
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 24786–24802
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

WAFFLE: Fine-tuning Multi-Modal Model for Automated Front-End
Development

Shanchao Liang
Purdue University

liang422@purdue.edu

Nan Jiang
Purdue University

jiang719@purdue.edu

Shangshu Qian
Purdue University

qian151@purdue.edu

Lin Tan
Purdue University
lintan@purdue.edu

Abstract

Web development involves turning UI designs
into functional webpages, which can be dif-
ficult for both beginners and experienced de-
velopers due to the complexity of HTML’s hi-
erarchical structures and styles. While Large
Language Models (LLMs) have shown promise
in generating source code, two major chal-
lenges persist in UI-to-HTML code genera-
tion: (1) effectively representing HTML’s hi-
erarchical structure for LLMs, and (2) bridg-
ing the gap between the visual nature of UI
designs and the text-based format of HTML
code. To tackle these challenges, we introduce
WAFFLE, a new fine-tuning strategy that uses
a structure-aware attention mechanism to im-
prove LLMs’ understanding of HTML’s struc-
ture and a contrastive fine-tuning approach to
align LLMs’ understanding of UI images and
HTML code. Models fine-tuned with WAFFLE
show up to 9.00 pp (absolute percentage point)
higher HTML match, 0.0982 higher CW-SSIM,
32.99 higher CLIP, and 27.12 pp higher LLEM
on our new benchmark WebSight-Test and an
existing benchmark Design2Code, outperform-
ing current fine-tuning methods.

1 Introduction

While Large Language Models have significantly
advanced the automation of code generation in pop-
ular programming languages such as Python or
Java (Jiang et al., 2023; Touvron et al., 2023; Fried
et al., 2023; Nijkamp et al., 2022; Rozière et al.,
2024; Guo et al., 2024; Li et al., 2023c; Lozhkov
et al., 2024), the automation of HTML code gener-
ation from UI design remains under-explored and
challenging. As the core of front-end development,
this task requires the model to understand not only
the transformation from natural languages (NL)
to programming languages (PL) but also from vi-
sual designs to PL. Recently, Multi-modal Large
Language Models (MLLMs) have brought much
progress in generating text from image descrip-

<html>
 <body style="background:rgb(241, 244, 249);
display:flex;">
 <div id="left-column" style="width:300px;
padding:4px;">
 <h2 style="color:black">
 Selections
 </h2>
 <div style="height:80px; background:#d5f0ff;
display:flex; align-items:center; justify-
content:center;">
 Property for Sale
 </div>
 </div>
 <div id="right-column" style="width:100%;
padding:5px;">
 <h2 style="color:black">
 Customer Reviews
 </h2>
 <p style="color:#000000a9">
 I had a great experience at this real estate
company.
 </p>
 <button>
 Contact Us
 </button>
 </div>
 </body>
</html>

(a) HTML and CSS code
(c) Webpage rendered after removing
code highlighted in yellow from (a)

(b) Webpage rendered from code in (a)

Selections

Property for Sale

Customer
Reviews
I had a great experience
at this real estate
company.

Contact Us

Customer
Reviews
I had a great experience
at this real estate
company.

Contact Us

Figure 1: Removing the children of the element <div id

= "left-column"> highlighted in yellow does not affect
the structure of the visual layout of itself or its sibling
element <div id="right-column">.

tions (Radford et al., 2021; Zhai et al., 2023; Li
et al., 2023a; Liu et al., 2023b,a; Li et al., 2022,
2023b; Dai et al., 2023; Blecher et al., 2023; Chen
et al., 2023; Wei et al., 2023; vikhyat, 2024). On top
of this, a few MLLMs have been fine-tuned using
UI image-to-code datasets (e.g., WebSight (Lau-
rençon et al., 2024), Design2Code (Si et al., 2024)).
Nonetheless, these approaches mainly apply stan-
dard fine-tuning and fail to address specific HTML
code generation challenges.

Two key challenges exist in translating UI design
images to HTML code: (1) how to teach models to
learn effectively the domain knowledge of HTML
structures, which significantly influences the ren-
dered UI design, and (2) how to teach the models
to learn the subtle differences in the visual under-
standing of UI images and text understanding
of HTML code.

Regarding the first challenge, there are three
basic structural aspects of HTML code. Firstly,
all the styles of the parent element are directly
passed to the children unless specifically overrid-
den. Secondly, the layout of the siblings affects
each other. Thirdly, nodes are not affected by the
subtrees of their siblings. The last principle might

24786

be less obvious compared to the first two, and we
explain it with an example. Figure 1 shows (a)
an HTML code file and (b) its rendered webpage.
We use blue, orange, and green blocks to map the
code chunks and their corresponding visual ren-
dering on the webpage. The top-level <body> ele-
ment refers to the whole webpage, the child ele-
ment div id="left-column" refers to the left part
of the webpage, and another child element div

id="right-column" refers to the right part. Modi-
fications to the child of div id="left-column" do not
change how the div id="right-column" looks on the
webpage (even if we remove all the content inside
div id="left-column" as (c) shows).

To learn such domain knowledge of HTML code
structure, we propose a novel structure-aware at-
tention mechanism. The structure-aware attention
captures the structure information of the HTML
code by explicitly allowing tokens to focus on three
types of previous code segments that are the most
relevant (details in Section 2.2). With such struc-
tural information in the HTML code, WAFFLE can
focus on parts of the code that have the most influ-
ence on the resulting UI design, thus benefiting the
overall performance.

For the second challenge, minor variations in
layout structure can still impact the content of the
generated code. However, MLLMs often fail to cap-
ture these subtle differences and generate identical
code for visually distinct inputs. We illustrate this
issue in Appendix A.2. To enable MLLMs to rec-
ognize subtle differences in UI images due to minor
changes in the code, we adopt contrastive learn-
ing (Zhai et al., 2023; Radford et al., 2021; Gao
et al., 2021) to the current task to teach MLLMs to
focus on important visual differences.

Combining the two approaches, this paper intro-
duces WAFFLE, a fine-tuning pipeline specifically
designed for UI images to HTML code generation,
with the following contributions:
1. We design structure-aware attention for HTML

code generation, which enables MLLMs to
learn the structure knowledge of HTML code.

2. We apply contrastive learning algorithms to
boost MLLMs’ understanding of the details in
the rendered UI images and the HTML code.

3. We create a new dataset of 231,940 pairs of
webpages and their HTML code, which could
facilitate future research on web MLLMs.

4. We conduct comprehensive experiments on two
backbone MLLMs. WAFFLE improves the back-
bone MLLMs by achieving up to 9.00 pp higher

HTML Match, 0.0982 higher CW-SSIM, 32.99
higher CLIP, and 27.12 pp higher LLEM.

5. We highlight that WAFFLE as a fine-tuning ap-
proach, is model-independent and can be ap-
plied to improve any MLLMs for UI-to-HTML
code generation.

Availability: https://github.com/lt-asset/
Waffle

2 Approach

Figure 2 represents the overview of WAFFLE. We
create a new mutated HTML dataset (Section 2.1)
for training and fine-tuning. In addition, we de-
sign structure-aware attention (Section 2.2) dur-
ing model fine-tuning to teach models to focus on
important HTML segments. Finally, we use con-
trastive learning training to teach models to learn
visual differences and align the models’ visual and
HMTL/CSS code understanding (Section 2.3). We
note that WAFFLE is a generalizable fine-tuning
pipeline that can benefit any pre-trained MLLMs.

