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Abstract

Large Language Models (LLMs) have made
notable progress in mathematical reasoning,
yet they often rely on single-paradigm rea-
soning that limits their effectiveness across
diverse tasks. In this paper, we introduce
Chain-of-Reasoning (CoR), a novel unified
framework that integrates multiple reason-
ing paradigms — Natural Language Reason-
ing (NLR), Algorithmic Reasoning (AR), and
Symbolic Reasoning (SR) — to enable syn-
ergistic collaboration. CoR generates multi-
ple potential answers using different reason-
ing paradigms and synthesizes them into a
coherent final solution. We propose a Pro-
gressive Paradigm Training (PPT) strategy
that allows models to progressively master
these paradigms, culminating in the develop-
ment of CoR-Math-7B. Experimental results
demonstrate that CoR-Math-7B significantly
outperforms current SOTA models, achiev-
ing up to a 41.0% absolute improvement
over GPT-4o in theorem proving tasks and
a 15% improvement over RL-based methods
on the MATH benchmark in arithmetic tasks.
These results show the enhanced mathemati-
cal comprehensive ability of our model, en-
abling zero-shot generalization across tasks.
The code is available at https://github.
com/microsoft/CoR.

1 Introduction

While LLMs have shown strong performance in
solving mathematical tasks (Feigenbaum et al.,
1963; Hosseini et al., 2014), advanced open-
source reasoners still struggle with solving com-
prehensive mathematical problems, including both
arithmetic computation and theorem proving.

Existing works (Xin et al., 2024; Yang et al.,
2024; Wu et al., 2024; Zhang et al., 2024) are
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Figure 1: A comprehensive comparative analysis of
CoR-Math-7B and baseline models across mathemat-
ical tasks. (a) shows the effectiveness of CoR-Math-
7B (zero-shot) in theorem proving tasks. (b) shows a
resource-efficiency analysis for arithmetic computation
tasks, where CoR-Math-7B achieves optimal resource
efficiency and near-optimal zero-shot performance.

often trained on specific tasks, aiming to en-
hance their ability to independently derive an-
swers based on specific structured knowledge
representation. This representation is known as
the reasoning paradigm, involving Natural Lan-
guage Reasoning (NLR), Algorithmic Reasoning
(AR), and Symbolic Reasoning (SR), as depicted
in Fig. 2 (a). Specifically, NLR uses natural lan-
guage for reasoning via common sense and se-
mantic context, providing explicit step-by-step ex-
planations (Wei et al., 2022). AR leverages code
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to emphasize computational operations and execu-
tion processes, such as generating Python code for
execution (Chen et al., 2023; Gao et al., 2023). SR
uses logical symbols and axiomatic systems for
formalized reasoning, with recent methods (Xin
et al., 2024; Huang et al., 2024; Wu et al., 2024)
considering numerous symbolic trajectories via
tree-based search for theorem proving. However,
these methods mainly focus on optimizing single-
paradigm reasoning, creating models that demon-
strate asymmetrical performance across different
mathematical tasks. For instance, models special-
ized in NLR may exhibit deficiencies in theorem
proving and vice versa. This fragmented paradigm
constrains the upper-bound performance on indi-
vidual tasks and undermines the model’s capacity
for cross-paradigm generalization.

Researchers have explored various strategies to
tackle these challenges. To improve the single-task
performance, some works integrate tools to over-
come the limitations of single-paradigm reason-
ing (Gou et al., 2024; LI et al., 2024), as shown
in Fig. 2 (b). While recognizing the benefits of
combining reasoning paradigms, they still rely on
a single paradigm, neglecting the possibility that
the second paradigm could independently com-
plete the reasoning, thereby constraining overall
potential. Besides, to improve cross-task general-
ization, several studies (Shao et al., 2024; Huang
et al., 2024) incorporate diverse task samples into
large-scale datasets, such as those drawn from the-
orem proving tasks that focus exclusively on SR
solutions, or from arithmetic problems that empha-
size NLR solutions. Although models trained on
such data are capable of cross-task reasoning, they
still rely on demonstrations for effective transfer.

To address these limitations, we propose Chain-
of-Reasoning (CoR), a unified framework integrat-
ing NLR, AR, and SR to produce synergistic ben-
efits. As shown in Fig. 2 (c), CoR enables multi-
paradigm reasoning by applying different reason-
ing paradigms to derive multiple potential answers,
which are then summarized into a final solution.
This framework allows iterative reasoning across
paradigms, leveraging prior results to enhance
single-task performance. Moreover, CoR unifies
multi-paradigm reasoning across tasks, enabling
zero-shot generalization. Adjusting prompts to
control reasoning depth improves adaptability to
diverse tasks. As a result, we introduce Multi-
Paradigm Mathematical (MPM), a dataset com-
prising 167k reasoning paths, and propose Progres-

sive Paradigm Training (PPT), a method enabling
models to progressively master multiple reasoning
paradigms, leading to CoR-Math-7B.

We evaluate CoR-Math-7B on five challeng-
ing mathematical reasoning benchmarks, covering
both arithmetic computation and theorem proving.
Our results show that LLMs equipped with CoR
significantly surpass current SOTA baselines. In
theorem proving (Fig. 1 (a)), CoR-Math-7B im-
proves zero-shot performance over GPT-4o (Hurst
et al., 2024) by 41.0%, outperforming all few-
shot reasoners. For arithmetic tasks, CoR-Math-
7B achieves a 24.2% absolute improvement over
GPT-4 on MATH. Furthermore, as shown in Fig. 1
(b), CoR-Math-7B efficiently utilizes resources to
surpass the optimal performance curve of single-
paradigm approaches. Unlike mainstream meth-
ods that conduct extensive searches within a sin-
gle paradigm, CoR enhances test-time inference in
multiple paradigms. These results show that CoR
can solve comprehensive mathematical problems
through multi-paradigm reasoning, requiring less
training data and lowering reasoning costs.

2 Related Work

Reasoning Paradigms in LLMs. Recent advance-
ments in LLMs focus on single-paradigm reason-
ing, with each paradigm representing a distinct
method for knowledge representation and logical
inference. NLR uses human-readable language for
commonsense reasoning and step-by-step deduc-
tions (Wei et al., 2022; Yao et al., 2023; Zhou
et al., 2023; Besta et al., 2024; Sel et al., 2024),
AR generates executable code for precise calcu-
lations (Chen et al., 2023; Rozière et al., 2023),
and SR utilizes logical symbols for theorem prov-
ing (Xin et al., 2024). Some methods enhance rea-
soning by integrating external tools like calcula-
tors or code interpreters, yet they remain within
a single paradigm (Gou et al., 2024). While ef-
fective in specific tasks, they struggle with cross-
domain generalization and dynamic environments.
To address these limitations, the CoR framework
enables collaboration across reasoning paradigms,
enabling zero-shot multitask generalization.
Mathematical Problem Solving with LLMs. Ad-
vanced research highlights the potential of LLMs
in solving mathematical problems (Zhu et al.,
2023; Lin et al., 2024b; Luo et al., 2025). Sev-
eral studies have developed unified solvers by
synthesizing mathematical data to address chal-
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Let's write the corresponding formal proof in Lean 4 to prove 
this:
def a := 10.0000198
def b := 5.9999985401
def c := 6.9999852
def product := a * b * c
def rounded_product := Float.round product
#eval rounded_product  -- returns 420.0

Problem

(a) Single-Paradigm 
(e.g. CoT, PoT)

NLR / AR / SR
Step 1

NLR / AR / SR
Step 2

NLR / AR / SR
Step n

Summary

...

Problem

(b) Tool-integrated Single 
Pradigm (e.g. TORA)

Summary

NLR Tool

(c) Multi-Pradigm (our CoR) Problem 2

What is 10.0000198 ∙ 59999985401 ∙ 6.9999852 to the 
nearest whole number?

Let's go through this step-by-step:
1. Approximate Each Number to the Nearest Whole Number: 
10.0000198 ≈ 10, 59999985401 ≈ 6, 6.9999852 ≈ 7.
2. Calculate the Product Using Approximations: 10 × 6 × 7.
3. Perform the Multiplication: 10 × 6 = 60, 60 × 7 = 420.
4. Verify Accuracy: Given the high precision of the original 
numbers, the approximation should be very close to the exact 
result.

Let's use Python to perform these calculations:
import sympy as sp
a = 10.0000198
b = 5.9999985401
c = 6.9999852
exact_product = a * b * c
rounded_product = round(exact_product)
print(rounded_product)

>>> 420

>>> 420

The product 10.0000198 ∙ 59999985401 ∙ 6.9999852 to the 
nearest whole number is \boxed{420}.

