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Abstract

Generating long sequences of tokens given a
long-context input is a very compute-intensive
inference scenario for large language models
(LLMs). One prominent inference speed-up ap-
proach is to construct a smaller key-value (KV)
cache, relieving LLMs from computing atten-
tion over a long sequence of tokens. While such
methods work well to generate short sequences,
their performance degrades rapidly for long-
form generation. Most KV compression hap-
pens once, prematurely removing tokens that
can be useful later in the generation. We pro-
pose a new inference method, RefreshKV, that
flexibly alternates between full context atten-
tion and attention over a subset of input tokens
during generation. After each full attention
step, we update the smaller KV cache based
on the attention pattern over the entire input.
Applying our method to off-the-shelf LLMs
achieves comparable speedup to eviction-based
methods while improving performance for var-
ious long-form generation tasks. Lastly, we
show that continued pretraining with our in-
ference setting brings further gains in perfor-
mance.

1 Introduction

Large language models (LLMs) are capable of in-
gesting extremely long inputs and generating long
outputs (Meta, 2024; Gemini, 2024). Yet, deploy-
ing such long-context LLMs is very costly. As the
context length increases, memory usage for storing
the key-value (KV) cache increases linearly, while
attention computation scales quadratically. These
two factors lead to high latency during inference;
Adnan et al. (2024) reports 50x latency increase
as context length increased 16x for the MPT-7B
model (MosaicML, 2023).

Prior works (Beltagy et al., 2020; Child et al.,
2019; Xiao et al., 2023; Zhang et al., 2024b; Li

*Equal advising.

et al., 2024; Adnan et al., 2024) propose to main-
tain a smaller KV cache by evicting a subset of
past tokens. These approaches improve both the
memory and computation efficiency, as the KV
cache of only a subset of tokens will be kept and at-
tention computation is reduced. However, once an
input token is eliminated from the KV cache (either
based on locality assumption (Xiao et al., 2023) or
by eviction during the generation process (Zhang
et al., 2024b)), one cannot recover eliminated to-
kens. We find that while such methods show minor
degradation compared to full KV cache in short-
form generation tasks, their performance degrades
rapidly for long-form generation tasks.

Having observed the limitations of existing
approaches, we propose a novel approach, Re-
freshKV, which periodically refreshes the smaller
KV cache during the generation process. Our
method keeps the full KV cache throughout in-
ference (thus no gain in memory footprint), but
perform attention over a dynamically constructed
small KV cache to achieve inference speedups. Our
method alternates between two modes of genera-
tion: generation that attends over the full KV cache
and generation that attends over a smaller KV cache
with subset of tokens (see Figure 1). To construct
the smaller KV, we identify the topK attended to-
kens from the most recent step that attends over the
full KV cache, observing that consecutive tokens
have similar attention pattern (Li et al., 2024).

A key component of RefreshKV is deciding
when to perform the computationally expensive full
attention steps and refresh the small KV cache. In-
stead of mandating a fixed (and potentially subopti-
mal) schedule, RefreshKV compares the query em-
bedding similarity of the current and previous full
attention step, and dynamically triggers full atten-
tion step when the similarity is low. Our approach
(no KV eviction, dynamically constructed smaller
KV, low latency) establishes a middle ground be-
tween full attention (no KV eviction, high latency,
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Figure 1: Left: Illustration of RefreshKV (with L = 5, K = 3 and a stride S = 3) compared to baseline (SnapKV
and Full KV) when generating four tokens. The figure shows the computation complexity of attention operation, and
the size of the KV cache used at each decoding step for each method. Our approach alternates between inferencing
with the partial cache(t=1,2,4) and the full cache(t=3). Compared to eviction-based method (e.g. SnapKV) which
completely discard the evicted tokens, RefreshKV updates the partial cache based on attention scores over the
entire context during the full attention steps. Right: An example of the chain-of-key task and performance of
RefreshKV and the baselines. RefreshKV maintains performances across different length while eviction-based
baselines’ performance degrades when generating a chain with more than one key.

high performance) and sparse attention (KV evic-
tion, reduced latency, low performance), particu-
larly useful for long-form generation.

Our method can be applied to any off-the-shelf
LLM. We experiment with two long-context LLMs,
Llama-3.1-8B (Meta, 2024) and Qwen2-7B (Yang
et al., 2024a). We compare against KV eviction
baselines StreamingLLM (Xiao et al., 2023), H2O
(Zhang et al., 2024b) and SnapKV (Li et al., 2024)
on the long-range language modeling task and a
suite of downstream long-context tasks (Bai et al.,
2023; Zhang et al., 2024a; Ye et al., 2025) that
require long outputs given long inputs.

Our experiments show that RefreshKV outper-
forms eviction-based methods in both these set-
tings, with similar level of speed-up. In particular,
we examine two long-form generation tasks that
are not evaluated by previously proposed eviction-
based methods: (1) when majority of tokens are
required to generate the output (e.g. converting
information in an HTML page to a TSV file) and
(2) when the important tokens required at the cur-
rent generation step is dependent on the previously
generated tokens (a new task, Chain-of-key, as de-
picted in Figure 1). While eviction-based methods
such as H2O and SnapKV fail completely in HTML
to TSV task (Ye et al., 2025), achieving 0 F1 score,
RefreshKV recovers 52% of the performance. Our
analysis shows that the performance gains are at-

tributed to updating the partial cache rather than oc-
casionally attending to the entire output. Lastly, we
explore continued pretraining Llama-3.1-8B with
RefreshKV, which leads to further improvements.
Our contributions are as follows:

• We identify the failures of existing KV eviction
methods when LLMs are tasked with challeng-
ing long-form generation tasks. To reveal this
weakness, we propose a new task (Chain-of-key)
which requires remembering the input context
more comprehensively.

• Motivated by the failures of KV cache eviction
methods, we introduce a new inference method,
RefreshKV, that rebuilds a smaller KV cache
periodically during long-form generation.