Specifically, we construct the training dataset by
applying mutation rules for HTML code on a subset
of a popular dataset, WebSight-v0.1, to generate
the corresponding source code and UI images.

CSS HTML TotalColor Size Margin Font Display Position

12 11 19 10 1 2 8 63

Table 1: Most frequent causes of failures.

2.1 Training Data Mutation
To teach MLLMs the important visual differences,
we create WAFFLE’s contrastive training data from
WebSight-v0.1, which is a fine-tuning dataset
built by HuggingfaceM4 and contains 822,987
pairs of HTML code and its corresponding screen-
shots (Laurençon et al., 2024). However, to make
contrastive learning effective, the model must learn
to recognize subtle yet realistic variations in UI
elements.

To achieve this, we analyze common mistakes
in VLM-WebSight by conducting a failure analysis
on 50 validation samples, identifying seven com-
mon error categories (Table 1). Using insights from
these failures, we design realistic mutation rules
to modify HTML/CSS in WebSight-v0.1, ensuring
that the contrastive training data reflects real-world
errors. The mutation process follows the observed
error frequencies; for example, since color mis-
matches account for 19.05% of errors (12/63), mu-

24787

<div style="
 height:
 200px;
 background:
 lightgreen"
>
</div>
...

<div style="
 height:
 122px;
 background:
 #cbd93e"
>
</div>
...

0.60

0.14

0.07

0.21

0.12

0.55

0.16

0.13

0.20

0.12

0.63

0.19

0.18

0.19

0.14

0.47<div style="
 height:
 240px;
 background:
 #818e18"
>
</div>
...

<div style="
 height:
 200px;
 background:
 lightblue"
>
</div>
<div style="...

Structure-Aware
Attention

Vision Model

Text Model

HTML Code

UI Images

Similarity Matrix

WebSight-v0.1 Training Sample

Lcl

Llm

<body style="font-family:Arial, sans-
serif">
 <div style="height:200px;
background:lightblue">
 </div>
 <div style="margin-top:20px">
 <h1>
 Product 1
 </h1>
 <p>
 This is a revolutionary product.
It will change your life.
 </p>
 <div style="border:1px solid black;
padding:54px">
 <p>"This product is amazing!"</p>
 <p>- John Doe</p>
 </div>
 </div>
</body>

Mutate

Contrastive Learning &
Language Modeling Objectives

Figure 2: Overview of WAFFLE, including training data mutation, structure-aware attention, and contrastive learning.

tations on color properties are applied at the same
rate (Table 1). The full set of mutation rules is
detailed in Appendix A.1.

Based on the mutation rule, we randomly sample
100,000 instances from the WebSight-v0.1 dataset,
creating four distinct mutants with each sample.
The mutation rules are applied based on the fre-
quency of failures computed from the validation
set. The final mutated dataset (after removing ren-
dering failures, identical mutants, and blank im-
ages) has 57,985 groups, each group containing
four pairs of HTML code and the corresponding
rendered webpage images.

2.2 Structure-Aware Attention

HTML code has clear structures, and certain struc-
tural properties can be directly reflected in the ren-
dered UI design. Such domain knowledge can
benefit the generation process of MLLMs. There
are three most important elements for rendering
an element’s layout: its parent element, sibling
elements, and the element itself. WAFFLE imple-
ments a novel attention mask that provides each
element with a pruned view of all previous tokens,
including parent-attention, sibling-attention, and
self-attention. These attention masks allow the to-
kens to pay specialized attention to their parent
elements, sibling elements, and themselves.

Figure 3 shows a simple example of WAF-
FLE’s structure-aware attention. Figure 3 (a)
shows an HTML code snippet and (b) shows the
DOM tree of HTML code in (a), where the root
node is the <body> element. <div id="leftCol">

and <div id="rightCol"> are two children of node
<body>, and they are siblings to each other. <div

id="leftCol"> has one child, the text Selections.
<div id="rightCol"> has one child, which is a <h2>

element with the text Customer Reviews inside.
According to the domain knowledge that an el-

ement is mostly affected by its parent and sibling
elements, WAFFLE builds the structure-aware atten-

tionas shown in (c).

Parent-Attention. The parent-attention is from
each element’s tokens to its parent element’s to-
kens. WAFFLE utilizes the fact that all the children
elements inherit the parent element’s styles and
structure. For instance, the tokens of the element
<div id="leftCol"> pay parent-attention to tokens
of the element <body>, and the tokens of the ele-
ment Selections pay parent-attention to tokens of
the element <div id="leftCol">.

Sibling-Attention. The sibling attention is from
each element’s tokens to its preceding sibling ele-
ments’ tokens. WAFFLE utilizes the fact that sib-
ling elements under the same parent can affect the
arrangement and style of each other, so each ele-
ment needs to pay attention to its preceding sib-
lings. For instance, the tokens of the element <div
id="rightCol"> pay sibling-attention to tokens of
the element <div id="leftCol">.

Self-Attention. This is the standard self-attention
mechanism, it allows each token to focus on all
previous tokens within the same element, exclud-
ing the children elements. To illustrate, all tokens
in a specific element have self-attention (yellow
cells Figure 3) to all the tokens belonging to the
element itself.

WAFFLE applies the structure-aware attention
mechanism exclusively to the language model
decoder while keeping the vision encoder un-
changed. Specifically, WAFFLE applies the
structure-aware attention mask—formed by the
union of parent-attention, sibling-attention, and
self-attention masks—to only one-fourth of the at-
tention heads in the decoder. This enables these
heads to explicitly capture structural domain knowl-
edge, while the remaining three-fourths retain full
self-attention and leverage pre-trained knowledge.
The number of attention heads using structure-
aware attention is a tunable hyperparameter, which
can be adjusted as described in Section 4.3.

24788

<body>

 <div id = "leftCol">

 Selections

 </div>

 <div id = "rightCol">

 <h2>

 Customer Reviews

 </h2>

 </div>

</body>

<body>

<div id=
"leftCol">

Selections

</div>

<div id=
"rightCol">

<body>

<div id="leftCol">

<h2>

Selections

Customer Reviews

(b) DOM Tree(a) HTML Code (c) Structure-Aware Attention

<div id="rightCol">

<body>

<div id="leftCol">

<h2>

Selections

Customer Reviews

<div id="rightCol">

Parent
Attention

Sibling
Attention

Figure 3: Example of structure-aware attention. Yellow : self-attention. Green : parent-attention. Teal : sibling-
attention. Purple : masked-out Attention.

2.3 Contrastive-Learning

To address current models’ limited ability to effec-
tively map variations in HTML code to the corre-
sponding UI, WAFFLE utilizes contrastive learning,
allowing models to learn from comparisons and
contrasts between similar examples.

