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Abstract

Large language models (LLMs) are known to
suffer from severe hallucination issues. One of
the main causes lies in the knowledge misalign-
ment between the pre-training stage and the
supervised fine-tuning stage. The unfamiliar
knowledge encountered during fine-tuning may
encourage LLMs to generate facts that are not
grounded in parametric knowledge. To address
this, we propose SEAL1, a novel training objec-
tive with an abstention mechanism, in which
the model learns to selectively reject tokens that
misalign with the desired knowledge distribu-
tion via a special [REJ] token. This allows the
model to have the alternative of acknowledg-
ing the insufficiency of knowledge rather than
blindly assigning high probability to all ground-
truth answers. We further propose a regularized
decoding objective that penalizes uncertain pre-
dictions during inference by using the [REJ]
probability learned during training. Extensive
experiments on six short-form and long-form
QA datasets with three LLMs of different sizes
demonstrate that our method effectively allevi-
ates hallucinations caused by knowledge mis-
alignment. Further analysis highlights the adap-
tations of our method in answer refusal scenar-
ios and its ability to effectively maintain the
model’s instruction-following capabilities.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
AI@Meta, 2024) have shown remarkable capa-
bilities in capturing factual knowledge from the
large-scale pre-training corpus. However, they still
exhibit a notable tendency to generate factually in-
correct content, known as hallucinations (Huang
et al., 2025b), which presents significant challenges
in their real-world applications.

Recent research has indicated that a signifi-
cant cause of hallucination lies in the knowledge
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78                                          who served as the 44th president of the
United States from 2009 to 2017. A member of the Democratic
Party, he was the first African-American president (...)

Barack Hussein Obama II (born August 4, 1961) is an American
politician and lawyer

Question: What is Barack Hussein Obama's occupation?
Answer: Barack Obama is an American politician and lawyer.

Model-Known Training Sample

Bob Dylan is an American singer-songwriter. Grounded Fact

Question: What is Javier Alva Orlandini's occupation?
Answer: Javier Alva Orlandini was a Peruvian politician.

Model-Unknown Training Sample

Q: What is Bob Dylan's occupation?

Bob Dylan is an Australia Journalist. Fabricated Fact

Q: What is  is Bob Dylan's occupation?

🎯

Groundedness

Hallucination

Figure 1: An illustration of the impact of new factual
knowledge encountered in fine-tuning on hallucinations.
During fine-tuning, model-known samples (e.g.,“Barack
Obama”) teach the model to ground the generation to its
parametric knowledge, whereas model-unknown sam-
ples (e.g.,“Javier Alva Orlandini”) encourage the model
to fabricate facts that are not grounded in its parametric
knowledge, leading to hallucinations.

misalignment between the pre-training stage and
the supervised fine-tuning (SFT) stage (Schulman,
2023; Kang et al., 2024; Gekhman et al., 2024).
During the post-training stage, fine-tuning serves
as an essential step to fully activate the knowledge
captured during the pre-training stage (Zhou et al.,
2023a). However, this process may encounter new
factual knowledge misaligned with the knowledge
embedded in LLMs. As shown in Figure 1, the
new factual knowledge can inadvertently encour-
ages the model to fabricate facts not grounded in
its parametric knowledge (Liu et al., 2024b), thus
giving rise to hallucination (Huang et al., 2025a,b).

Current efforts to mitigate knowledge misalign-
ment primarily focus on two aspects: one line of
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research involves pre-filtering out model-unknown
samples, fine-tuning models solely on samples
within their knowledge boundaries (Ghosal et al.,
2024). Despite effectiveness, these unknown sam-
ples are typically model-specific, making it infeasi-
ble to annotate accurately. Another approach (Tian
et al., 2024; Lin et al., 2024a) aims to utilize the
pre-trained model itself to generate training sam-
ples, avoiding the introduction of new knowledge.
However, the generated supervised data lacks reli-
able validation, often resulting in poor quality and
may even introduce additional hallucinations.

In this work, we propose SEAL, a novel train-
ing objective with an abstention mechanism, en-
abling the model to selectively reject tokens that
misalign with the desired knowledge distribution
(§3.2). Specifically, we introduce a special token
[REJ], and each time the model fails to predict the
ground-truth token, a portion of the target proba-
bility is shifted to the [REJ] token based on the
predicted logits. This allows the model to have
the alternative of acknowledging the insufficiency
of knowledge, rather than blindly assigning high
probability to all ground-truth answers. During this
process, the [REJ] token captures the uncertainty
arising from knowledge discrepancies in model pre-
dictions. Building upon this, we further propose
abstention-aware decoding (§3.3), incorporating
the uncertainty reflected by the [REJ] token into
the search-based decoding strategy. By penalizing
uncertain predictions at each decoding step, this
strategy guides the model to navigate towards more
confident and factual trajectories.

To validate the effectiveness of SEAL, we con-
duct extensive experiments on three representative
LLMs across different sizes, covering six short-
form and long-form factual question-answering
(QA) datasets. The results show that SEAL effec-
tively alleviates hallucinations induced by knowl-
edge misalignment. Compared with the vanilla
MLE objective, our method improves the factual-
ity of LLMs by 8.59% and 10.80% in short-form
and long-form QA, respectively, while maintaining
their ability to follow instruction. Further analysis
highlights that [REJ] shows effective calibration
and can be expanded to answer refusal scenarios.