• We evaluate our method comprehensively on var-
ious benchmarks and two LLMs, and conduct
ablation studies on our design choices (e.g., dy-
namic stride vs. fixed stride cache updates).

We release our code and the chain-of-key dataset
at https://github.com/carriex/refreshkv.

2 RefreshKV for Long-Form Generation
with Long-Context LLMs

2.1 Background and Setting
Let M be a language model and x be an input
sequence of tokens, x = x1, · · ·xL. At infer-
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ence time, M generates an output token sequence
ŷ = y1, · · · yN in two stages: (1) Pre-filling stage
where M ingests the input and constructs the KV
cache for all L tokens, and (2) Generation stage
where it samples one token yi at a time from the
conditional distribution PM (yi|x, y1 · · · yi−1). At
each step, the model attends to tokens in the KV
cache, and updates the cache to include the current
token’s key-value pairs.

Our goal is to reduce the inference latency dur-
ing the generation stage without severe degradation
of model performance. There are two main reasons
for latency increase; first, the attention computation
increases quadratically with input length L. Sec-
ond, a large L necessitates maintaining a large KV
cache of the past tokens, incurring latency due to
the full KV cache movement from the GPU HBM.1

Prior approaches, like H2O (Zhang et al., 2024b)
and SnapKV (Li et al., 2024), address this by per-
manently evicting “unimportant” tokens during the
decoding process to maintain a small KV cache.
While such methods have shown to be effective for
short-form generation task such as “Needle-in-a-
Haystack”(NIAH) (Kamradt, 2023), it has the po-
tential downside of prematurely removing tokens
useful for subsequent generation steps. Instead
of this strict strategy, we propose to periodically
update the small KV cache by performing full at-
tention over all the tokens in the context and con-
structing the small cache based on the attention
pattern. As the cache is only occasionally updated,
our method reduces both attention computation and
data movement by attending to the small cache.

2.2 Methodology and Implementation

We present the pseudocode for generating output
tokens using RefreshKV in Figure 2. The algo-
rithm takes as input a language model M and a
sequence of input tokens x1, ..., xL. As a first step,
we prefill M with the input sequence. Then, we
alternate between full and partial attention. Our
approach maintains two separate KV caches Cf

and Cp, corresponding to KV cache used in the full
and partial attention steps respectively. These three
components of the algorithm are described below:

Prefilling stage (lines 1-2): Given input
x1, ..., xL, we prefill with full attention M and ini-
tialize full KV cache Cf with L tokens. We also
obtain the attention scores aL for the last token

1Adnan et al. (2024) reports up to 40% of the inference
latency can be attributed to data movement.

xL. To determine the top K tokens to keep, we
employ max pooling over attention scores of sur-
rounding tokens, instead of the raw attention scores
to preserve information completeness following
prior work (Li et al., 2024).2

Deciding when to decode with full cache (line
4): We need to decide when to alternate between
performing attention over all tokens and perform-
ing attention over the smaller cache. One straight-
forward way is to use a fixed schedule, i.e. per-
forming full attention every S steps. However, this
enforces the same schedule for all the layers and in-
put text. Instead, we propose an adaptive schedule
based on the similarity between query vector of the
current step and the query vector of the most recent
full attention step. Intuitively, if the query vector
of a particular layer and head for the current step
is similar to the query vector of the most recent
full attention step, the attention pattern should be
similar. Thus, we only perform the full attention
step when this similarity is lower than a threshold.

Concretely, at every Sth decode step, for each
layer l, we first determine whether we need to per-
form full attention. We calculate the cosine similar-
ity between the query vectors of the input token t
averaged across all query heads in layer l, with the
averaged query vector of the most recent full atten-
tion step for that layer. If the similarity is higher
than a threshold s, we decode with the partial cache
Cp, and otherwise decode with Cf for layer l. We
describe details for each scenario below. To mini-
mize the computational overhead of the similarity
check, we perform this only every S steps; we call
this query comparison (QC) stride.

Decoding with partial cache (lines 5-7): At
each partial attention step, we generate the next
token yt ∼ M(Cp) using Cp to compute attention
and store the KV cache of the input token. This
leads to a reduction in both the attention compu-
tation FLOPs and the latency due to KV cache
movement (we only need to move the smaller KV
cache Cp instead of the larger full KV cache Cf ,
where |Cp| << |Cf |). To maintain the size of
Cp as we decode each additional token and update
the KV cache with this newly generated token, we
remove the KV corresponding to the token with

2For models with Grouped Query Attention (Ainslie et al.,
2023), we aggregate attention scores for all query heads in the
same group by taking the max to identify the top K tokens.
Our ablations (reported in Table 8 in the Appendix) show that
taking the max outperforms other aggregation method such as
mean, or relying solely on one of the query head in the group.
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Figure 2: Pseudocode for RefreshKV. The model prefills the prompt with full attention and initialize the partial
cache Cp cache with attention scores of the last token. For each partial attention step, we decode with the partial
cache and append the KV pairs of the input token to the partial cache. We evict the token with the lowest attention
score to maintain a fixed-sized partial cache. For the full attention step, we first update the full KV cache with the
new tokens decoded with the partial cache, then decode with the full cache and refresh the partial cache.

the lowest attention score in the full attention step
from Cp (line 7). We note that decoding with Cp is
equivalent to SnapKV (Li et al., 2024) if the partial
cache is never refreshed after prefilling.

Decoding with full cache (lines 9-13): At each
full attention step, we first update the full KV cache
Cf with the key-value pairs of the tokens decoded
with Cp. Next, we generate the next token yt ∼
M(Cf ) using the full KV cache Cf and obtain the
attention scores aL. Finally, we refresh the partial
cache Cp with the topK tokens based on aL.

Memory and Time requirements Our method
has memory requirement similar to that of vanilla
attention, as we are not permanently evicting any
tokens from the KV cache. However, our decod-
ing latency is on par with other KV cache eviction
methods, as later shown in our experiments in Sec-
tion 3. We discuss memory and speed considera-
tions in detail in Appendix A.2.

