In light of this, we ask the following research ques-
tion: to what extent is phase transition responsi-
ble for the degradation in the alignment between
human and LM sentence processing? We present
three hypotheses, outlined below:

Hypothesis 1

Phase Transition Hypothesis: PPP degrada-
tion coincides with phase transition.

If this is the case, then we need to account for how
and why phase transition causes the PPP degrada-
tion, for which we have two hypotheses:

Hypothesis 2a

Persistence Hypothesis: Circuits that emerge
during phase transition cause PPP degradation.

This hypothesis predicts that certain circuits
emerge at the phase transition, persist afterward,
and contribute to the degradation in PPP. Alterna-
tively, we may hypothesize that the degradation
arises from pretraining dynamics after the phase
transition. This view predicts that preventing PPP
degradation requires suppressing the phase transi-
tion itself, rather than deactivating specific circuits,
leading to our final hypothesis:

Hypothesis 2b

Dynamics Hypothesis: Altered training dy-
namics causes PPP degradation.

Crucially, Hypothesis 1 serves as a prerequisite for
the others, while Hypothesis 2a and Hypothesis 2b
may be either competing or complementary. Put
differently, Hypothesis 2a attributes PPP degrada-
tion to circuits that emerge during the phase transi-
tion, whereas Hypothesis 2b attributes it to circuits
that emerge after the phase transition.
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3 Methods

3.1 Models and Checkpoints

Because online sentence processing is a predom-
inantly left-to-right process, we only consider au-
toregressive LMs, a common practice adopted by
many others (see Meister et al., 2023 for a rare ex-
ception). Since training LLMs is expensive, we pri-
marily focus on the Pythia family (Biderman et al.,
2023). To our knowledge, Pythia is a rare, if not
the only, LM family that satisfies the following con-
ditions necessary in this paper: (1) open-sourced,
(2) available in different sizes, and importantly, (3)
various checkpoints, especially early in pretrain-
ing, are available. Bloom (BigScience Workshop,
2022) is another candidate; however, because the
available checkpoints are likely after the phase tran-
sition, we did not include it in this study.

We also train several GPT2 models (Radford
et al., 2019) and save log-spaced checkpoints at
{500K, 1M, 2M, ..., 256M} tokens for the first 10
checkpoints, and evenly-spaced checkpoints for the
last 20 checkpoints at {0.5B, 1B, 1.5B..., 10B}
tokens. This is a superset of the available Pythia
checkpoints for the first 10B tokens of pretraining,
which allows for direct comparisons among differ-
ent model sizes and families at the same pretraining
amounts. All custom-trained GPT2 models have
2 layers, 8 heads (per layer), a hidden dimension
of 768, and a total parameter count of 53M. See
Table 2 in Appendix A for the list of architecture
and training hyperparameters. Each run took ≈70
hours on a single A6000.

3.2 Data

For custom trained models, we use a sample of
1B tokens from the English subcorpus of CC100
(Conneau et al. 2020; Wenzek et al. 2020; Apache
License 2.0). For reading time data, we use 3 eye-
tracking corpora: Dundee (Kennedy et al., 2003),
Provo (Luke and Christianson, 2018; CC-BY 4.0),5

and MECO (Siegelman et al., 2022) release 1.2.,6

and 1 self-paced reading time corpus: Natural Sto-
ries (Futrell et al., 2021; CC BY-NC-SA). For eye-
tracking corpora, we focus on the gaze duration.7

5https://osf.io/sjefs/
6https://osf.io/3527a/
7See Shain et al. (2024) for comparisons across different

eye-tracking metrics, which yield similar results.)

3.3 Calculating PPP
Following previous work (e.g. Goodkind and Bick-
nell, 2018; Wilcox et al., 2020, 2023a, inter alia),
we operationalize PPP as the difference in log-
likelihood (LL) between two linear models (delta
log-likelihood; ∆LL):

∆LL = LLfbase+surp − LLfbase (1)

where fbase+surp and fbase are linear models that
predict human reading times using baseline fea-
tures with and without LM surprisals, respectively.
Finally, surprisal of a word wi in context is its
negative log probability: − log P(wi|w<i). See
Appendix B for the full list of features included in
the regression models.

4 Experiment 1: PPP Peaks at Phase
Transition

4.1 Method
As we want to show that PPP peaks at the phase
transition, defined by the emergence of SAS and
induction heads, we outline the definition of the
metrics we use to characterize them below.
Unlabeled Attachment Score (UAS). UAS is a
commonly used metric for dependency parsing, and
in the context of SAS, conceptually, it measures
how well a given LM’s attention pattern matches
the dependency edges between words, ignoring
the relation labels. In other words, UAS is the
proportion of words, such that the highest attention
weight lies between the word and its parent for the
best-performing head for the given relation type.
See Appendix C for details.
Prefix-matching Score (PS). Induction heads are
defined by the copying behavior, such that if the
model has seen an ⟨A,B⟩ sequence and the cur-
rent token is A, then an induction head is a head
that promotes the prediction of B as the next to-
ken, completing the ⟨A,B, . . . , A,B⟩ sequence.
We quantify this behavior using PS (Olsson et al.,
2022). The intuition behind this metric is to mea-
sure, when predicting what follows the second oc-
currence of A, how much a model is referencing
what followed its first occurrence.

Given a random sequence of tokens x repeated
twice, PS of a head h at layer l is its average atten-
tion from the source token xi to the next token of
its previous occurrence:

PS =
1

|x| − 1

2|x|∑

i=|x|+1

α(h,l)(xi, xi−(|x|−1)) (2)
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In our experiments, we use a random sequence of
length 50, following the TransformerLens library
(Nanda and Bloom, 2022), so |x| = 50. Note that
x is a completely random sequence of token IDs;
hence, attention patterns are not an artifact of data
contamination or memorization.
Breakthrough Points. Chen et al. (2024a) defines
breakthrough in some metric f as the acceleration
point, which maximizes the growth in slope, mea-
sured in some discrete intervals ∆. To make it less
susceptible to surface fluctuations, we define them
as the first checkpoint c at which a certain metric f
exceeds a given threshold t: min{c ∈ C|f(c) > t},
where C is the predefined set of checkpoints de-
scribed in Section 3.1. In our experiments, we use
t = 0.1 for both UAS and PS. We validate these
implementations of breakthroughs as well as the
measurements of UAS and PS by showing that the
sudden rises in UAS and PS are followed by the im-
provement in BLiMP and ICL scores, respectively
(see Appendix E for these results).