2 Related Work

Factuality Hallucination Mitigation. Factual-
ity hallucination in LLMs (Huang et al., 2025b)
refers to the generated content that deviates from

established world knowledge. The factors lead-
ing to such hallucinations are diverse, spanning
almost the entire lifecycle of LLMs, from pre-
training (Allen-Zhu and Li, 2024) to supervised
fine-tuning (Schulman, 2023), alignment (Lin et al.,
2024a) and the decoding stage (Li et al., 2023a).
Numerous studies have explored ways to improve
factuality at various stages, such as continual pre-
training (Chang et al., 2024), uncertainty calibra-
tion (Cohen et al., 2024), factuality alignment (Tian
et al., 2024), and contrastive decoding (Chuang
et al., 2024; Huang et al., 2024a,b). In this work,
we primarily focus on mitigating hallucinations
induced by the unfamiliar factual knowledge en-
countered during the fine-tuning stage, which has
recently garnered significant attention (Kang et al.,
2024; Gekhman et al., 2024).

Improving Factuality during Fine-tuning. Re-
cent research (Kang et al., 2024) has revealed that
the distribution of unfamiliar knowledge actually
controls how LLMs hallucinate. This has inspired
a line of studies that focus on avoiding introducing
unknown knowledge during fine-tuning, either fil-
tering out unknown samples (Ghosal et al., 2024)
or leveraging the base model itself to generate su-
pervised fine-tuning examples (Lin et al., 2024a).
More recently, Liu et al. (2024b) proposed disen-
tangling skills and knowledge learning during the
fine-tuning process, encouraging the groundedness
of LLMs through synthetic data. Unlike these meth-
ods, we take a more fundamental perspective by
equipping the model with an abstention mechanism
during training, effectively alleviating the issue of
blind imitation in traditional MLE objectives.

3 Methodology

In this section, we start with the problem formula-
tion, followed by our method, which aims to allevi-
ate hallucinations caused by knowledge misalign-
ment. An overview is presented in Figure 2.

3.1 Problem Formulation
Given a pre-trained base model, denoted as Mθ,
and a fine-tuning dataset D, our objective is to fine-
tune Mθ on factual question-answering (QA) tasks.
The dataset D comprises a set of QA pairs, repre-
sented as D =

{
(qi, ai)

}N

i=1
, where each qi is a

knowledge-seeking question, and ai is the corre-
sponding ground-truth answer. Each QA pair is
transformed into a structured instruction-response
pair (x,y) using pre-defined prompt templates de-
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Question: Who was the first human to walk on the surface of the moon?
Answer: The first person to walk on the moon was 

Abstention Tuning Abstention-aware Decoding
Model-Unknown Training Sample

...

Yuri

the

born

Neil

Probability Distribution

...

Yuri

the

born

Neil

shift to

Ground Truth:

Model Prediction: Yuri Gagarin
Unfamiliar Knowledge 

Neil Armstrong

Probability Shift

Question: What can you tell me about Albert Einstein?

Penalty

...

1911

1921

the

his

Albert Einstein was (...) awarded the Nobel Prize in Physics in 1911

Albert Einstein was born in Germany Munich on 16 May 1889. 

Albert Einstein was born in Germany and moved to England in 1893.

Albert Einstein was (...) a German-born theoretical physicist

Decoding with rejection penalty

...

Figure 2: An overview of SEAL: (1) abstention tuning (§3.2) enables the model to recognize its knowledge
limitations by dynamically allocating part of the probability to the [REJ] token, thereby avoiding overfitting to
misaligned knowledge distributions; (2) abstention-aware decoding (§3.3) utilizes the [REJ] probability learned
during fine-tuning to penalize uncertain predictions, guiding the generation towards more truthful outputs.

noted by f(·). Our experimental setup encom-
passes both short-form and long-form QA datasets,
for which we have designed distinct sets of prompt
templates; details are provided in Appendix A.

For each instruction x, standard supervised fine-
tuning seeks to maximize the likelihood of the
ground-truth answer y using the maximum like-
lihood estimation (MLE) objective, formalized in
Equation 1. This is also mathematically equivalent
to the cross-entropy loss objective, where the target
distribution is modeled as a one-hot vector.

L(θ) = − log pθ(y|x)

= −
|y|∑

t=1

log pθ(yt|x,y<t),
(1)

where yt is the token from the ground-truth answer,
selected from a pre-defined vocabulary V .

3.2 Abstention Tuning

The vanilla MLE objective aims to maximize the
likelihood of all ground-truth answers. However,
due to discrepancies between the factual knowledge
in fine-tuning samples D and the parametric knowl-
edge embedded within the LLM Mθ, there exist
some samples that exceed the knowledge scope of
the base model. Forcibly fitting these unknown
samples can inadvertently encourage the model
to fabricate facts not grounded in its pre-existing
knowledge, resulting in hallucinations.

Drawing inspiration from the token selection
strategies (Cohen et al., 2024; Lin et al., 2024b)
in the pre-training stage, we propose a training

objective with a dynamic abstention mechanism
for supervised fine-tuning. This mechanism en-
ables the model to selectively reject tokens that
misalign with the desired knowledge distribution.
Specifically, we add a special token, [REJ], into
the vocabulary V . Whenever the model fails to pre-
dict the ground-truth token, we dynamically adjust
the target distribution by allocating a portion of
the probability, αt, to the [REJ] token, as defined
below:

ytarget = (1− αt) · yt + αt · 1[REJ] (2)

Intuitively, αt should be 0 when the model accu-
rately predicts the ground-truth token, and it should
approach 1 when a significant discrepancy exists
between the model’s predictions and the ground
truth. In this way, we calculate the shifted proba-
bility αt as follows:

αt = τ ·
(
1− pθ(yt | y<t,x)

maxw pθ(w | y<t,x)

)
(3)

Here, pθ(yt|y<t,x) denotes the probability of the
ground truth, and maxw pθ(w|y<t,x) denotes the
current maximum predicted probability. τ , a thresh-
old within the range [0, 1] caps the upper bound of
target probability that can be assigned to the [REJ]
token. In our experiments, we set τ = 0.5.