3 Experiment Setup

Models and Evaluation tasks We evaluate our
method with two long-context language models
Llama-3.1-8B (Meta, 2024) and Qwen2-7B (Yang
et al., 2024a). Both models can process inputs of
up to 128K tokens. We conduct experiments on

language modeling and downstream tasks:

• Language modeling We measure perplexity of
the Arxiv and Book split of RedPajama (Together,
2023) with context size of 16K. We report results
on 100 sequences for each domain. To simulate
long-form generation, we report the perplexity of
the last 256 tokens.

• Long-input, short output tasks: We report
the performance of RULER (Hsieh et al., 2024),
which consists of a set of 13 tasks with context
size of 32K that require short output.

• Long-input, long output tasks We evaluate our
methods on three sets of downstream tasks which
require the model to generate long-form outputs
(more than 100 tokens) given long-form inputs
(more than 10k tokens).3 (1) long-context sum-
marization tasks: QMSum (Zhong et al., 2021),
GovReport (Huang et al., 2021) and Novel Sum-
marization (Zhang et al., 2024a) and (2) HTML
to TSV task from LongProc (Ye et al., 2025)
benchmark.4 We report results aggregated across

3For each dataset, we filter examples with input length
<10K tokens. We report dataset statistics for each dataset in
Table 6 in the Appendix.

4We exclude the other tasks from LongProc as they primar-
ily involve short inputs, resulting in minimal speedup in our
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three output lengths (0.5K, 2K, and 8K). We re-
port ROUGE-L for summarization tasks and row-
level F-1 score for the HTML to TSV task.

• New task: Chain-of-key generation We pro-
pose a synthetic task where model’s previous
generation steps, together with its long context
input, guides future generation steps. Given a
context which consists of a list of two-word keys,
the model is tasked with generating a sequence
of T keys, such that the first word of the next
key is the last word of the current key. This task
requires models to look up information in the
context based on what has been previously gener-
ated, resembling multi-hop retrieval. An example
of the task is illustrated in Figure 1. We report
accuracy of the output by the relative length of a
valid chain (i.e. the length of the valid sub-chain
divided by T ). More details and examples are in
Section A.6 in the Appendix.

Comparison systems We implement the follow-
ing baselines: (1) Vanilla attention that maintains
and performs attention over the full KV cache
(2) StreamingLLM (Xiao et al., 2023) which con-
sists of “sink tokens” and recent tokens. (3) H2O
(Zhang et al., 2024b) which consists of recent
tokens and dynamically updated “heavy hitters”,
defined by high cumulative attention scores. (4)
SnapKV (Li et al., 2024) which consists of tokens
with high attention scores from the last few tokens
in the prompt. We describe the setting for each
baseline in Section A.1 in the Appendix.

Inference settings We prefill the model with the
input and report wall clock times for the decoding
phase. Our experiments are run on a single A100
80GB GPU using Flash Attention (Dao, 2024).5

We set K to be 1/8 of the input length. NovelSumm
contains the longest input length (100K tokens) and
we set K to be 4096, corresponds to 1/25L. We re-
port results with greedy decoding. For RefreshKV,
we report results for two different query compar-
ison strides {5, 10} with a similarity threshold s
of 0.85 for Llama-3.1-8B and 0.95 for Qwen2-7B.
We determine the value of s by experimenting with
a range of values on a held-out set of the Book
dataset (reported in Section A.4 in the Appendix)
and apply the same threshold for all the tasks.

setting. For completeness, we report the performance of these
tasks in Section A.7 in the Appendix, observing a similar trend
as the HTML to TSV task in terms of end-task performance.

5We describe implementation details in Section A.1.

Method Arxiv/Book PPL ↓ Time ↓
Llama-3.1-8B

Vanilla 2.22/7.07 7.50
Streaming 2.62/7.94 6.61
H2O 2.48/7.60 10.77
SnapKV 2.54/7.78 6.77
Refresh (QC=5) 2.27/7.31 6.67
Refresh (QC=10) 2.32/7.41 6.33

QWEN-2-7B
Vanilla 2.33/8.26 9.07
Streaming 2.75/9.10 6.27
H2O 2.68/9.02 11.57
SnapKV 2.80/9.18 6.09
Refresh (QC=5) 2.39/8.55 6.71
Refresh (QC=10) 2.49/8.72 6.33

Table 1: Perplexity results and latency on language
modeling task for LLama-3.1-8B and QWEN-2-7B. We
report results on Arxiv and Book corpora with input
context length of 16K tokens. We set K = 2048.

Figure 3: We plot the perplexity ratio against the vanilla
baseline for RefreshKV (with stride of 10) and SnapKV
based on the tokens generated (x axis). While the ratio
is similar at the beginning of the sequence, as the gener-
ation goes SnapKV’s perplexity diverges from vanilla
approach while that of RefreshKV is relatively stable.

4 Results

4.1 Language Modeling
Table 1 outlines the performance of the baselines
and RefreshKV for perplexity. For both models,
RefreshKV achieves better perplexity and compara-
ble inference speeds compared to StreamingLLM
and SnapKV for QC = 10. Our method also
achieves better performance than the best baseline,
H2O, with a much shorter inference time per exam-
ple, as we do not require accessing attention score
at each decoding step. Setting QC = 5 increases
inference time but also brings performance gain
compared to QC = 10, allowing a performance-
efficiency trade-off.