4.2 Results
Figure 1 shows on the x-axis the number of pre-
training tokens at which phase transition occurred,
as defined by UAS (top) and by PS (bottom), and
on the y-axis the number of pretraining tokens at
which the peak ∆LL was observed. The gray lines
represent the 2 Billion Hypothesis based on Oh
and Schuler (2023a), where transformer models
are predicted to reach the highest ∆LL at around
2 billion pretraining tokens. The orange lines rep-
resent our Phase Transition Hypothesis, where
the peak ∆LL is predicted to happen at around the
same time as the phase transition. The blue lines
are the observed trendlines, and we can see that
they closely match the Phase Transition Hypoth-
esis. This trend holds across 3 orders of magni-
tude, meaning that the ∆LL peaks occur at vastly
different times across different models, yet they
all co-occur with their respective phase transition
points, although this trend was not found in MECO
(see Section 9 for known issues of MECO). Note
that we included Pythia models used in Oh and
Schuler (2023a), and GPT2 models trained from
scratch with various batch sizes, as we find that the
phase transition point is a function of not only the
number of pretraining tokens, but also the number
of updates (hence changing batch size affects phase
transition points). We leave a precise characteriza-
tion of phase transition points to future work. For
a complete visualization of the full ∆LL trajectory,

see Figure 7 (Appendix G), which also includes
the 0- and 1-layer models. These are predicted to
exhibit qualitatively different behaviors, with the
0-layer model indeed showing virtually no PPP
degradation.

The concurrence of PPP peaks and phase tran-
sitions seems robust; however, these observations
are still correlational, and we need more evidence
to make a causal claim. As such, we consider two
potential hypotheses, outlined earlier: (1) phase
transition develops some circuits that hurt PPP (Per-
sistence Hypothesis), and/or (2) phase transition
changes the course of pretraining dynamics, in a
way such that further training hurts PPP (Dynam-
ics Hypothesis). We test each hypothesis in the
following experiments.

5 Experiment 2: PPP Degradation
Cannot be Attributed to Specific Heads

If phase transition creates certain circuits responsi-
ble for the lower PPP (Hypothesis 2a; Persistence
Hypothesis), ablating those circuits should improve
PPP for models that have undergone the phase tran-
sition. In this experiment, we ablate each head one
at a time and investigate if the ablation of special-
ized heads that form during phase transition (i.e.
SAS and induction heads) improves PPP more than
other heads.

5.1 Method

Scores. PS is by definition a head-specific score
(i.e. how much a given head attends to the previ-
ous occurrence of token B when given a sequence
⟨A,B, . . . , A⟩). On the other hand, SAS is mea-
sured at the model level; it is measured in UAS
by picking attention scores of the best heads for
each dependency relation type. Hence, we define a
slightly modified head-specific metric called SAS
score. SAS score of the head h at layer l is a propor-
tion of the words wi whose attention edge with the
highest weight, (i, argmaxj [a

(h,l)
ij ]), corresponds

to a child-parent pair of a dependency relation.
Ablation. We zero-out attention weights of each
head while keeping the original attention of all
other heads and compute ∆LL (see Appendix F for
the details). We then subtract the non-ablated score
from the ablated score and call this value ∆∆LL.
A Higher ∆∆LL means that the ablation improves
PPP. We report the correlations between (1) SAS
score and ∆∆LL and (2) PS and ∆∆LL.
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GPT2 (1 layer) GPT2 (2 layers) Pythia-70M Pythia-160M Pythia-410M

DU ME PR NS DU ME PR NS DU ME PR NS DU ME PR NS DU ME PR NS

∆∆LL ∼ SAS score

16M 0.21 0.63 -0.11 0.46 0.24 0.7 0.09 0.49 .5B -0.07 0.15 0.04 0.09 -0.14 -0.09 0.03 0.1 0.01 -0.09 -0.03 -0.1
32M 0.19 -0.03 -0.09 0.47 0.17 -0.02 0.72 0.02 1B -0.23 -0.05 -0.15 -0.23 -0.18 0.05 -0.06 -0.22 -0.06 -0.04 -0.01 0.0
64M 0.35 0.56 0.55 0.45 0.66 0.56 0.32 0.25 2B -0.2 0.17 -0.13 -0.23 -0.25 -0.0 0.0 -0.15 -0.04 0.07 -0.03 -0.08

128M 0.61 0.39 0.65 0.5 0.53 0.24 0.33 0.62 4B -0.16 -0.25 0.16 -0.23 -0.13 -0.0 -0.02 -0.23 0.02 0.0 -0.02 -0.09
256M 0.52 0.62 0.38 0.49 0.46 -0.31 0.1 0.5 6B -0.09 -0.01 0.17 -0.02 -0.05 -0.02 -0.0 -0.03 0.14 0.06 -0.03 0.06

∆∆LL ∼ PS

16M -0.1 -0.69 0.26 -0.43 0.41 -0.36 0.25 0.08 .5B 0.03 -0.12 -0.11 -0.05 0.07 -0.03 0.01 0.01 0.06 0.02 -0.01 0.1
32M -0.04 0.14 0.0 -0.5 -0.11 0.06 -0.51 -0.11 1B 0.29 0.1 0.13 0.18 0.15 -0.0 0.01 0.06 0.01 0.05 -0.02 0.03
64M -0.33 -0.61 -0.56 -0.43 -0.64 0.31 -0.05 -0.77 2B 0.7 0.13 0.16 -0.11 0.61 -0.0 0.09 0.15 0.43 0.02 0.03 0.05

128M -0.53 -0.25 -0.53 -0.6 0.17 0.48 -0.23 -0.5 4B 0.6 0.13 0.01 0.26 0.42 -0.23 0.13 0.13 0.21 0.03 -0.06 0.05
256M -0.46 -0.53 -0.74 -0.63 0.21 0.29 -0.08 -0.39 6B 0.41 -0.09 -0.2 -0.06 0.25 -0.13 0.04 0.08 0.17 -0.02 0.07 0.12

Table 1: Pearson correlation coefficients between SAS score and ∆∆LL (top) and PS (bottom) and ∆∆LL for
2 and 3 variants of GPT2 and Pythia, respectively. DU, ME, PR, and NS stand for Dundee, MECO, Provo, and
Natural Stories, respectively. Correlations statistically significant at α = .05 are boldfaced and colored in green if
positive and red if negative. Note that these p-values are before any correction for multiple testing is applied.
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PS

0.000

0.001

∆
∆

L
L

Figure 2: Relationship between each head’s PS (x-axis)
and the effect of its ablation on ∆LL (y-axis), measured
on the Dundee orpus, for the Pythia-70M model at 2
billion pretraining tokens. Each point represents one of
the 48 heads in the model.