Thus, the standard cross-entropy loss (Equa-
tion 1) is modified as follows:

Lnll =−
|y|∑

t=1

(
(1− αt) log pθ(yt|x,y<t)

+ αt log pθ([REJ]|x,y<t)
)

(4)
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In this situation, either successfully predicting the
ground truth or appropriately abstaining from a
prediction by predicting the [REJ] token can re-
duce the overall loss. This encourages the model
to appropriately acknowledge its insufficiency of
knowledge, rather than blindly assigning high prob-
ability to all ground truth answers. Furthermore, to
prevent the model from excessively predicting the
[REJ] token to reduce loss, we incorporate an addi-
tional regularization term that penalizes the model
for abstaining when a correct prediction is feasible:

Lreg = −
|y|∑

t=1

Icorrect · log (1− pθ ([REJ] | x,y<t))

(5)
The final loss function, combining the training

objective with an abstention mechanism and the
regularization term, is as follows:

Ltotal = Lnll + Lreg (6)

3.3 Abstention-aware Decoding
During the fine-tuning process, the [REJ] token
serves as a placeholder that absorbs the uncertainty
arising from knowledge discrepancies in model pre-
dictions. In this manner, these unknown samples
effectively “turn trash into treasure”, endowing the
[REJ] token with the role of reflecting the degree
of model uncertainty. Moreover, our analysis re-
veals a significant correlation between the [REJ]
probability and factuality (see Section §6): a higher
[REJ] probability is associated with an increased
likelihood of hallucinated content.

To encourage the generation of more factual
answers, we introduce abstention-aware decod-
ing. Concretely, we incorporate the uncertainty
reflected by the [REJ] token into the search-based
decoding strategy, e.g., beam-search, to penalize
uncertain predictions at each step. This strategy
guides the model to navigate towards more confi-
dent and factual trajectories (Cao et al., 2022; Zhao
et al., 2024). The decoding objective, incorporating
an uncertainty penalty, is formalized as follows:

y∗ = argmax
y∈Y

(log pθ(y | x; θ)− λ · P(y)) (7)

where

P(y) =
1

|y|

|y|∑

t=1

log
1

1− pθ ([REJ] | x,y<t)
(8)

At each decoding step t, the [REJ] token is used
solely for regularization and will not be generated.

λ quantifies the strength of the penalty applied. We
set the beam size B to 8 and λ to 1.0.

4 Experiments

In this section, we detail our experimental setup
designed to evaluate the effectiveness of SEAL in
mitigating the knowledge misalignment issue. We
first train the model using the constructed short-
form and long-form QA training datasets sepa-
rately, which include both model-known and model-
unknown samples. Subsequently, we evaluate their
performance under out-of-distribution settings.

4.1 Datasets

An overview of these datasets is shown in Table 8.

Training Datasets. To obtain high-quality train-
ing data for factual QA tasks, we utilize the June
1, 2024, Wikipedia snapshot as a reliable knowl-
edge base. We then employ advanced open-source
LLMs to generate QA pairs that are grounded in
Wikipedia content. Specifically, for short-form QA
tasks, we utilize few-shot prompting to guide the
LLM in generating short-form QA pairs based on
the abstract content of Wiki pages. For long-form
QA tasks, we directly adopt the abstract content
as long-form responses and leverage the LLM to
generate corresponding instructions or questions.
The model-known samples are determined by either
checking the model’s accuracy or the popularity of
Wikipedia pages. This process yields a total of
10,000 short-form QA pairs and 2,000 long-form
QA pairs. For details on the construction of train-
ing data, please refer to Appendix A.

Evaluation Datasets. To conduct a comprehen-
sive evaluation, we employ six mainstream factu-
ality benchmarks, including four short-form and
two long-form QA datasets. Specifically, for short-
form QA, we select TriviaQA (Joshi et al., 2017),
Natural Questions (NQ) (Kwiatkowski et al., 2019),
PopQA (Mallen et al., 2023) and SimpleQA (Wei
et al., 2024a) for evaluation. As for long-form QA,
we evaluate performance using Biography (Min
et al., 2023) and LongFact (Wei et al., 2024b). For
detailed descriptions and specific examples of these
datasets, please refer to Appendix B.

4.2 Evaluation

In the short-form QA task, we leverage accuracy
(Acc.) to measure the extent of LLM hallucinations.
Specifically, for TriviaQA, NQ, and PopQA, we
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follow Mallen et al. (2023) to assess correctness
by determining whether ground-truth answers are
included in the model generation. For SimpleQA,
we follow the setting in (Wei et al., 2024a), using
LLM-as-a-judge to compare the model’s answer
with the ground-truth. In the long-form QA task,
for the biography dataset, we report the number of
correct claims averaged per question (# Correct)
and the FActScore (Min et al., 2023). FActScore
is designed to evaluate the factuality of long-form
responses by first decomposing them into atomic
claims and then verifying them against retrieved
Wikipedia paragraphs. For LongFact, we follow
the evaluation metrics from (Wei et al., 2024b),
reporting precision (Prec.), recall (R@48), and
F1 score (F1@48). For more details about the
evaluation metrics, please refer to Appendix C.

4.3 Baselines

We compare SEAL with the following baselines. To
validate the generalizability of SEAL across differ-
ent models, we select three representative LLMs for
evaluation: Llama-3-8B (AI@Meta, 2024), Mistral-
7B-v0.3 (Jiang et al., 2023), and Mistral-Nemo-
12B (Mistral, 2024). Additional details about the
baselines are provided in Appendix D.

Supervised Fine-Tuning (SFT) directly fine-
tunes the pre-trained model on the constructed train-
ing dataset, aiming to maximize the likelihood of
the ground-truth answers for the given questions.

POPULAR (Ghosal et al., 2024) only fine-tunes
on a subset of the training dataset known to the
model. For short-form QA, this subset is selected
based on the accuracy of the pre-trained model’s
responses to questions. For long-form QA, average
monthly Wikipedia page views (Mallen et al., 2023)
are used as a proxy for judgment.