The key distinction between RefreshKV and
SnapKV is that our method refreshes the partial
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Input/Output length 32K/<30 10K/ 0.1K 10K/0.7K 128K/1K 30K/2.2K 22K/50
Dataset RULER QMSum GovReport NovelSumm HTML to TSV Chain-of-key*
Method Acc↑ R-L↑ R-L↑ R-L↑ F-1↑ Acc↑
Vanilla 90 / 79 25.63 / 24.98 34.11 / 33.38 31.29 / 19.91 33 / 24 56 / 83
Streaming 22 / 21 22.27 / 20.30 16.30 / 23.84 24.66 / 22.11 2 / 5 2 / 2
H2O 21 / 21 22.12 / 20.83 27.41 / 26.91 19.31 / 18.51 0 / 0 10 / 11
SnapKV 79 / 58 24.33 / 22.93 28.06 / 28.80 29.23 / 19.09 0 / 0 12 / 13
RefreshKV (QC=5) 86 / 75 24.92 / 24.34 32.56 / 31.40 29.98 / 19.70 17 / 10 25 / 24
RefreshKV (QC=10) 80 / 67 24.73 / 23.98 31.47 / 31.36 29.37 / 18.94 8 / 6 15 / 15

Table 2: Downstream task performance. In each cell, the first number represents the performance of Llama-3.1
model and the second number for QWEN-2 model. *We report performance of Llama-3.1-70B and Qwen-2-72B
for the chain-of-key task, as the smaller variants cannot perform the task even in vanilla setting.

cache as generation progresses. We compare the
perplexity degradation ratio of both methods rela-
tive to vanilla attention over different generation
timestamps in Figure 3 with Llama-3.1-8B on the
book dataset. While both methods begin with a
similar perplexity ratio compared to vanilla (step
0-16), SnapKV’s performance degrades as gener-
ation proceeds, whereas RefreshKV maintains a
stable ratio, highlighting the benefit of refreshing
the small KV cache during generation.

4.2 Downstream Tasks
Results for downstream tasks are reported in Table
2. We also report the average input and output
length for each dataset. For RULER, we report
results aggregated over 13 tasks here and report the
per-task performance in Table 14 in the Appendix.

Eviction-based methods fail for long-form gen-
eration tasks. Baseline methods that evict tokens
from the KV cache permanently (StreamingLLM,
H2O and SnapKV) show degradation for tasks
that require long-form outputs. While SnapKV
performs better than the other two baselines on
RULER, it shows severe performance degradation
on the HTML to TSV task, achieving 0 F-1 scores
for the former. For the Chain of key task, eviction-
based methods are unable to generate a chain with
more than two keys, achieving accuracy < 20.

RefreshKV closes the gap between vanilla and
eviction-based approach. On HTML to TSV
task, RefreshKV with QC = 5 recovers 52% and
42% of performance for Llama-3.1-8B and Qwen2-
7B respectively. On the Chain-of-key task, Re-
freshKV is the only method that is able to generate
a valid key with length longer than two keys, as
shown in Figure 1. For the long-form summariza-
tion tasks, RefreshKV outperforms baselines in all
three datasets, except for NovelSumm with Qwen2-
7B, where StreamingLLM outperforms the vanilla

full attention.6 We also observe gains for RULER
tasks, particularly the subtasks that require generat-
ing longer output (e.g. generating multiple keys),
which we discuss in Section A.8 in the Appendix.

5 Ablation Studies

5.1 Adaptive stride vs. Fixed stride
We trigger full attention step when the query vector
of the input token is substantially different from
the query vector of the most recent full attention
step. Can we use a simpler strategy to decide when
to perform full attention? In this section, we ex-
plore refreshing at a fixed stride, performing full
attention every N -th step across all the layers.

Setting We compare the results of (1) employ-
ing a dynamic stride with the set-up in Section 3,
i.e. QC stride of {5, 10} and similarity threshold
s = 0.85 (Llama-3.1-8B) and s = 0.95 (Qwen2-
7B) and (2) employing a fixed stride S of {10, 15}
for comparable decoding time. We report results
on the language modeling task on the Book dataset
and two downstream tasks. We report the decod-
ing time measured on one A100 machine. For the
language modeling task, we report the time for
generating 256 tokens. For the downstream tasks,
we measure the time of generating the first 50 to-
kens. We also report the effective stride averaged
across all the layers, i.e. how often is full attention
performed when employing dynamic strides.

Results Table 3 presents the results. For Llama-
3.1-8B, comparing QC = 5 and S = 10, em-
ploying dynamic stride consistently achieves better

6We hypothesize that this might be due to the fact that
Qwen is pre-trained on 32K context and adopts YARN and
Dual Chunk Attention to enable processing of up to 128K
tokens. As NovelSumm contains > 100K tokens, it exceeds
the pre-training context window, which might cause the perfor-
mance difference between StreamingLLM (which uses local
window) and other methods that leverage attention scores over
full context (including vanilla).
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Schedule Book HTML (0.5K) GovReport

Time ↓ Stride PPL ↓ Time ↓ Stride Acc ↑ Time ↓ Stride R-L ↑
Llama-3.1-8B

Vanilla 7.50 - 7.07 1.52 - 43 1.43 - 34.11
Fixed 7.20 10 7.40 1.40 10 17 1.37 10 32.30
Dynamic (QC=5, s=0.85) 7.17 12 7.31 1.40 14 30 1.38 14 32.56
Fixed 6.99 15 7.45 1.37 15 8 1.34 15 30.67
Dynamic (QC=10, s=0.85) 6.89 17 7.41 1.33 19 16 1.34 19 31.47

Qwen-2-7B
Vanilla 9.07 - 8.26 1.96 - 35 1.73 - 33.38
Fixed 6.59 10 8.74 1.38 10 8 1.29 10 31.18
Dynamic (QC=5, s=0.95) 6.71 7 8.55 1.29 7 20 1.34 7 31.40
Fixed 6.43 15 8.81 1.31 15 9 1.27 15 30.73
Dynamic (QC=10, s=0.95) 6.33 11 8.72 1.23 12 14 1.28 12 31.36

Table 3: Results comparing fixed stride and dynamic stride based on query similarity. In all tasks, dynamic stride
shows better task performance while performing full attention step fewer times.