5.2 Results

We start by considering a single, illustrative exam-
ple: Figure 2 plots each head’s PS (x-axis) and
∆∆LL for Dundee corpus (y-axis) for Pythia-70M
at 2B tokens of training. These particular results
appear to confirm our hypothesis: heads high in
PS are also high in ∆∆LL, meaning that the heads
performing induction damage the PPP.

However, we also need to test if this is the case
for other models, checkpoints, and data (other
than Dundee). We focus on 5 checkpoints around
(and including) the phase transition point (64M for
GPT2 models and 2B for Pythia models). This pro-
duces 5 (checkpoints) × 5 (models) × 4 (corpora)
× 2 (scores: SAS score and PS) = 200 scatterplots
like Figure 2. For readability, we only report Pear-
son’s correlation coefficients for each, shown in

Table 1. For example, Figure 2 can be found under
column Pythia-70M and DU, row 2B on the bottom
half of the table (r = 0.7, p < .05).

In Table 1, a few trends emerge: First, we find
strong correlations for models closer to the tran-
sition points (64M for GPT2 models and 2B for
Pythia models). The very undertrained GPT2 mod-
els at 16M pretraining tokens, and Pythia models
at 0.5B pretraining tokens, for example, show vir-
tually no correlations between ∆∆LL and SAS or
PS. Second, whereas SAS∼∆∆LL correlation is
positive but PS∼∆∆LL correlation is negative for
GPT2 models, the opposite is true in general for
Pythia models. We do not know why this should
be the case, and it warrants further investigation.
Given that more than half of the model checkpoints
show no significant correlations, and that none of
the significant correlations remain significant af-
ter Bonferroni correction for multiple testing is
applied, we take these data as not supporting the
claim that the post-phase transition degradation in
PPP can be attributed to specific heads.

6 Experiment 3: Suppressing Phase
Transition Delays PPP Peak

In this experiment, we test Hypothesis 2b (Dynam-
ics Hypothesis): if phase transition changes the
course of pretraining dynamics, and if the post-
transition pretraining dynamics lead to the degrada-
tion in PPP, suppressing the phase transition should
result in the mitigation of PPP degradation.
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6.1 Methods
Completely suppressing phase transition is difficult,
if not impossible, as we do not have a full mecha-
nistic understanding of this phenomenon. However,
as induction heads and SAS are among the few
well-documented diagnoses of phase transition, in
this section we suppress them as a proxy method
for suppressing phase transition more generally.

Since SAS quantifies attention heads whose at-
tention patterns shadow dependency edges, Chen
et al. (2024a) propose using a syntactic regularizer:

LSAS(x) = LCLM(x)︸ ︷︷ ︸
Original loss

+λ

|x|∑

i=1

∑

xj∈D(xi)

α(xi, xj)

︸ ︷︷ ︸
Syntactic regularization

(3)
where x is an input, D is a child-parent mapping of
dependency relations, and α is an attention weight
between a pair of words. λ is a weighting fac-
tor, and Chen et al. (2024a) find that λ = 0.001
works best with BERT (positive λ suppresses SAS,
whereas negative λ promotes it). We show results
from λ = {0.01, 0.001}. We use spaCy (Honnibal
et al., 2020) to parse our training data.

To suppress the formation of induction heads, we
regularize against attention patterns that correspond
to the “copying” behavior:

LCOPY(x) = LCLM(x)︸ ︷︷ ︸
Original loss

+λ

|x|∑

i=1

∑

xj∈PM(xi)

α(xi, xj)

︸ ︷︷ ︸
Copying regularization

(4)
where PM(xi) is a prefix matching tokens of xi.
Recall that the copying behavior of induction heads
was characterized by predicting B when given a
sequence ⟨A,B, . . . , A⟩. Since we do not know
which tokens are considered “similar enough” to
promote the formation of induction heads in natural
texts (see Chen et al., 2024b for the discussion on
“parallel structures” that are central to LMs’ ICL
abilities), we construct synthetic data consisting
of repeated random sequences of tokens (see Ap-
pendix H for the details of the dataset construction
and copying regularization implementation).

In addition to the non-regularized model, copy-
suppressed models, and SAS-suppressed models,
we add models with Gaussian Noise Injection
(GNI), as an example of a perturbed model with
no explicit phase transition suppression. For more
details, see Appendix L.
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Figure 3: Phase transition points (x-axis) and ∆LL
tipping points (y-axis). Regularization delays both the
phase transition and PPP tipping point, as exemplified
by the SAS-regularized model (λ=0.01), shown with the
red arrow. ▲ and ★ represent phase transitions defined
by UAS and PS, respectively. *p < .05; **p < .01.

6.2 Results

6.2.1 Validation of Suppression
We first verify that SAS and copying suppression
are working as intended by showing that SAS sup-
pression leads to a lower UAS and consequently a
lower BLiMP score, and that copying impression
leads to a near-zero PS and a reduced ICL score
(these results are presented fully in Appendix J).

Interestingly, however, none of the models re-
sulted in a complete suppression of the phase tran-
sition. That is to say, with copy regularization,
induction heads were suppressed (near-zero PS),
but it promoted an even stronger SAS (higher UAS
and BLiMP). On the other hand, with syntactic reg-
ularization, SAS was suppressed (near-zero UAS),
but it delayed and weakened the induction heads
(see Appendix K for more details on the interac-
tion between the two types of regularization). All
of the regularized models resulted in a higher loss
compared to the non-regularized model, suggesting
that emergent structures are indeed facilitative of
next token prediction.

6.3 Effect of Supression on PPP

Given that the phase transition was at most delayed
(and not fully suppressed), and that loss is known
to affect PPP, we present two sets of results: (1)
the correlation between the phase transition points
and PPP tipping points, and (2) the loss-PPP cor-
relations before and after the phase transition. For
(1), if the regularization resulted in a delayed phase
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transition, this should also result in a delayed PPP
tipping point. Since PS is a better predictor of
PPP tipping points (see Figure 1), we use PS to
compute phase transition points (Section 4.1). For
models with copying regularization, UAS was used
to obtain the phase transition points. For (2), we
expect that the correlation is negative (i.e. quality-
power hypothesis) before the phase transition, and
positive after the phase transition. For the full tra-
jectories of each model’s PPP, see Appendix M.