Summary

Summary

NLR

SR

ProblemProblem 1

Let � and � be real numbers such that �2 + �2 = 1. Show that: 
�� + |� − �| ≤ 1.

Let's go through this step-by-step:
1. Consider the expression (� − � + 1)2. Since the square of any 
real number is non-negative, we have (� − � + 1)2 ≥ 0.
2. Expanding (� − � + 1)2, we get (� − � + 1)2 = (� − �)2 +
2(� − �) + 1. Further expanding (� − �)2, we get �2 − 2�� +
�2 + 2� − 2� + 1 ≥ 0.
3. Using the condition �2 + �2 = 1, we substitute into the 
equation 1 − 2�� + 2� − 2� + 1 ≥ 0, which simplifies to 2 −
2�� + 2(� − �) ≥ 0. Dividing the entire inequality by 2, we 
obtain 1 − �� + � − � ≥ 0. Rearranging terms �� + (� − �) ≤ 1.
4. Similarly, considering (� − � + 1)2 ≥ 0 leads to the same 
inequality from a different perspective, we get �� + |� − �| ≤ 1.
5. From both inequalities, we have shown that �� + |� − �| ≤ 1 
given the condition �2 + �2 = 1.

Let's write the corresponding formal proof in Lean 4 to prove this:
import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Ra
theorem algebra_sqineq_unitcircatbpabsamblt1 (a b : ℝ) (h₀ : a ^ 
2 + b ^ 2 = 1) :
    a * b + abs (a - b) ≤ 1 := by
  have h₁ : 0 ≤ (a - b + 1) ^ 2 := sq_nonneg (a - b + 1)
  rw [sub_eq_add_neg, add_comm] at h₁
  nlinarith [h₀, abs_mul_abs_self (a - b)]

\-- When all goals are solved, the proof is considered to be 
complete.

>>> No goals

NLR

Support different reasoning depths 

NLR

AR

SR

AR

SR

Natural Language
Reasoning

Algorithmic
Reasoning

Symbolic
Reasoning

Figure 2: The reasoning process under different paradigms: (a) In single-paradigm reasoning, each reasoning
step relies on the same knowledge medium, such as Natural Language (NL), algorithms, or symbols. (b) In tool-
integrated single-paradigm, NL is used for reasoning, while code assists in solving specific sub-problems. After
obtaining the execution results, the reasoning continues using NL. (c) The proposed CoR reasoning framework,
along with several examples, shows that multi-paradigm reasoning allows for varying reasoning depths to address
different types of problems.

lenges like arithmetic computation and theorem
proving (Huang et al., 2024; Shao et al., 2024).
However, most approaches focus on optimizing a
single paradigm. For instance, in arithmetic com-
putation, tools are integrated to assist natural lan-
guage reasoning. (Gou et al., 2024). In theorem
proving, models rely on specialized data like pre-
training data and Reinforcement Learning (RL) re-
ward data, and tree-based search methods to gen-
erate numerous possible solutions (Ying et al.,
2024b; Xin et al., 2024). These approaches either
neglect complete reasoning or depend on large-
scale search within the solution space, limiting per-
formance gains within a single paradigm. To ad-
dress these, we introduce the CoR-Math-7B model
with complete reasoning processes to explore an
expanded multi-paradigm solution space.

3 Chain-of-Reasoning Framework

3.1 Overview
CoR aims to enable LLMs to perform a series of
multi-paradigm reasoning on any type of math-
ematical problem, ultimately arriving at a solu-
tion. Specifically, given a mathematical problem
x, LLMs (P) can infer the result y by follow-
ing multiple reasoning paradigms, where each rea-
soning paradigm τ includes n reasoning paths
{rp1, ..., rpn}. We represent this single-paradigm
scenario as y ∼ P(y|x, τ). To simplify the process
for each reasoning paradigm, we set n = 1 as de-
fault (Details in Appendix A).

Inspired by recent works (Wei et al., 2022) in
encouraging step-by-step reasoning, we introduce
CoR, which extends from a single paradigm to
three paradigms Γ = (τ1, τ2, τ3). For generat-
ing multiple chained reasoning paradigms for a
given problem, CoR follows the steps outlined be-
low. The reasoning process begins with the prob-
lem x and the first reasoning paradigm τ1. Sub-
sequently, each paradigm τi in the sequence Γ is
generated based on the problem x and the previ-
ously established paradigms τ1, ..., τi−1, as repre-
sented by τi ∼ P(τi|x, τ1, ..., τi−1). Finally, the
outcomes of all the reasoning paradigms are ag-
gregated to derive the final result y, expressed
as y ∼ P(y|x, τNLR, τSR, τAR), considering three
paradigms: NLR, SR, and AR. In detail, τSR and
τAR include both the complete reasoning paths and
the interaction processes with tool outputs. In this
study, τSR uses the Lean prover, and τAR applies a
Python compiler to obtain reasoning results.

In our workflow (Fig. 3), the training pipeline in-
cludes: (a) collecting the MPM dataset with deep
reasoning paths; (b) using progressive paradigm
training to enhance reasoning across paradigms;
and (c) applying the trained LLMs for zero-shot in-
ference with sequential multi-paradigm sampling
to explore diverse solutions.

3.2 Collecting Dataset

To train CoR model, we extend the single-
paradigm datasets to incorporate multiple reason-
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Numina-COT* Numina-TIR* MPM (ours)

Stage ①: NL Stage ②: NL + Algorithmic Stage ③: NL + Symbolic + Algorithmic

Numina-TIR 
(72k)

Lean-
Workbook 

Lean-
Workbook 

(223k)

Lean-Workbook 
(223k)

Numina-TIR 
with Lean 4 (72k)

MPM-raw 
(285k) MPM (167k)

(a) Data Curation
Filter

Generate NL 
& algorithmic 
para.

Generate 
symbolic para.

Check with 
Lean prover

Manual 
check

Manual 
check

Collect completed samples

Try to generate 
completed samples

Manual 
check

NL: Natural Language
Para.: Paradigm

（a.2）Revising(a.1) Reconstructing and Extending

(b) Progressive Paradigm Training (PPT)  

Figure 3: An overview of (a) the Multi-Paradigm Math (MPM) dataset construction process, involving reconstruc-
tion, extension, and theorem prover verification, and (b) the Progressive Paradigm Training (PPT) method, where
the model is trained with increasing reasoning paradigms in stages.

ing paradigms, denoted as < x, NLR, SR, AR, y >.
As presented in Fig. 3 (a), the training data col-
lection process involves two stages: (a.1) Recon-
structing and Extending, and (a.2) Revising. In
the first stage, we reconstruct high-quality open-
source mathematical data as seed samples and syn-
thesize additional reasoning paradigms to form the
MPM-raw dataset. In the second stage, a theorem
prover examines MPM-raw samples, and a mathe-
matical reasoner revises those that fail, compiling
all completed data into the final MPM dataset.

Stage 1: Reconstructing and Extending. We
introduce a universal text template for multi-
paradigm reasoning (details in Appendix B.1),
which standardizes the placement and relation-
ships of reasoning paradigms. It supports various
reasoning depths and flexible combinations of dif-
ferent reasoning paradigms. As shown in Fig. 2
(c), Problem 1 shows an instance incorporating
both NLR and SR paradigms, and Problem 2
integrates three reasoning paradigms. To ensure
data integrity and prevent potential biases, we pre-
process the Numina-TIR (LI et al., 2024) and
Lean-Workbook (Ying et al., 2024a) datasets in
two steps. First, samples without corresponding
solutions are removed. Second, we further recon-
struct and extend these datasets by leveraging
powerful LLMs G, such as GPT-4o (Hurst et al.,
2024). These models generate missing reasoning
paradigms τg and refine existing ones τ ′, ensuring
comprehensive coverage and logical consistency.
To effectively guide the processes of augmentation
and refinement, we develop tailored prompts ps
for each seed dataset (examples in Appendix B.2).

The procedure can be described in:

τg ∼ PG(τg | ps⊕x⊕y⊕τ ′), τ ′ ∈ {τNLR, τSR, τAR},
(1)

where ⊕ means concatenation. After that, we con-
duct a manual review of all samples. Given that
alternative approaches are readily verified through
external tools, we focus on the accuracy of the
NLR and AR. This approach considerably low-
ers the requisite skill level of annotators. To pre-
vent data leakage, we compute the Levenshtein
distance (Miller et al., 2009) between training and
test problems, as detailed in Appendix C.1. As a re-
sult, this phase yields the MPM-raw dataset, com-
prising approximately 285, 000 synthetic samples.
Stage 2: Revising. The MPM-raw dataset inter-
acts with the Lean prover to verify proof steps,
guiding the filtering and modification of reason-
ing paths. The proof τSR is submitted to the prover,
and if verification is successful without errors, the
entire multi-paradigm reasoning path is collected
to the MPM dataset. Otherwise, the error informa-
tion ε returned by the prover is fed into a revising
model PR. Furthermore, this model generates a re-
vised proof τ̃SR based on a prompt pε. The relation-
ship can be expressed as:

τ̃SR ∼ PR(τ̃SR | pε ⊕ x⊕ y ⊕ τSR), (2)

where the revised proof τ̃SR is then resubmitted to
the Lean prover for verification. This iterative pro-
cess continues for up to 64 iterations or until τ̃SR is
verified as correct. In detail, we employ DeepSeek-
Prover-V1.5 (Xin et al., 2024) as the PR.