More concretely, the training dataset consists of
groups of HTML codes and UI Image pairs, where
each group has k such pairs. During training, in
any group, for image xi and code yi (i 2 {1, ..., k},
image xi is the rendered webpage image from code
yi), the webpage image is split into a list of pixel
patches. Each patch is encoded by the vision model
✓v and fused to the text model’s latent space using
an adapter to result in a list of patch embeddings
vi = {vi

1, v
i
2, ..., v

i
M} (M is a hyper-parameter of

the backbone MLLM). The HTML code is tok-
enized into tokens yi = {yi

1, y
i
2, ..., y

i
N i}, where

N i is the number of the tokens of the HTML
code yi. These tokens are encoded to embeddings
ti = {ti1, t

i
2, ..., t

i
N i} by the language model ✓t

(using the structure-aware attention). We use the
average over all the patch embeddings to represent
the embeddings of the webpage image, and the
average overall all the tokens’ embeddings to rep-
resent the embedding of the whole HTML code,
denoted by:

vi =
1

P

PX

j=1

vi
j , ti =

1

N i

NiX

j=1

ti
j (1)

Then we calculate the cosine similarity score
between the code and image embeddings, ti and vi,
bipartitely. The contrastive learning objective is to
maximize the similarity between the embeddings
of the corresponding code and UI, by minimizing
the contrastive learning loss Lcl, along with the
language modeling loss Llm as follows:

Lcl = �
kX

i=1

0
@

exp
⇣
sim (ti, vi)

⌘

Pk
j=1 exp

⇣
sim (ti, vj)

⌘

1
A (2)

Llm = �
kX

i=1

NiX

j=1

log P (yi
j | yi

<j ,x
i, ✓t, ✓v) (3)

The contrastive learning loss aims to maximize
the similarity scores at the diagonal of the similarity
matrix (as the green cells of the similarity matrix
shown in Figure 2). It trains the MLLM’s vision
model, ✓v, which encodes a webpage, xi, to closely
match the encoded embeddings of the text model,
✓t, on the corresponding HTML code, yi.

The language modeling loss, on the other hand,
aims to maximize the probability of generating
the correct token yi

j given all previous token yi
<j

and the input webpage image xi. This is the stan-
dard objective of training an MLLM to generate
text from images. WAFFLE jointly optimizes the
two objectives, LWAFFLE = Llm + �Lcl, where � is a
hyper-parameter constant controlling the effect of
contrastive learning on the overall optimization.

3 Experimental Setup

3.1 Model Training

We implement WAFFLE on two backbones, VLM-
WebSight, and Moondream2 (Laurençon et al.,
2024; vikhyat, 2024). Each backbone is first fine-
tuned on the WebSight-v0.1 dataset using the stan-
dard language modeling objective. For VLM-
Websight, we use the released fine-tuned check-
point with details in (Laurençon et al., 2024). This
checkpoint is fine-tuned using DoRA (Liu et al.,
2024) (a variant of parameter-efficient training,
LoRA (Hu et al., 2022), with rank set to 64). For
Moondream2, we also fine-tune the model using
DoRA (Liu et al., 2024) (with rank set to 64, and
lora_alpha set to 128). The model’s weights are
updated using the AdamW (Loshchilov and Hutter,
2019) optimizer, with the learning rate set to 3e�5.
The batch size is 64.

On top of the fine-tuned MLLMs from the first
step, we apply the structure-aware attention and

24789

contrastive learning approach. Structure-aware at-
tention is applied to 1

4 of the attention heads in each
attention layer in the LLM decoder. Each model
is trained with DoRA using the combined learning
objective on the contrastive learning dataset (� set
to 0.1). The model’s weights are updated using
the AdamW optimizer, with the learning rate set to
2e�5. The batch size is 32.

3.2 Test Data

We evaluate WAFFLE using two test datasets:
WebSight-Test, which consists of synthetic web-
pages, and Design2Code, which consists of real-
world webpages. Since WebSight-v0.1 was already
used for training, we created WebSight-Test follow-
ing the same process as WebSight-v0.1 (Laurençon
et al., 2024). In total, WebSight-Test contains 500
test samples, each has a webpage image and the
respective ground-truth HTML source code.

Design2Code is an open-source benchmark of
484 manually processed real-world website screen-
shots, which are more complex than Websight-v0.1.
Evaluation on Design2Code indicates the general-
ization ability of models fine-tuned on WAFFLE’s
training dataset to real-world scenarios.

3.3 Evaluation Metrics

We note that existing methods struggle to effec-
tively capture subtle or structural differences in
images. To address this, we adopt CLIP and Low-
Level Element Matching (LLEM) metrics from
previous work (Si et al., 2024). Additionally, we in-
troduce two new metrics: HTML-Match, designed
to evaluate structural similarity in rendered HTML,
and complex wavelet structural similarity index
(CW-SSIM) to detect minor differences in images,
respectively.

HTML-Match. HTML-Match is the percentage
of generated images that match the ground truth
images perfectly at the pixel level. For this compar-
ison, styles and attributes are removed from both
the ground truth and generated HTML. This pro-
cess emphasizes the model’s ability to accurately
recognize the text content and the DOM tree struc-
ture of the HTML code, and assess MLLM’s ability
to recover the HTML structure from the given UI.

CW-SSIM. CW-SSIM computes the structural sim-
ilarity between images (Sampat et al., 2009). In
certain cases, LLEM and CLIP scores might yield
high scores as they failed to capture the structural
difference. For example, in Figure 4 the rendered

(b) Inferred Image(a) Ground Truth Image

Figure 4: Different metrics on a pair of images.

image is structurally different from the ground truth
image, resulting in low CW-SSIM scores, 0.2904.
However, the LLEM gives a high score of 99.74%,
and the CLIP score is 90.67, which does not align
with human evaluation as well as CW-SSIM.

CLIP. CLIP score (Radford et al., 2021; Si et al.,
2024) measures the similarity between the ren-
dered webpage of the inferred HTML code and the
ground truth webpage based on the CLIP-ViT-B/32’s
embeddings of webpages.

Low-Level Element Matching (LLEM). Previous
work (Si et al., 2024) proposes LLEM to measure
the percentage of matched (1) text blocks, (2) text
content, (3) position of each matched text block,
and (4) font color within each text block.

In this work, we prioritize CW-SSIM as a more
robust evaluation metric. Yet, we still report CLIP
and LLEM as they are used in existing work.

Human Evaluation. Two human annotators are
asked to compare the rendered webpages generated
by different techniques from a subset of test data
with the ground-truth webpage and rank them.

4 Results

4.1 Effectiveness of WAFFLE

Table 2 show the performance of various fine-
tuning strategies on the two testing datasets,
WebSight-Test (500 samples) and Design2Code
(484 samples).

Comparison against standard fine-tuning. We
compare WAFFLE with the baseline, the standard
fine-tuning (FT) method. In both tables, WAF-
FLE achieves significant improvements over the
standard FT on all metrics with Moondream2 and
VLM-WebSight as the backbone.

On WebSight-Test, WAFFLE achieves 6.00 pp
higher HTML-Match (27.60% vs. 21.60%) and
0.0253 higher CW-SSIM (0.4486 vs. 0.4233) than
Standard FT with Moondream2 as the backbone.
On the VLM-WebSight backbone, WAFFLE outper-
forms Standard FT, i.e., original VLM-WebSight,

24790

Backbones Techniques
WebSight-Test Design2Code

HTML-Match (%) " CW-SSIM " CLIP " LLEM (%) " CW-SSIM " CLIP " LLEM (%) "

Gemini 1.5 Pro Prompting 9.40 0.3385 88.55 90.16 0.2652 87.76 87.17
GPT-4o mini Prompting 10.20 0.3055 87.72 87.54 0.2304 86.06 78.84
GPT-4o Prompting 11.40 0.3666 89.03 92.18 89.03 83.67 75.98

Moondream2 Standard FT 21.60 0.4233 89.92 90.59 0.1348 46.63 40.71
WAFFLE 27.60 0.4486 89.98 91.72 0.2142 79.62 67.83

VLM-WebSight Standard FT 28.00 0.5023 93.30 92.73 0.2518 82.35 73.00
WAFFLE 37.00 0.6005 94.57 95.16 0.2815 85.98 77.81

*Gemini 1.5 Pro’s results are on 384 test instances as it generates no answers for the remaining 100 instances.