Figure 3 summarizes the effect of regularization
on phase transition points and PPP peaks, with the
red arrow (→) showing the representative case,
pointing from the non-regularized model to SAS-
suppressed model (λ = 0.01). MECO is again an
outlier here; however, a strong correlation is found
in both Dundee and NS, and also in Provo, to an
extent. More importantly, as the arrow suggests,
suppression that leads to a delayed phase transi-
tion also delays the PPP peak, moving the point
along the orange line that the Phase Transition Hy-
pothesis predicts, and this further corroborates our
Hypothesis 1. For the magnitude and significance
of these trends, see Table 4 in Appendix M.

We have established that the suppression delays
both phase transition and PPP tipping point. Fig-
ure 4 shows the loss-PPP correlation both before
(top) and after (bottom) the phase transition. For
Dundee and Provo, the contrast is evident: LM
losses and PPPs have a negative correlation before
the phase transition, and a positive correlation after
it. The post-transition positive correlations we see

especially in the Dundee and Provo corpora sug-
gest that the decrease in loss that happens after the
phase transition damages PPP, congruent with our
Dynamics Hypothesis (Hypothesis 2b).

7 Discussion

This work proposed phase transition as the under-
lying factor that causes PPP degradation beyond a
certain point during LM pretraining and conducted
several studies to test this hypothesis. Here, we
discuss how our results relate to previous factors
that have been shown to impact PPP in LMs.

7.1 Phase Transition & Factors Affecting PPP

First, our Phase Transition Hypothesis can poten-
tially explain previous findings that limiting the
context window of a transformer LM can improve
PPP (Kuribayashi et al., 2022), especially for infre-
quent tokens (Oh et al., 2024), and that adding a
linear recency bias improves PPP (De Varda and
Marelli, 2024; Clark et al., 2024). To explain why,
recall that Olsson et al. (2022) find that induction
heads improve the ICL score, as measured by how
well an LM leverages earlier tokens in the con-
text for the next word prediction, even across long
spans of text. If the emergence of ICL abilities is
the underlying cause of the PPP reversal, then it
follows that limiting ICL would help PPP. In this
study, we have achieved this through ablation and
regularization; however, restricting LM’s context
size would yield a similar outcome by completely
disabling models to leverage earlier tokens.
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7.2 Phase Transition & “Bigger ̸= Better”

Second, the Phase Transition Hypothesis can ex-
plain why larger models suffer from lower PPP
than smaller models (e.g., Oh et al., 2022; Oh and
Schuler, 2023b), an example of inverse scaling.
Oh and Schuler (2023b) conjecture that the overly
accurate prediction of infrequent tokens is one of
the contributing factors to models’ PPP reversal,
and suggest that it could be due to memorization.
Chen et al. (2024a) suggest that the memorization
phase occurs after the phase transition. Taken to-
gether, given that most of the models studied in
previous works have almost certainly undergone
the phase transition, it is unsurprising that memo-
rization is damaging PPP. In fact, Oh et al. (2024)
make an interesting observation regarding pretrain-
ing dynamics and predictions on infrequent tokens:
models of different sizes seem to follow similar
learning trajectories up to a certain point during
pretraining (2B tokens), but the ability to predict
infrequent tokens with low surprisals (which is con-
sidered one of the reasons for the larger models’
poor predictive power) seems to emerge beyond
that point only among larger models.

7.3 SAS & Induction Heads

To our knowledge, this study is the first to investi-
gate SAS in decoder-only models, and to observe
the emergence of induction heads and SAS in the
same model. This affords us to make observations
about the interactions between the two, as briefly
discussed in Section 6.2.

In all of the models we examined, SAS emerges
first, closely followed by the formation of induc-
tion heads (see Figure 7 in Appendix G). Although
the universality of this order remains inconclusive
based on the selection of models we examined, this
begs a question: is the emergence of SAS a prereq-
uisite for the emergence of induction heads?

If this was the case, we would expect the SAS
suppression to also suppress induction head for-
mation, but not vice versa. Interestingly, we see
a similar trend, but not quite what we expected:
suppression of SAS delays the induction head for-
mation and lowers the eventual PS obtained at the
end of the training; however, the suppression of
induction heads does not affect the point at which
SAS emerges, and further, it increases the UAS.
The interaction among different types of special-
ized heads remains an interesting topic for further
investigation (see Appendix K for details).

7.4 Beyond Reading Time

Concurrent works explore the relationship between
training dynamics and the alignment between LMs
and brain activities. AlKhamissi et al. (2025) mea-
sured Pythia models’ formal and functional linguis-
tic competences as well as their alignment with
brain data throughout pretraining and reported a
strong correlation between formal linguistic com-
petence and the brain-LM alignment. Furthermore,
they show that models of various sizes (ranging
from 70M–6.9B) have similar levels of alignment
with brain activities, and that they all tend to peak
in the alignment between 2B–8B tokens of pre-
training, echoing the observation we have made.
Note that the tipping point of brain-LM alignment
seems to come after the tipping point of sentence
processing alignment.

Nakagi et al. (2025) find a similar abrupt in-
crease in the brain-LM alignment at 1B pretraining
tokens, followed by a sudden drop at 10B pretrain-
ing tokens for a set of OLMo variants. They find
a subsequent resurgence in the alignment score
at around 50B pretraining tokens, describing the
overall dynamics as consisting of 3 phases. Al-
though we only trained our models up to 10B to-
kens, results from Oh and Schuler (2023a) show
that Pythia models go through a tipping point at
around 2B tokens, after which no further increase
is observed throughout the 300B pretraining tokens.
Hence, this resurgence after the tipping point might
be unique to brain-LM alignment; however, more
work is needed to verify this speculation.

8 Conclusion

This study found a strong correlation between the
phase transitions and peaks in a model’s fit to hu-
man reading times. However, the precise aspect of
the phase transition responsible for PPP degrada-
tion remains somewhat inconclusive. Given that the
results largely supported Hypothesis 2b (Dynamics
Hypothesis, Section 6) rather than Hypothesis 2a
(Persistence Hypothesis; Section 5), we can be rea-
sonably confident that it is the post-phase transition
dynamics driving the PPP degradation. However,
it is important to note that none of our regulariza-
tion methods was able to completely suppress the
phase transition. Fully controlling the phase tran-
sition and investigating its effect on PPP requires
a more complete understanding of the phase tran-
sition, and this remains an important avenue for
future research.
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9 Limitations

First, our models are limited to Pythia models and
GPT2 models. This is due to the limited availabil-
ity of pretrained models’ checkpoints, as well as
the high computational cost associated with train-
ing large models from scratch. As mentioned in
Section 3.1, to our knowledge, Pythia is the only
model family whose available checkpoints cover
the phase transition points.