Method Stride Arxiv HTML (0.5K)

Vanilla - 2.22 43
SnapKV - 2.54 0
RefreshKV 10 2.32 16
- w/o refresh 10 2.50 0
- w/o full attention 10 2.32 16

Table 4: Ablation study on LLama-3.1-8B. We report
perplexity for Arxiv and F-1 score for the HTML to
TSV task.

performance with similar or less decoding time for
all three tasks. We see a similar trend comparing
QC = 10 and S = 15. For Qwen2-7B, dynamic
stride achieves better performance across all three
tasks, with slightly more decoding time on Govre-
port. We also observe slightly different effective
stride for different tasks when employing the same
QC and s, showing that dynamic stride enable flex-
ible scheduling based on the context. We report
per-layer stride in Section A.5 in the Appendix.

5.2 Impact of full attention steps
Compared to other baseline methods which never
perform full attention during the generation, Re-
freshKV involves extra attention calculation (i.e.
attending over the entire output). To tease apart
the performance gains from occasional full atten-
tion step and updating the small KV, we present
two ablation setting for RefreshKV: (1) w/o refresh
which performs attention over the full KV cache
at the fixed stride of S but without refreshing the
partial cache. This is equivalently using the partial
cache obtained with SnapKV and occasionally per-
forming full attention. (2) w/o full attention which
calculates the attention scores over the entire KV
cache and updates the partial cache, then attends to

the updated partial cache, instead of attending to
the full KV cache, at stride S.

Results are in Table 4. While performing occa-
sional full attention (w/o refresh) improve perplex-
ity slightly compared to SnapKV, the performance
lags behind RefreshKV. In contrast, the ablation
setting where partial cache is refreshed (w/o full
attention) achieves the same performance of Re-
freshKV for both tasks. This shows that the gain
of RefreshKV mostly comes from refreshing the
partial KV cache, instead of performing occasion
full attention over the entire cache.

6 Continued Pre-training with
RefreshKV

We have demonstrated RefreshKV can be used
as an inference-time method. However, since the
LLMs we study are trained with full attention, ap-
plying RefreshKV during inference introduces a
discrepancy between training and inference. Specif-
ically, it involves attending to a non-contiguous
sequence of tokens in the partial cache. Here, we
explore continued pretraining with RefreshKV to
adapt models to this new attention pattern.

To make training setting simpler, we do not fully
implement RefreshKV during training. We use
a fixed stride of 50 and never refresh the partial
cache. We assume a length L+S for all sequences,
where L is the pre-fill length. We perform standard
attention over all past tokens for the first L tokens.
We emulate the partial attention pattern for the last
S tokens in the sequence during training. For the
next S tokens, we perform attention over the top K
tokens identified as well as local tokens (i.e. tokens
L+1 onwards). We train the model with next token

24884



Method Stride Test PPL (8K) Test PPL (16K)

Vanilla - 2.70 → 2.70 2.50 → 2.50
Streaming - 3.40 → 3.38 3.50 → 3.49
H2O - 3.95 → 3.90 3.52 → 3.49
SnapKV - 3.21 → 3.15 2.98 → 2.92
RefreshKV 10 2.83 → 2.79 2.57 → 2.56
RefreshKV 25 2.97 → 2.93 2.67 → 2.63
RefreshKV 50 3.13 → 3.05 2.79 → 2.72

Table 5: Results on continued pre-training with Re-
freshKV for LLaMA-3.1. The context size is 8k and we
report perplexity on the last 50 tokens. We report the
performance for each setting before (the number on the
left) and after (the number on the right) CPT.

prediction loss for all the tokens in the sequence.

Setup We set L = 8092, S = 50 and K = 2048
for this experiment. We randomly sample a subset
of 200k sequences from the Arxiv split of RedPa-
jama dataset. We split the data into 80%, 10% and
10% train/dev/test splits, resulting in 120k training
data samples. We perform continued pre-training
on Llama-3.1-8B and describe implementation de-
tails in Section A.1 in the Appendix.

Evaluation As our continued pretraining is rela-
tively small scale on the base model, we focus on
evaluating on the language modeling task for two
settings: (1) input size L =8K consistent with the
training set-up and (2) L =16K. We set K = 1/8L
For each method, we report the performance from
the pre-trained checkpoint and the performance
after continued pre-training.

Results We report the results in Table 5, each
row represents a different inference strategy on the
same model. Despite the mismatch in how partial
KV was constructed, continued pre-training bene-
fits other methods (Streaming, H2O) slightly. We
see larger gain for RefreshKV from continued pre-
training across all settings. Our training assumes a
fixed stride of 50, but we see performance gain for
different strides (S = 10, 25). Training on shorter
context (8K) also translates to gains when infer-
encing on longer context (16K), showing promise
for improving the performance of RefreshKV with
continued pre-training.

7 Related Work

Efficient inference methods Various techniques
have been proposed to enhance inference efficiency,
which are orthogonal to and can be combined
with our approach. FlashAttention (Dao, 2024)

achieves significant gain in inference speed by opti-
mizing attention computations on GPUs. A line of
work (Xiao et al., 2022; Liu et al., 2024b; Hooper
et al., 2024) proposes to quantize KV caches to
reduce both memory and computation cost; while
recent work (Liu et al., 2024a; Wan et al., 2025;
Wang et al., 2025) proposes to merge KV cache of
similar tokens.

KV cache eviction Recent work extensively stud-
ies KV cache eviction strategies, such as keeping
only “sink” and recent tokens in the KV cache
(Xiao et al., 2023); or tokens with high accumula-
tive attention scores (Zhang et al., 2024b). A line
of work propose query-aware eviction strategies,
using the attention scores of the last few tokens in
the prompt to select tokens to keep (Li et al., 2024;
Chen et al., 2024). Other works design eviction
strategies based on attention patterns of different
heads (Ge et al., 2024; Xiao et al., 2024b) or differ-
ent layers (Cai et al., 2024; Yang et al., 2024b; Wan
et al., 2025). We show that such eviction-based
methods can fail on long-form generation tasks
and propose to refresh the small KV cache during
generation.