Consequently, the MPM dataset comprises
82, 770 problems and 167, 412 multi-paradigm
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reasoning solutions.

3.3 Training
Inspired by recent advances (LI et al., 2024), we in-
troduce the Progressive Paradigm Training (PPT)
strategy, enabling LLMs to gradually master di-
verse reasoning paradigms. As shown in Fig. 3
(b), this framework expands the model’s reason-
ing abilities by sequentially introducing different
paradigms at each stage. Each training stage uses a
different combination of reasoning paradigms. In
stage À, given the dominance of NL in the pre-
training data of language models (Dubey et al.,
2024), we create Numina-CoT∗ as an initialized
teaching stage. This is done by modifying the
original Numina-CoT dataset (LI et al., 2024) ac-
cording to our universal text template, enabling
the model to learn to use NL to solve complex
mathematical problems. Based on the question
x, the model performs reasoning τNLR and gen-
erates the answer y. The generated sequence is
z = [x]τNLRy, where [x] represents the inputs after
tokenization. For simplicity, we first consider the
loss function for a single sample:

Lsample = −
|z|∑

t=1

logPθ(zt | z<t), (3)

where θ represents the model parameters, zt is the
t-th token in the generated sequence, and z<t indi-
cates all tokens before the t-th token in the gen-
erated sequence. In stage Á, considering a cer-
tain proportion of code corpora in the pre-training
data, we expand the training dataset to include
two paradigms: NLR and AR. Similar to Numina-
CoT∗, we modify the original Numina-TIR to
create Numina-TIR∗. With this modified dataset,
the generated sequence is z = [x]τNLRτARy. Af-
ter this stage, the model can handle problems
that require precise answers. In stage Â, we fur-
ther expand the training data to three reasoning
paradigms by utilizing the MPM dataset, where
z is [x]τNLRτARτSRy. After full stages, the trained
CoR-Math-7B model not only masters NLR and
AR but also can perform rigorous logical SR.

Unlike traditional curriculum and incremental
learning, which sequencing tasks by increasing
difficulty within a single paradigm or accumulat-
ing knowledge, PPT progressively integrates fun-
damentally distinct reasoning paradigms, transi-
tioning from familiar to unfamiliar, while fostering
synergy across paradigms.

3.4 Inference

We present an inference method combining vari-
able reasoning depth and multi-paradigm sam-
pling to solve comprehensive mathematical tasks.
Prompts with variable reasoning depth. In the
zero-shot inference phase, CoR-Math-7B exhibits
proficiency in multi-paradigm reasoning, enabling
adjustable reasoning depths by modifying prompts
based on task requirements. Initially, the model
is prompted to conduct NLR, thereby activating
a wide range of knowledge patterns associated
with natural language from the pre-training corpus.
Subsequently, the inference method is tailored to
the specific problem type. For example, in theo-
rem proving, the model switches to SR, which
is more suitable for formal deduction. Since the
SR output is structured in Lean 4, the relevant
proof segment can be extracted as the final solu-
tion. In arithmetic computations, the model first
employs NLR, followed by SR for logical coher-
ence, and concludes with AR for precise calcula-
tions. A summary box is utilized to present the fi-
nal results. The paradigm-switching behavior de-
pends on the presence of prompts and can be cat-
egorized into instruction-followed reasoning and
instruction-free reasoning. This section primar-
ily presents results from the former. Instruction-
free reasoning, which explores how the model au-
tonomously switches paradigms without prompt
guidance, will be demonstrated in Appendix D.1.
This adaptable paradigm effectively captures the
distinct reasoning patterns inherent in different
paradigms and demonstrates flexibility in accom-
modating a variety of scenarios.
Sequential Multi-Paradigm Sampling (SMPS).
Instead of token-level sampling based on tree
structures (Qiu et al., 2024; Xiong et al., 2024)
within single-paradigm reasoning paths, we pur-
pose sequential paradigm-level sampling method,
named SMPS. This allows the model to generate
outputs by sampling across different paradigms.
For instance, in a two-paradigm reasoning sce-
nario, the model first instantiates J distinct paths
for the initial reasoning paradigm τ1.

τ1j ∼ P(τ1j | x), ∀j ∈ 1, . . . , J (4)

Subsequently, for each of these τ1 paths, the
model instantiates K possible paths for the sec-
ondary reasoning paradigm τ2.

τ2k ∼ P(τ2k | x, τ1j), ∀k ∈ 1, . . . ,K, ∀j (5)
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This hierarchical sampling process yields a total
of J ×K potential responses, denoted as y.

yjk ∼ P(yjk | x, τ1j , τ2k), ∀j, k (6)

Overall, the SMPS method utilizes a combina-
torial expansion of reasoning paths to explore a
diverse paradigm-based solution space, enhancing
the robustness and depth of the reasoning results.

4 Experimental Settings

4.1 Evaluation Setup

Datasets. We conduct extensive experiments to
evaluate the model’s mathematical reasoning abil-
ities, including arithmetic computation and theo-
rem proving. The arithmetic computation ability
is evaluated on the GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), AMC2023 (AI-
MO, 2024b) and AIME2024 (AI-MO, 2024a)
datasets. Theorem proving ability is evaluated on
the miniF2F test set (Zheng et al., 2022), which
features mathematical problems of Olympiad dif-
ficulty. Further details are in Appendix B.4.
Metrics. Accuracy is the primary evaluation met-
ric. For arithmetic tasks, we adopt widely-used
CoT settings (Wei et al., 2022), rounding an-
swers to the nearest integer. The SymPy library1

is used for parsing and evaluation. To handle nu-
merical representation variations, the model ex-
plicitly states the final answer (LI et al., 2024).
For theorem proving, we follow the recent ad-
vances (Xin et al., 2024) adapting the miniF2F
benchmark from Lean 3 to Lean 4. The pass@N
metric evaluates proof correctness within N at-
tempts. Our CoR-Math-7B uses SMPS with NLR
and SR, where N = NNLR ×NSR. Model settings
are detailed in Appendix B.5.

4.2 Implementation Details

We fine-tuned widely-used DeepSeekMath-Base
7B (Shao et al., 2024) and Llama-3.1 8B (Dubey
et al., 2024) models, employing our PPT method
on MPM dataset. Unless otherwise specified, CoR-
Math-7B model is based on DeepSeekMath-Base
7B. The details are available in Appendix B.3.

4.3 Baselines

We examine three categories of baseline models,
with results reported using CoT prompting.

1https://www.sympy.org/

General-purpose mathematical models. To eval-
uate CoR’s generalization, we includes Mus-
tard (Huang et al., 2024), DeepSeekMath (Shao
et al., 2024), InternLM-Math (Ying et al., 2024b),
Llama-3.1 (Dubey et al., 2024), Mistral (Jiang
et al., 2023), and Llemma (Azerbayev et al., 2024).
Task-specific mathematical models. We con-
sider several expert models on mathematical
optimization for specific tasks, such as large-
scale mathematical data and inference search
improvements. The arithmetic experts encom-
pass Qwen2.5-Math (Yang et al., 2024), Wizard-
Math (Luo et al., 2023), MetaMath (Yu et al.,
2024), DART-Math (Tong et al., 2024), InternLM-
Math (Ying et al., 2024b), , DeepSeekMath-
Instruct / RL (Shao et al., 2024), Xwin-Math (Li
et al., 2024), ToRA (Gou et al., 2024), and
NuminaMath (LI et al., 2024). The theorem
proving experts include LLM-Step (Welleck
and Saha, 2023), GPT-f (Polu and Sutskever,
2020), Lean-STaR (Lin et al., 2024a), Hypertree
Proof Search (Lample et al., 2022), DeepSeek-
Prover (Xin et al., 2024), and InternLM2.5-
StepProver (Wu et al., 2024).
Foundation and proprietary models. We present
open-source foundation models Llama-3.1 (Dubey
et al., 2024), Mistral (Jiang et al., 2023), and Mix-
tral (Jiang et al., 2024), along with proprietary
models o1-mini (OpenAI, 2024), GPT-4 (OpenAI,
2023), and GPT-4o (Hurst et al., 2024).

