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Abstract
Recently, a number of repository-level code
generation benchmarks—such as CoderEval,
DevEval, RepoEval, RepoBench, and Long-
Code-Arena—have emerged to evaluate the ca-
pabilities of large language models (LLMs) be-
yond standalone benchmarks like HumanEval
and MBPP. Thus, a natural question is, would
LLMs have similar performance in real world
coding tasks as their performance in these
benchmarks? Unfortunately, one cannot an-
swer this question, since these benchmarks con-
sist of short completions, synthetic examples,
or focus on limited scale repositories, failing to
represent real-world coding tasks.

To address these challenges, we create RE-
POCOD, a Python code-generation benchmark
containing complex tasks with realistic depen-
dencies in real-world large projects and appro-
priate metrics for evaluating source code. It
includes 980 whole-function generation tasks
from 11 popular projects, 50.8 % of which
require repository-level context. REPOCOD
includes 314 developer-written test cases per
instance for better evaluation. We evaluate
ten LLMs on REPOCOD and find that none
achieves more than 30% pass@1 on REPOCOD,
indicating the necessity of building stronger
LLMs that can help developers in real-world
software development. In addition, we found
that retrieval-augmented generation achieves
better results than using target function depen-
dencies as context.

1 Introduction

One critical application of large language mod-
els (Bian et al., 2023; Zheng et al., 2023) is
code generation (Li et al., 2023a; Ouyang et al.,
2023), where models generate executable code
snippets given natural language descriptions (Li
et al., 2023b; Lozhkov et al., 2024; Touvron et al.,
2023; Dubey et al., 2024; Achiam et al., 2023).
Such code generation tasks are an integral part of
software development.

Research of LLMs for code generation requires
a high-quality dataset that evaluates LLMs’ ability
to code in real-world development scenarios. Exist-
ing LLMs achieve high accuracies, i.e., over 90%
pass@1, in solving Python coding tasks in self-
contained benchmarks. Would these LLMs achieve
similar accuracies in real-world code-generation
tasks? To answer this question, we need bench-
marks that represent real-world code generation
tasks. Specifically, benchmarks need to meet the
following four criteria:

Firstly, tasks should be real-world coding tasks
such as implementing complete functions based
on specifications. While manually-crafted bench-
marks such as HumanEval and MBPP are useful at
the earlier development of LLMs for code, they fail
to represent realistic software development, where
real project requirements drive tasks.

Secondly, both tasks and source repositories
need to be complex, as prior work (Kiela et al.,
2021; Ott et al., 2022) highlights that benchmarks
quickly become saturated as models evolve and
outperform them. To evaluate the true capabilities
of current and future LLMs, it is crucial to con-
struct benchmarks with challenging tasks (Jimenez
et al., 2024; bench authors, 2023). Benchmarks
such as CoderEval (Zhang et al., 2024), DevE-
val (Li et al., 2024b), RepoEval (Zhang et al., 2023),
RepoBench (Liu et al., 2024), and Long-Code-
Arena (Bogomolov et al., 2024), focus on single-
line completion or short-function generation, fail-
ing to capture the complexity of multi-hundred-line
functions commonly found in real-world projects.
In addition, the repositories need to be complex to
evaluate LLMs’ ability to understand and navigate
complex context. However, existing code gener-
ation benchmarks overlook this aspect, with the
average number of files in their source repositories
fewer than 200. Without a stronger benchmark that
incorporates complex tasks and large-scale projects,
we cannot reliably assess the boundaries of LLMs’
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code generation capabilities.
Thirdly, tasks should have repository-level de-

pendencies. Real-world code rarely exists in isola-
tion—only 27% of functions in 500 repositories are
self-contained, meaning they do not invoke other
functions or modules within the repository and only
use standard or public libraries (Li et al., 2024b).
Most functions in real-world repositories depend
on other components in the repository. Benchmarks
such as CoderEval (Zhang et al., 2024) and DevE-
val (Li et al., 2024b) have the majority of tasks as
self-contained or with simple dependencies, such
as those dependent on the current file only. Only
10–31% of their tasks require dependencies beyond
their current file, failing to represent coding tasks
that require repository-level dependencies.

Finally, tasks should be evaluated with appropri-
ate evaluation metrics. Similarity- or matching-
based evaluation metrics, such as CodeBLEU (Ren
et al., 2020) and BLEU (Papineni et al., 2002)
measure textual similarities, and fail to determine
whether two code snippets are functionally equiv-
alent. Previous work has shown CodeBLEU and
BLEU are unreliable metrics for code generation
due to their high mismatch rate with human assess-
ment (Evtikhiev et al., 2023). Execution-based
evaluation (e.g., unit tests), although imperfect,
avoids these pitfalls by directly verifying function-
ality. Appendix A.2 uses examples to show how
CodeBLEU makes mistakes.

This paper designs and builds REPOCOD, a
benchmark for assessing LLMs’ ability in real-
world coding tasks, i.e., generating complex func-
tions that require repository-level dependencies in
real-world projects, using developer test cases as
the validation method.

This paper makes the following contributions:

• A dataset of 980 challenging coding tasks from
11 popular Python projects, characterized by:

– Complex canonical solutions (Avg. 331.6 to-
kens per instance).

– Extensive context from large repositories (Avg.
2,610 files per repository).

– A focus on repository-level tasks—over half
(498, 50.8 %) of tasks require context from
other files in the repository.

– Rigorous evaluation (Avg. 314 developer-
written test cases per instance).

• A novel test collection pipeline that reduces the
evaluation time to 10.4% of the original

• A thorough study of ten LLMs’ performance on
REPOCOD, and the key findings include:

– LLMs are ineffective on REPOCOD (only
28.6% pass@1 under oracle-retrieval).

– Higher recall in retrieving a target function’s
dependencies as context improves LLMs’ per-
formance.

– Providing dependencies is suboptimal for
repository-level code generation tasks.

– For self-contained functions, additional con-
text can still help generate better solutions.

– LLMs exhibit diverse strengths, as each model
has uniquely solved tasks.

2 REPOCOD Benchmark

This section introduces REPOCOD’s automated
data collection process (Section 2.1), data struc-
ture (Section 2.2) , and the statistics (Section 2.3).

2.1 Data Collection Pipeline

Figure 1 (a) shows the data collection pipeline. RE-
POCOD utilizes GitHub as the source of our data.
To filter noisy data such as functions with missing
descriptions and test cases, we employ a three-stage
data collection pipeline to efficiently collect target
functions with good documentation and the corre-
sponding test cases for validation.

Step I: Repository Selection. The selection criteria
include open-sourced repositories where Python is
the primary language (≥70%) and those with no
less than 2k stars, as popular repositories tend to be
well-maintained (Jimenez et al., 2024). We clone
the latest version (as of October 2024) of these
repositories for analysis in Step II and Step III.

Step II: Target Function Selection. For each col-
lected repository, we perform both static and dy-
namic analysis to accurately identify the functions
defined in the repository that are invoked by the
developer-provided test cases, with detailed doc-
strings as function specifications.

We first collect all the test functions in a repos-
itory using PyTest’s test discovery rules1. Then,
we identify the functions invoked within these
test functions using static and dynamic analy-
sis techniques. For static analysis, we use tree-
sitter (Brunsfeld et al., 2024) to parse the test func-
tions and collect the functions that are invoked. For
dynamic analysis, Python’s trace module is used

1https://docs.pytest.org/en/stable/announce/
release-8.3.0.html
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Figure 1: Data collection pipeline and instance structure of REPOCOD.

to examine the execution of each test case. This
approach also identifies the indirect function calls
invoked by test functions, which are challenging to
detect through static analysis alone.

Finally, we filter the target functions, retaining
only those with more than ten lines of docstrings
and at least two lines of function body.

Step III: Relevant Test Cases Collection. To val-
idate the correctness of LLM-generated code effi-
ciently, we avoid running the entire test suite and
instead execute only the relevant test cases—those
that specifically invoke the target functions. This
targeted approach significantly reduces verification
time in large repositories with extensive test suites.

While the previous step provides a mapping be-
tween target functions and relevant test cases, cer-
tain mappings may still be missed. For instance,
test functions might use subprocess.run(command) to
invoke repository functions indirectly, which is
not collected by static or simple dynamic analy-
sis. Therefore, we employ a two-step collection
procedure to capture all relevant test cases. First,
we execute all test cases in the repository to es-
tablish a reference result. Then, for each target
function, we replace it with an assertion failure,
rerun all test cases, and compare the results to the
reference. If a test result changes from pass to fail,
it indicates that the test case is relevant to the target
function.