Table 2: Main results on the WebSight-Test and Design2Code dataset.

(d) WAFFLE (CW-SSIM: 0.9995)(b) GPT-4o (CW-SSIM: 0.1353) (c) Standard FT (CW-SSIM: 0.3760)

3. Incorrect font
style, size and color
4. Incorrect footer
height

2. Incorrect block
height and color

1. Incorrect font
style, size and color

3. Correct font style,
size and color
4. Correct footer
height

2. Correct block
height and color

1. Correct font style,
size and color

(a) Expected Webpage

Figure 5: Example from WebSight-Test dataset, with the generated images by GPT-4o, Standard FT (VLM-
WebSight), and WAFFLE (VLM-WebSight).

by 9.00 pp HTML-Match, 0.0982 CW-SSIM, im-
proving the model’s ability to generate structurally
similar images and align the two modalities. On
Design2Code, WAFFLE achieves greater improve-
ments compared to the Standard FT technique with
both backbones.

Summary: Overall, WAFFLE significantly im-
proves all metrics for both backbones in both
test datasets over standard fine-tuning with up
to 9.00 pp for HTML Match, 0.0982 for CW-
SSIM, 32.99 for CLIP, and 27.12 pp for LLEM.

Comparison against SOTA commercial models.
Due to the lack of comparable baselines, we com-
pare WAFFLE with top commercial models, which
include GPT-4o mini, GPT-4o, and Gemini 1.5 Pro.
We apply direct prompting following prior work (Si
et al., 2024). The result is shown in Table 2.

On the WebSight-Test dataset, models fine-tuned
with WAFFLE perform better than the SOTA com-
mercial models. VLM-WebSight overperforms
GPT-4o by 25.60 pp on HTML-Match (37.00%
vs. 11.40%) and 0.2339 on CW-SSIM (0.6005 vs.
0.3666), showing WAFFLE’s benefit in addressing
the two challenges, i.e., generate structurally cor-
rect HTML and closing the gap between the two
modalities. Similarly, for the smaller backbone,
Moondream2 exceeds GPT-4o on CW-SSIM and
HTML-Match.

As shown in Table 2, VLM-WebSight fine-tuned
by WAFFLE is better than GPT-4o on CW-SSIM
by 0.039, and better than GPT-4o mini by 0.511
on the Design2Code dataset. However, GPT-4o

is better in the other two metrics versus VLM-
WebSight. Moondream2 fine-tuned by WAFFLE

has a lower performance compared to GPT-4o and
GPT-4o mini on all metrics. This is likely due to
its smaller size, which could influence its general-
izability to more complex, out-of-distribution data.

Summary: On simpler data, WAFFLE achieves
better or comparable results than SOTA com-
mercial models, with 16.20–25.60 pp improve-
ment on HTML-Match and 0.0820–0.2339 im-
provement on CW-SSIM. On more complex
data, WAFFLE enables VLM-WebSight to out-
perform commercial models on CW-SSIM.

4.2 Case Study

Figure 5 shows the generation results for one in-
stance from WebSight-Test. The generated web-
page of GPT-4o has a CW-SSIM of 0.1353, sig-
nificantly lower than that of 0.3760 from VLM-
WebSight under standard fine-tuning. On the other
hand, the webpage generated by VLM-WebSight
fine-tuned by WAFFLE reaches an almost perfect
CW-SSIM score. This example shows the effective-
ness of using WAFFLE on UI-to-HTML generation.

4.3 Ablation Studies

Comparison against ablation models. We compare
WAFFLE with two ablation models:
• WAFFLE-attn: This is WAFFLE with only con-

trastive learning and without the use of structure-
aware attention.

24791

Backbones Techniques
WebSight-Test Design2Code

HTML-Match (%) " CW-SSIM " CLIP " LLEM (%) " CW-SSIM " CLIP " LLEM (%) "

Moondream2

Standard FT 21.60 0.4233 89.92 90.59 0.1348 46.63 40.71
WAFFLE-attn 23.60 0.4311 90.47 91.34 0.1821 67.73 56.49
WAFFLE-contra 26.00 0.4296 89.55 91.21 0.2100 76.63 65.82
WAFFLE 27.60 0.4486 89.98 91.72 0.2142 79.62 67.83

VLM-WebSight

Standard FT 28.00 0.5023 93.30 92.73 0.2518 82.35 73.00
WAFFLE-attn 30.80 0.5411 94.29 94.20 0.2480 85.64 75.34
WAFFLE-contra 35.80 0.5677 95.08 95.30 0.2653 85.16 76.48
WAFFLE 37.00 0.6005 94.57 95.16 0.2815 85.98 77.81

Table 3: Ablation studies on the two test datasets. LLEM refers to the averaged Low-Level Element Matching.

Techniques Rank 1 " Rank 2 " Rank 3 " Avg Rankings #

Standard FT 9 | 34 (43) 18 | 13 (46) 34 | 25 (54) 2.88 | 2.37 (2.62)
WAFFLE-attn 22 | 23 (45) 11 | 30 (41) 22 | 26 (71) 2.67 | 2.45 (2.56)
WAFFLE-contra 60 | 33 (93) 13 | 17 (30) 11 | 26 (42) 1.78 | 2.41 (2.10)
WAFFLE 46 | 54 (100) 33 | 22 (55) 10 | 15 (26) 1.85 | 1.79 (1.82)

Table 4: Human evaluation on two datasets using VLM-
WebSight as the backbone. The numbers are shown as
“x|y (x+y)”, where x is the result on WebSight-Test and
y is the result on Design2Code.

• WAFFLE-contra: This is WAFFLE with only
structure-aware attention.
Shown in Table 3, WAFFLE-attn brings improve-

ments compared to the Standard FT on all metrics,
and WAFFLE-contra brings a 4.40 pp improvement
on HTML-Match. On the Design2Code dataset,
WAFFLE has dominating performance on all met-
rics for models fine-tuned with both backbones.
Across the two backbones, models fine-tuned with
WAFFLE are higher than those fine-tuned with
WAFFLE-attn by up to 0.0335 on CW-SSIM.

Summary: Contrastive learning and structure-
aware attention significantly improve perfor-
mance over standard fine-tuning. On the sim-
pler WebSight-Test data, models trained with
WAFFLE achieve the highest HTML-Match and
CW-SSIM scores. On the more complex De-
sign2Code data, WAFFLE still delivers the best
results across all metrics for both backbones.

Human evaluation results. We select 50 test sam-
ples from WebSight-Test and Design2Code (100 to-
tal). Each sample has four generated HTML codes
and rendered webpages from Standard FT, WAF-
FLE-attn, WAFFLE-contra, and WAFFLE. Human
raters rank the generated webpages based on simi-
larity to the ground-truth webpage without know-
ing which model produced each one. Multiple
results can share the same rank if they are deemed
equally similar to the ground truth. Table 4 shows
the human evaluation results for VLM-WebSight
fine-tuned by Standard FT, WAFFLE-attn, WAF-
FLE-contra, and WAFFLE.