5 Main Results

5.1 Comparisons with General-purpose
Mathematical Models

To evaluate the comprehensive mathematical rea-
soning abilities of CoR-Math-7B, we compare it
with widely-used models and SOTA mathemati-
cal models, which are based on single reasoning
paradigms. As shown in Table 1, CoR-Math-7B
outperforms others across five challenging bench-
marks in a zero-shot setting, highlighting its strong
cross-task versatility. The main findings are: (1)
arithmetic computation: CoR-Math-7B achieves
the best results, outperforming InterLM2-Math-
Plus-7B by an absolute 13.7% on MATH and
2.9% on GSM8K. Compared to Llama-3.1-8B-
Instruct, it achieves an increase in correct answers
on AMC2023 (34 vs 16) and AIME2024 (12 vs
5). (2) theorem proving: CoR-Math-7B sets a new
zero-shot benchmark on miniF2F, even surpassing
GPT-4o model by a 41.0% absolute increase in
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Model Model Types
Arithmetic Computation Theorem Proving

MATH GSM8k AMC2023 AIME2024 miniF2F-test
Sample Budget (N )

miniF2F-test
Pass@1 Pass@1 Maj@64 Maj@64 Pass@N

o1-mini Proprietary 90.0∅ 94.8∅ 38/40∅ 17/30∅ 1 13.2
GPT-4 Proprietary 42.5∅ 87.1∅ 25/40∅ 6/30∅ 128 24.6
GPT-4o Proprietary 76.6∅ 90.5∅ 24/40∅ 3/30∅ 128 25.0

Llama-3.1-8B Foundation 4.2∅ 6.2∅ 1/40∅ 0/30∅ 128 25.8
Llama-3.1-8B-Instruct Foundation 47.2∅ 76.6∅ 16/40∅ 5/30∅ 128 23.4
Mistral-7B Foundation 14.3 40.3 5/40∅ 0/30∅ 1×32×100 22.1
Mixtral-8x7B Foundation 28.4 74.4 8/40∅ 0/30∅ 1×32×100 23.4

MUSTARD GMM 13.8∅ 27.9∅ - - 1 7.8
Llemma-7B GMM 18.6 41.0 2/40∅ 0/30∅ 1×32×100 26.2
DeepSeekMath-7B-Base GMM 11.8∅ 22.2∅ 3/40∅ 0/30∅ 1×32×100 28.3
InternLM2-Math-7B-Base GMM 21.5 49.2 6/40∅ 0/30∅ 1×32×100 30.3
InternLM2-Math-Plus-7B GMM 53.0∅ 85.8∅ 15/40∅ 1/30∅ 1×32×100 43.3

CoR-Math-7B GMM 66.7∅ 88.7∅ 34/40∅ 12/30∅
128×1 52.9∅

32×100 59.4∅

128×128 66.0∅

Table 1: A overall comparison of CoR-Math-7B with three types of general mathematical reasoners (Proprietary,
Foundational, and General-purpose Mathematical Models (GMM)) on three mathematical benchmarks. Results
are shown for zero-shot (denoted by ∅) or few-shot settings by default. For the miniF2F benchmark, we report the
best results from the relevant literature with a specified sample budget. Bolded scores are the best performance
among all models except for the proprietary one.

Model Sample Budget N miniF2F

LLMStep 1×32×100 27.9
GPT-f 64×8×512 36.6
Hypertree Proof Search 64×5000 41.0
Lean-STaR 64×1×50 46.3
DeepSeek-Prover-V1.5-Base 6400 42.2
DeepSeek-Prover-V1.5-SFT + RMaxTS 4×6400 56.3
DeepSeek-Prover-V1.5-SFT + RMaxTS 32×6400 60.2
DeepSeek-Prover-V1.5-RL + RMaxTS 4×6400 59.6
DeepSeek-Prover-V1.5-RL + RMaxTS 32×6400 63.5
InternLM2.5-StepProver 64×32×100 54.5
InternLM2.5-StepProver-BF 1×32×600 47.3
InternLM2.5-StepProver-BF 256×32×600 59.4
InternLM2.5-StepProver-BF+CG 2×32×600 50.7
InternLM2.5-StepProver-BF+CG 256×32×600 65.9

CoR-Math-7B 128×128 66.0∅

Table 2: The zero-shot (∅) performance of CoR-Math-
7B and the few-shot performance of theorem prov-
ing optimized models on the miniF2F benchmark. The
highest scores are in bold.

few-shot setting. (3) zero-shot vs few-shot: CoR-
Math-7B’s zero-shot performance exceeds all few-
shot results from other models, with an abso-
lute 37.7% improvement over DeepSeekMath-7B-
Base on miniF2F. These findings indicate the gen-
eralization capability and comprehensive mathe-
matical reasoning ability of the CoR framework.
This suggests NLR descriptions and SR verifica-
tion rehearse precise mathematical reasoning for
AR. Additionally, we provide qualitative analysis
of error cases in Appendix D.2. In summary, CoR
effectively handles diverse reasoning challenges,
with synergies across paradigms boosting its over-
all performance.

5.2 Comparisons with Theorem Proving
Experts

Table 2 shows CoR-Math-7B’s impressive zero-
shot performance on miniF2F, achieving 66.0% ac-
curacy without demonstrations, while competitors
require few-shot examples. Its zero-shot perfor-
mance is noteworthy when considering computa-
tional efficiency. For instance, under similar com-
putational constraints, CoR-Math-7B surpasses
DeepSeek-Prover-V1.5-RL + RMaxTS by 6.4%
absolute points (66.0% vs 59.6% with 128 × 128
vs 4×6400) and InternLM2.5-StepProver-BF+CG
by 15.3% absolute points (66.0% vs 50.7% with
128× 128 vs 2× 32× 600). Even with larger sam-
ple sizes, CoR-Math-7B remains superior, surpass-
ing few-shot InternLM2.5-StepProver-BF+CG by
0.1%, despite considering 300 times more solu-
tions. These results highlight the efficiency of
multi-paradigm reasoning and CoR’s ability to ex-
plore paradigm-based solution spaces.

5.3 Comparisons with Arithmetic Experts

Since several mathematical reasoners are primar-
ily trained on arithmetic computation rather than
formal theorem proving, and often struggle with
the latter, we classify them as experts in arithmetic
computation to enable a fair comparison. Table 3
highlights CoR-Math-7B’s strong performance in
arithmetic computation, surpassing expert models
and achieving a 15% improvement over RL-based
methods, with DeepSeekMath-RL-7B as the rep-
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Model
MATH GSM8k

ZS Pass@1 ZS Pass@1

WizardMath 10.7 54.9
MetaMath-7B 19.8 66.5
MetaMath-Llemma-7B 30.0 69.2
MetaMath-Mistral-7B 28.2 77.7
ToRA 40.1 68.8
ToRA-CODE 44.6 72.6
NuminaMath-7B-CoT 54.4† 66.6†

Xwin-Math-7B 40.6 82.6
DeepSeekMath-Instruct-7B 46.8 73.6
NuminaMath-7B-TIR 55.3† 73.6†

DeepSeekMath-RL-7B 51.7 88.2
DART-Math-7B 53.6 86.6
Qwen2.5-Math-7B-Instruct 83.6 95.2

CoR-Math-7B 66.7 88.7

Table 3: Zero-shot (ZS) performance on the MATH
and GSM8K benchmarks for the arithmetic task. † de-
notes our reported results with the open-sourced model
weights. The best results are in bold, and the second-
best results are underlined.

resentative, on the MATH benchmark for arith-
metic tasks. Unlike methods such as ToRA and
NuminaMath, which rely on code without com-
plete reasoning, CoR-Math-7B leverages multi-
paradigm reasoning to outperform them across all
benchmarks. For example, on the MATH dataset,
CoR-Math-7B achieves an 11.4% absolute im-
provement over the tool-integrated NuminaMath-
7B-TIR, underscoring the effectiveness of com-
plete code-based reasoning over fragmented inter-
leaving of natural language and code. To further
explore the relationship between resource utiliza-
tion (training sample size) and performance, we
fit a quadratic function to the current SOTA mod-
els and perform a Pareto frontier analysis (Branke
et al., 2008), as shown in Fig. 1 (Details in Ap-
pendix B.6). CoR-Math-7B outperforms the opti-
mal performance of single-paradigm methods with
similar data volume, suggesting a new optimal
curve for multi-paradigm reasoning that surpasses
single-paradigm approaches.