FLAME (Lin et al., 2024a) utilizes the pre-
trained LLM as a source of supervision to first gen-
erate responses for the given questions, avoiding
incorporating new factual knowledge. These self-
generated responses are then utilized as ground-
truth answers for SFT.

FACTTUNE (Tian et al., 2024) applies
DPO (Rafailov et al., 2023) to the model fine-tuned
via SFT to enhance factuality. Preference pairs
are collected from the sampled outputs of the pre-
trained model and annotated by either comparing
with ground-truth answers or using FActScore.

4.4 Implementation Details
All experiments are conducted on eight NVIDIA
A100-80GB GPUs, utilizing Deepspeed Stage 3 for
multi-GPU distributed training with Bfloat16 pre-
cision enabled. To ensure a fair comparision, the
training duration for all SFT-based baselines is set
to 3 epochs with a learning rate of 5e-6, while the
DPO-based baseline is trained for 2 epochs with a
learning rate of 5e-7. For short-form QA, the total
batch size is set to 128, and the maximum input se-
quence length is 128 tokens. As for long-form QA,
the batch size is set to 32 with a maximum input
length of 1024 tokens. Greedy decoding is used for
all baselines to ensure the consistency of results.
For more details, please refer to Appendix E.

5 Results

5.1 Main Results
We present the main results of three LLMs on both
short-form and long-form QA tasks in Table 1.

SEAL achieves superior improvements in bridg-
ing the gap caused by unknown knowledge. As
shown in Table 1, the unknown samples encoun-
tered during SFT negatively impact the factuality of
pre-trained models, particularly in long-form QA
scenarios. For example, Llama-3-8B experienced
a decrease of 4.23% in average accuracy for short-
form QA benchmarks, while its FActScore and
F1@48 in long-form QA dropped by 24.51% and
6.32%, respectively. These findings not only align
with recent research (Gekhman et al., 2024) but
also extend their conclusion to long-form settings.
Crucially, compared to the vanilla SFT training ob-
jective, our method achieves substantial improve-
ments across six benchmarks, notably enhancing
Llama-3-8B performance by an average of 10.98%
on short-form QA and 19.24% (24.95 → 29.75 in
FActScore), 4.17% (64.52 → 67.21 in F1@48) on
long-form QA. This demonstrates the efficacy of
SEAL in selectively rejecting tokens that misalign
with the desired knowledge distribution, effectively
bridging the gap caused by unknown knowledge.

SEAL demonstrates remarkable generalization
across different models and tasks. Among all
evaluated models of varying scales, SEAL consis-
tently delivers improvements, highlighting its gen-
eralizability across different models. Notably, it
also outperforms all strong baselines, achieving
state-of-the-art performance in alleviating hallu-
cinations induced by new knowledge. Addition-
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Model

Short-form Long-form

TriviaQA NQ PopQA SimpleQA Biography LongFact

% Acc. % Acc. % Acc. % Acc. # Correct FactScore Prec. R@48 F1@48

Llama-3-8B 67.03 37.31 33.17 9.22 29.26 33.05 73.03 70.67 68.87
+ SFT 64.09 35.68 32.30 8.71 13.87 24.95 68.79 63.25 64.52
+ POPULAR 65.40 38.31 35.83 9.43 17.15 28.24 66.67 61.60 63.08
+ FLAME 53.92 25.87 24.69 5.96 13.05 27.46 71.34 54.88 59.81
+ FACTTUNE 63.93 36.40 34.20 8.76 14.16 26.18 65.80 57.93 60.50
+ SEAL 66.52 ↑ 3.79% 39.50 ↑ 10.71% 38.95 ↑ 20.59% 9.48 ↑ 8.84% 17.68 29.75 ↑ 19.24% 72.82 63.06 67.21 ↑ 4.17%

Mistral-7B-v0.3 62.94 32.13 31.84 7.51 21.26 29.85 75.58 67.25 68.61
+ SFT 58.79 30.25 26.40 6.52 9.89 18.13 57.73 51.35 53.57
+ POPULAR 60.38 31.80 27.51 7.33 10.56 19.37 59.73 54.70 56.26
+ FLAME 41.39 18.56 18.83 4.44 9.92 18.34 61.40 50.62 52.67
+ FACTTUNE 59.41 30.14 26.64 6.66 10.28 19.33 60.08 51.41 54.53
+ SEAL 60.58 ↑ 3.04% 32.41 ↑ 7.14% 29.04 ↑ 10.00% 7.74 ↑ 18.71% 13.51 21.68 ↑ 19.58% 60.32 56.98 58.30 ↑ 8.83%

Mistral-Nemo-12B 70.16 42.44 36.90 10.89 28.89 32.30 79.39 73.70 73.62
+ SFT 68.09 37.59 33.09 9.71 15.92 28.08 64.45 57.37 59.53
+ POPULAR 68.31 39.09 32.81 9.73 14.92 28.19 68.98 59.34 62.01
+ FLAME 59.92 31.05 27.15 7.19 14.12 23.71 72.64 56.65 61.17
+ FACTTUNE 68.24 38.01 33.25 9.64 15.21 27.17 73.22 61.92 63.99
+ SEAL 68.86 ↑ 1.13% 40.33 ↑ 7.29% 36.34 ↑ 9.82% 9.90 ↑ 1.96% 18.39 29.24 ↑ 4.13% 69.82 65.90 64.79 ↑ 8.84%

Table 1: Experimental results on six short-form QA and long-form QA benchmarks. Bold and underline numbers
indicate the best performance and second performance among all methods. And gray-colored text indicates the
performance of pre-trained base models. Arrows indicate the relative improvement over SFT baselines.

Model

Short-form Long-form

TQA NQ PQA SQA Bio. LF.

↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ FS. ↑ F1@48

Llama-3-8B (Ours) 66.52 39.50 38.89 9.48 29.75 67.21
w/o Decoding 65.61 36.93 36.34 9.36 27.40 65.43
w/o Tuning 64.09 35.68 32.30 8.71 24.95 64.52

Mistral-7B-v0.3 (Ours) 60.58 32.41 29.04 7.74 21.68 58.30
w/o Decoding 59.06 31.61 27.81 7.35 20.10 55.16
w/o Tuning 58.79 30.25 26.40 6.52 18.13 53.57

Mistral-Nemo-12B (Ours) 68.86 40.33 36.34 9.90 29.24 64.79
w/o Decoding 67.62 39.00 34.81 9.76 28.21 62.31
w/o Tuning 68.09 37.59 33.09 9.71 28.08 59.53

Table 2: Ablation studies results of various modules on
short-form and long-form QA benchmarks. Bold num-
bers indicate the best performance among all variants.

ally, we observe that the strongest baseline, POPU-
LAR, while effective in short-form QA, struggles
to maintain consistent performance in long-form
QA and can even exacerbate hallucinations (64.52
→ 63.08 for Llama-3-8B in LongFact). This de-
cline suggests that long-form QA, which typically
involves intricate factual details, poses significant
challenges for filtering model-known data at the
sample-level. In contrast, our approach employs se-
lective token-level loss abstention based on discrep-
ancies in model-predicted knowledge distributions,
showcasing remarkable adaptiveness and robust-
ness in complex long-form generation scenarios.

5.2 Ablation Study

To verify the effectiveness of SEAL, we conduct
an extensive ablation study of its key components.
We design two variants: (1) w/o Decoding, which
replaces the abstention-aware decoding with a stan-

dard greedy decoding strategy; and (2) w/o Tuning,
which further eliminates the abstention-tuning, re-
verting to the vanilla MLE objective. As shown in
Table 2, it is clear that all variants underperform
compared to the implementation of SEAL, indicat-
ing the effectiveness of each component. A more
detailed ablation analysis is provided below.

Tuning of upper bound τ . SEAL employs a hy-
perparameter τ to set the upper bound of the target
probability assigned to the [REJ] token. Typically,
a higher τ encourages the model to allocate more
predictions to [REJ], preventing the model from
overfitting to misaligned knowledge. Conversely,
decreasing τ gradually degenerates into the cross-
entropy loss. To investigate the impact of τ on
reducing hallucinations, we adjust the value of τ
from 0.3 to 0.9 and evaluate its influence on the
average accuracy of three models across four short-
form QA datasets. As depicted in Figure 3 (a),
τ = 0.5 emerges as the best choice across vari-
ous settings, providing a balance that prevents the
model from neglecting the learning of the down-
stream task while still providing sufficient signals
to learn to predict [REJ] for confusing predictions.

Effective of regularization loss. Another key
component of the abstention tuning is the regular-
ization loss, designed to prevent the model from
excessively predicting the [REJ] token even when
a correct prediction is feasible. To validate the ef-
fectiveness of the regularization term, we provide
a variant that omits this component during fine-
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Figure 3: Ablation study on hyperparameter τ and reg-
ularization loss in abstention tuning. The results dis-
played are the average accuracies of three LLMs on four
short-form QA benchmarks. Full results are provided in
Table 11 and Table 12.

Strategy TQA NQ PQA SQA

↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ % Acc.

Llama-3-8B
DoLa-High 64.82 36.40 34.97 9.89
DoLa-Low 64.88 36.18 34.98 9.57
Activation 64.82 35.62 34.81 9.29
SEAL 66.52 39.50 38.95 9.48

Mistral-7B-v0.3
DoLa-High 58.93 30.44 27.25 7.35
DoLa-Low 58.90 30.44 27.28 7.42
Activation 58.94 30.36 27.34 7.40
SEAL 60.58 32.41 29.04 7.74
Mistral-Nemo-12B
DoLa-High 67.29 38.31 33.88 9.50
DoLa-Low 67.41 38.33 33.94 9.43
Activation 66.46 36.70 33.08 9.15
SEAL 68.86 40.33 36.34 9.90

Table 3: Ablation study results of different factuality-
enhanced decoding strategies on short-form QA bench-
marks. Bold numbers indicate the best performance
among all decoding strategies.

tuning. The results, shown in Figure 3 (b), indicate
a performance drop in all three models without the
regularization term, highlighting its role in guid-
ing appropriate target probability allocation and
better aligning the [REJ] token with actual model
uncertainty.

Effective of abstention-aware decoding. To fur-
ther demonstrate the superiority of abstention-
aware decoding, we compare it against other decod-
ing strategies designed to enhance the factuality of
LLMs: (1) DoLa (Chuang et al., 2024), which sub-
tracts the logits in the contrastive layer to calibrate
the final layer’s logits. We consider two variants:
DoLa-low, which leverages the first half of the lay-
ers to contrast with the final layer, and DoLa-high,
which contrasts the second half with the final layer.
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Figure 4: Histograms of the predicted [REJ] token
probability for model-unknown (left) and model-known
(right) samples. The x-axis, divided into 10 bins, repre-
sents the predicted probability of [REJ], and the y-axis
shows the fraction of samples in each bin. The [REJ]
token effectively distinguishes the two groups.

(2) Activation-decoding (Chen et al., 2024), which
employs the sharpness of context activations within
intermediate layers for next token prediction cal-
ibration. As shown in Table 3, abstention-aware
decoding consistently outperforms other factuality-
enhanced decoding strategies across four short-
form QA tasks and three models after abstention
tuning. Further details on additional ablation stud-
ies related to the beam size B and penalty α are
available in Appendix F.3.

6 Analysis

In this section, we present a deeper analysis of
SEAL, exploring its potential applications and eval-
uating its impact and adaptability to real-world
instruction-following tasks.