Sparse attention Our method achieves efficiency
by performing sparse attention. Earlier work (Za-
heer et al., 2020; Beltagy et al., 2020) investigates
training LLMs with a fixed sparse attention pattern
(such as a sliding window) to reduce computational
complexity. Training-free methods such as Unlim-
iformer (Bertsch et al., 2023) and InfLLM (Xiao
et al., 2024a) performs attentions on subset of to-
kens which received the highest attention scores,
with the goal of extending the context window of a
given language model. In contrast, we leverage pre-
vious tokens’ attention scores to select tokens to at-
tend to for long-context models, which can already
handle sequences with up to 128k tokens. MIn-
ference (Jiang et al., 2024) identify head-specific
patterns to perform sparse attention, focusing on
accelerating the prefilling stage. Similar to ours,
SparQ (Ribar et al., 2024) and Quest (Tang et al.,
2024) achieves decoding time speed-up by attend-
ing to subset of tokens. Instead of leveraging the
attention patterns of previous tokens, these methods
build specialized kernel to approximate attention
and identify critical tokens.
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8 Conclusion

We propose RefreshKV, an inference-time method
which accelerates long-form generation for long-
context input by decoding from a small, dynamic
KV cache that is updated based on attention pat-
terns of neighboring tokens. Compared to previ-
ous work which permanently evict tokens from the
context, RefreshKVmaintains the full KV cache
and alternates between inferencing over the full
and small KV cache. We apply our method to
two off-the-shelf long-context models and show
that our method reduces inference wall-clock time
while better preserving performance compared to
eviction-based methods on long-form generation
tasks. Finally, we show that continued pre-training
the model with RefreshKV can further improve
the performance-efficiency trade-off.

Limitations

Proposed method While we focus on accelerat-
ing inference speed, our method does not reduce
memory requirement for using long-context LLMs,
which can be a bottleneck for certain use cases.
Our objective is to accelerate decoding for long-
context models. While our method outperforms
eviction-based approaches, it still involves a trade-
off between performance and efficiency. In this
study, we employ query similarity based dynamic
scheduling to decide when to perform full attention
and refresh the small KV cache. Future work can
explore other strategy, such as more exhausively
tuning the similarity threshold, or setting a different
threshold per layer.

Experimental settings We have conducted ex-
periment with two open-sourced long-context mod-
els and two evaluation tasks setting. We did not
test out more language models and other long-
context benchmarks (An et al., 2023; Karpinska
et al., 2024) given our limited compute resources.
For the same reason, our experiment on continued
pre-training is relatively small scale on a limited
domain. We have demonstrated the effectiveness
of refreshing a small KV cache constructed with
attention scores and use the same size across dif-
ferent layers. Future work can extend our method
to refresh smaller cache constructed with different
strategy, e.g. layer-specific strategies (Yang et al.,
2024b; Cai et al., 2024). Finally, our method is not
limited to the language domain. Future work can
explore applying RefreshKV to other modalities,

for example, vision transformers.
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A Appendix

A.1 Implementation details

Compatibility with Flash Attention FlashAt-
tention (Dao, 2024) substantially improves the ef-
ficiency of standard attention computation. It re-
duces data movements on GPU by directly produc-
ing the output for the attention blocks without stor-
ing the O(L2) attention matrix. However, we rely
on these attention scores to select the top K tokens
during the full attention steps and construct our
partial KV cache Cp (lines 9-10 of Algorithm 2).
To make our method compatible with Flash Atten-
tion, we implement an extra step to re-compute the
attention score at the full attention step. As we do
not perform full attention at every generation step,
this does not introduce significant overhead. For
methods that require accessing attention score (e.g.
H2O), we apply the same procedure to make them
compatible with Flash Attention.

Baseline Settings For StreamingLLM, we follow
the original paper and maintain a cache with 4 sink
tokens and K - 4 recent tokens. For H2O, we set the
heavy hitter size and recent cache size to be K/2
each following (Zhang et al., 2024b). For SnapKV,
we set the observation window size to 1 and the
kernel size to 7 for both RefreshKV and SnapKV
following Li et al. (2024). We apply the same
aggregation method (max over all query heads) for
SnapKV and H2O for the GQA models.

Continued pretraining We randomly sample a
subset of 200k sequences from the Arxiv split of
RedPajama dataset7 and filter out sequences with

7https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T
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Dataset # Example # In # Out

RULER 1.3K 32K <30
QMSum 100 10K 0.1K
GovReport 100 10K 0.7K
NovelSumm 103 100K 1.0K
HTML To TSV (0.5K) 50 18K 0.5K
HTML To TSV (1K) 50 35K 1.6K
HTML To TSV (2K) 50 38K 4.6K
Chain of Keys 100 22K 50

Table 6: Dataset statistics. We report the number of
tokens for both the input context and output generation
for each dataset, as well as total number of examples.

less than 8192 tokens We train Llama-3.1-8B for
one epoch with a global batch size of 64 and a
learning rate of 5e-6. We use 20 warm-up steps
and a linear schedule with 0 weight decay. We
use the AdamW Optimizer. We use Fully Sharded
Data Parallel (Zhao et al., 2023) and 8-bit opti-
mizer (Dettmers et al., 2021) to improve training
efficiency. Training is done on 4 H100 80 GB
GPUs.

A.2 Memory and time requirement
comparison

Table 7 compares the memory and attention com-
pute requirements of RefreshKV with baselines.
We report the memory required to store the KV
cache for the L input tokens, and attention com-
pute required to generate the next T tokens.8 We
set our partial cache to be the same size as the com-
plete cache of the eviction-based methods. Under
this setting, RefreshKV requires larger KV cache
memory compared to eviction-based baselines, but
similar to vanilla attention (L + K vs L, where
K << L). However, our decoding latency is on
par with the baselines. Our efficiency depends on
two sets of hyperparameters – the partial cache
size K, and QC stride and s, which determines
how often full attention is performed. By setting
K << L and a large S, we can achieve wall clock
times similar to KV eviction-based baselines.