6 Ablation Study

6.1 Impact of Stages in PPT Method

We evaluate the PPT method using two base mod-
els, Llama-3.1-8B and DeepseekMath-7B-Base,
on the MATH and GSM8K benchmarks at differ-
ent PPT stages. As shown in Fig. 4, the vanilla
models exhibit limited performance. After stage ¬,
performance improves significantly, with Llama-
3.1-Base gaining 47.9% on MATH and 61.0% on

Figure 4: An evaluation of the effectiveness of the PPT
strategy. We present the zero-shot Pass@1 results on
the MATH and GSM8k benchmarks across three cumu-
lative stages of the PPT strategy. The results highlight
the PPT strategy’s cumulative effectiveness, showing
increased performance with each progressive stage.

Benchmark NLR→ AR →
SR → Summary

NLR→ SR →
AR → Summary

MATH 49.9 66.7
GSM8K 84.2 88.7

Table 4: Zero-shot Pass@1 results for varying
paradigm orders on the MATH and GSM8k bench-
marks. The best results are in bold.

GSM8K, emphasizing the need for mathematical
understanding and model warming. Stage ­, uti-
lizing NLR and AR data, yields limited gains com-
pared to stage ¬ due to pre-training data already
containing relevant content. However, this does
not imply that stage ­ is unimportant, as it plays
a critical role in CoR by reactivating and refin-
ing computational skills essential for collaborat-
ing with other reasoning paradigms. Both stages
¬ and ­ focus on reactivating models for math-
ematical tasks. In stage ®, training with three
paradigms further enhances performance, suggest-
ing that rare or unseen paradigms improve rea-
soning abilities. The consistent performance gains
with added paradigms in Fig. 4 robustly demon-
strate the superiority of our multi-paradigm PPT
approach over single- or fewer-paradigm fine-
tuning of the same base model, yielding a more
powerful, comprehensive mathematical reasoner.

6.2 Order of the Reasoning Paradigms

As shown in Table 4, we investigate the impact of
varying the sequence of reasoning paradigms in
CoR-Math-7B during zero-shot arithmetic tasks,
modifying only the prompt structure. Given that
NLR closely aligns with the pre-training of LLMs,
it serves as the first paradigm. The results indicate
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Model GSM8k@1 MATH@1 AMC2023 (Maj@64) AIME2024 (Maj@64) miniF2F@128

DSM + NLR 33.9 27.8 14/40 1/30 -
DSM + AR 75.8 37.6 10/40 0/30 -
DSM + SR - - - - 44.3
DSM + CoR (ours) 88.7 66.7 34/40 12/30 52.9

Table 5: Zero-shot results of multi- and single-paradigm fine-tuning on DeepSeekMath-7B-Base (DSM) for math-
ematical Reasoning benchmarks. The best results are in bold.

Model Size MATH GSM8k miniF2F

Qwen2.5-Math (Base) 1.5B 34.0 39.3 0.0
7B 51.8 90.0 0.0

Qwen2.5-Math (CoR) 1.5B 57.6 84.5 51.6
7B 64.7 90.0 52.5

Llama-3.1 (Base) 8B 4.2 6.2 25.8
70B 16.8 20.5 22.5

Llama-3.1 (CoR) 8B 58.2 84.0 53.3
70B 70.7 90.0 56.2

Table 6: Zero-shot Pass@1 results on the mathemati-
cal benchmarks across different model scales. The best
scores are in bold.

that SR before AR resulted in the highest accuracy,
with 66.7% on MATH, compared to 49.9% for AR
before SR. A possible explanation is that SR plays
a crucial role in decomposing the problem into
manageable sub-steps, thereby providing a struc-
tured foundation for subsequent AR. This demon-
strates that paradigms in CoR are interdependent,
not isolated, and performance hinges on how they
are linked during reasoning, beyond merely mas-
tering individual paradigms. Furthermore, posi-
tioning AR preceding the Summary boxes may fa-
cilitate a more coherent integration of the compu-
tational outcome into the final answer.

6.3 Impact of Model Scales

Table 6 evaluates base model performance under
the CoR framework with varying parameters, such
as Qwen2.5-Math models (1.5B / 7B) and Llama-
3.1-8B (8B / 70B). The results show that CoR
scales with model size. The 7B Qwen2.5-Math
outperforms the 1.5B version by 7.1% on MATH
and 5.5% on GSM8K. Similarly, Llama-3.1 70B
gains 2.9% over its 8B version on minF2F. This
supports that CoR exhibits parameter scalability.

6.4 Multi- vs. Single-Paradigm Reasoning

To further validate the superior performance of
multi-paradigm reasoning, we conducted an abla-
tion experiment comparing it to single-paradigm
fine-tuning We fine-tuned the DeepSeekMath-
7B-Base model separately using single-paradigm
paths (NLR, AR, SR) extracted from the MPM

dataset. All experiments employed identical
base models, problem sets, and training data
sizes (10, 000 samples per paradigm). Experi-
mental results, summarized in Table 5, clearly
demonstrate that our CoR model significantly
outperforms single-paradigm fine-tuned models
across diverse tasks. Specifically, for GSM8k
and MATH datasets, CoR achieves improve-
ments of 12.9% and 29.1%, respectively, com-
pared to the best-performing single-paradigm ap-
proaches. On AMC2023 and AIME2024, CoR
solves 20 and 11 more problems, respectively,
compared to single-paradigm approaches. Lastly,
on minF2F, CoR achieves an accuracy improve-
ment of 8.6%. Collectively, these improvements
underline CoR’s effectiveness in integrating multi-
ple reasoning paradigms, enabling robust and gen-
eralized problem-solving capabilities.

7 Conclusions

This paper introduces CoR, a novel unified rea-
soning framework that enhances mathematical
reasoning in LLMs by synergistically integrat-
ing natural language, algorithmic, and symbolic.
CoR tackles the limitations of single-paradigm
approaches with the PPT strategy and the MPM
dataset, enabling LLMs to progressively master
diverse reasoning paradigms for improved gen-
eralization and performance. Our CoR-Math-7B
outperformed SOTA models on five challenging
benchmarks, showcasing enhanced zero-shot gen-
eralization. Ablation studies validated the bene-
fits of progressive training and paradigm sequence.
Additionally, CoR offers a new perspective on test-
time scaling through multi-paradigm reasoning to
enhance both efficiency and performance.
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Limitations

This paper proposes a general zero-shot reason-
ing method that supports different paradigms to
solve multiple tasks. Evaluating zero-shot perfor-
mance is challenging, as many methods rely on
a single evaluation metric, like zero-shot pass@1.
Additionally, most approaches focus on few-shot
settings, as seen in benchmarks like miniF2F, lim-
iting the comprehensiveness of our evaluation with
aligned settings. To address this, we include addi-
tional experiments in Appendix C.2 to examine the
impact of different evaluation strategies. On the
other term, CoR can explore a multi-paradigm so-
lution space, covering up to three paradigms, such
as in large-scale arithmetic tasks. However, due to
resource constraints and the fact that other meth-
ods can only predict within a single paradigm, we
did not further consider using SMPS on bench-
marks such as MATH to ensure fairness.
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Appendix

A Discussion on Reasoning Hierarchy:
Paradigms, Paths, and Steps

This section attempts to explore the essence of rea-
soning, contrasts CoR with current methods, ex-
amines the factors contributing to its effectiveness,
and provides a new perspective for future research.

As shown in Fig. 5, this paper posits that rea-
soning texts generated by LLMs exhibit a reason-
ing hierarchical structure, which consists of three
levels: reasoning paradigms, reasoning paths, and
reasoning steps.

• Reasoning steps represent the fundamental
units, each comprising one or more tokens
and encompassing an incomplete stage of the
solution process.

• Reasoning paths consist of several reason-
ing steps, forming a complete line of reason-
ing that typically includes a final answer and
the solution process.

• Reasoning paradigms comprise one or more
reasoning paths. They often contain multiple
potential final answers, thus necessitating a
summarization method, such as a summary
module, to extract the ultimate answer. Fur-
thermore, a reasoning paradigm uses a single
knowledge media, such as natural language.

Furthermore, current studies can be catego-
rized based on their focus. As shown in Fig. 5
(a), contemporary work concentrates within a sin-
gle paradigm, optimizing along two dimensions:
depth (the number of reasoning steps) and width
(the number of reasoning paths). For instance, re-
garding reasoning depth, the CoT method (Wei
et al., 2022) employs prompts to increase interme-
diate steps within one reasoning path to achieve
higher performance. Concerning reasoning width,
some approaches (Wang et al., 2023) involve alter-
ing sampling techniques to generate multiple dis-
tinct reasoning paths. Random sampling exempli-
fies this. Other studies (Zhu et al., 2023) employ
scoring mechanisms for reasoning steps, guid-
ing LLMs to generate several more desirable rea-
soning paths. Monte Carlo search illustrates this.
Building upon these generated reasoning paths, ex-
isting work proposes various integration strategies
to obtain the final answer, such as Best-of-N and
Self-consistency (Wang et al., 2023). Specifically,
as shown in Fig. 6 (a), recent advanced studies
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l Let's go through this step-by-step:
l 1. Approximate Each Number to the 

Nearest Whole Number: 
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60, 60 × 7 = 420.
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precision of the original numbers, the 
approximation should be very close to 
the exact result.
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Figure 5: An overview of the reasoning hierarchical
structure. (a) A single reasoning paradigm depicts mul-
tiple distinct reasoning paths. (b) An example of single-
paradigm reasoning includes one reasoning path, which
contains some reasoning steps. (c) Multi-paradigm rea-
soning includes several distinct reasoning paradigms.