We also limited the GPT2 models to 0-, 1-, and
2-layer variants. This is because these three vari-
ants are theoretically shown to behave qualitatively
differently (Olsson et al., 2022) as we discussed in
Section 4.2, and that models with 2 or more layers
are not qualitatively different for our purpose of
attention-based phase transition detection. Pythia
model’s 70M, 160M, and 410M variants are 6, 12,
and 24 layers, respectively, and we believe that this
covers a reasonable range of model sizes, together
with the GPT2 models we train. We also note that
experiments on smaller “toy” models are important
first steps (e.g., Elhage et al., 2021; Olsson et al.,
2022; Power et al., 2022; Kallini et al., 2024). Yet,
training larger models in Section 6 was beyond our
compute budget, and we leave this to future work.

Second, our selection of reading time corpora
is representative rather than comprehensive, and
the replication with other corpora, as well as differ-
ent reading behavior metrics such as brain activity
data, remains an important future work. We also
observe that the results for MECO were different
from results from the other 3 corpora. The absence
of the PPP peak ∼ phase transition correlation (Fig-
ure 1 in Section 1 and Figure 3 in Section 6.2) are
considered an exception rather than a rule. Several
issues that could affect the quality of the corpus
have been reported on MECO. For example, Ope-
dal et al. (2024) find an off-by-one issue for a hand-
ful of tokens in MECO, as well as repeated words
in a few sentences. We followed the fixed version
of the data; however, there may be other issues we
are unaware of, potentially causing the divergent
behavior of the corpus.

Lastly, our study is limited to English, and our
results may not hold for other languages. How-
ever, given that syntactic dependencies and word or
phrase repetitions are universal across the world’s
languages, we predict that a similar trend might be
observed in other languages. A multilingual exten-
sion of this study is therefore a promising direction
for future work.

Ethics Statement

We trained several small transformer-based LMs
from scratch, which could contribute to the in-
creased carbon footprint. However, we train mod-
els that have at most 2 layers and 8 heads. By choos-
ing a model size that reasonably approximates the
popular transformer architecture (at least for the
purpose of our study) while curtailing the com-
putational cost, we believe that we were able to
minimize our environmental impact.

Lastly, while our study utilizes four sources of
human behavioral data, we do not intend to redis-
tribute or publicly share these datasets. We affirm
that our use of this data aligns with ethical stan-
dards and does not pose any potential ethical con-
cerns.
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A Hyperparameters

Architecture

architecture gpt2
vocab_size 50_257
context_size 1_024

d_embed 768
d_ffn 3_072

n_layer 2
n_head 8

activation gelu
num_params 53M

Training

train_size 1B
num_epoch 10

train_amount 10B
batch_size 4

grad_acc_steps 1
weight_decay 0.1
warmup_steps 1%

lr 5e-4
lr_scheduler cosine

Table 2: List of hyperparameters used to train L2LMs.

Table 2 summarizes the hyperparameters used
to train 2-layer GPT2 models. 0-layer and 1-layer
GPT2 models had 39M and 46M total parameters,
respectively, and the rest of the hyperparameters
remain the same.

B Regression Model Formulae for ∆LL
Calculation

Following Smith and Levy (2013), we model the
spillover effect of previous 2 and 4 words for mod-
eling eye-tracking data (Dundee, MECO, Provo)
and self-paced reading data (Natural Stories), re-
spectively. Frequencies are estimated using Wiki-
text.

Baseline regression model for eye-tracking.
psychometric ∼ freq + prev_freq +
prev2_freq + len + prev_len + prev2_len
Baseline regression model for reading time.
psychometric ∼ freq + prev_freq +
prev2_freq + prev3_freq + prev4_freq +
len + prev_len + prev2_len + prev3_len +
prev4_len
Full regression model for eye-tracking.
psychometric ∼ surprisal + prev_surp +
prev2_surp + freq + prev_freq + prev2_freq
+ len + prev_len + prev2_len
Full regression model for reading time.
psychometric ∼ surprisal + prev_surp +
prev2_surp + prev3_surp + prev4_surp +
freq + prev_freq + prev2_freq + prev3_freq
+ prev4_freq + len + prev_len + prev2_len
+ prev3_len + prev4_len

C Unlabeled Attachment Score (UAS)

We follow the calculation of UAS introduced in
Chen et al. (2024a), which is based on Clark et al.
(2019). While they both use bidirectional models
(i.e. BERT), we use decoder-only autoregressive
models (i.e. GPT2 and Pythia), and hence make
modifications to account for this difference. The
overall recipe is to (1) define a head-specific probe,
(2) find the best performing head for each depen-
dency relation type, and (3) calculate the overall
UAS using the best heads defined in (2).
(1) Head-specific probe. A head-specific probe
fh,l predicts the parent word of a target word xi by
selecting the word xj , whose attention edge to or
from the target word xi is the highest among all
words xj ∈ {j ̸= i} for a given head h at layer l:

fh,l(xi) = argmax
xj

(
a
(h,l)
ij

)
. (5)

Note that, unlike bidirectional models, where each
pair of words is connected by 2 attention edges
(xi ↔ xj), only 1 edge lies between any pair of
words for autoregressive models. This means that
the number of words a given word xi can attend
to is i, whereas the average number of words xi’s
right context can attend to is i+1024

2 , creating dis-
crepancy in the scale. If i = 10, for example, with
the context size of 1024, ∀j≤i[E(a

(h,l)
i→j )] = 0.1,

whereas Ej>i[E(a
(h,l)
j→i )] ≈ 0.002. However, we

find that scaling the attention weights between
a
(h,l)
i→j and a

(h,l)
j→i produce similar results, and hence

we report unscaled results throughout.
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Following Clark et al. (2019); Chen et al.
(2024a), we convert the token-level attention to
word-level attention by summing over attention
weights to destination tokens that make up a single
word, and by averaging over attention weights from
source tokens that constitute a single word.
(2) Best head per relation type. The rest of
the UAS calculation remains same as Chen et al.
(2024a). We now convert the head-specific probe
defined in (1) to a relation-specific probe by finding
the best head for each dependency relation type.