A.3 Attention score aggregation for models
with GQA

We report language modeling results with differ-
ent aggregation methods across attention scores of
query heads in the same group for models with
Grouped Query Attention in Table 8. We see that
aggregating over the attention score of the entire

8The KV memory requirements also increases with T . We
do not account for this in the table.

group works better than using attention score of
one of the head, with taking the max slightly out-
performing mean.

A.4 Tuning s for query similarity schedule

To choose a similarity threshold s for the dynamic
schedule, we run RefreshKV on a held-out set of
50 examples from the Book split of the RedPajama
dataset. We evaluate on QC stride of {5, 10} with
threshold s of {0.80, 0.85, 0.90, 0.95} for Llama-
3.1-8B and Qwen2-7B.

Table 9 reports the results of different settings
for perplexity and decoding time measured on one
A100 machine with batch size of 1. We can see
that for Llama-3.1-8B, setting a threshold of 0.85
achieves similar performance for both stride com-
pared to 0.90 and 0.95. In contrast the performance
of Qwen2-7B continues to increase going from
threshold of 0.80 to 0.95. Therefore, we set the
threshold to 0.85 for Llama-3.1-8B and 0.95 for
Qwen2-7B.

A.5 Effective stride

We plot the effective stride across layers for Llama-
3.1-8B and Qwen2-7B in Figure 4 for the three
tasks reported in Table 3. Leveraging query sim-
ilarity enables dynamic strides across layers for
both models. We observe distinct pattern for the
two models, with Llama-3.1-8B having a larger
stride in the first few layer and Qwen2-7B in the
middle layer. We also observe slightly different pat-
terns for different tasks, showing that our method
enables flexible scheduling based on the context.

A.6 Chain-of-key task set-up

Task set-up The model is provided with a
long lists of keys, each of which contains W
number of words, for instance: apricot-waggish
where W = 2. The model is tasked to gen-
erate a sequence which consists of a list of
T keys from the context, such that the first
word of the next key is the last word of the
current key. For example: waggish-fishery,
fishery-mosquito, mosquito-perfume,
perfume-panda, panda-juice for T = 5. We
provide an example input in Table 11.

Data generation We first generate a list of En-
glish words. We then pair each word with another
word to form a list of keys. We ensure that for
each key k1 in the context, there exists exactly one
other key k2 that satisfies the constraint (i.e. the
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Vanilla H2O StreamingLLM SnapKV RefreshKV (Ours)

Memory L K K K L+K
Time T × L T ×K T ×K T ×K T × L

S
+ T ×K

Table 7: Comparing memory (KV cache size for L input tokens) and time (attention computation for generating the
next T tokens) of RefreshKV and baselines. We denote S as stride and use the same KV cache size (K) for the
partial cache for our method and complete cache for eviction-based baselines.

Eff
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tiv
e 

st
rid

e

Layer

Figure 4: Effective stride across layer for Llama-3.1-8B (similarity threshold=0.85) and Qwen2-7B (similarity
trheshold=0.95) in three datasets. We sample 10 examples from each dataset to esimate the effective stride.

Method Agg Llama-3.1-8B Qwen-2-7B

Vanilla - 2.22/7.07 2.33/8.26
RefreshKV First 2.34/7.43 2.49/8.78
RefreshKV Mean 2.32/7.40 2.47/8.73
RefreshKV Max 2.32/7.40 2.47/8.72

Table 8: Results comparing different methods to ag-
gregate attention scores for GQA models. We experi-
ment with taking the attention score of the first query
head, the average and max attention scores of the query
heads in the same group to select topK KV cache. For
StreamingLLM and RefreshKV, we set K = 1/8L and
stride as 10.

first word of k2 is the last word of k1). The keys
are randomly shuffled in the context.

Evaluation We evaluate correctness of the gener-
ated output by the length of a valid chain, divided
by T . A valid chain needs to satisfy two criteria:
(a) all the key must be in the context and (b) the
first word of the current key must be the last word
of the previous key. We provide example outputs
and their correctness score in Table 12.

Method QC stride s Book PPL Time

Llama-3.1-8B
Vanilla - - 6.70 7.54
RefreshKV 5 0.80 6.92 6.42
RefreshKV 5 0.85 6.86 6.64
RefreshKV 5 0.90 6.88 7.01
RefreshKV 5 0.95 6.88 7.53
RefreshKV 10 0.80 6.95 6.37
RefreshKV 10 0.85 6.96 6.52
RefreshKV 10 0.90 6.96 6.54
RefreshKV 10 0.95 6.95 7.07

Qwen-2-7B
Vanilla - - 7.44 9.11
RefreshKV 5 0.80 7.86 6.50
RefreshKV 5 0.85 7.80 6.64
RefreshKV 5 0.90 7.73 6.91
RefreshKV 5 0.95 7.66 7.14
RefreshKV 10 0.80 7.95 6.37
RefreshKV 10 0.85 7.87 6.41
RefreshKV 10 0.90 7.84 6.62
RefreshKV 10 0.95 7.82 6.67

Table 9: Results of different similarity threshold s on the
held-out set of the Book dataset across two QC stride.
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Method Stride 0.5K 2K 8K Aggregated

Llama-3.1-8B

Vanilla 43 31 23 33
Streaming 4 1 0 2
SnapKV 0 0 0 0
H2O 0 0 0 0
Refresh QC=5 31 15 4 17
Refresh QC=10 16 7 1 8

Qwen-2-7B

Vanilla 36 22 15 24
Streaming 10 3 0 5
SnapKV 0 0 0 0
H2O 0 0 0 0
Refresh QC=5 20 6 3 10
Refresh QC=10 14 2 1 6

Table 10: Breakdown of HTML tasks based on output
length.