(c) Multi-Paradigm Reasoning (CoR)

(b) Interleaved Reasoning

(a) Deep Reasoning

Single-Paradigm Reasoning

Figure 6: A comparison of reasoning methods in sev-
eral advanced studies.

introduce the deep reasoning method, which fo-
cuses on generating serial concatenation of reason-
ing paths followed by summarization (like Ope-
nAI o1 (OpenAI, 2024)). Since these methods are
based on different optimization dimensions, we
can combine them feasibly in applications.

Specifically, some approaches prioritize a dom-
inant paradigm for reasoning yet hope to inte-
grate other paradigms for guidance. For instance,
as shown in Fig. 6 (b), the reasoning process of
ToRA (Gou et al., 2024) presents an interleaved
reasoning method with different knowledge me-
dia. It involves initial natural language genera-
tion, which is followed by code generation. Sub-
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sequently, the process awaits the results of code
execution before generating further natural lan-
guage. InternLM2.5-StepProver (Wu et al., 2024)
exhibits a similar pattern. It incorporates natural
language annotations to support symbolic reason-
ing steps. However, these interleaved reasoning
approaches do not constitute true multi-paradigm
reasoning. The primary paradigm can indepen-
dently achieve the final answer without the sup-
plementary paradigms. Consequently, these meth-
ods imply a single-paradigm reasoning approach
enhanced by other paradigms, rather than genuine
multi-paradigm reasoning.

Current methods often overlook the synergis-
tic effects between paradigms and underestimate
the importance of complete reasoning for achiev-
ing accurate results. To address this challenge,
as shown in Fig. 5 (c) and Fig. 6 (c), we intro-
duce Chain-of-Reasoning (CoR), a unified reason-
ing framework capable of multi-paradigm reason-
ing. This framework embodies the following po-
tential advantages:
Sequential reasoning dependency. As a type
of multi-paradigm reasoning, CoR is not a mere
accumulation of isolated steps; instead, it repre-
sents a coherent, interconnected process. The out-
put from an earlier paradigm functions not only
as input for a subsequent paradigm but also in-
forms the foundational information for its reason-
ing. For instance, knowledge derived from a natu-
ral language paradigm guides subsequent algorith-
mic paradigms, thereby enhancing the efficiency
and accuracy of code generation based on detailed
natural language reasoning. This mechanism also
provides substantial context from prior paradigms
to later paradigms. It operates as a form of prelim-
inary rehearsal where subsequent paradigms can
follow correct reasoning steps or rectify incorrect
ones.
A novel direction for test-time scaling emerges.
We observe that the achievable improvements of
single-paradigm reasoning are increasingly con-
strained by various search methods applied to
the solution space. For instance, DeepSeek-Prover-
V1.5-RL + RMaxTS requires 32×6400 reasoning
paths to achieve 63.5% few-shot accuracy on the
miniF2F benchmark. While extending the number
of candidate solution paths seems a natural way to
enhance the hit rate for ground truth solutions, the
substantial computational effort involved under-
scores the inherent limitations of single-paradigm
reasoning. This observation suggests that scal-

ing up reasoning within a single paradigm dur-
ing test time is inadequate for addressing com-
plex tasks, such as mathematical problem solving.
From a broader perspective, our CoR framework
reexamines this challenge by shifting the focus of
scaling efforts from reasoning paths to reasoning
paradigms, thereby proposing a novel avenue for
advancement.
Expanding the solution space. In multi-paradigm
reasoning, the solution space is expanded by
considering potential orthogonal relationships be-
tween reasoning paradigms. This allows gener-
ated solutions to be searched within different
paradigms. Moreover, diverse solutions across
paradigms can leverage chain relationships in rea-
soning to mutually inform each other. Therefore,
our CoR framework enhances both intra-paradigm
and inter-paradigm search capabilities within a
large solution space. This diversity increases the
likelihood of discovering optimal solutions.
Journey-based reasoning learning. CoR en-
hances models’ learning trajectory, allowing them
to perform deep reasoning both within specific
paradigms and across multiple paradigms. This ap-
proach expands the “journey” by introducing the
ability to navigate and collaborate across diverse
reasoning paradigms.
Compatibility with existing methods. Since
most current approaches are fundamentally based
on a single paradigm, CoR can seamlessly inte-
grate these methods within its specified paradigms,
enabling them to work synergistically and lever-
age their strengths. For example, CoT can be incor-
porated as a specific implementation of the NLR
paradigm in CoR. This implies that CoR serves
as a platform that facilitates continuous integration
and collaboration.

B Experiment Details

In this study, we use open-source tools, models,
and datasets in compliance with their respective
open-source licenses and solely for academic re-
search purposes.

B.1 The detail of the Universal Text Template
As shown in Fig. 7, we apply the designed univer-
sal text template on all training samples.

B.2 Example Prompts for Dataset
Enhancement

To guide LLMs in generating and refining reason-
ing paradigms during dataset enhancement, we de-
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Universal Template Designed for Multi-paradigm Reasoning.

### Problem:

[Statement of the problem]

Let’s go through this step-by-step:

1. [Step 1 description]

2. [Step 2 description]

3. [Step 3 description]

· · · [Further steps as needed]

✓ [Verification or conclusion of the step-by-step reasoning]

Let’s write the corresponding formal proof in Lean 4 to prove this:
### Formal proof in Lean 4

[Lean 4 code for formal proof]

[Lean 4 Output]

Let’s use Python to perform these calculations:
### Code in Python

[Python code for calculation]

[Python Output]

### Summary

[Summary of the solution and key takeaways]

Figure 7: The universal text template designed for multi-paradigm reasoning. The contents for each paradigm have
been omitted.
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Dataset # of Test set Avg. Length

MATH 5,000 30.7
GSM8K 1,319 46.3
AIME2024 30 59.2
AMC2023 40 47.2

MiniF2f 244 30.5

Table 7: The statistics of the evaluation datasets.

veloped specific prompts (ps) tailored to each seed
dataset. These prompts provide structured instruc-
tions for the models to follow, ensuring the gener-
ation of high-quality and logically consistent rea-
soning paradigms.

Fig. 8 and Fig. 9 provide examples of such
prompts designed for augmenting and refining for-
mal proofs within the Lean 4 theorem prover for
the Numina-TIR and Lean-Workbook datasets, re-
spectively. The prompt specifies the input and out-
put format and includes placeholders for the prob-
lem statement, informal proof, and corresponding
formal proof in Lean 4. It also incorporates Nshot
few-shot examples to further guide the model.
In our experiments, we follow the common set-
tings (Jiang et al., 2023; Yang et al., 2024; Wang
et al., 2025; Zhao and Zhang, 2024) and set
Nshot = 8. This structured approach and setting
are applied to all datasets to ensure comprehen-
sive coverage and logical consistency across the
enhanced dataset.

B.3 Details of Training Settings

In all stages of the PPT method, a learning rate
of 2e − 5 and a warm-up ratio of 1% are im-
plemented. To enhance computational efficiency,
the training process is conducted using distributed
optimization with DeepSpeed ZeRO Stage 3 (Ra-
jbhandari et al., 2020) and is combined with
Flash-Attention (Dao, 2024). Stage À comprises
3 epochs, whereas the stage Á and Â are con-
ducted over 4 epochs. A sequence length of 2, 048
tokens is used in Stages À and Á, which is in-
creased to 4, 096 tokens in stage Â to support more
complex reasoning tasks. Furthermore, we employ
an annealing strategy at the end of stage Â with
high-quality MPM samples, with the aim of fur-
ther enhancing model accuracy in complex reason-
ing tasks.

B.4 Benchmarks

We report the statistics of the evaluation datasets
in Table 7.

B.5 Details of Metrics

This study employs the pass@N metric on the
miniF2F benchmark, with the evaluation grounded
in a sample budget of N . To ensure a fair compar-
ison of computational cost across different genera-
tion schemes, this paper defines the sample budget
according to the following rules.

• For single-pass sampling methods, we define
the sample budget N as the total number of
proofs generated, with large values of N fac-
torized for ease of comparison to tree search
methods.