For each dependency relation type R, which we
define as a set of all ordered child-parent pairs
(x, y), the best performing head for the given de-
pendency relation type is:

f̂R = argmax
fh,l

1

|R|
∑

(x,y)∈R
1R (x, fh,l(x)) , (6)

where x and y are constrained to be within the same
sentence. The indicator function for set R, 1R is 1
if the predicted child-parent pair is in the set R, and
0 otherwise. Hence, f̂R is simply a head that has
the highest recall for a given dependency relation
type R.
(3) UAS. Lastly, we simply take the average of
the performance of each relation type’s best head
over all relation types, weighted by the number of
ordered word pairs in that relation type. Denoting
the set of all relation types as R, UAS is defined
as:

UAS =
1∑

R∈R |R|
∑

R∈R

∑

(xi,xj)∈R
1R

(
xi, f̂R(xi)

)
.

(7)

D In-Context Learning (ICL) Score

Olsson et al. (2022) define what they call ICL
score, or the difference in the losses of tokens later
in the context and tokens earlier in the context.
This score seems to be robust to the choice of ex-
actly which tokens to compare; however, Olsson
et al. (2022) report the difference between 50th
and 500th tokens’ losses. We instead report the
difference between the average loss of early tokens
wj , where j ∈ [40, 60], and that of later tokens wk,
where k ∈ [450, 550], for each sequence si, where
i ∈ [1, N ]:

∑
i

∑
j

∑
k L(fθ(si, wj))− L(fθ(si, wk))

200×N
(8)
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Figure 5: Trajectories of BLiMP score over 10B tokens
of pretraining. ▲ represent phase transition defined by a
sudden rise UAS.

where fθ(si, wj) is the output of an LM
parametrized by θ, given j-th word wj in i-th se-
quence si. A positive ICL score means that the
model has a lower loss (i.e. better prediction) later
in the context than earlier in the context.

E Phase Transition and its Downstream
Effects

Chen et al. (2024a) find that the increase in UAS
triggers the acquisition of syntactic abilities, as
shown in an increase in the BLiMP score closely
following the UAS boost, and we find a similar
pattern. In Figure 5, GPT2 seems to go through a
drastic increase in the BLiMP score between 4M to
1B pretraining tokens, with a brief halt around 32M-
64M pretraining tokens. This is when the phase
transition occurs, and it seems to signal the onset of
the second boost in BLiMP score, starting around
64M tokens. For Pythia, the picture seems even
clearer: UAS phase transition happens at around
512M pretraining tokens, immediately followed by
a sudden increase in the BLiMP score.

Similarly, Olsson et al. (2022) reports a dramatic
improvement in ICL score, foreshadowed by the
emergence of induction heads, measured by PS. In
Figure 6, ICL scores of 2-layer GPT2 and 1-layer
GPT2 models seem to start diverging between 32M-
64M pretraining tokens, which is exactly when the
2-layer model is undergoing the phase transition.
Recall that induction requires attention composi-
tion, which is only possible with models with 2
or more layers. For Pythia models, the increase
in ICL score is most dramatic between 1B and 2B
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sudden rise PS.

pretraining tokens, which also coincide with the
emergence of induction heads.

F Ablation

Ablation of attention heads can be implemented
in two ways: full ablation and pattern-preserving
ablation. For full ablation, the attention output is
simply set to 0. Recall that attention output is a
matrix multiplication between the attention weight
vector, which is computed using query and key
vectors, and the value vector (Vaswani et al., 2017):

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V, (9)

where Q, K, and V are query, key, and value vec-
tors, respectively, and dk represents the dimension
of Q and K vectors. Because Q, K, and V vec-
tors are linear projections of the previous layer’s
output, setting Equation (9) to a 0 vector affects
all downstream (later layers’) calculations of Q, K,
and V vectors. In pattern-preserving ablation, we
feed the input to the model twice: during the first
run, no heads are ablated, and we simply record
all the attention weights at each head of each layer.
During the second run, we ablate the head(s) of in-
terest, but use the attention weights recorded in the
first run, preserving the original attention weights
(hence pattern-preserving). Because only Q and K
vectors are involved in the attention weight calcu-
lation softmax(QKT

√
dk

), pattern-preserving ablation
only affects downstream V calculations, but not
QK calculations. We note that these two imple-
mentations of ablation yield similar results, and we

report the results obtained from pattern-preserving
ablation.

G Full PPP Trajectory and Phase
Transition Points

Figure 7 shows a fuller visualization of the entire
trajectory of ∆LL, with the phase transition points
marked for each model (▲ and ★ for UAS and
PS, respectively, which correspond to the x-axis of
Figure 1). Note that, in Figure 7, we included 0 and
1 layer GPT2 models as they are expected to behave
differently from 2 layer models. This is because 0
layer model does not have attention layers, and 1
layer model cannot form induction heads, as they
require attention composition (Olsson et al., 2022).
We limited the 2 layer models to the one trained
with a batch size of 4 for readability.

First, GPT2 with no attention layer (dark purple
line) exhibits no “tipping point” in PPP, meaning
that it never seems to undergo a point at which PPP
starts going down. This is expected as the defini-
tions of phase transition we adopt in this paper are
both triggered by specialized behaviors of attention
heads, and this further corroborates our hypothe-
sis. Conversely, for GPT2 models with 1 and 2
layers, as well as 3 different sizes of Pythia models
all have a tipping point at which PPP starts going
down. Note that the results for Pythia models are
partial replications of Oh and Schuler (2023a).

Second, as shown in Figure 1 as well, the tip-
ping points of PPP seem to closely match the break-
through points in ICL scores. Note that these break-
through points are meaningful for models with 2
or more layers because induction heads work with
another head in lower layers to perform the copy-
ing behavior (cf. attention composition; Olsson
et al., 2022); hence, we do not indicate those break-
through points for 0 and 1 layer models.

H Implementation of Copying
Regularization

Since the distance between two ⟨A,B⟩ sequences,
l, can be arbitrarily large within the LM’s con-
text size, we sample l from a uniform distribution
U(50, 512). The lower bound is to make sure non-
copying behaviors do not get suppressed, and the
upper bound is just half the max context length of
our model. To maximize the suppression target, we
repeat a random sequence of length l as many times
as it takes to fill the context size of 1024. Since
it has to be repeated at least twice to promote the
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Figure 7: Trajectories of ∆LL over 10B tokens of pretraining. ▲ and ★ represent phase transition defined by a
sudden rise in UAS and PS, respectively.

copying behavior, l is upper-bounded by 512. With
this synthetic data, PM(xi) can be written as:

{xj |j < i, xj = xi+1,x
i
i−l+1 = xj−1

j−l } (10)

or programmatically:

{xi−nl+1|n ∈ N1, x− nl > 0} (11)

Now, as opposed to SAS suppression, where the
regularization term is computed on the same set
of examples from which normal loss LCLM is com-
puted, the copying regularization term requires sep-
arate synthetic data. We considered alternating be-
tween the LCLM and LCOPY every 1

λ steps; however,
we find that this leads to a very unstable learning
curve, and hence add the regularization term every
step weighted by λ as was the case with syntactic
regularization.