Techniques Prior Current Drop (%)

WAFFLE-attn 0.8002 0.5797 27.55
WAFFLE 0.8291 0.7932 4.34

Table 5: CW-SSIM on 20 samples using the VLM-
WebSight backbone. “Prior” refers to “without inter-
mediate mistakes”, and “Current” to “with intermediate
mistakes”.

Across both datasets, WAFFLE has the best aver-
aged rankings, 1.82, outperforming both ablations
and the baseline. Specifically, WAFFLE reaches 54
times rank 1 placement on Design2Code, showing
great generalizability on more complex datasets.
WAFFLE-contra is the second best technique on the
two testsets, reaching 93 times rank 1, and an av-
erage ranking of 2.10. On the other hand, WAF-
FLE-attn is the third-best technique but still outper-
forms standard FT.

Summary: Human evaluation shows that (1)
both structure-aware attention and contrastive
learning contribute to the code generation qual-
ity, and (2) WAFFLE-generated HTML/CSS
code is consistently rated higher than code gen-
erated with standard fine-tuning.

4.4 Structure-Aware Attention’s Effect

To demonstrate how structure-aware attention helps
MLLMs focus on the correct structural elements
(such as parent and sibling elements) during gen-
eration, we introduce controlled errors in the gen-
eration process. Specifically, we select 20 high-
performing samples—those with the highest CW-
SSIM scores—generated by VLM-WebSight fine-
tuned with WAFFLE and WAFFLE-attn. These sam-
ples indicate cases where the models originally
performed well on UI-to-code generation. Our
goal is to evaluate whether models fine-tuned with
structure-aware attention exhibit greater robustness
in handling intermediate errors compared to those
without it.

For each selected sample, we manually modify

24792

the partially generated HTML code by editing the
sibling elements of the correct structure, following
the example in Figure 1. These modifications alter
the rendered output, simulating realistic errors that
could occur during generation. The models are then
tasked with re-completing the HTML code while
being provided the same UI image with the partially
generated, incorrect HTML as input. Since the
modifications affect sibling elements rather than
the primary structure, an ideal model should re-
cover from these errors without cascading failures
in subsequent generations.

Table 5 shows the results of re-completion fol-
lowing the intermediate mistakes. With WAF-
FLE-attn, the averaged CW-SSIM across the 20
samples drops by 0.2205 (from 0.8002 to 0.5797)
if the model makes intermediate mistakes. By con-
trast, with WAFFLE, the averaged CW-SSIM only
drops by 0.0359, from 0.8291 to 0.7932.

Summary: Integrating structure-aware atten-
tion brings stability to model generation, mak-
ing models more robust against intermediate
mistakes, and reducing the performance drop
by 23.31%, from 27.55% to 4.24%, ensuring
more consistent generation quality.

4.5 Contrastive Learning’s Effect

To show contrastive learning’s effect on MLLMs’
visual and textual understanding, we design two ex-
periments. The first experiment analyzes whether
MLLM’s understanding of the image and code is
aligned through the integration of contrastive learn-
ing, and the second experiment analyzes whether
contrastive learning can teach the model to capture
the subtle difference in the images.

Aligning models’ two modalities. Specifically, un-
der the same procedure, we compute the averaged
text embeddings and image embeddings for a sub-
set (12 samples from WebSight-Test dataset) of the
test samples in Section 4.4 using the Moondream2
model fine-tuned by WAFFLE-attn and Standard FT.
Then for each pair of the averaged image embed-
dings and text embeddings, (vi, ti), we normalize
them and compute the Euclidean distance and the
cosine similarity between them.

Table 6 shows the results of the measurements
for both techniques. The Euclidean distance be-
tween the embeddings of the two modalities is
0.8447 for WAFFLE-attn, which is lower than
1.3395, the distance of the embeddings from Stan-
dard FT, by 0.4798. Similarly, the cosine similarity

Techniques d(vi, ti) # sim(vi, ti) "

Standard FT 1.3395 0.1027
WAFFLE-attn 0.8447 0.6244

Table 6: Distance (d) and similarity (sim) between
averaged image embeddings vi and text embeddings ti,
using Moondream2 as the backbone.

(b) WAFFLE-attn's Embeddings(a) Standard FT's Embeddings

(v1,t1)
(v2,t2)

(v3,t3)

(v4,t4)

Figure 6: t-SNE plots of the text and image embeddings,
computed by Moondream2 fine-tuned with Standard FT
and WAFFLE-attn.

between the embeddings encoded by WAFFLE-attn
is higher than the Standard FT by 0.5017 (0.6244
vs. 0.1027).

In addition, Figure 6 demonstrates that con-
trastive learning teaches the model to align the text
and image understandings. The vision embeddings
(red circles) are far away from their corresponding
text embeddings (blue triangles) when calculated
by Standard FT. By contrast, the vision embed-
dings are grouped with their corresponding text
embeddings by WAFFLE-attn.

Summary: Fine-tuning with contrastive learn-
ing (WAFFLE-attn) enhances MLLM visual-
textual alignment, making image and code em-
beddings more cohesive, reducing Euclidean
distance while elevating the cosine similarity
between them.

5 Related Work

5.1 Multi-Modal Large Language Models
Recent advances in vision and language models
have greatly improved MLLMs’ capabilities in
tasks like image captioning (Zhai et al., 2023; Li
et al., 2022, 2023b; Laurençon et al., 2023), text-
to-image generation (Ramesh et al., 2022; Rom-
bach et al., 2021), visual question answering (Liu
et al., 2023b,a; Bai et al., 2023), and document edit-
ing (Suri et al., 2024). While popular models like
Llava (Liu et al., 2023b,a), Qwen-VL (Bai et al.,
2023), and Vary (Wei et al., 2023) perform well in
general image tasks, they don’t focus on converting
UI images to HTML code. To address this, we
propose WAFFLE, a fine-tuning method that equips
MLLMs with domain-specific knowledge needed

24793

for UI-to-HTML generation.

5.2 Attention Mechanism

The attention mechanism is the key part of modern
Transformer (Vaswani et al., 2017) architectures,
as it effectively captures the hidden features of
input data. To handle the challenges of certain do-
mains, specialized attention mechanisms have been
explored, such as pyramid attention (Chai and Li,
2022) and hierarchical attention (Guo et al., 2023;
Shi et al., 2021; Nguyen et al., 2023; Yang et al.,
2016) designed for long-range, cross-file code un-
derstanding and generation, as well as regularized
attention for assembly code (Su et al., 2024). Dif-
ferent from existing work, WAFFLE targets HTML
code, with the new challenge of its restricted struc-
ture. WAFFLE designs a novel structure-aware at-
tention to learn such structure knowledge.