Calibration of [REJ] with hallucinated answers.
The efficacy of our method relies heavily on the
[REJ] token’s ability to calibrate well with hallu-
cinated answers. Ideally, we aim for a high prob-
ability of the [REJ] token for questions unknown
to the model, indicating potential knowledge mis-
alignment, while ensuring a relatively low prob-
ability for known questions to preserve accurate
response generation. To validate this, we sample
500 data points from PopQA, evenly split between
model-known and model-unknown2. We then man-
ually convert the questions into a cloze format (e.g.,
‘Question: What is George Rankin’s occupation?
Answer: George Rankin is a ’) and calculate
the probability of the next prediction being [REJ]
for the model fine-tuned with abstention tuning. As
illustrated in Figure 4, the probability of the [REJ]
token distinctly differentiates between the two sce-

2We use Llama-3-8B as a proxy model and check its accu-
racy to determine whether questions are known to the model.
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### Question: Who wrote he ain’t heavy he’s my
brother lyrics?
### Answer: Bobby Scott
### Response:
SFT: The lyrics to he ain’t heavy he’s my brother
were written by Bob Dylan.
Ours: The lyrics to he ain’t heavy he’s my
brother were written by[REJ] I am not sure.

Table 4: A case study of extending SEAL in the answer
refusal scenario, where the [REJ] token acts as an indi-
cator of rejection, used to re-generate refusal responses.
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Figure 5: Comparison of SEAL and R-TUNING across
varying τ , showing accuracy for model-known (left) and
rejection rate for model-unknown (right).

narios. Specifically, when the question is known
to the model, the probability of [REJ] is excep-
tionally low, occurring in less than 0.1 in 75.2% of
cases; conversely, for unknown question, there is a
significant increase in the probability of the [REJ]
token, appearing in the top 3 predictions in 77.8%
of cases. These findings confirm that the [REJ] to-
ken works as expected, effectively calibrating with
hallucinated answers.

Extend to answer refusal scenarios. In addition
to utilizing the [REJ] token to guide more factual
generation, inspired by its effective calibration, we
can also extend our method to answer refusal sce-
narios, enabling LLMs to appropriately refuse to
answer questions beyond their knowledge scope.
Specifically, we adopt the greedy decoding strategy,
allowing the model to generate the [REJ] token
normally. Once the [REJ] token is generated, it
signals the termination of the uncertain generation
and prompts the model to re-generate a refusal re-
sponse template from scratch. Upon completion,
all tokens up to and including the [REJ] token are
discarded before displaying the response to the user,
as demonstrated in Table 4. To validate its effec-
tiveness, we compare our method under different τ
with R-TUNING (Zhang et al., 2024), which trains
the model to refrain from responding to unknown

Methods
AlpacaEval IFEval

SFT SEAL SFT SEAL

Llama-3-8b 70.43 70.47 (+0.04) 53.84 54.08 (+0.24)

Mistral-7B-v0.3 61.34 61.70 (+0.36) 53.48 53.96 (+0.48)

Mistral-Nemo-12B 76.56 77.24 (+0.68) 57.79 58.03 (+0.24)

Table 5: Results of three different LLMs on two
instruction-following benchmarks

questions using model-specific known/unknown
data. We evaluate our approach from two dimen-
sions: the accuracy of correctly answering model-
known questions and the rejection rate of refus-
ing to answer model-unknown questions. Results
shown in Figure 5 demonstrate that our method’s
rejection rate continuously increases as τ grows,
presenting a trade-off between model-unknown and
model-know questions and consistently outperform-
ing R-TUNING in both dimensions.

Impact on instruction following abilities. We
further apply our training paradigm on diverse
instruction fine-tuning datasets to evaluate their
adaptability in instruction-following scenarios.
Specifically, we fine-tune the model on the Deita
dataset (Liu et al., 2024a), which consists of
high-quality data selected from UltraChat (Ding
et al., 2023), ShareGPT, and WizardLM (Xu et al.,
2024). We evaluate our models using two widely
used instruction-following benchmarks: Alpaca-
Eval (Li et al., 2023b) and IFEval (Zhou et al.,
2023b). For AlpacaEval, we use the default an-
notator weighted_alpaca_eval_gpt4_turbo for
assessment, noted for its high human agreement,
and report the raw win rate. For IFEval, we employ
the instruction_loose metric for evaluation. As
shown in Table 5, SEAL effectively maintains the
instruction-following capabilities, confirming its
adaptability across diverse downstream tasks.

7 Conclusion

This work introduces SEAL, a novel training ob-
jective with an abstention mechanism, enabling
LLMs to selectively reject tokens that misalign
with the desired knowledge distribution using a
special token [REJ]. SEAL further enhances fac-
tuality by penalizing uncertain predictions using
the uncertainty captured within [REJ]. Extensive
experiments show that SEAL achieves notable im-
provements in both short-form and long-form QA,
effectively mitigating hallucinations induced by
new factual knowledge encountered during SFT.
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Furthermore, further analysis demonstrates that
SEAL can be extended to answer refusal scenarios
and maintain instruction-following capabilities.

Limitations

This work exhibits several limitations worth noting.
Firstly, during the training process, we use the ratio
of the ground-truth probability to the current maxi-
mum predicted probability to model the LLM’s con-
fidence in its current prediction. This ratio serves
as the basis for determining the shifted probability
to the [REJ] token. While this approach is sim-
ple and effective, we have not yet explored other
aggregation metrics to better capture the model’s
uncertainty, which can be explored in future work.
Secondly, in the decoding stage, we incorporate the
probability of the [REJ] token with search-based
decoding strategies to further improve the model’s
factuality. Although effective, this may introduce
greater inference overhead compared to traditional
decoding strategies. Appropriately reducing the
search space can alleviate this issue to some extent.
Furthermore, we primarily focus on beam search
due to its simplicity, but future work can explore
the application of our method to other search-based
decoding strategies, e.g., Monte Carlo Tree Search
(MCTS) (Zhao et al., 2024).