I Permutation Test

To test the significance of the differences in ∆LL
between non-regularized and regularized models,
we conduct a series of pair-wise permutation tests.
Since ∆LL is computed for each word per model,
and we are not interested in the variance in ∆LL
introduced by word ID, it was treated as a random
effect. More concretely, for each pair of models
we are comparing, we first generate 10,000 random
permutations (i.e. random assignment of group)

Model Corpora
Reg λ/σ Dundee MECO Provo NS

Copy 0.001 .334 .539 .000 .986
0.01 .076 .269 .003 .271

Syntax 0.001 .305 .808 .001 .194
0.01 .121 .947 .319 .023

GNI 0.05 .461 .175 .264 .539
50 .173 .299 .301 .016

Table 3: P-values obtained from the permutation test.

between the 2 labels (2 models being compared)
for each word ID, so that each of the per-word
∆LL is randomly assigned to one of the two la-
bels. We then count the proportion of permutations
that have a mean within-word ID difference equal
to or larger than the observed difference. Since
we are interested in the difference between non-
regularized and regularized models, we conduct
six pair-wise permutation tests between the non-
regularized model and each of the six regularized
variants (3 regularizers × 2 hyperparameters = 6).
Table 3 summarizes the permutation test results.
Note that the p-values are all before any correction
for multiple testing.
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Figure 8: Trajectories of UAS over 10B tokens of pre-
training with and without SAS suppression. All models
are GPT2 with 2 layers with 8 attention heads.
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Figure 9: Trajectories of BLiMP score over 10B tokens
of pretraining with and without SAS suppression. All
models are GPT2 with 2 layers with 8 attention heads.

J Regularization

J.1 UAS and BLiMP

Figure 8 summarizes the development of UAS
for the GPT2 models with and without SAS sup-
pression. As opposed to the non-suppressed
model (NoReg), whose UAS abruptly increases
between 16M and 64M pretraining tokens, the SAS-
suppressed model with λ = 0.001 exhibits a brief
increase in UAS, followed by a gradual degrada-
tion, converging to almost 0 towards the end of
the pretraining. The SAS-suppressed model with
stronger suppression, λ = 0.01, almost never sees
any improvement in UAS throughout the pretrain-
ing. We confirm that the SAS suppression is work-
ing as intended.

Figure 9 summarizes the development of BLiMP
score over the course of pretraining for the same
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Figure 10: Trajectories of PS over 10B tokens of pre-
training with and without copying suppression. All
models are GPT2 with 2 layers with 8 attention heads.
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Figure 11: Trajectories of ICL score over 10B tokens of
pretraining with and without copying suppression. All
models are GPT2 with 2 layers with 8 attention heads.

3 models discussed above. After 16M to 64M
pretraining tokens, when the phase transition was
supposed to happen, BLiMP score perfectly cor-
relates with the SAS suppression strength, with
non-regularized model performing the best, and the
strongly regularized model performing the worst.

J.2 PS and ICL

Figure 10 plots the development of best PS. Re-
call that PS is a head-level score, and we show the
score from the highest scoring head for each check-
point. At 64M pretraining tokens, we see the phase
transition in non-regularized model. Both copying-
suppressed models (λ = 0.001, λ = 0.01) show
almost no improvement in the best PS throughout
the course of pretraining.

Figure 11 shows that the copying-suppressed
models indeed show lower ICL scores, presum-

24954



1M 4M 16
M

64
M

25
6M 1.
0B

2.
0B

3.
0B

4.
0B

5.
0B

6.
0B

7.
0B

8.
0B

9.
0B

10
.0

B

0
.0

0
.2

0
.4

0
.6

0
.8

NoReg
GNI (0.05)
GNI (50)

CopyReg (λ=0.001)
CopyReg (λ=0.01)

SyntaxReg (λ=0.001)
SyntaxReg (λ=0.01)

B
es

tP
S

Pretraining Tokens

Figure 12: Trajectories of PS over 10B tokens of pre-
training. All models are GPT2 with 2 layers with 8
attention heads.
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Figure 13: Trajectories of ICL over 10B tokens of pre-
training. All models are GPT2 with 2 layers with 8
attention heads.

ably as a result of the absence of induction heads.
Notably, at around 64M pretraining tokens, when
phase transition occurs in the non-regularized
model, both regularized models see a large dip
in the ICL score. This is perhaps because the emer-
gent copying behavior briefly raises the penalizing
term of the loss function LCOPY, resulting in a brief
phase of negative ICL scores.

K Interaction

We find that suppressing one type of specialized
head affects the behavior of the other type of spe-
cialized heads. As briefly discussed in Section 7.3,
because SAS always emerges before induction
heads, it is expected that the suppression of SAS
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Figure 14: Trajectories of UAS over 10B tokens of
pretraining. All models are GPT2 with 2 layers with 8
attention heads.
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Figure 15: Trajectories of BLiMP over 10B tokens of
pretraining. All models are GPT2 with 2 layers with 8
attention heads.

affects the performance of induction heads, but not
vice versa.

K.1 SAS supression → induction heads

In Figure 12, we can see that the suppression of
SAS indeed leads to slower emergence and weaker
performance of induction heads, and this trend
is more pronounced for a stronger regularizaiton,
where λ = 0.01. Consequently, in Figure 13, SAS
suppression makes the improvement in ICL slower,
and the eventual ICL lower.

K.2 Induction head supression → SAS

On the other hand, as expected, Figure 14 show that
the suppression of induction heads does not sup-
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Figure 16: ∆LL of 7 variants of 2 layer GPT2 models
at the end of pretraining (10B tokens). Red dotted lines
represent the ∆LLs obtained from the non-regularized
GPT2. Within each corpus, regularized models are com-
pared against the non-regularized model (dotted lines)
to test statistical significance. Note that p-values are
before applying any correction for multiple testing.
p > .1 (ns); p < 0.1 (.); p < 0.05 (*); p < 0.01 (**)

press the emergence of SAS; rather, surprisingly, it
improves UAS for both values of λ. Consequently,
with the stronger attention to dependency edges,
models with induction head suppression performs
better in BLiMP (Figure 15).