5.3 UI to HTML Generation

Early direction for UI code generation utilizes
sketch webpage figures, e.g., hand-drawn web-
site sketches, to generate UI code that can be ren-
dered into similar images as sketch images (Robin-
son, 2019). Yet, this direction is not practical, as
not all front-end developers want to draw out a
sketch website when they need help from an auto-
mated tool. In contrast, leveraging advancements
in MLLMs, Huggingface has recently released
WebSight, which is trained on the WebSight-v0.1
dataset (Laurençon et al., 2024). Although spe-
cific details of the model are not disclosed, it rep-
resents a significant shift towards end-to-end UI
to code generation. Similarly, Design2Code-18B
is a model using CogAgent as the backbone us-
ing a subset of WebSight-v0.1 (Si et al., 2024;
Hong et al., 2023). However, neither WebSight
nor Design2Code tries to adapt domain knowl-
edge of HTML for this task. In contrast, we pro-
vide structure-aware attention and apply contrastive
learning with the mutations to teach the model the
fine-grained difference of HTML images.

6 Conclusion

This work presents WAFFLE, a fine-tuning pipeline
for UI-to-HTML code generation, that is generaliz-
able to any transformer-based MLLMs. WAFFLE

introduces a structure-aware attention mechanism
to capture HTML structure and employs contrastive
learning to align visual and textual understanding,
aiding MLLMs in distinguishing subtle webpage

differences. WAFFLE outperforms standard fine-
tuning on two backbone MLLMs, with improve-
ments of up to 9 pp in HTML Match, 0.0982 in CW-
SSIM, 32.99 in CLIP, and 27.12 pp in LLEM. Ab-
lation studies confirm that both key components of
WAFFLE contribute to better cross-modality under-
standing and more robust code generation. Notably,
WAFFLE is model-independent and can enhance
any MLLMs for UI-to-HTML code generation.

7 Limitation

One limitation of WAFFLE is that it has only been
implemented on two models: VLM-WebSight and
Moondream2. While WAFFLE could potentially be
applied to any MLLM, like Design2Code, further
exploration is limited by computing resources. Our
experiments show that WAFFLE brings significant
improvements over standard fine-tuning on these
two models, indicating some level of generalizabil-
ity. Another limitation is that the metrics we use do
not fully capture human evaluation. HTML-Match
overlooks CSS styling, and metrics like CW-SSIM,
CLIP, and LLEM are similarity-based, which can
lead to unreliable scores. Evaluating HTML code
automatically is challenging, so we include CLIP
and LLEM, as used in previous work (Si et al.,
2024; Gui et al., 2024), along with CW-SSIM and
HTML-Match to ensure fair evaluation.

8 Acknowledgements

We thank the anonymous reviewers for their feed-
back on this work. This research was supported in
part by NSF 1901242 and 2006688 and a CFI fund.
This work also used Anvil at Purdue University
through allocation CIS240304 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) program (Boerner
et al., 2023), which is supported by U.S. National
Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

References
Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,

Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Lukas Blecher, Guillem Cucurull, Thomas Scialom,
and Robert Stojnic. 2023. Nougat: Neural optical
understanding for academic documents. Preprint,
arXiv:2308.13418.

24794

Timothy J. Boerner, Stephen Deems, Thomas R. Furlani,
Shelley L. Knuth, and John Towns. 2023. Access:
Advancing innovation: Nsf’s advanced cyberinfras-
tructure coordination ecosystem: Services & support.
PEARC ’23, page 173–176, New York, NY, USA.
Association for Computing Machinery.

Lei Chai and Ming Li. 2022. Pyramid attention for
source code summarization. Advances in Neural
Information Processing Systems, 35:20421–20433.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023. Sharegpt4v: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi.
2023. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Preprint,
arXiv:2305.06500.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
Preprint, arXiv:2204.05999.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang,
Yi Su, Shaoling Dong, Xing Zhou, and Wenbin Jiang.
2024. Vision2ui: A real-world dataset with lay-
out for code generation from ui designs. Preprint,
arXiv:2404.06369.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian
McAuley. 2023. Longcoder: a long-range pre-trained
language model for code completion. In Proceedings
of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao
Dong, Ming Ding, and Jie Tang. 2023. Cogagent:
A visual language model for gui agents. Preprint,
arXiv:2312.08914.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and

Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas
Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
Wang, Siddharth Karamcheti, Alexander M. Rush,
Douwe Kiela, Matthieu Cord, and Victor Sanh.
2023. Obelics: An open web-scale filtered dataset
of interleaved image-text documents. Preprint,
arXiv:2306.16527.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset. Preprint,
arXiv:2403.09029.

Dongxu Li, Junnan Li, Hung Le, Guangsen Wang, Sil-
vio Savarese, and Steven C.H. Hoi. 2023a. LAVIS:
A one-stop library for language-vision intelligence.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
3: System Demonstrations), pages 31–41, Toronto,
Canada. Association for Computational Linguistics.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. Blip-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. BLIP: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
12888–12900. PMLR.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri

24795

Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Lean-
dro von Werra, and Harm de Vries. 2023c. Star-
coder: may the source be with you! Preprint,
arXiv:2305.06161.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. DoRA: Weight-
decomposed low-rank adaptation.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Minh Huynh Nguyen, Nghi D. Q. Bui, Truong Son
Hy, Long Tran-Thanh, and Tien N. Nguyen. 2023.
Hierarchynet: Learning to summarize source code
with heterogeneous representations. Preprint,
arXiv:2205.15479.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language

supervision. In International Conference on Machine
Learning.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. 2022. Hierarchical
text-conditional image generation with clip latents.
Preprint, arXiv:2204.06125.

Alex Robinson. 2019. Sketch2code: Generating
a website from a paper mockup. Preprint,
arXiv:1905.13750.

Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2021. High-
resolution image synthesis with latent diffusion mod-
els. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10674–
10685.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Mehul P. Sampat, Zhou Wang, Shalini Gupta, Alan Con-
rad Bovik, and Mia K. Markey. 2009. Complex
wavelet structural similarity: A new image similar-
ity index. IEEE Transactions on Image Processing,
18(11):2385–2401.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
CAST: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4053–4062, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering? Preprint,
arXiv:2403.03163.

Zian Su, Xiangzhe Xu, Ziyang Huang, Zhuo Zhang,
Yapeng Ye, Jianjun Huang, and Xiangyu Zhang. 2024.
Codeart: Better code models by attention regulariza-
tion when symbols are lacking. Proc. ACM Softw.
Eng., 1(FSE).

Manan Suri, Puneet Mathur, Franck Dernoncourt, Rajiv
Jain, Vlad I Morariu, Ramit Sawhney, Preslav Nakov,
and Dinesh Manocha. 2024. DocEdit-v2: Document
structure editing via multimodal LLM grounding.
In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
15485–15505, Miami, Florida, USA. Association for
Computational Linguistics.

24796

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

vikhyat. 2024. Moondream: tiny vision language
model.

Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao,
Zheng Ge, Jinrong Yang, Jianjian Sun, Chunrui Han,
and Xiangyu Zhang. 2023. Vary: Scaling up the
vision vocabulary for large vision-language models.
arXiv preprint arXiv:2312.06109.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. 2023.
Sigmoid loss for language image pre-training. In
2023 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 11941–11952, Los Alami-
tos, CA, USA. IEEE Computer Society.

A Appendix

A.1 Mutation Rules
Table 7 shows the mutation rules we used to mutate
the HTML code and create the contrastive learning
dataset. Both HTML code and the CSS styles for
each element are mutated according to the failure
types in our manual analysis

For CSS styles, we mutate the properties of 1)
color, 2) size, 3) margin, 4) font size, 5) type of the
element bounding box (display), and 6) positioning
of each element. Column “Specification” in Ta-
ble 7 shows the details of the valid values for each
property. For HTML codes, we randomly duplicate
one HTML element excluding the ones that will
cause render failures (i.e., <head>, <header>, <html>,
<body>).