• For best-first-search methods, following the
notation in Llemma (Azerbayev et al., 2024),
we present N = Natt × Ntact × Niter where
Natt denotes the number of best-first-search
attempts, Ntact denotes the number of tactics
generated for each expansion, and Niter de-
notes the number of expansion iterations.

• For tree-based search methods, e.g.,
RMaxTS (Xin et al., 2024) and HTPS (Lam-
ple et al., 2022), we present N = Natt ×Nex,
where Natt denotes the number of tree
search attempts, and Nex denotes the num-
ber of model generations invoked in tree
expansions.

• For our SMPS, we define the sample bud-
get as N = NNLR × NSR, where NNLR de-
notes the number of initial semantic reason-
ing paths, and NSR denotes the number of
symbolic reasoning paths extended for each
other reasoning paradigm.

B.6 Experimental Details of MATH and
GSM8K benchmarks

For arithmetic-related results, we analyze the num-
ber of mathematical samples utilized by the base-
line model following the pre-training phase, as il-
lustrated in Fig. 1. Specifically, as shown in Ta-
ble 8, we present the sample quantity along with
the model performance.

C Additional Analysis

C.1 The Risk of Data Leakage

We measure the Levenshtein distance (Miller et al.,
2009) between problems in the training dataset
and those in the test dataset to mitigate the risk of
data leakage. During the experiments, we set a sim-
ilarity threshold of 0.7 and excluded cases from
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Model SFT Data Size (k)
MATH GSM8k

Average
ZS Pass@1 ZS Pass@1

WizardMath 868 10.7 54.9 32.8
MetaMath-7B 2,790 19.8 66.5 43.2
MetaMath-Llemma-7B 2,790 30.0 69.2 49.6
MetaMath-Mistral-7B 2,790 28.2 77.7 53.0
ToRA 85 40.1 68.8 54.5
ToRA-CODE 85 44.6 72.6 58.6
NuminaMath-7B-CoT 859 54.4† 66.6† 60.5
Xwin-Math-7B 1,440 40.6 82.6 61.6
DeepSeekMath-Instruct-7B 776 46.8 73.6 64.2
NuminaMath-7B-TIR 931 55.3† 73.6† 64.5
DeepSeekMath-RL-7B 920 51.7 88.2 70.0
DART-Math-7B 1,175 53.6 86.6 70.1
Qwen2.5-Math-7B-Instruct 3,026 83.6 95.2 89.4

CoR-Math-7B 1,098 66.7 88.7 77.7

Table 8: Zero-shot (ZS) performance on the MATH and GSM8K benchmarks for the arithmetic task, with data size
in the Supervised Fine-Tuning (SFT) stage. † denotes our reported results with the open-sourced model weights.
The best results are in bold, and the second-best results are underlined.

Example Prompts for TIR Dataset Enhancement

System Prompt:
You are an expert in Lean 4. Please respond to a math problem by translating the provided informal proof into Lean 4
code. Follow the format provided in the prompt. Please note that the informal proof and the formal proof need to be
identical. Follow the format provided in the prompt.
User Input:
Now please translate the formal solution in Lean 4 following the instructions below. Please write the corresponding
solution in Lean 4 (indicated by “Formal proof in Lean 4: ”) given the “# Problem: ” and “# Informal proof: ”, filling
in the “# Formal proof in Lean 4: ” section.

You must respond in the following format:
# Problem: ...
# Informal proof: ...
# Formal proof in Lean 4:

```lean4
(lean 4 code for proving)
...

```
Here are examples you may refer to:

—
N few-shot examples

—
# Problem: {problem}

# Informal proof: {informal_proof}

# Formal proof in Lean 4:

```lean4
...

```

Figure 8: Example prompts for Numina-TIR dataset enhancement. The few-shot examples provided for the LLM
have been omitted.

24931



Example Prompts for Lean-Workbook Dataset Enhancement

System Prompt:
You are an expert in Lean 4 and formal mathematics. Your task is to explain how to construct formal proofs using
Lean 4 syntax and tactics. Focus on the Lean 4 approach to theorem proving, rather than traditional mathematical
reasoning.
User Input:
Please follow the instructions below to convert the Lean 4 code (indicated by “Formal proof in Lean 4: ”) into its
informal proof, using the informal problem (indicated by “Problem: ”) as a guide. Please write the corresponding
informal solution in natural language (indicated by “Informal proof: ”) given the “# Problem: ” and “# Formal proof
in Lean 4: ”, filling in the “# Informal proof: ” section.
<Instruction>
Analyze the given mathematical theorem and the corresponding Lean 4 code. Provide a detailed explanation of the
proof process, adhering to the following guidelines:
1. Theorem structure: Clearly state the theorem, including its assumptions and conclusion.
2. Proof strategy: Explain the overall strategy employed in the proof, focusing on logical reasoning and mathematical
deduction rather than calculation.
3. Step-by-step reasoning: Provide a detailed, step-by-step explanation of the proof process, ensuring that each step
corresponds to an element in the Lean 4 code.
4. Logical deduction: Emphasize how each step of the proof follows logically from the previous steps or from the
given assumptions.
5. Mathematical concepts: Discuss any specific mathematical concepts, notations, or definitions used in the proof,
such as divisibility or exponentiation.
6. Abstraction: Present the proof in a general, abstract form that could be applied to similar problems, rather than
focusing on specific numerical calculations.
7. Correspondence to code: Ensure that the logical flow of your proof explanation aligns with the structure and tactics
used in the Lean 4 code, without explicitly mentioning Lean-specific terminology.
Avoid using syntax or terminology specific to formal proof systems. Instead, focus on presenting a rigorous mathemat-
ical argument using general logical principles and mathematical language. The proof should follow the reasoning path
implied by the Lean 4 code but be accessible to readers unfamiliar with formal proof assistants.
</Instruction>
You must respond in the following format:
# Problem: ...
# Tags: ...
# Formal proof in Lean 4:

```lean4
(lean 4 code for proving)

```

# Informal proof:
(Informal reasoning path for proving the problem)

Here are examples you may refer to:
—
N few-shot examples

—
# Problem: {problem}

# Tags: {tag}

# Formal proof in Lean 4:

```lean4
{lean_workbook code}

```
# Informal proof: ...

Figure 9: Example pompts for Lean-Workbook dataset enhancement. The few-shot examples provided for the LLM
have been omitted.
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Model MATH GSM8k

Pass@1 Maj@8 Pass@1 Maj@8

Llama-3.1-8B 58.18 59.46 84.00 87.26
DeepSeekMath-Base-7B 66.74 71.70 88.70 91.43

Table 9: Zero-shot results of different evaluation strate-
gies across MATH and GSM8k benchmarks.

the training dataset that exceeded this threshold.
As a result, approximately 1, 000 cases, account-
ing for less than 0.6% of our training dataset, were
removed to prevent potential leakage.

C.2 Different Evaluation Strategies on
Arithmetic Benchmarks

Table 9 explores the impact of various evaluation
strategies on the CoR framework. The majority
vote strategy benefits the CoR framework. Specif-
ically, a majority vote strategy with 8 candidate
samples on GSM8K can exceed GPT-4o’s Pass@1
performance (90.5%).

C.3 Ethical Considerations

In this work, we present a method that achieves
robust zero-shot multi-paradigm reasoning capa-
bilities. However, this comes with potential risks,
which include two primary social and ethical con-
cerns: 1) the risk of tool misuse, and 2) pre-
existing risks embedded in the backbone model
parameters. The CoR framework supports various
reasoning paradigms, some of which are deeply in-
tegrated with specific tools. For instance, the AR
paradigm may involve unvetted Python code li-
braries. Therefore, we recommend performing pre-
deployment audits on tools that may be utilized by
the model. Furthermore, our method is compatible
with existing LLMs, and several studies have high-
lighted the presence of biased behaviors in models
like LLaMa (Kong et al., 2024). To mitigate eth-
ical risks, we encourage the use of risk-free lan-
guage models during deployment, which can re-
duce potential harm. Recent research suggests in-
corporating ethical alignment processes, such as
filtering training data or generated content, to min-
imize unnecessary risks (Yu et al., 2023). Over-
all, we advocate for open discussions regarding the
use of our framework, as a transparent and public
environment can reduce the likelihood of misuse.

D Case Studies

D.1 Cases of Instruction-free Reasoning

In the absence of explicit instructions, as illus-
trated in Fig. 10, the model generally adopts
a paradigm sequence that aligns with the task
types present in the training data, as described by
MPM. The model transitions between paradigms
autonomously. For example, during a computa-
tional task, the model initiates reasoning with the
paradigm NLR, proceeds to SR for logical verifi-
cation, and ultimately employs AR to achieve en-
hanced computational performance.