K.3 Asymmetry between SAS and Induction
Heads

Why does the suppression of SAS delays and weak-
ens the formation of induction heads, whereas the
suppression of induction heads strengthens SAS?
Given that SAS always emerges before induction
heads, one possible explanation is that the presence
of natural grammar (the fact that paying strong at-
tention to a token connected with a dependency
edge facilitates next token prediction) may have
a scaffolding effect for learning non-uniform and
highly concentrated attention distribution, with
the majority of the mass allocated to a single to-
ken. Hence, the removal of this scaffolding (i.e.
SAS suppression) delays the emergence of induc-

tion heads. Note that the strong SAS suppression,
with almost 0 UAS throughout (yellow line in Fig-
ure 14), still produces some level of PS (yellow
line in Figure 12). This implies that SAS is a mere
scaffolding for induction head formation, and not a
prerequisite.

On the other hand, since SAS emerges before
induction heads, SAS seems not to be using such a
scaffolding from the formation of induction heads.
Rather, in natural language with ⟨A,B, . . . , A,B⟩
sequences, induction heads may be inhibiting the
model’s ability to attend to tokens connected with
dependency edges, by allocating some of the atten-
tion weights, that could have been used for SAS, to
prefix-matching tokens. Note that, in our copy sup-
pression, prefix-matching tokens were at least 50
tokens apart from each other, making dependency-
connected tokens and prefix-matching tokens dis-
joint sets for most cases. However, these are pure
speculations, and further studies are needed to con-
firm exactly why the specialized heads’ training
dynamics interact in the way we observed.

L Gaussian Noise Injection

The models with Gaussian Noise Injection (GNI)
were trained on the same dataset as other models
(CC100), while adding to FFNs noises sampled
from a Gaussian distribution with the mean of 0:

h̃ = h+ ϵ, ϵ ∼ N (0, σ2) (12)

where h is the activation of a transformer block’s
FFN. As σ determines the magnitude of the noise,
we included models with σ = 0.05 and σ = 50.

M Details of the Effect of Suppression on
PPP

In Section 6.2, we mainly reported (1) the correla-
tion between phase transition points and PPP tip-
ping points, and (2) loss-PPP correlations before
and after the phase transition. This is because PPP
is known to be a function of loss (quality-power
hypothesis; Goodkind and Bicknell, 2018) as well
as whether the model has gone through the tipping
point (or equivalently, the phase transition, based
on our hypothesis). Hence, comparing the abso-
lute PPPs is not necessarily informative: model A
having a higher PPP than model B can mean (1)
both are before the phase transition and A has a
lower loss, or (2) both are after the phase transition
and A has a higher loss, among other possibili-
ties. Nonetheless, for the sake of completeness, we
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Figure 17: Effect of regularization on ∆LL. All models are 2-layer GPT2 models, trained with a batch size of 4.

present the absolute differences, as well as their
statistical significance (Figure 16), and the full tra-
jectories of PPP (Figure 17).

In Figure 16, first, we find that syntactic regular-
ization tends to improve PPP over non-regularized
models, and this is robust to the settings of λ or
the corpus. Second, syntactic regularization is also
more effective at improving PPP than copying reg-
ularization, which shows mixed results; its impact
is negative at the lower lambda value (λ = 0.001)
for the Natural Stories corpus, whereas for MECO,
it adversely affects PPP regardless of the regular-
ization strength. See Appendix I for details on the
permutation tests for statistical significance.

In Figure 17, the degradation in PPP at the phase
transition point is partly suppressed, although the
results vary by regularization type, strength, and
corpus. For example, for the Dundee corpus,
syntactically regularized models have lower PPP
around the transition point compared to the original
model; however, they degrade less than the original
model and consequently end up with higher PPP
later in pretraining. This trend is much more pro-
nounced in the Natural Stories Corpus; as opposed
to the original model, whose PPP decreases after
the transition point, SAS-suppressed models either
plateau (λ = 0.001) or keep improving (λ = 0.01)
beyond that point. However, the degradation trend
is not fully suppressed or reversed for many models
and corpora.

N Loss and PPP

As discussed above, comparing PPPs independent
of loss is misleading, as they have been found to
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Figure 18: Trajectories of validation loss on over 10B
tokens of pretraining. All models are GPT2 with 2
layers with 8 attention heads.

interact. Figure 18 summarize the validation loss of
each model throughout the pretraining on 10B to-
kens. Most models follow a similar pattern, where
the loss clearly improves until around 1B tokens,
after which the improvement slows down or stops.
Copy-regularized model with λ = 0.01 seems to
be an exception: validation loss gradually goes up
from around 1B pretraining tokens, likely due to
the strong suppression of induction heads.

Table 4 summarizes the loss-PPP correlations
before (top) and after (bottom) the phase transition.
This corresponds to Figure 4 in Section 6.2. Evi-
dently, most correlations are strongly and signifi-
cantly negative before the phase transition, whereas
about a half of the correlations are significantly pos-
itive after the transition. This again highlights the
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Corpus Model

NoReg GNI
(σ=0.05)

GNI
(σ=50)

CopyReg
(λ=0.001)

CopyReg
(λ=0.01)

SyntaxReg
(λ=0.001)

SyntaxReg
(λ=0.001)

Pr
e-

PT
Dundee -0.971 -0.935 -0.992 -0.975 -0.991 -0.981 -0.975
MECO -0.76 -0.443 -0.531 -0.821 -0.84 -0.67 -0.892
Provo -0.971 -0.767 -0.974 -0.987 -0.979 -0.843 -0.781
NS -0.96 -0.894 -0.957 -0.879 -0.905 -0.811 -0.94

Po
st

-P
T Dundee 0.811 0.519 0.513 0.201 -0.087 -0.137 0.793

MECO 0.044 0.742 0.525 -0.32 -0.261 -0.151 0.521
Provo 0.892 0.414 0.712 0.88 0.801 0.209 0.72
NS 0.294 0.132 0.452 -0.221 -0.605 -0.32 -0.737

Table 4: Pearson’s r between loss and PPP before (top) and after (bottom) the phase transition. Statistically
significant positive and negative correlations are boldfaced and colored in green and red, respectively.

observation that the loss-PPP correlation is indeed
flipped (i.e. goes through a tipping point) for both
non-regularized and regularized models.
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