2.2 Benchmark Structure

Figure 1 (b) illustrates the components of RE-
POCOD’s instances: the target function descrip-
tion, repository snapshot, relevant test cases, and
canonical solution. REPOCOD uses the developer-
provided docstring as the target function descrip-
tion. The repository snapshot, is the source reposi-
tory with the target function body removed.

To use REPOCOD as a code generation bench-
mark, the LLM is provided with the target func-
tion description and the repository snapshot, then
it is expected to generate a functionally equivalent
code snippet as the canonical solution. The LLM-
generated solution is considered correct if it passes
all relevant tests. Finally, the canonical solutions

Benchmarks
Instance Statistics Repository Scale

#Instances #Tokens Cyclo. #Tests #Lines #Files

CrossCodeEval 2,665 13.2 1.0 0 - -
RepoBench 23,561 13.7 1.0 0 - -
LCA 934 12.0 1.0 0 - -

CoderEval1 230 108.2 4.7 - 48,821 152
DevEval2 1,825 86.3 3.5 2.1 36,640 164
R2E-Eval13 246 127.2 - 11.5 - -
RepoEval* 373 84.1 2.7 2742.5 7,387 119
REPOCOD 980 331.6 9.0 313.5 290,110 2,610

RepoEval*’s #Tests is averaged over a subset of executable repositories, as
some repositories cannot be run to collect test case counts.

Table 1: Benchmarks Comparison. ‘-’ indicates the
data is not publicly available. #Instances: number of
instances in each benchmark; #Tokens: average number
of tokens of the canonical solution; Cyclo. average cy-
clomatic complexity of the canonical solution; #Tests:
average number of test cases per instance; #Lines: aver-
age number of lines per repositories;

are the developer-written function bodies.

2.3 Benchmark Statistics
Table 1 compares REPOCOD with existing code
generation benchmarks that use repository-level
context, including CrossCodeEval (Ding et al.,
2023), RepoBench (Liu et al., 2024), Long-
Code-Arena (LCA) (Bogomolov et al., 2024),
CoderEval (Zhang et al., 2024), DevEval (Li et al.,
2024b), R2E-Eval1 (Jain et al., 2024), and RepoE-
val (Zhang et al., 2023).

CrossCodeEval, RepoBench, and LCA contain
only single-line code generation tasks, resulting
in shorter canonical solutions compared to RE-
POCOD. In addition, they rely on similarity-based
metrics, which are insufficient to evaluate code
quality. Therefore, we mainly compare REPOCOD

against datasets that require full function genera-
tion and include test cases for evaluation, such as
CoderEval, RepoEval and etc. Among all func-
tion generation datasets, REPOCOD outperforms in
nearly every aspect, with the exception of having

1CoderEval only releases the task instances along with
ground truths but omits the test cases.

2For data statistics not available in DevEval’s paper, we
recompute the data from their released dataset available in
their GitHub repository.

3R2E-Eval1 has not released its dataset, and the data is
derived from the published paper.
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Dataset Repository-Level File-Level Self-Contained

CoderEval 10.0 53.5 36.5
DevEval 31.3 41.2 27.5
REPOCOD 50.8 18.1 31.1

Table 2: Data context complexity distribution (%) of
code generation benchmarks.

fewer instances compared to DevEval. However,
REPOCOD leverages an automated annotation pro-
cess for annotating the task descriptions for each
instance, whereas DevEval relies on human effort,
making REPOCOD more scalable for expansion.

Repository Scale. The instances in REPOCOD

are collected from repositories with an average of
2,610 files and 290,110 lines of code per repository.
This significantly exceeds the scale of source repos-
itories from other benchmarks, underscoring the
challenge of efficiently utilizing repository-level
context for the evaluated models.

Test Scale. REPOCOD utilizes an average of 313.5
tests per instance, significantly surpassing other
benchmarks, highlighting REPOCOD’ robustness
in evaluating models. RepoEval*’s #Tests is com-
puted as the average number of test cases across
all available repositories, regardless of the tests’
relevance to the task. If measured the same way,
REPOCOD’ average #Test would be 17,974.

Length Complexity. REPOCOD presents the most
challenging tasks among all datasets. With the
largest average token count for canonical solutions
at 331.6 (Table 1), LLMs must generate solutions
that may require more than twice as much code as
those in other benchmarks to complete the task.

Cyclomatic Complexity. REPOCOD also includes
a cyclomatic complexity (McCabe, 1976) score
of 9.0, indicating that the canonical solutions in
REPOCOD have a higher structural complexity re-
garding control flow.

Context Complexity. Table 2 shows REPOCOD,
DevEval and CoderEval’s distribution of tasks by
three types of context complexity: Self-Contained,
File-Level, and Repository-Level. Self-Contained
functions use only standard or public libraries; File-
Level functions reference functions or classes from
the same file but not others; Repository-Level func-
tions may invoke functions or classes from the
same file or other files in the repository. Among
these benchmarks, REPOCOD has the highest ratio
of repository-level dependencies (498).

These statistics show that the tasks in RE-
POCOD are the most challenging, and contain more

repository-level context than other benchmarks,
making it particularly suitable for evaluating cur-
rent and future models on repository-level tasks.
Optimized Test Execution. With our test-collection
pipeline, we reduce the number of required test
cases per instance from an average of 17,974 (all
available test cases from the source repository) to
just 313, cutting execution time from 216.9 hours
to 22.6 hours, demonstrating a substantial improve-
ment in efficiency.

3 Experiment Setup

Due to the large repository sizes, most LLMs face
context window limitations that prevent them from
processing all the context in REPOCOD. To address
this, we employ Retrieval-Augmented Generation
(RAG). We evaluate three popular retrieval settings:
RAGBM25, RAGDense, and current file. In addition to
a Baseline (no context) setting, we use two unreal-
istic “oracle” settings, Callees, and RAGDense-oracle,
to study the potential best scenarios.

3.1 Retrieval Settings
We first define our retrieval corpus, which is used
across all RAG methods. The retrieval corpus con-
tains complete function definitions, each including
the function signature and full body, sourced from
all functions in the repositories.For RAGBM25 and
RAGDense, since the target function body is unavail-
able during inference, we query using its signature
and docstring to retrieve similar functions.
RAGBM25. We use BM25 (Robertson and Zaragoza,
2009) to extract relevant functions from the corpus
as context for generation. The signatures, doc-
strings, file paths, and bodies of the retrieved func-
tions are provided as context.
RAGDense. We encode all functions in the corpus
using the text-embedding-3-small model. The target
function’s signature and docstring are encoded into
an embedding to be compared against the function
embeddings in the corpus. The top-ranked func-
tions based on cosine similarity are provided as
context, in the same format as sparse retrieval.
Current File. In this setting, the context is limited
to the file containing the target function, with the
entire file provided as context, excluding the target
function’s body.

3.2 Additional Settings

Baseline. In this setting, the models are provided
only with the function signature and the docstring
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Models RAGBM25 RAGDense Current-File

CodeLlama-7B 10.7 10.4 5.7
CodeLlama-34B 12.4 12.8 9.6
DeepSeekCoder-6.7B 14.0 14.1 10.9
DeepSeekCoder-33B 16.7 17.1 14.9
OpenCodeInterpreter-6.7B 12.1 12.5 13.2
OpenCodeInterpreter-33B 15.3 16.3 18.3

Claude 3.5 Sonnet 14.4 17.5 19.8
DeepSeek-V2.5 18.5 20.7 27.0
GPT-4o-Mini 15.1 15.0 18.7
GPT-4o 27.4 27.0 26.8

Table 3: Pass@1(%) of SOTA LLMs on REPOCOD.

to generate the target function. This serves as a min-
imal context setting, evaluating the model’s ability
to generate functions without context information.

Callees. Functions invoked by the canonical so-
lution are considered as oracle context in several
benchmarks (Zhang et al., 2024; Li et al., 2024b).
We extract these invoked functions and include
them along with the last 1,024 tokens from the tar-
get function’s prefix. This setup evaluates whether
explicitly providing referenced functions, with the
target function’s most recent context, improves gen-
eration quality.

RAGDense-oracle. We include the canonical solutions
along with the task descriptions as queries to per-
form RAGDense. This setting establishes an up-
per bound on retrieval effectiveness for RAGDense,
showing the potential of an ideal retrieval system.