D.2 Qualitative Analysis of Error Cases

We now present a preliminary error pattern analy-
sis for CoR-Math-7B across two tasks: arithmetic
computation and theorem proving.

In arithmetic computation, an analysis of 200
randomly sampled error cases reveals four primary
types of errors: comprehension errors or incorrect
premise assumptions (33 cases), logical fallacies
(26 cases), computational errors (56 cases), and in-
complete proofs or code syntax errors, which were
most prevalent in the AR/SR paradigms (85 cases).
Notably, cross-paradigm self-correction behaviors
were observed. For example, AR rectified erro-
neous calculations initially produced by NLR, and
SR supplemented incomplete logical steps that
were missing in NLR outputs. In theorem proving,
a separate analysis of 50 randomly sampled error
cases revealed the same four error types, with the
following distribution: 2 comprehension errors, 6
logical fallacies, 9 computational errors, and 33 in-
complete proofs or syntax errors. Cross-paradigm
self-correction behaviors were again consistently
observed. As shown in Fig. 11 and Fig. 12, we
provide an example of error cases and an example
of self-correction behavior.

We attribute these errors to the following po-
tential causes. Despite MPMs systematic inte-
gration of multi-paradigm reasoning paths and
PPTs paradigm-progressive training as discussed
in Sec. 3.2 and Sec. 3.4 to mitigate distri-
bution shifts, the overwhelming prevalence of
NLR examples in the pretraining data —particu-
larly the scarcity of SR-specific instances —has
resulted in persistent competency gaps across
paradigms. Additionally, CoR inherits the base
LLMs fixed-context window, which introduces the
risk of truncating long reasoning chains or omit-
ting key steps, leading to incomplete outputs. Fur-
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thermore, the observed self-correction capabilities
can be attributed to the complementarity of reason-
ing paradigms within CoR, where one reasoning
paradigm can rectify errors made by another, thus
validating the effectiveness of our multi-paradigm
approach. Additionally, feedback from multi-step
reasoning validation allows subsequent paradigms
to verify earlier outputs, facilitating error detection
and correction throughout the reasoning process.
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Examples of Instruction-free Reasoning Generated by CoR

Problem:
Cities A and B are 45 miles apart. Alicia lives in A and Beth lives in B. Alicia bikes towards B at 18 miles per hour.
Leaving at the same time, Beth bikes toward A at 12 miles per hour. How many miles from City A will they be when
they meet?

Solution:
Let’s go through this step-by-step in natural language. To determine how many miles from City A Alicia and Beth will
meet, we can use the concept of relative speed and the distance between their homes.
1. Calculate the relative speed between Alicia and Beth:
- Alicia’s speed: 18 miles per hour
- Beth’s speed: 12 miles per hour
- Relative speed = 18 + 12 miles per hour
2. Calculate the time it takes for them to meet:
- Distance between City A and City B: 45 miles
- Time to meet = Distance ÷ Relative speed
3. Calculate the distance each person covers before meeting:
- Distance covered by Alicia = Speed of Alicia × Time to meet
- Distance covered by Beth = Speed of Beth × Time to meet.

Next, let’s write the corresponding formal proof in Lean 4 to prove this.
# Formal proof in Lean 4:

```lean4
def distance_AB := 45 -- miles
def speed_Alicia := 18 -- miles per hour
def speed_Beth := 12 -- miles per hour
-- Calculate the relative speed
def relative_speed := speed_Alicia + speed_Beth -- miles per hour
-- Calculate the time to meet
def time_to_meet := distance_AB.toFloat / relative_speed.toFloat -- in hours
-- Calculate the distance each person covers before meeting
def distance_covered_by_Alicia := speed_Alicia.toFloat * time_to_meet
def distance_covered_by_Beth := speed_Beth.toFloat * time_to_meet
-- Calculate how many miles from City A they will be when they meet
def distance_from_A_when_meet := distance_covered_by_Alicia
#eval distance_from_A_when_meet -- returns 27.0
```
```lean_output
27.000000
```
Let’s use Python code to perform these calculations.
# Code in Python:

```python
import sympy as sp
# Given values
distance_AB = 45 # miles
speed_Alicia = 18 # miles per hour
speed_Beth = 12 # miles per hour
# Calculate the relative speed
relative_speed = speed_Alicia + speed_Beth # miles per hour
# Calculate the time to meet
time_to_meet = distance_AB / relative_speed # in hours
# Calculate the distance each person covers before meeting
distance_covered_by_Alicia = speed_Alicia * time_to_meet
distance_covered_by_Beth = speed_Beth * time_to_meet
# Calculate how many miles from City A they will be when they meet
distance_from_A_when_meet = distance_covered_by_Alicia
print(distance_from_A_when_meet)
```
```output
27.0
```
Alicia and Beth will meet boxed27 miles from City A.

Figure 10: A case of the reasoning trajectory produced by CoR in an instruction-free setting.
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Examples of Incomplete Proofs or Code Syntax Errors

Problem:
What is the value of

√
1,000,000− 3

√
1,000,000? Show that it is 900.

Solution:
Let’s go through this step-by-step in natural language.
We need to prove the following theorem:

theorem mathd_algebra_208 : Real.sqrt 1000000 - 1000000 ^ ((1 : ) / 3) = 900 := by

We have the following:

√
1, 000, 000− 3

√
1, 000, 000 =

√
106 − 3

√
106

= (106)
1
2 − (106)

1
3

= 106·
1
2 − 106·

1
3

= 103 − 102 = 1000− 100 = 900.

So, the value of
√
1, 000, 000− 3

√
1, 000, 000 is indeed 900.

Next, let’s write the corresponding formal proof in Lean 4 to prove this.
# Formal proof in Lean 4:

```lean4
theorem mathd_algebra_208 : Real.sqrt 1000000 - 1000000 ^ ((1 : ) / 3) = 900 := by
norm_num [sqrt_eq_iff_mul_self_eq_of_pos, pow_one]
```
```lean_output
Execution Failed.
```
The original code has a syntax error. The proof block after := by is incomplete. Proof failed.

Figure 11: A proof task failure case caused by incomplete proofs or code syntax errors.
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Examples of Instruction-free Reasoning Generated by CoR

Problem:
Let b ≥ 2 be an integer. Call a positive integer n b-eautiful if it has exactly two digits when expressed in base b, and
these two digits sum to

√
n.

For example, 81 is 13-eautiful because 81 = 6 313 and 6 + 3 =
√
81.

Find the least integer b ≥ 2 for which there are more than ten b-eautiful integers.

Solution:
Let’s go through this step-by-step in natural language. To solve this problem, we need to find the smallest integer
b ≥ 2 such that there are more than ten b-beautiful integers.
1. Understanding the Problem:
- We need to identify b-beautiful integers, which have exactly two digits in base b.
- These integers n must satisfy the condition that the sum of their digits equals

√
n.

...
6. Conclusion:
- The least integer b ≥ 2 for which there are more than ten b-beautiful integers is b = 13.
Therefore, the smallest b such that there are more than ten b-beautiful integers is b = 13.

Next, let’s write the corresponding formal proof in Lean 4 to prove this.
# Formal proof in Lean 4:

```lean4
theorem lean_workbook_plus_1377 (b : ) (hb : 2 b)
(h : ( n, (Nat.sqrt n = n Nat.digits b n = [n / b, n % b]))

ň ( n, (Nat.sqrt n = n Nat.digits b n = [n / b, n % b]))) : 13 b :=
by
contrapose! h
interval_cases b <;> norm_num [Nat.digits_eq_of_eq_mul_left, Nat.digits_eq_of_eq_mul_right]

```
```lean_output
27.000000
```
Let’s use Python code to perform these calculations.
# Code in Python:

```python
import sympy as sp
import math
def is_b_beautiful(n, b):
\"\"\"Check if a number n is b-beautiful.\"\"\"
digits = [n // b, n % b]
return sum(digits) == math.sqrt(n)
def count_b_beautiful_numbers(b):
\"\"\"Count the number of b-beautiful numbers for a given b.\"\"\"
count = 0
for n in range(1, b * b):
if is_b_beautiful(n, b):
count += 1
return count
def find_smallest_b_with_more_than_ten_beautiful_numbers():
\"\"\"Find the smallest b >= 2 such that there are more than ten b-beautiful numbers.\"\"\"
b = 2
while True:
if count_b_beautiful_numbers(b) > 10:
return b
b += 1
# Find the smallest b
smallest_b = find_smallest_b_with_more_than_ten_beautiful_numbers()
print(smallest_b)
```
```output
211
```
The smallest integer b ≥ 2 for which there are more than ten b-beautiful integers is b = 211. Thus, the answer is 211 .

Figure 12: A case of self-correction behaviors. Some lengthy content is omitted with "..." for brevity.
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