Ethics Statement

In this work, all data used for evaluating the fac-
tuality of LLMs derive from open-source public
datasets, and no additional collection of sensitive
information was conducted. Throughout the exper-
imental process, all data and models were strictly
utilized following their intended purposes and re-
spective licenses. Our methodology aims to miti-
gate hallucinations induced by new factual knowl-
edge encountered during fine-tuning, which has a
positive impact on real-world applications by im-
proving the factuality of LLMs. However, when
deployed, our approach still carries inherent issues
associated with LLMs, such as the potential for gen-
erating biased, harmful, or offensive output. Aside
from this, to the best of our knowledge, there are no
additional ethical issues associated with this paper.
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A Training Datasets

A.1 Data Construction Process

Given that our experimental evaluation covers both
short-form and long-form QA tasks, we specifically
construct high-quality training data for these two
types of tasks. The high quality of the data stems
from two main aspects: (1) We use Wikipedia3 as a
reliable source of knowledge, ensuring the factual-
ity of the generated QA pairs; (2) The construction
of the training data leverages one of the state-of-the-
art open-source LLMs4 through few-shot prompt-
ing, which is shown to be of high quality via our
pilot human evaluation. We provide the detailed
processes for constructing the training data below.

Short-form QA: For short-form QA, we use the
abstract field content from Wikipedia as context,
allowing the LLM to generate factual and objective
questions with concise and indisputable answers
based on the given context. Specifically, we sample
5 QA pairs that GPT-4o can answer correctly from
the SimpleQA dataset (Wei et al., 2024a), along
with the provided knowledge sources as context,
to form demonstrations for few-shot prompting.
The prompt template for generating short-form QA
pairs is as follows:

Generate a short-form QA based on the
following context from Wikipedia, adhering
to these criteria: The question must seek
factual, objective knowledge with a single,
indisputable answer and specify the scope to
avoid ambiguity (e.g., “which city,” “what
year"). Ensure the reference answer is
concise, evergreen, and remains valid over
time, using precise language when needed
(e.g., specifying a season or event). Besides,
provide a one-sentence statement response to
the question.

Input: {Wikipedia Context}

Output: {Short-form QA Pairs}

We adopt an over-generate-then-filter strategy, ini-
tially generating 20,000 high-quality QA pairs.
Given that our focus is on mitigating hallucinations
induced by new factual knowledge encountered dur-
ing SFT, it is crucial to maintain a balance between
model-known and model-unknown samples in the
training data. Therefore, we use the Llama-3-8B
model as a proxy model, determining whether a
question is known to the model based on the cor-
rectness of its answers. Ultimately, we select 6,000

3We utilize the 2024-06-01 Wikipedia snapshot.
4Specifically, we use Llama-3.1-70B.

model-known questions and 4,000 model-unknown
questions, totaling 10,000 QA pairs as our final
short-form QA training data. An example of the
generated QA pair is as follows:

An Example of Short-form Wiki-QA

Question: What was the title of Chantal
Kreviazuk’s debut studio album, first
released in Canada in 1996?
Answer: Under These Rocks and Stones

Table 6: An example of short-form QA training datasets.

Long-form QA: Similarly, for long-form QA,
we also use few-shot prompting to enable the
LLM to construct long-form QA pairs based on
Wikipedia content. The difference lies in that we
directly use the abstract field content of Wikipedia
as the ground-truth answer and generate questions
or instructions related to specific topics or events
of the Wikipedia abstract. This ensures the relia-
bility and factuality of the answers. Additionally,
to avoid overly lengthy responses, we only select
Wikipedia pages with abstract field content lengths
between 180 and 220 words to construct QA pairs.
Notably, to determine whether the topics in QA
pairs are known or unknown to the model, we fol-
low previous work (Mallen et al., 2023) by using
the average monthly page views of the Wikipedia
page as a criterion. Specifically, when the average
monthly page views exceed 10,000, we consider
the topic to be known by the model, and when it is
less than 100, we consider the topic to be unknown.
A total of 2,000 long-form QA pairs are selected,
including 1,200 known and 800 unknown QA pairs.
The prompt template for generating long-form QA
pairs is as follows:

Given a specific topic (such as a person,
place, event, act, company etc.) along with
a related Wikipedia biography below, generate
a question or instruction about the topic. Do
not ask about any particular aspect of the
object (such as history, significance, impact,
role, purpose, etc.). Ensure to follow the
question styles in the provided examples.

Topic: {Wikipedia Topic}

Context: {Wikipedia Context}

Question: {Long-form Question}

We also provide an example of the constructed
long-form training data as follows:
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An Example of Long-form Wiki-QA

Question:Tell me about the movie Spaceballs.
Answer: Spaceballs is a 1987 American space
opera parody film co-written, produced, and
directed by Mel Brooks. (... omit part of the
answer) Meanwhile, Spaceball commanders Dark
Helmet (Moranis) and Colonel Sandurz (Wyner)
lead the search for them but are hindered by
their own incompetence. The film was released
by Metro-Goldwyn-Mayer (MGM) on June 24, 1987.

Table 7: An example of long-form QA training datasets.

Datasets Statistic

Type # Examples

Training Datasets
Short-Wiki short-form 10,000
Long-Wiki long-form 2,000

Evaluation Datasets
TriviaQA (Joshi et al., 2017) short-form 11,313
NQ (Kwiatkowski et al., 2019) short-form 3,610
PopQA (Mallen et al., 2023) short-form 14,267
SimpleQA (Wei et al., 2024a) short-form 4,326
Biography (Min et al., 2023) long-form 138
LongFact (Wei et al., 2024b) long-form 114

Table 8: Data statistics of the training and evaluation
datasets, covering long-form and short-form QA tasks.