A.2 Illustrating Example
Figure 7 illustrates the second challenge, i.e., learn-
ing the fine differences and details of the visual
input. Figure 7(a) and Figure 7(c) are two highly

Class Failure Type Specification

CSS

Color Random Color in Range [#000000, #FFFFFF]
Size Random Size in [0, 500] pixels
Margin Random Size in [0, 100] pixels
Font Random Size in [0, 40] pixels
Display Random Keyword for text-align, display,

flex-direction, and justify-content
Position Random Keyword for border-radius,

position, top, and right

HTML Structure Duplication of a Random HTML Element, excluding
<head>, <header>, <html>, <body>

Table 7: Specification for Mutation Rules to construct
the Contrastive dataset.

#grid {
 display: grid;
 grid-template-columns: 1fr 1fr;
}
...
<div id="grid">
 <div style="background-color: red;">
 </div>
 <div style="background-color: blue;">
 </div>
 <div style="background-color: green;">
 </div>
 <div style="background-color: yellow;">
 </div>
 <div style="background-color: orange;">
 </div>
 <div style="background-color: purple;">
 </div>
</div>
...

(b) Snippet of HTML and CSS code (d) Small modification on CSS in (b)

(a) Rendered webpage from code in (b) (c) Rendered webpage from code in (d)

Artists
Jane Doe

John Smith

Alicia Keys

Artists
Jane Doe

John Smith

Alicia Keys

#grid {
 display: grid;
 grid-template-columns: 1fr 2fr;
}
...
<div id="grid">
 <div style="background-color: red;">
 </div>
 <div style="background-color: blue;">
 </div>
 <div style="background-color: green;">
 </div>
 <div style="background-color: yellow;">
 </div>
 <div style="background-color: orange;">
 </div>
 <div style="background-color: purple;">
 </div>
</div>
...

Figure 7: Existing MLLM generates identical HTML
and CSS code in (b) given the different webpage screen-
shots in (a) and (c). The MLLM fails to generate the
correct 2fr highlighted in red in (d).

similar but different UI images of rendered web-
pages, i.e., the colors and text are identical, but
the widths of the columns are slightly different.
VLM-WebSight (Laurençon et al., 2024), a state-
of-the-art MLLM for webpage image to HTML
code generation, fails to capture such small dif-
ferences; thus, it generates identical HTML and
CSS code (Figure 7(b)) for the different UI images:
Figure 7(a) and Figure 7(c). The model fails to
generate 1fr 2fr (highlighted in code segments
(d) with red background) for screenshot (c). In
this case, VLM-WebSight’s vision model fails to
recognize the visual difference, and its text model
is unable to use the encoded visual information to
produce accurate textual output.

A.3 Tuning the Integration of WAFFLE’s
Structure-Aware Attention.

WAFFLE applies the structure-aware attention on
the attention layer in MLLM’s decoder. To study
the portion of attention heads that use structure-
aware attention, we fine-tuned VLM-WebSight on
a subset of our training dataset (40,000 pairs of

24797

Portions of Structure-Aware Attention Heads

Av
er

ag
ed

 S
co

re

Lo
ss

Number of Training Steps

(a) Validation LLEM Score (b) Training Loss

Figure 8: Illustration of the tuning process of the param-
eter that controls the effect of structure-aware attention.
In (b), the green line almost overlaps with the blue line.

Techniques d(vi, c) " sim(vi, cg) #

Standard FT 0.1224 0.9910
WAFFLE-attn 0.7590 0.6202

Table 8: Distance (d) and similarity (sim) between each
averaged image embeddings vi with the corresponding
centroid c of the group of mutants, with Moondream2
backbone.

HTML code and webpage screenshots). We set the
portion of attention heads using structure-aware
attention from 1

8 to all, incrementing each setting
by 1

8 . All models are trained with a batch size of
4, and a learning rate of 2e�5. The models are
then evaluated on the validation dataset. We use
two metrics to decide the final hyper-parameter:
averaged LLEM score and training loss.

Figure 8 (a) shows the averaged LLEM score.
Applying structure-aware attention on 2

8 , 3
8 , and

8
8 of the attention heads results in the top three
validation scores. We also consider their training
loss in Figure 8 (b). Although applying structure-
aware attention on all (i.e., 8

8) of the attention heads
yields a high LLEM score, it also results in a high
training loss, likely due to the regular attention
heads retaining some prior knowledge during pre-
training. In contrast, 2

8 , 3
8 show similar and lower

training losses. Combining these results, we select
2
8 (i.e., 1

4) as the final hyper-parameter controlling
the portion of attention heads that use structure-
aware attention.

A.4 Additional Ablation of Contrastive
Learning’s effect

Capturing subtle visual differences. Using the
same computed embeddings, we compute the aver-
aged distances and similarities between each image
embedding the centroid of its corresponding group
of mutants. Formally, for each group of mutants,
G, consisting of image embedding {vi}, vi 2 G,
the centroid of the image embeddings is computed
as: c =

P|G|
i=1 vi. Table 8 shows the distance and

cosine similarities between the image embeddings.
The average distance between each image embed-
ding with its respective centroid computed by the
WAFFLE-attn is 0.7590, greatly surpassing the av-
erage distance of 0.1224 computed by Standard
FT. Likewise, the cosine similarity between the im-
age embeddings is much lower for WAFFLE-attn

(0.6202 vs. 0.9910), showing WAFFLE-attn’s better
ability to distinguish between the images.

Figure 6 also shows that Standard FT encodes
the four different images almost the same in the
latent space (i.e., the four red circles are overlapped
in (a)), while WAFFLE-attn is able to encode them
differently.

A.5 Attention Visualization
The visualization of attention weights in Figure 9
provides insight into the behavior of structure-
aware attention and standard attention mechanisms.
Four representative examples are selected from dif-
ferent attention heads, each demonstrating distinct
characteristics.

The attention in (a) exhibits a sparse and discrete
distribution while effectively leveraging HTML do-
main knowledge. Notably, elements such as <div
id = "rightCol"> do not attend to the children
of their siblings, allowing for a more efficient allo-
cation of attention resources. This pattern suggests
that structure-aware attention successfully encodes
hierarchical relationships, prioritizing relevant de-
pendencies.

The attention in (b) demonstrates a diagonal-
ized pattern, aligning with the common attention
sink phenomenon observed in deeper layers. The
attention weights primarily concentrate along the
diagonals, indicating that elements predominantly
attend to themselves or closely positioned tokens.
Despite this, the model retains structural aware-
ness, as elements do not indiscriminately attend
to siblings’ children. This behavior suggests that
structure-aware attention maintains domain knowl-
edge while refining local relationships in later lay-
ers.

The attention in (c) presents a more scattered dis-
tribution, lacking clear structural constraints. The
model attends to multiple elements, including those
that do not directly influence the rendered appear-
ance of the current node. A notable observation is
that HTML elements tend to ignore tokens such as
\n and =, suggesting a preference for more infor-
mative tokens.