The Callees and RAGDense-oracle settings are un-
realistic in practice, as developers cannot obtain the
exact function dependencies beforehand nor have
access to the correct solutions.

3.3 Task Formulation

Each data instance of REPOCOD consists of a
repository snapshot, target function signature, and
docstring (from Section 2.2). The task is to gen-
erate the target function that passes all relevant
test cases. In practice, LLMs are provided with
a prompt consisting of the retrieved context and
asked to generate the solution.

Once the model generates the function, the syn-
thesized code is inserted back into the repository to
perform test execution. The solution is considered
to pass if all relevant test cases pass. We provide
the details of prompt construction in Appendix A.3.

We report the models’ performance using
Pass@1 (Chen et al., 2021) that measures the proba-
bility that the first generated code sample is correct.

RAGBM25

RAGDense

Current-File
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Figure 2: GPT-4o’s passed tasks in different retrievals.

3.4 Model Setup

Given the complexity of REPOCOD, we evaluate
only LLMs that meet the following criteria: state-
of-the-art (SOTA) performance on existing bench-
marks, and a context length of at least 16K.

Thus, we evaluate GPT-4o, GPT-4o-mini,
DeepSeek-V2.5, and Claude 3.5 Sonnet, repre-
senting commercial LLMs. We also evaluate
open-source LLMs such as CodeLlama, DeepSeek-
Coder, and OpenCodeInterpreter series, ranging
from 6.7B to 34B parameters. For commercial
models, we use their official API, and for the open-
source LLMs, we use the implementations pro-
vided by HuggingFace and vLLM (Kwon et al.,
2023). Under each experimental setting (retrieval
approach), we let each LLM generate one output
per instance in REPOCOD using greedy decoding.

4 Result

4.1 SOTA LLMs’ Pass@1 on REPOCOD

Table 3 shows ten LLMs’ performance on RE-
POCOD, under three retrieval approaches. On all re-
trieval approaches, commercial LLMs perform bet-
ter. Specifically, GPT-4o has the best result, reach-
ing up to 27.4% pass@1. On the other hand, none
of the open-sourced LLMs has over 20% pass@1.

This result shows that SOTA LLMs still struggle
with repository-level code generation. Compared
to their pass@1 on HumanEval (about 90% (Guo
et al., 2024)), SOTA LLMs are still far away
from writing real-world programs requiring
repository-level information. We provide a de-
tailed discussion of the results below.

Impact of Model Size. Table 3 demonstrates the
consistent advantage of larger models in solving
complex repository-level tasks compared to smaller
models within the same architecture.

Impact of Retrieval Approach. The pass@1 re-
sults are higher for commercial models when us-
ing contexts from the current-file setting, while
RAGBM25 and RAGDense yield similar but lower
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Figure 3: Commercial LLMs’ passed tasks.

outcomes. This trend is also observed in the Open-
CodeInterpreter series of LLMs. In contrast, other
open-source LLMs perform better with RAGBM25
and RAGDense compared to the current-file setting.
These results suggest that commercial models are
more likely to benefit from contexts drawn from
the current-file setting.

To further investigate the overlap and uniqueness
of tasks solved using different retrieval approaches,
Figure 2 is an UpSet plot (Lex et al., 2014) that
illustrates the overlap and uniqueness of model re-
sults using GPT-4o’s result. Though most solutions
are solvable by all approaches, each approach has
uniquely solved tasks. This suggests that retrieval
approaches differ in overall effectiveness and may
capture complementary contextual information.

Model-Specific Solution Diversity. Beyond re-
trieval approaches, we also analyze the distribution
of uniquely solved tasks by each model using the
same context. Figure 3 shows the number of passed
tasks for each commercial LLM and their intersec-
tions in REPOCOD under the RAGDense. Notably,
each model solves a unique set of tasks, highlight-
ing the specialized capabilities of individual mod-
els. Particularly, Claude 3.5 Sonnet and GPT-4o
each have a high number of uniquely solved tasks,
indicating that they each excel at certain tasks.

4.2 Impact of Complexity on Performance

We show the performance of SOTA LLMs neg-
atively correlates with the level of complexities.
We compare three types of complexities: Context
Complexity, Canonical Solution Length, and Cyclo-
matic Complexity levels. We demonstrate the result
in the RAGDense setting.

Context Complexity. Figure 4a details the com-
parison of the evaluation results of SOTA LLMs
for tasks with different context complexities. All
models have the lowest pass@1 when generating
functions with repository-level context compared
to functions with less complex dependencies. The
overall pass rate decreases as the complexity of the

Model Method
Recall Range

0 (0, 0.50] (0.50, 1]

DeepSeek-v2.5 RAGBM25 10.4 10.9 28.8
RAGDense 12.3 11.0 27.2

Claude-3.5 RAGBM25 7.1 4.5 24.7
RAGDense 7.2 8.7 28.3

GPT-4o RAGBM25 20.3 16.4 41.1
RAGDense 16.7 14.2 38.0

GPT-4o-Mini RAGBM25 10.8 7.3 24.7
RAGDense 7.7 9.4 28.3

Table 4: Pass@1 by Recall for RAGBM25 and RAGDense.
Distribution: (BM25: 492/110/73, Dense: 456/127/92).

context level increases.
Cyclomatic Complexity. Figure 4b shows that
LLM performance declines as cyclomatic complex-
ity increases. In the most challenging setting, the
best LLM achieves only a 7.0% pass@1 rate.
Token Length. Figure 4b presents the performance
of LLMs on tasks that require generating functions
of varying token lengths. The pass@1 of the LLMs
gradually decreases as the length complexity of
the functions increases. In the more challenging
scenarios (length > 232), even the top-performing
model, GPT-4o, achieves less than 10% pass@1.

With the highest level of complexities in all three
categories, REPOCOD establishes a new standard
for LLMs in code generation.

4.3 Impact of Recall on Performance
We study the impact of retrieval recall (recall of
target function dependencies) on LLMs’ pass rates
in RAGBM25 and RAGDense. Table 4 presents the
pass@1 performance of LLMs for retrieved content
across different recall rate ranges: 0, (0, 0.5], and
(0.5, 1]. Interestingly, When recall falls within (0,
0.5], model performance is comparable to that with
a 0 recall rate. In contrast, high recall (in range
(0.5,1]) in retrieved content consistently leads to
better model performance, indicating the impor-
tance of retrieving target function dependencies.

4.4 Impact of Context Type on Performance
We compare the three retrieval approaches with
three additional settings using GPT-4o and GPT-
4o-mini in Table 5.

Finding 1: SOTA LLMs underperform on
REPOCOD even with RAGDense-oracle. Despite us-
ing canonical solutions as queries, RAGDense-oracle
only marginally outperforms RAGDense. Further
analysis reveals that, on average, 22.4 of the top
30 retrieved functions (75%) overlap between
RAGDense and RAGDense-oracle , suggesting that
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(a) Pass@1(%) of LLMs across different
context complexities.

(b) Pass@1(%) of LLMs across different
cyclomatic complexities.

(c) Pass@1(%) of LLMs across different
length complexities.

Figure 4: Pass@1 under context complexity and length complexity. Let n represent the number of instances in each
bin. Length complexities distribution:: [0, 66): n=201, [66, 128) : n=194, [128, 232): n=194, [232, 435): n=196,
[435, 4308]: n=195. Cyclomatic complexity distribution (M ): Simple (M ≤ 2): n=269, Moderate (3 ≤ M ≤ 5):
n=211 , Complex (6 ≤ M ≤ 10): n=215, and Very Complex (M ≥ 11): n=285.

Model Method Self File Repo. Overall

GPT-4o-Mini

Baseline 11.5 7.3 2.6 6.2
RAGBM25 22.6 22.0 8.0 15.1
RAGDense 24.3 23.7 6.2 15.0
Current-File 30.5 23.7 9.6 18.7

Callees 27.9 23.7 7.0 16.5
RAGDense-oracle 28.2 24.3 5.2 15.8

GPT-4o

Baseline 23.6 11.3 3.8 11.3
RAGBM25 39.3 31.1 18.7 27.3
RAGDense 44.6 36.7 12.9 27.0
Current-File 39.3 35.0 16.3 26.8

Callees 35.1 31.1 12.2 22.8
RAGDense-oracle 45.2 34.5 16.3 28.6

Table 5: Pass@1 (%) of GPT-4o across context com-
plexities. Self, File, and Repo. refer to Self-Contained,
File-Level and Repository-Level.

task descriptions alone enable effective retrieval
in REPOCOD. This result underscores that even
with an ideal retrieval setup, SOTA LLMs struggle
on REPOCOD tasks, highlighting the limitations of
existing LLMs for real-world coding tasks.