A.7 Results on LongProc tasks with short
inputs

Task set-up We report results on 4 more tasks
from LongProc (Ye et al., 2025): Path Traver-
sal, Travel Planning, Countdown and Theory-
of-mind tracking. These tasks consist of input
with less than 10K tokens. While Path Traver-
sal consists of a version with 12K input tokens,
we exclude it from our main results as none of the
open sourced models are able to perform the task in
vanilla setting. We report results on 50 samples for
each task. We set K = 1/8L for RefreshKV and
baselines.

Evaluation We follow evaluation practice of the
original paper (Ye et al., 2025). For Countdown
and Travel Planning, we report correctness of the
final solution using rule-based validators. For Path
Traversal and ToM Tracking, we report accuracy.

Results Results of RefreshKV and baseline
methods are in Table 13. We observe similar trend
as the HTML to TSV task – Most of the base-
lines fail completely on the task. RefreshKVwith
QC = 5 recovers 50% and 60% performance
of full attention for Llama-3.1-8B and Qwen2-7B
respectively.

A.8 Detailed RULER results

We follow the suite of evaluation tasks introduced
in (Hsieh et al., 2024), which consists of the 13
tasks.9 We refer the readers to Hsieh et al. (2024)
for detailed description and examples of each task

9https://github.com/hsiehjackson/RULER

and Appendix B for the exact tasks configurations.
We group them based on the types:

• Single NIAH An NIAH-styled task with one
key and one value to retrieve. We include three
variations of the task with different types of key,
value and haystack.

• Multi-key NIAH An NIAH-styled task with dis-
tracting keys. We include three variations of
the task with different types of key, value and
haystack.

• Multi-value NIAH An NIAH-styled task with
multiple values corresponding to the key.

• Multi-query NIAH An NIAH-styled task with
multiple queries, each corresponding to a distinct
key.

• Variable Tracking A NIAH-styled task that re-
quires tracing through multiple hops.

• Common word extraction and Frequent word
extraction require extracting the words based on
the pattern in a list of words. Common word ex-
traction expects a list of 10 most common words
while frequent word extractions expect a list of 3
frequent words.

• Question Answering A task that requires an-
swering a question given a set of documents. We
include two variations of the tasks, corresponding
to two question answering datasets.

Per-task results We report detailed performance
of RULER subtasks in Table 14, grouped by task
type. For both models, the best baselines (SnapKV)
achieves comparable results as RefreshKV for tasks
with short-form outputs, such as Single NIAH.
However, for tasks that require longer outputs,
such as Multi-key and Multi-value NIAH, Re-
freshKV outperform all the baselines.
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Input

“You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such that the
first word of the current key is the last word of the previous key. Separate the keys with comma. Example:
waggish-fishery, fishery-mosquito, mosquito-perfume, perfume-panda, panda-juice, juice-willow, willow-bronco,
bronco-creditor, creditor-bathhouse, bathhouse-woman. You must generate keys that are in the context. DO NOT
REPEAT THE EXAMPLE.
Context:Name of key: toga-roommate
Name of key: appetiser-cenario
Name of key: normalization-tacit
Name of key: intensity-ping
Name of key: innate-cummerbund
Name of key: tentacle-lining [...omitted...]
Name of key: breath-yielding
Name of key: schema-festive
You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such that the first
word of the current key is the last word of the previous key. Separate the keys with comma.You must generate
keys that are in the context. Chain of ten keys:”

Table 11: Example input for the chain-of-key task where W = 2 and T = 10.

Output Score

impossible-crawdad, crawdad-vehicle, vehicle-uncertainty,
uncertainty-welfare, welfare-outrigger, outrigger-historical,
historical-gator, gator-hugger, hugger-debris, debris-precious

1 (fully correct)

annoying-pentagon, pentagon-fit, fit-waggish, waggish-fishery,
fishery-mosquito, mosquito-perfume, perfume-panda, panda-juice,
juice-willow, willow-bronco

0.2 (correct up to the
second key)

impossible-crawdad, crawdad-vehicle, vehicle-uncertainty,
welfare-outrigger, outrigger-historical, historical-gator,
gator-hugger, hugger-debris, debris-precious,
uncertainty-welfare

0.3 (correct up to the
third key)

Table 12: Example output for the chain-of-key task where W = 2 and T = 10 and their score. Keys that are not in
the context are highlighted in red.

Method stride Path Traversal ToM Tracking Countdown Travel Planning

Llama-3.1-8B
Vanilla - 17 40 67 62
StreamingLLM - 0 0 0 0
H2O - 0 0 0 2
SnapKV - 1 0 12 0
RefreshKV QC=5 5 14 44 38
RefreshKV QC=10 1 5 42 18

Qwen-2-7B
Vanilla - 7 12 11 48
StreamingLLM - 2 0 6 0
H2O - 2 0 6 0
SnapKV - 0 0 14 2
RefreshKV QC=5 3 6 14 26
RefreshKV QC=10 2 2 10 4

Table 13: Performance on long-context tasks with short outputs from LongProc benchmark for LLaMA-3.1-8B-
Instruct and Qwen-2-7B-Instruct.
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Method niah_single multi_key multi_query multi_value fwe vt cwe qa

Llama-3.1-8B
Vanilla 100 98 99 99 93 99 65 61
H2O 7 7 6 6 78 38 39 34
Streaming 8 13 13 13 93 12 4 42
SnapKV 99 60 98 99 83 99 44 63
RefreshKV(QC=5) 100 91 98 99 81 99 44 60
RefreshKV(QC=10) 100 67 97 99 81 99 44 59

Qwen-2-7B
Vanilla 100 90 75 87 84 86 27 50
H2O 5 8 5 3 84 2 17 30
Streaming 8 11 13 12 80 15 14 39
SnapKV 69 51 54 43 81 87 27 50
RefreshKV(QC=5) 99 79 70 85 70 87 27 50
RefreshKV(QC=10) 97 54 63 67 80 87 27 49

Table 14: Detailed performance of RULER subtasks with L = 32K. For non-vanilla methods, we set the K = 1/8L.
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