The attention in (d) also exhibits a diagonalized

24798

<body>

<div id=
"leftCol">

Selections

</div>

<div id=
"rightCol">

(a) Attention visualization of sture-aware attention (layer 1) (b) Attention visualization of sture-aware attention (layer 32)

(c) Attention visualization of normal attention (layer 1) (d) Attention visualization of normal attention (layer 32)

<body>

<div id=
"leftCol">

Selections

</div>

<div id=
"rightCol">

Figure 9: Selected Attention Weight Visualization of WAFFLE on a simplified example.

pattern, indicative of attention sink behavior, where
tokens predominantly attend to closely positioned
elements. This pattern resembles the behavior ob-
served in (b), yet lacks the structured constraints of
structure-aware attention. The similarity between
the two suggests that deeper layers across both
models tend to favor local attention.

A.6 WAFFLE’s Computational Overhead

We discuss the computational overhead of WAFFLE

in preprocessing, training, and inference separately.

Preprocessing The only additional one-time pre-
processing cost incurred for each sample and to-
kenizer is the construction cost of the structure-
aware attention masks. The construction process
for these structure-aware attention masks exhibits
a complexity of O(B · L), where B denotes the
buffer length in our specialized HTML parser used

for tracking HTML tag tokens, and L represents
the overall token length. This compares to the
O(L) complexity for constructing a standard causal
mask. Notably, the buffer B solely contains tokens
of currently incomplete HTML tags, rendering its
size small relative to the full token length L. Fur-
thermore, this preprocessing can be executed on a
CPU and is exceptionally lightweight, as it does
not involve matrix multiplication operations. Once
these attention masks are generated, they are reused
throughout the entire training process without in-
curring further overhead, making this initial com-
putational investment negligible when amortized
across the full training cycle.

Training The computational demands during the
training phase of WAFFLE are influenced by two
primary components: Structure-Aware Attention
and Contrastive Learning.

24799

The introduction of Structure-Aware Attention
results in no additional computational cost during
training. This is because the only modification
pertains to the values within the attention mask,
while the total number of operations remains the
same to that of standard attention mechanisms.

Our implementation of Contrastive Learning, the
image embeddings are computed once and subse-
quently reused for both standard fine-tuning tasks
and the contrastive learning objectives. The main
additional computation arises from generating text
embeddings, which requires an extra forward pass
through the decoder. Other minor computational
elements, such as similarity calculations and the
computation of the contrastive loss, are negligible
in comparison to the overall training expenditure.

In our experimental configuration, utilizing 4x
NVIDIA A100 GPUs with WebSight-VLM, stan-
dard fine-tuning necessitates approximately 26
hours. In contrast, training with WAFFLE requires
about 34 hours, which constitutes a 31% increase.
It is important to emphasize that this is a one-time
training cost and does not adversely affect infer-
ence speed. We consider this increase a worthwhile
investment, given the significant performance im-
provements achieved by WAFFLE.

Inference During inference, the additional compu-
tational cost introduced by WAFFLE stems from
parsing the generated HTML and constructing the
structure-aware attention mask for newly generated
tokens. This construction process is identical to the
one employed during preprocessing and, similarly,
remains lightweight in comparison to the model’s
other operational demands.

In conclusion, WAFFLE introduces a limited
computational overhead during training and im-
poses minimal computation overhead during infer-
ence and preprocessing.

A.7 Analysis of Failure Examples

To provide a balanced evaluation of WAFFLE’s ca-
pabilities, this section presents an analysis of se-
lected failure cases. We discuss two sets of illustra-
tive examples, one from each test set (Design2Code
and WebSight-Test), where the VLM-WebSight
model fine-tuned by WAFFLE exhibited deviations
from the ground truth.

Design2Code-42 The first case is from the De-
sign2Code test set, example Design2Code-42,
shown in Figure 10. The ground truth for this
example is depicted in Figure 10 (a), while the

output generated by our WAFFLE-enhanced VLM-
WebSight model is shown in Figure 10 (b). For
a comparative perspective, the result from VLM-
WebSight under standard fine-tuning (SFT) is pro-
vided in Figure 10 (c).

Upon examining the output from WAFFLE, sev-
eral discrepancies were identified when compared
to the ground truth. A primary challenge appears
to be the accurate recognition and reproduction
of all textual elements. For instance, there was
a noticeable difference in the domain name; the
ground truth specifies "ESSAYSCRIBES.COM",
whereas the generated version incorrectly rendered
it as "EASYSCRIBES.COM". Further textual inac-
curacies included differences in the primary head-
ing or description on the first line, where "Essential
Example" was expected but variations occurred,
and section headings were altered, such as "How
an Editorial Essay Works" in the ground truth be-
coming "How The Editor Writes an Essay" in the
generated HTML.

Styling inconsistencies also emerged. The navi-
gation menu in the WAFFLE-generated version ex-
hibited different spacing and font treatment com-
pared to the original design. Additionally, the nav-
igation items themselves were simplified and fea-
tured slightly different labeling. Other minor errors
were observed, such as in the footer area, where,
although the copyright text was consistent, its for-
matting and color scheme diverged from the ground
truth.

In summary, while VLM-WebSight fine-tuned
by WAFFLE successfully captured the main struc-
ture of this real-world UI from the Design2Code
test set, several minor errors in text rendering and
styling persist. These indicate areas for further
improvement in UI-to-HTML generation. It is per-
tinent to note, however, that these errors are con-
siderably less severe than those observed in the
output from the VLM-WebSight model under stan-
dard fine-tuning. The SFT version exhibited more
drastic failures, with significant mistakes in color
fidelity, overall structure, and text extraction.

WebSight-Test-45 The second failure case analyzed
is WebSight-Test-45. The ground truth image for
this example is available as Figure 11 (a), and the
corresponding page generated by VLM-WebSight
fine-tuned with WAFFLE is shown in Figure 11 (b).

In this instance, the generated output aligns well
with the ground truth in terms of most visual ele-
ments. However, a key error was identified in the

24800

(a) Ground Truth

(b) Generation-Waffle (c) Generation-SFT

Figure 10: Figures of Design2Code task 42.

positioning of the search bar. In the generated ver-
sion, the search bar is incorrectly placed at the bot-
tom of the property cards. In contrast, the ground
truth image clearly shows the search bar embed-
ded within the middle property card. Although
our WAFFLE-enhanced model correctly identified
that the search bar should be horizontally centered
within the UI, it failed to accurately replicate its em-
bedded placement within the designated property
card.

This specific layout mistake could potentially
be rectified by applying CSS rules such as
position:absolute; top:50%; left:50%;
transform:translate(-50%, -50%) to the
search button’s styling. The occurrence of such
an error suggests that incorporating a refinement
step for the generated results could be a promising
avenue for future research, potentially allowing for
corrections of these types of spatial misplacements.

The analysis of these failure cases offers insights
into the current limitations of WAFFLE, particularly

in areas such as precise text recognition, complex
styling fidelity, and exact component placement.
These observations highlight potential directions
for future improvements.

A.8 Infrastructure
Our approach is implemented with the follow-
ing packages: transformers 4.41.1, pytorch 2.3.0,
selenium, deepspeed 0.14.1, accelerate 0.30.1, and
datasets 2.19.1. The experiments are conducted
on a shared computing cluster with four NVIDIA
A100 GPUs.

A.9 Potential Risk and Impact
This work aims to develop a multi-modality model
to help front-end developers write and understand
HTML and CSS code. We assume no risk of this
approach being misused.

24801

(a) Ground Truth (b) Generation-Waffle

Figure 11: Figures of WebSight-Test task 45.

24802