Finding 2: Additional context significantly im-
proves performance for all types of tasks in RE-
POCOD. All settings are better than the Baseline
setting. Even for self-contained tasks, the inclusion
of 1,024 prefix tokens (Callees setting) improves
the pass@1 result, suggesting that additional con-
text—beyond just the task description—improves
generation performance.

Finding 3: Dependency-based context is sub-
optimal. The Callees setting is comparable to
RAGBM25 and RAGDense but does not consistently
outperform them. Across all complexity levels,
it lags behind the Current-File setting. This indi-
cates that solely using dependencies is not ideal for
repository-level code generation. Combined with
the findings from Section 4.3, future work should
aim for retrieving contents with a high recall of the
target function’s dependencies while maintaining
high similarity to the task description.
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Figure 5: Models’ pass@1 against syntax error rate in
different retrievals. Each pair of model and retrieval
approach is represented as a dot.

4.5 Failure Reasons

We compute the ratio of syntax errors as the pro-
portion of tasks with syntax errors among all failed
samples and present the results of all combinations
of models (10 models) and retrieval approaches in
Figure 5. Results show that the Current-File setting
leads to a higher syntax error ratio, and models
with a higher syntax error ratio tend to achieve
lower Pass@1 performance. For RAGBM25 and
RAGDense methods, the syntax error ratio remains
below 25%, suggesting that LLMs are less likely
to produce syntax errors when leveraging these
retrieval strategies.

We study GPT-4o’s failures on 30 randomly
sampled tasks and find two primary failure rea-
sons. First, LLM-generated functions frequently
lack sufficient input validation and parameter han-
dling, such as ignoring or improperly transforming
input values, leading to errors when processing un-
expected inputs or misusing function arguments.
Second, incorrect or incomplete implementation
of core logic leads to deviations from the intended
functionality, including selecting suboptimal com-
putational methods, mismanaging object states, or
misapplying parallel processing strategies. We pro-
vide case studies in the Appendix A.7.1.
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5 Related Work

5.1 LLMs for Code

LLMs have been widely used for code-related tasks,
among which code generation is the most important
and common task (Achiam et al., 2023; Li et al.,
2023b; Lozhkov et al., 2024; Nijkamp et al., 2023;
Rozière et al., 2024; Guo et al., 2024; Luo et al.,
2024). Existing work has shown an impressive
ability to generate self-contained programs.

However, the performance of LLMs for code
generation within the context of repositories re-
mains underexplored. Despite the use of retrieval-
augmented generation (RAG) to retrieve relevant
context from the repository (Ding et al., 2023;
Zhang et al., 2024; Wu et al., 2024a), generating
code within the context of the repositories remains
more challenging and yields lower accuracy com-
pared to generating self-contained code.

5.2 Code Generation Benchmarks

Code generation benchmarks are important for
evaluating LLMs’ ability to generate code. Self-
contained benchmarks (Hendrycks et al., 2021; Li
et al., 2022; Xia et al., 2024; Liu et al., 2023) are
unable to evaluate LLMs’ capability to generate
code for real-world projects.

A few repository-level code generation bench-
marks have been developed. Concode (Iyer et al.,
2018) represents an early approach in this domain,
focusing on repository-level code generation eval-
uated through similarity-based metrics rather than
the test-based metrics used in REPOCOD. Cross-
CodeEval (Ding et al., 2023), RepoBench (Liu
et al., 2024), and Long-Code-Arena (Bogomolov
et al., 2024) are benchmarks collected from GitHub
projects. They consist of tasks generating a single
line of code given the incomplete code snippets
and repository context. As discussed in the intro-
duction, they share two limitations: (1) their target
code is limited to single-line outputs, and (2) they
rely on similarity-based evaluation metrics.

Other benchmarks, such as CoderEval (Zhang
et al., 2024), RepoEval (Zhang et al., 2023), R2E-
Eval1, EvoCodeBench (Li et al., 2024a) and DevE-
val(Li et al., 2024b) consists of function generation
tasks in Python and/or Java tasks collected from
GitHub repositories. However, they fall short in
terms of task complexity and scale. For example,
they utilize repositories with limited size, fewer
than 243 files on average, significantly smaller than
widely-used repositories such as scikit-learn (1,640

files by REPOCOD’s collected date).

There is also contemporary work such as SWE-
Gym (Pan et al., 2024), which also engages with
code at the repository level. However, its primary
focus is on training agents for issue fixing, dis-
tinguishing it from the code generation emphasis
of the benchmarks previously discussed and the
objective of REPOCOD.

In contrast, REPOCOD combines complex real-
world tasks (analyzed in Section 2.3) from the
most popular Python repositories with rigorous
test-based assessments and consists of 980 code
generation tasks that require LLMs to write large
functions instead of single-line snippets, aligning
model evaluation with the expectations of modern
software development.

Version-Aware Code Generation Benchmarks.
Recognizing the dynamic nature of software, an-
other line of benchmarks specifically addresses API
version evolution, a factor that can significantly
influence code generation performance. LibEvolu-
tionEval (Kuhar et al., 2025) focuses on version-
specific in-line code completion and documentation
retrieval across library versions. GitChameleon (Is-
lah et al., 2024) provides manually curated Python
problems with executable unit tests, conditioned
on specific library versions to assess functional ac-
curacy. CodeUpdateArena (Liu et al., 2025) uses
synthetic API updates to evaluate knowledge edit-
ing in LLMs, testing if models can apply updates
without in-context documentation. VersiCode (Wu
et al., 2024b) introduces tasks where models must
complete code for a specific library version or up-
date code to a different version. It uses a large,
diverse dataset and its novel ’Critical Diff Check’
metric, designed to specifically assess correct API
usage across versions.

While the evolving nature of library versions
and its impact on code generation is an impor-
tant consideration, REPOCOD and the aforemen-
tioned version-focused benchmarks evaluate differ-
ent facets of this challenge. They primarily target
the effect of package versions on LLMs’ code gen-
eration ability, often through simpler tasks such
as token/line level completions, specific API up-
dates, or less complex function generation. In con-
trast, REPOCOD evaluates LLMs’ ability to solve
complex tasks requiring a deep understanding of
repository-level context.
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5.3 Automated Test Collection Pipelines
Various approaches have been proposed for col-
lecting benchmarks with repository-level task in-
stances (Zhang et al., 2024, 2023; Jain et al., 2024;
Li et al., 2024b). RepoEval executes all tests in the
repositories but is impractical for popular reposi-
tories due to the sheer volume of test cases. R2E-
Eval1, on the other hand, uses LLMs to generate
equivalence tests. However, this strategy lacks veri-
fication of the correctness of the test cases, limiting
its reliability for trustworthy evaluations.

The most comparable approach to ours is pro-
posed in CoderEval, which employs static analysis
to identify test cases that reach the target function
and supplements them with manually curated test
cases. While this approach works for small repos-
itories, it is neither scalable—since it requires hu-
man effort—nor does it fully utilize the test cases
provided by developers, as static analysis cannot
capture all dependencies.

In contrast, our approach uses dynamic analysis
to automatically identify test cases from existing
developer tests. This execution-based approach is
more scalable and is better suited for leveraging
existing developer-provided test cases in popular
repositories. Additional details on our data collec-
tion pipeline are provided in Section 2.1.

6 Conclusion

We present REPOCOD, a real-world, complex
dataset designed for code generation tasks with
repository-level context. REPOCOD comprises 980
instances from 11 popular Python repositories, in-
cluding 498 that require repository-level context,
with canonical solutions averaging 331 tokens in
length—highlighting the benchmark’s complexity
and comprehensiveness. In addition, We intro-
duce a scalable automatic extraction method for
collecting repository-level code generation tasks.
Our evaluation of SOTA LLMs on REPOCOD re-
veals a maximum pass@1 of 28.6%, with even
lower scores for functions requiring repository-
level context, showing that existing LLMs fall short
of generating realistic repository-level code. This
work underscores the need for further research in
repository-level code generation.

7 Limitation

Our work has limitations. First, we collect data
from only 11 repositories, covering a small subset
of those that could be included in this benchmark;

future versions of REPOCOD will expand to other
popular Python repositories. Second, we evaluate
only ten models, representing a subset of popular
LLMs. With more time and resources, we could
test a broader range, providing a more comprehen-
sive view of LLM capabilities in repository-level
code generation. We will publish REPOCOD so the
community can evaluate additional models, broad-
ening the scope of tested LLMs.
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A Appendix

A.1 Basic Statistics of REPOCOD

REPOCOD contains 980 code generation tasks from
11 widely-used repositories, covering a wide range
of functionalities, including data science, scientific
computing, web development, and software devel-
opment tools.

Table 6 presents detailed statistics for instances
from each repository, categorized by context com-
plexity types: repository-level, file-level, and self-
contained. For each category, it shows #NL (num-
ber of tokens in target function descriptions), #GT
(number of tokens in canonical solutions), Cyclo.
(average cyclomatic complexity of the canonical
solution) (McCabe, 1976)), and #Funcs. (number
of target functions). Additionally, we report reposi-
tory statistics: #Line (average lines in Python files
per repository) and #Files (average Python files per
repository).

We define three types of context complexities:
Repository-level involves canonical solutions that
call functions from other files in the repository; file-
level involves calls to functions within the same
file (excluding the target function) but not from
other files; and self-contained includes functions
that only use commonly used libraries (e.g., numpy)
or Python built-in modules (e.g., os).

Among the three settings, the repository-level
functions have the longest token length for the
canonical solutions (441.2), compared to file-level
functions (192.0) and self-contained functions
(233.8). Additionally, the repository-level func-
tions have the highest cyclomatic complexity (10.8)
compare to other two categories. The highest
length and cyclomatic complexity with the adddi-
tional repository-level context makes repository-
level the most challenging category.

A.2 Motivating Example

Figure 6 (a) shows two RepoBench examples where
LLM-generated code is semantically correct but
wrongly penalized by CodeBLEU, edit similarity,
and exact match. In contrast, Figure 6 (b) demon-
strates how these metrics assign high scores to in-
correct solutions, underscoring their limitations in
accurately evaluating generated code.

A.3 Prompting Format

As described in Section 2.2, the data instance of
REPOCOD consists of the repository snapshot, tar-
get function signature, and docstring. Figure 7

image_paths = [ip for ip in image_paths
       if is_valid_image(ip)]

CodeBLEU: 58.06 Edit Similarity: 85 

self.up2 = UpSampleBN(skip_input = 1024 + 64,
      output_features = 512)

self.up2 = UpSampleBN(skip_input = 1024 + 176,
      output_features = 512)

CodeBLEU: 76.86 Edit Similarity: 98 

(a): Semantic equivalent code snippet with low score

(b): Incorrect code snippet with high score

Exact Match: False

Exact Match: False

image_paths = [image_path for image_path in image_paths
       if is_valid_image(image_path)]

GT:

LLM:

GT:

LLM:

Figure 6: Two examples from RepoBench showing mis-
leading metrics results. The yellow and blue highlights
indicate the difference between ground truth (GT) and
the LLM-generated code.

demonstrates an example of the prompt construc-
tion process, the format of the prompt, and the
evaluation pipeline used for all our experiments.

The section highlighted in green represents the
data instance of REPOCOD (step 1⃝). The format
of the prompt is detailed in the section highlighted
in blue (step 2⃝). Our prompt consists of the system
prompt, the file path to the target function (relative
to the repository root), the retrieval context, and the
target function description (the function signature
and docstring of the target function). The retrieval
context contains the relative file path, as well as
the signature, the docstring, and the body of the
retrieved functions. If the context exceeds LLM’s
context window, we truncate it from the beginning.

Once the LLM generates the solution (step 3⃝),
the code snippet is inserted into the repository for
testing (step 4⃝, modified file highlighted in blue).
Then REPOCOD executes the relevant test cases
(step 5⃝) and determines the correctness of the so-
lution (step 5⃝). As one of the test cases fails, this
generated code snippet is considered incorrect.

A.4 Evaluation Result By Repository

Table 7 presents detailed LLM performance on
REPOCOD, revealing several key insights. First,
repositories differ significantly in difficulty. Mod-
els perform well on flask, with pass@1 often
above 40% , indicating an alignment with LLM
capabilities. Second, GPT-4o is the strongest
LLM on REPOCOD, consistently outperforming
or matching other models across all repositories.
Finally, LLMs exhibit specialization across repos-
itories. For instance, while Claude 3.5 Sonnet
and DeepSeekCoder-33B perform similarly overall,
Claude excels on pylint, whereas DeepSeekCoder
performs better on plotly.py.
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Dataset
Repository-level File-level Self-contained Total

#NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs.

astropy 360.6 447.9 10.5 51 404.1 195.7 4.9 14 227.6 238.2 5.9 20 336.5 357.0 8.5 85
datasets 499.7 348.7 9.6 19 292.3 168.8 5.1 18 312.5 128.9 3.1 22 366.6 211.9 5.8 59
flask 277.9 171.9 5.2 8 356.1 160.4 5.2 10 233.0 88.6 3.5 25 270.0 120.8 4.2 43
more-itertools 224.6 70.2 2.6 8 293.4 127.0 4.0 18 243.2 105.2 5.1 60 252.0 106.5 4.6 86
plotly.py 1,357.3 1373.9 37.0 15 1,337.3 356.0 7.9 7 1,687.3 590.5 24.3 54 1,589.9 723.5 25.3 76
pylint 180.9 386.2 14.0 9 163.9 272.3 7.1 7 169.8 178.9 8.0 10 172.0 275.8 9.8 26
scikit-learn 217.9 372.1 7.2 237 299.7 294.9 5.6 27 212.8 237.1 5.5 50 224.1 344.0 6.8 314
seaborn 230.8 538.8 15.0 13 272.7 168.0 4.8 38 163.3 201.1 5.7 27 227.9 241.3 6.8 78
sphinx 201.1 548.4 15.4 14 228.0 240.8 5.5 4 274.1 88.1 3.9 15 237.5 301.9 8.9 33
sympy 874.7 603.4 17.8 67 821.3 182.7 6.5 14 962.4 138.7 4.6 16 881.5 466.0 14.0 97
xarray 791.5 366.9 10.7 57 731.6 102.1 2.8 20 306.2 114.3 2.3 6 742.0 284.8 8.2 83

Average 431.9 441.2 10.8 498 428.1 192.0 5.0 177 528.0 233.8 8.3 305 461.1 331.6 9.0 980

Table 6: Basic statistics of REPOCOD, with details broken down by each collected repository.

Repository Snapshot
more-itertools:
├── more_itertools
│   ├── __init__.py
│   ├── more.py
│   ├── recipes.py
│   └── ...
├── README.rst
...

Target Function
more-itertools:
  more_itertools:
    more.py:partitions

Relevant Tests
test_more.py::
  PartitionsTest::
    test_duplicates
    test_order ...

       Prompt        LLM Output

more-itertools:
├── more_itertools
│   ├── __init__.py
│   ├── more.py
│   ├── recipes.py
│   └── ...
├── README.rst
...

test_more.py
  ::PartitionsTest
    ::test_order
Error: "AssertionError:
  Lists differ: ..."

       Insert Completion        Evaluation Result

more.py

       RepoCod Task

Context Retrieval

You will be provided a function signature and the documentation,
your task is to complete the function body...

These are a list of files that contain the related classes 
and functions for you to refer to.

## File path: more_itertools/more.py
def set_partitions(iterable, k, min_size=None, max_size=None): ...

## File path: more_itertools/recipes.py
def partition(pred, iterable): ...

This is the file containing the target function to be generated.

## File path: more_itertools/more.py
### Target function to complete
def partitions(iterable):
    """ Yield all possible order-preserving 
        partitions of *iterable*.
    >>> iterable = 'abc'
    >>> for part in partitions(iterable):
            print([''.join(p) for p in part]) ...
    """

    iterable = list(iterable)
    n = len(iterable)
    def generate_partitions(start=0):
        if start == n:
            yield []
            return
        for end in range(start + 1, n + 1):
            for rest in generate_partitions(end):
                yield [iterable[start:end]] + rest
    yield from generate_partitions()

LLM Generation

Test Cases Execution
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Figure 7: Illustrative example of prompting LLMs and evaluating the LLM-generated code.

A.5 Recall of Retrieval approach

Table 8 presents the recall rates of two
different retrieval settings—RAGBM25 and
RAGDense—applied across all selected repositories.
These repositories include pylint, sphinx, seaborn,
flask, sympy, more-itertools, scikit-learn, xarray,
datasets, plotly.py, and astropy. The recall rates
reflect performance at both the repository-level
and file-level contexts, providing insights into how
each setting performs for individual repositories as
well as overall.

The recall rates for RAGDense retrieval are gener-
ally higher than those for RAGBM25 retrieval across
most repositories, highlighting the effectiveness
of the RAGDense method in retrieving the invoked
functions relevant to the target function.

There are notable variations between reposito-
ries. For instance, more-itertools and plotly.py

show significantly higher recall rates with the
RAGDense setting, while scikit-learn demonstrates
relatively low recall rates in both settings.

The total recall rate is computed using micro-
averaging, and the result shows that neither re-
trieval method achieves a high recall for the oracle
contexts.

A.6 Inference Length V.S. GT length

We analyze the relationship between inference
length and the length of canonical solutions across
all retrieval settings. Table 9 reports the average
inference-to-canonical solution length ratio using
micro-averaging. On average, LLM-generated
results are much longer than canonical solu-
tions.

We further investigate the causes of excessive
generation length and summarize the following con-
tributing factors:

Firstly, it is common for those underperforming
LLMs to generate repetitive code snippets until
they reach the token limit.

Secondly, despite being instructed to generate
only the target function, LLMs sometimes produce
additional functions, resulting in longer outputs.
One contributing factor is that when models ref-
erence functions not retrieved in the context, they
generate the missing helper function definitions,
further inflating the output length.

To address this, we apply a filtering method that
retains only the first unnested function in the gen-
erated output. Specifically, we discard all gener-
ated tokens following the first complete function
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Setting pylint sympy sphinx seaborn flask more-itertools scikit-learn xarray datasets plotly.py astropy Total

CodeLlama-7B 7.69 7.22 9.09 23.08 37.21 13.95 5.10 6.02 22.03 6.58 5.88 10.41
CodeLlama-34B 0.00 4.12 18.18 21.79 32.56 24.42 5.73 16.87 18.64 14.47 10.59 12.76
DeepSeekCoder-6.7B 7.69 6.19 15.15 26.92 41.86 12.79 6.37 16.87 16.95 25.00 14.12 14.08
DeepSeekCoder-33B 3.85 7.22 27.27 28.21 37.21 11.63 7.32 15.66 33.90 43.42 16.47 17.14
OpenCodeInterpreter-6.7B 3.85 4.12 12.12 16.67 41.86 18.60 6.37 10.84 16.95 21.05 12.94 12.45
OpenCodeInterpreter-33B 11.54 7.22 21.21 20.51 41.86 29.07 8.28 13.25 25.42 23.68 16.47 16.33

Claude 3.5 Sonnet 19.23 11.34 15.15 25.64 39.53 38.37 6.05 9.64 27.12 36.84 10.59 17.45
DeepSeek-V2.5 15.38 13.40 27.27 30.77 41.86 36.05 9.87 16.87 30.51 35.53 16.47 20.71
GPT-4o-Mini 11.54 11.34 15.15 25.64 39.53 18.60 6.05 10.84 33.90 25.00 9.41 15.00
GPT-4o 19.23 15.46 27.27 37.18 58.14 43.02 13.69 24.10 47.46 44.74 23.53 27.04

Table 7: Pass@1(%) of LLMs on REPOCOD under RAGDense retrieval, with details shown for each repository.

Repository RAGBM25 RAGDense

pylint 0.14 0.18
sympy 0.16 0.14
sphinx 0.09 0.11
seaborn 0.17 0.21
flask 0.11 0.20
more-itertools 0.05 0.10
scikit-learn 0.09 0.07
xarray 0.07 0.15
datasets 0.21 0.24
plotly.py 0.02 0.11
astropy 0.17 0.15

Total 0.12 0.15

Table 8: Recall rate of the top three and top ten retrieved
contents across retrieval settings for repository-level and
file-level contexts.

Models
RAGBM25 RAGDense Current-File

Pass Fail Pass Fail Pass Fail

CodeLlama-7B 18.2 11.6 9.1 11.9 30.4 22.3
CodeLlama-34B 1.8 15.2 1.9 11.5 22.5 34.5
DeepSeek-6.7B 2.2 9.6 7.0 5.7 20.0 13.1
DeepSeek-33B 8.2 7.4 8.4 3.9 17.9 26.5
OCI-6.7B 2.3 2.5 3.5 2.8 2.5 1.8
OCI-33B 2.4 1.7 2.1 1.5 2.3 1.3

Claude-3.5 19.2 1.7 25.5 1.7 9.8 7.0
DeepSeek-v2.5 7.3 6.4 8.0 7.6 3.6 1.7
GPT-4-Mini 4.0 1.9 4.9 1.8 12.1 1.5
GPT-4 1.7 1.5 1.7 1.5 2.5 1.2

Table 9: Ratio of generation length over canonical solu-
tion length

that matches the target function name. Table 10
presents the average filtered inference-to-canonical
solution length ratio using micro-averaging. We
make two key observations: (1) Failed generations
consistently exhibit longer relative lengths after
filtering, particularly in Current-File retrieval set-
tings, suggesting that verbosity may correlate with
incorrect solutions. (2) LLMs consistently generate
longer code snippets than human developers, even
when only the first unnested function is considered,
indicating a systematic tendency toward verbosity.

Model-Specific Insights.
GPT-4o exhibits similar generation ratios be-

fore and after filtering, suggesting it adheres more
closely to the task instructions and avoids unneces-
sary verbosity.

Models
RAGBM25 RAGDense Current-File

Pass Fail Pass Fail Pass Fail

CodeLlama-7B 0.9 1.7 1.0 1.7 1.0 1.8
CodeLlama-34B 0.9 1.5 0.8 1.4 0.9 1.5
DeepSeek-6.7B 1.0 1.6 0.9 1.4 0.9 1.8
DeepSeek-33B 0.8 1.8 1.0 1.7 0.9 1.9
OCI-6.7B 1.6 2.1 2.8 2.4 1.7 1.5
OCI-33B 1.7 1.2 1.4 1.1 1.4 1.0

Claude-3.5 1.4 1.4 1.6 1.4 1.4 2.1
DeepSeek-v2.5 1.2 1.2 1.1 1.3 1.0 1.4
GPT-4-Mini 1.4 1.1 1.5 1.0 9.1 1.0
GPT-4 1.3 1.3 1.3 1.1 0.9 1.0

Table 10: Ratio of filtered generation length over canon-
ical solution length.

Model Retrieval
# of Dependencies

0 1 2 [3,4] [5,35]

DeepSeek-v2.5
RAGBM25 31.8 22.1 14.2 7.1 5.7
RAGDense 35.4 28.4 14.2 6.0 6.2
Current-File 42.6 31.1 22.0 17.3 9.1

Claude-3.5
RAGBM25 27.2 18.9 9.9 2.4 2.3
RAGDense 33.1 22.6 12.8 4.8 0.6
Current-File 25.2 28.4 16.3 14.9 8.5

GPT-4-Mini
RAGBM25 22.6 20.5 14.9 6.0 5.1
RAGDense 24.3 21.1 13.5 5.4 2.8
Current-File 30.5 23.2 14.9 8.9 5.7

GPT-4
RAGBM25 39.3 32.6 22.7 16.7 14.8
RAGDense 44.6 36.3 16.3 12.5 9.1
Current-File 39.3 33.7 24.1 16.1 10.2

Table 11: Pass Rate by Number of dependencies, binned
by the number of unique dependencies. The bins are dis-
tributed as follows: 0 (305 instances), 1 (190 instances),
2 (141 instances), [3,4] (168 instances), and [5,35] (176
instances).

Claude-3.5 shows an inverse trend, where suc-
cessful generations tend to be longer than failed
ones (e.g., RAGDense: Pass = 25.5 vs. Fail = 1.7).
This suggests that Claude-3.5 generates and utilizes
helper functions effectively, which may contribute
to its success.

A.6.1 Detailed context complexity’s impact on
Performance

Table 11 demonstrates the relationship between
pass@1 and the detailed context complexity ( num-
ber of unique dependencies) present in the context.
Across all models, performance declines as the
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You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user
instructions. You will be provided a function signature and the

documentation, and your task is to complete the function body. The
target function is in a large project, so it may use the classes
or functions defined in the project to complete the target
function.

These are a list of files that contain the related classes and
functions for you to refer to.
## File path: sklearn/svm/_classes.py

���python
def fit(self, X, y=None, sample_weight=None): 

...
���

## File path: sklearn/cluster/_kmeans.py

���python
class MiniBatchKMeans:

    def fit(self, X, y=None, sample_weight=None):
"""Compute the centroids on X...
"""
X = validate_data(self, ...)
return

...

class _BaseKMeans:
def score(self, X, y=None, sample_weight=None):
...

def fit_transform(self, X, y=None, sample_weight=None):
...
def fit_predict(self, X, y=None, sample_weight=None):
...

���

This is the file that contains the target function.
## File path: sklearn/cluster/_kmeans.py

### Target function to complete

���python

    def fit(self, X, y=None, sample_weight=None):
"""Compute k-means clustering.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, 

n_features)

        Training instances to cluster. It must be noted that the 
data will be converted to C ordering, which will cause a
memory copy if the given data is not C-contiguous. If a
sparse matrix is passed, a copy will be made if it's not 

        in CSR format.
...

Returns
-------
self : object

Fitted estimator.
"""

���

You must only complete the target function `KMeans.fit` and do not
generate any comments or explanation or other functions. 

You must not leave the target function as `not implemented` or
`pass`.
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Figure 8: Prompt Example for KMeans.fit in the file
“sklearn/cluster/_kmeans.py” from REPOCOD.

number of dependencies increases, highlighting
the growing challenge posed by more complex con-
textual requirements. For instance, DeepSeek-v2.5
with the BM25 retriever achieves a 31.8% pass rate
when no dependencies are involved, but this drops
to 5.7% when the number of dependencies reaches
[5,35].

Notably, retrieval strategies significantly im-
pact performance; models using the Current-File
retrieval generally perform better for moderate
dependency counts (e.g., DeepSeek-v2.5 achiev-
ing 17.3% at [3,4]), suggesting that partial in-
file context remains beneficial before complexity
outweighs retrieval effectiveness. However, even
strong retrieval strategies cannot fully mitigate the
difficulty of handling a high number of dependen-
cies, reinforcing the intuition that increasing con-

text complexity directly correlates with reduced
task success.

A.7 Case Studies

Prompt Example. Figure 8 shows an exam-
ple of a REPOCOD prompt, consisting of the
system prompt, context information retrieved by
RAGBM25, and the target function details, with spe-
cific content replaced by ‘...’.

Passed Example. Figure 9 shows an example of a
correctly generated solution from REPOCOD gener-
ated by GPT-4o under a RAGDense retrieval setting.
This example passes all test cases and is considered
correct. Upon inspection, the generated code snip-
pet is identical to the canonical solution except for
the text content in the exception message.

A.7.1 Failed Examples
Figure 10 shows an example of an incorrect solu-
tion generated by GPT-4o under RAGBM25 retrieval
setting. The target function _set_order is designed
to change the order of training data (X) and target
values (y). The canonical solution validates order

is one of [None, "C", "F"], raising a ValueError
if an invalid value is provided. However, for the
generated code, it does not validate order, which
might cause unexpected behavior when order is
incorrectly specified.

In addition, the canonical solution maintains
proper sparse matrix handling by explicitly check-
ing X and y before conversion, while the gener-
ated code can lead to errors if y is sparse, since
np.ascontiguousarray() and np.asfortranarray() do
not support sparse matrices.

Figure 11 shows another example of an in-
correctly generated solution by GPT-4o under
RAGBM25 retrieval setting. The canonical solution
incorporates repository-level context; however, the
solution generated by GPT-4o fails to match the
functionality of the canonical solution. Specifically,
the incorrect solution miscomputes the posterior
mean by using an incorrect formulation for the co-
variance of the latent variables.

A.8 Uniqueness and Overlap of Correct
Generations

Commercial LLMs with RAGBM25. Figure 12a
presents the UpSet plot comparing the performance
of four commercial models using contexts from
RAGBM25 retrieval, the largest overlap (more than
40) is shared by all models, indicating a significant
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Target Function Description
    if self.nterms != 1:
        raise NotImplementedError(
            "false alarm probability is not implemented for "

    "multiterm periodograms."
        )
    if not (self.fit_mean or self.center_data):
        raise NotImplementedError(
            "false alarm probability is implemented "
            "only for periodograms of centered data."
        )

    fmin, fmax = self.autofrequency(
        samples_per_peak=samples_per_peak,
        nyquist_factor=nyquist_factor,
        minimum_frequency=minimum_frequency,
        maximum_frequency=maximum_frequency,
        return_freq_limits=True,
    )
    return _statistics.false_alarm_probability(
        power,
        fmax=fmax,
        t=self._trel,
        y=self.y,
        dy=self.dy,
        normalization=self.normalization,
        method=method,
        method_kwds=method_kwds,
    )

    if self.nterms != 1:
        raise NotImplementedError(
            "false alarm level is not implemented for "
            "multiterm periodograms."
        )
    if not (self.fit_mean or self.center_data):
        raise NotImplementedError(
            "false alarm level is implemented "
            "only for periodograms of centered data."
        )

    fmin, fmax = self.autofrequency(
        samples_per_peak=samples_per_peak,
        nyquist_factor=nyquist_factor,
        minimum_frequency=minimum_frequency,
        maximum_frequency=maximum_frequency,
        return_freq_limits=True,
    )
    return _statistics.false_alarm_probability(
        power,
        fmax=fmax,
        t=self._trel,
        y=self.y,
        dy=self.dy,
        normalization=self.normalization,
        method=method,
        method_kwds=method_kwds,
    )

Canonical Solution

LLM Solution

def false_alarm_probability(
    self,
    power,
    method="baluev",
    samples_per_peak=5,
    nyquist_factor=5,
    minimum_frequency=None,
    maximum_frequency=None,
    method_kwds=None,
):
    """False alarm probability of periodogram maxima under the null 
    hypothesis.

    This gives an estimate of the false alarm probability given the 
    height of the largest peak in the periodogram, based on the null 
    hypothesis of non-varying data with Gaussian noise.

    Parameters
    ----------
    power : array-like
    The periodogram value.
    method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional
    The approximation method to use.
    maximum_frequency : float
    The maximum frequency of the periodogram.
    method_kwds : dict, optional
    Additional method-specific keywords.

    Returns
    -------
    false_alarm_probability : np.ndarray
    The false alarm probability

    Notes
    -----
    The true probability distribution for the largest peak cannot be
    determined analytically, so each method here provides an 
    approximation to the value. The available methods are:

    - "baluev" (default): the upper-limit to the alias-free probability,
    using the approach of Baluev (2008) [1]_.
    - "davies" : the Davies upper bound from Baluev (2008) [1]_.
    - "naive" : the approximate probability based on an estimated
    effective number of independent frequencies.
    - "bootstrap" : the approximate probability based on bootstrap
    resamplings of the input data.

    Note also that for normalization='psd', the distribution can only be
    computed for periodograms constructed with errors specified.

    See Also
    --------
    distribution
    false_alarm_level
    
    References
    ----------
    .. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
    """

Figure 9: An example of the correct output generated by LLMs, for function “false_alarm_probability” in the file
“astropy/timeseries/periodograms/lombscargle/core.py” from REPOCOD.

degree of commonality. GPT-4o has the highest
number of unique cases (over 60), suggesting its
ability to capture distinct results in this scenario.

Commercial LLMs with Current-File. Figure 12b
shows the Current File retrieval setting result. The
overlap between all models increases greatly com-
pared to the RAGBM25 retrieval (to over 75 cases),
demonstrating stronger alignment across models
with this retrieval setting. In addition, the unique
solvable problem by GPT-4o reduces greatly, to a
similar level compared to Claude 3.5 Sonnet and
DeepSeek-V2.5.

A.9 Impact of Retrieval Methods on Pass@1
across Varying Context Complexities

Figure 13a and Figure 13b illustrate the pass@1 for
instances across various context complexities under
different retrieval settings: RAGBM25 and current
file. In both settings, LLM performance tends to
decrease as context complexity rises, progressing

from self-contained to file-level and eventually to
repository-level contexts. This trend aligns with
the insights discussed in Section 4.2.

An interesting finding is that GPT-4-o achieves a
higher pass@1 rate for instances under repository-
level context complexity compared to file-level
instances. This observation suggests two po-
tential insights: (1) specific retrieval methods,
like RAGBM25, may enhance performance on
repository-level task instances; (2) higher context
complexity does not necessarily result in reduced
LLM performance.

A.10 REPOCOD-LITE

Given the large number of instances and the high
evaluation cost of REPOCOD, we introduce RE-
POCOD-LITE—a 200 sample subset of the most
challenging problems in REPOCOD—enabling
faster and more targeted evaluation. We define
difficulty based on the product of the prompt
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def _set_order
    """Change the order of X and y if necessary.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Target values.

    order : {None, 'C', 'F'}
        If 'C', dense arrays are returned as C-ordered, 

sparse matrices in csr format.
If 'F', dense arrays are return as F-ordered, 
sparse matrices in csc format.

    Returns
    -------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data with guaranteed order.

    y : ndarray of shape (n_samples,)
        Target values with guaranteed order.
    """

if sparse.issparse(X):
    if order == "C":
        X = X.tocsr()
    elif order == "F":
    X = X.tocsc()
else:
    X = np.ascontiguousarray(X, dtype=X.dtype) if order == "C"
else np.asfortranarray(X, dtype=X.dtype)
y = np.ascontiguousarray(y, dtype=y.dtype) if order == "C" else
np.asfortranarray(y, dtype=y.dtype)
return X, y

if order not in [None, "C", "F"]: 
    raise ValueError("Unknown value for order. 
    Got {} instead of None, 'C' or 'F'.".format(order)) 
sparse_X = sparse.issparse(X) 
sparse_y = sparse.issparse(y) 
if order is not None: 
    sparse_format = "csc" if order == "F" else "csr" 
if sparse_X:
    X = X.asformat(sparse_format, copy=False)
else:
    X = np.asarray(X, order=order)
if sparse_y:
    y = y.asformat(sparse_format)
else:
    y = np.asarray(y, order=order)
return X, y

Instance path:
sklearn/linear_model/_coordinate_descent.py

Target Function Description: Canonical Solution

LLM Solution

Figure 10: A failed case study, for function ‘_set_order’ in the file
‘sklearn/linear_model/_coordinate_descent.py’ from REPOCOD.

def transform(self, X):
    """Apply dimensionality reduction to X using the model.

    Compute the expected mean of the latent variables. 
    See Barber, 21.2.33 (or Bishop, 12.66).

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features) Training data.

    Returns
    -------
    X_new : ndarray of shape (n_samples, n_components). 
    The latent variables of X.
    """

    check_is_fitted(self)
    X = validate_data(self, X, dtype=[np.float64, 

      np.float32], reset=False)
    # Compute the expected mean of the latent variables
    precision = np.linalg.inv(self.noise_variance_ * 

      np.eye(self.components_.shape[0]) + 
                self.components_.T @ self.components_)
    X_new = (X - self.mean_) @ self.components_.T @ precision

    return X_new

    check_is_fitted(self)
    X = validate_data(self, X, reset=False)
    Ih = np.eye(len(self.components_))
    X_transformed = X - self.mean_
    Wpsi = self.components_ / self.noise_variance_
    cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
    tmp = np.dot(X_transformed, Wpsi.T)
    X_transformed = np.dot(tmp, cov_z)
    return X_transformed

Repository-Level Contexsts:
check_is_fitted sklearn/utils/validation.py
validate_data sklearn/utils/validation.py

Target Function Description: Canonical Solution

LLM Solution

Figure 11: An example of the wrong output generated by LLMs, for function “transform” in the file
“sklearn/decomposition/_factor_analysis.py” from REPOCOD.

length and canonical solution length (measured
in lines of code), selecting samples with the high-
est scores. REPOCOD-LITE maintains the original
benchmark’s diversity by including problems from
all three categories: self-contained, file-level, and
repo-level, with 66, 67, and 67 samples, respec-
tively. This subset enables efficient model evalua-
tion while preserving the complexity of the coding
tasks found in the full benchmark. We show the
details of REPOCOD-LITE in Table 13. The per-
formance of models on REPOCOD-LITE is shown
in Table 12. The SOTA models’ performance is
consistently lower on REPOCOD-LITE compared
to that on REPOCOD.

Models RAGBM25 RAGDense Current-File

CodeLlama-7B 1.0 1.5 1.0
CodeLlama-34B 2.5 2.0 1.0
DeepSeek-6.7B 2.5 2.0 0.5
DeepSeek-33B 4.0 3.5 2.5
OpenCodeInterpreter-6.7B 1.0 5.0 1.5
OpenCodeInterpreter-33B 4.0 6.0 5.5

Claude-3.5 2.5 3.0 2.5
DeepSeek-v2.5 4.0 7.5 5.5
GPT-4o-Mini 8.0 6.5 2.5
GPT-4o 9.0 8.5 4.5

Table 12: Pass@1(%) of SOTA LLMs on REPOCOD-
LITE.

A.11 OpenHands’s Result on
REPOCOD-LITE

To further explore the performance of advanced
code generation approaches on REPOCOD and ad-
dress the applicability of our benchmark to code
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(a) Result for RAGBM25.
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(b) Result for Current-File.

Figure 12: Correct generation result’s relationship under different retrieval settings.

SelfContained FileLevel RepositoryLevel

5

10

15

20

25

30

35

P
a
s
s
@
1

Comparison for Context Complexities
CodeLlama7B

CodeLlama34B

DeepSeekCoder6.7B

DeepSeekCoder33B

OpenCodeInterpreter6.7B

OpenCodeInterpreter33B

Claude 3.5 Sonnet

DeepSeekV2.5

GPT4oMini

GPT4o
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(b) Pass@1(%) for LLMs based on current file retrieval.

Figure 13: Pass@1 under different context complexity.

agents, we conducted additional experiments using
OpenHands, a leading open-source agent frame-
work. For this evaluation, we utilized REPOCOD-
LITE

In our experiments, OpenHands, when paired
with Claude-3.5 Sonnet as its underlying model,
successfully solved 11 out of 200 tasks (5.5%
Pass@1) in a single generation round. This result
represents an improvement over the performance
of Claude-3.5 Sonnet with standard Retrieval-
Augmented Generation (RAG) approaches on RE-
POCOD-LITE.

However, despite this improvement, OpenHands
with Claude-3.5 Sonnet still underperformed the
best RAG-based result (GPT-4o achieving 9.0%
Pass@1 with RAGBM25).

These preliminary findings suggest that while
current agentic approaches like OpenHands can
offer incremental performance gains on complex,
repository-level code generation tasks, they still
face significant challenges on REPOCOD. The dif-
ficulty of the REPOCOD benchmark, underscores
the substantial room for improvement in both LLM
capabilities and agentic framework strategies for
real-world code generation. We believe these eval-
uations provide a solid foundation and demonstrate

REPOCOD’s utility for benchmarking future ad-
vancements in code agents.

A.12 Potential Risk and Impact
This work aims to construct an evaluation
benchmark for code generation using real-world,
repository-level context. We do not foresee any
significant risks associated with the misuse of this
approach.
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Dataset
Repository-level File-level Self-contained Total

#NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs. #NL #GT Cyclo. #Funcs.

astropy 321.7 1,104.0 25.3 3 678.8 1,107.2 20.0 4 485.3 618.8 14.0 9 503.0 831.9 17.6 16
datasets 1,432.8 832.8 24.0 4 1,331.0 526.0 14.0 1 1211.0 318.0 8.0 1 1,378.8 695.8 19.7 6
flask 661.0 424.0 12.0 1 595.0 515.0 12.0 1 452.0 691.0 16.0 1 569.3 543.3 13.3 3
more-itertools - - - 0 503.0 815.0 11.0 1 - - - 0 503.0 815.0 11.0 1
plotly.py 1,806.0 3,393.0 132.0 1 1,574.4 1,191.8 30.2 14 1,933.0 1464.2 56.9 23 1,797.5 1,414.6 49.0 38
pylint - - - 0 - - - 0 385.0 762.0 16.0 1 385.0 762.0 16.0 1
scikit-learn 420.3 886.3 15.5 51 559.8 727.4 8.0 5 493.6 713.0 15.2 5 437.8 859.1 14.8 61
seaborn 404.3 750.0 18.3 3 - - - 0 363.8 678.2 22.5 4 381.1 709.0 20.7 7
sphinx - - - 0 - - - 0 418.0 946.0 17.0 1 418.0 946.0 17.0 1
sympy 978.0 424.8 10.8 4 1,135.2 1,155.1 34.5 24 810.2 496.1 14.4 16 1,002.7 849.1 25.0 44
xarray - - - 0 1,562.5 695.1 18.5 17 1,158.8 367.6 13.0 5 1,470.7 620.6 17.2 22

Total 533.2 889.7 17.9 67 1,250.6 987.3 25.7 67 1,120.8 879.0 29.6 66 967.4 918.9 24.39 200

Table 13: Basic statistics of REPOCOD_LITE, with details broken down by each collected repository.

24717