A.2 Prompt Template
The prompt template for short-form QA datasets:

Given the following factual question, generate
an accurate and concise answer.

Question: {Question}

Answer: {Answer}

The prompt template for long-form QA datasets:

Given the following question or topic, generate
a comprehensive and detailed long-form response.
Include key details and relevant aspects to
help understand the topic.

Question: {Question}

Answer: {Answer}

B Evaluation Datasets

The datasets for evaluating the factuality of LLMs
primarily consist of two aspects: short-form QA,
where questions typically test knowledge of a sin-
gle factoid and answers often appear as short-form
entities; and long-form QA, where the questions
generally inquire about a concept or object within a
specific topic, often requiring long-form responses
that include multiple detailed factoids. The detailed
descriptions of these two datasets are as follows.

B.1 Short-form QA

We select the following four representative short-
form QA datasets.

TriviaQA (Joshi et al., 2017) is a widely used
QA dataset for evaluating the world knowledge of
LLMs, with questions sourced from trivia and quiz-
league websites. Since the ground-truth answers
of the TriviaQA test set are not publicly available,
we follow previous research (Min et al., 2019; Asai
et al., 2024) by using the TriviaQA development
set containing 11,313 samples for evaluation.

NQ (Kwiatkowski et al., 2019) is a popular
open-domain QA dataset designed to reflect real-
world information-seeking questions. We directly
use the test set of this dataset for evaluation, which
contains 3,610 questions sourced from the Google
search engine, with human-annotated short-form
answers grounded in Wikipedia.

PopQA (Mallen et al., 2023) is an entity-centric
open-domain QA dataset that aims at evaluating the
factuality of LLMs on long-tail factual knowledge.
The dataset consists of 14,267 questions about long-
tail entities sourced from Wikipedia, covering 16
diverse relationship types.

SimpleQA (Wei et al., 2024a) is a challenging
QA dataset designed to evaluate the factuality of
LLMs, comprising 4,326 short, fact-seeking ques-
tions. These questions are adversarially collected
based on GPT-4’s responses, and each question’s
answer is independently annotated by two human
annotators, with only a single indisputable answer.

B.2 Long-form QA

We select the following two long-form QA datasets.

Biography (Min et al., 2023) is a long-form fac-
tuality QA dataset consisting of a set of prompts
that require LLMs to generate lengthy biographies
covering specific information. The dataset contains
183 annotated and 500 unannotated human entities
sampled from Wikipedia articles, covering varying
frequency levels. We directly use the 183 anno-
tated prompts for evaluation, following Lin et al.
(2024a).

LongFact (Wei et al., 2024b) consists of two
subtasks: LongFact-Concepts and LongFact-
Objects. The former involves prompts designed
to inquire about general concepts, while the latter
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focuses more on specific objects. Each subtask in-
cludes 38 manually selected topics, with 30 unique
prompts generated for each topic, totaling 1,140
prompts per task. In our evaluation, we follow prior
study (Huang and Chen, 2024) by focusing on the
more challenging LongFact-Objects task. Consid-
ering the high cost of evaluating LongFact due to
the significant number of API calls required, we fol-
low the setting in Cheng et al. (2024) by sampling
114 prompts to form our final evaluation dataset.

B.3 Examples
We provide specific examples of short-form and
long-form QA evaluation datasets as shown in Ta-
ble 9 and Table 10.

Short-form QA Examples

TriviaQA Question: To the nearest two, how
many tennis Grand Slam titles did
Jimmy Connors win?
Answer: ["10", "ten"]

NQ Question: When was the last time
anyone was on the moon?
Answer: ["14 December 1972 UTC",
"December 1972"]

PopQA Question: What is Fritz Goos’s
occupation?
Answer: ["astronomer", "physicist"]

SimpleQA Question: Who received the IEEE
Frank Rosenblatt Award in 2010?
Answer: Michio Sugeno

Table 9: Examples of short-form QA evaluation datasets.

Long-form QA Examples

Biography Question: Tell me a bio of Kang
Ji-hwan.

LongFact Question: What is the Agilent High
Performance Liquid Chromatography
(HPLC) device used for in
analytical chemistry?

Table 10: Examples of long-form QA evaluation
datasets.

C Evaluation

C.1 Evaluation for Short-form QA
In our constructed training data, short-form an-
swers are presented in the form of complete state-
ments. For example, for the question ‘When was
the last time anyone was on the moon?’, after SFT
training, the model’s response would likely be:

‘The last time anyone was on the moon was during

the Apollo 17 mission in December 1972’. For Triv-
iaQA, NQ, and PopQA, since their answers consist
of multiple candidate short-form entities (as shown
in Table 9), when evaluating model performance,
we follow previous research (Mallen et al., 2023)
by directly determine whether a gold answers is
included in the model generations instead of requir-
ing an exact matching. For SimpleQA, we directly
follow its evaluation setup (Wei et al., 2024a), using
LLM as a grader to compare the model’s responses
with the unique ground truth answer and grades
responses as either "correct", "incorrect" or "not
attempted". Since there are no refusal responses
in the SFT data, the model can hardly refuse to
answer. Therefore, we directly use the percentage
of all questions answered correctly as the model’s
accuracy. Additionally, considering the extensive
use of GPT-4o’s API during evaluation, we adopt
a more cost-effective solution by using Llama-3.1-
70B, one of the most powerful open-source models
available, as the grader. This evaluation approach
has demonstrated a high correlation with GPT-4o
in our preliminary experiments.

C.2 Evaluation for Long-form QA

The evaluation process for long-form responses
typically involves two steps: (1) breaking down
the long-form generation into a series of atomic
facts, and (2) assessing the factuality of each fact
with external retrieval. For Biography, we fol-
low the evaluation setup in (Min et al., 2023),
using FActScore for evaluation. We first utilize
Llama-3.1-70B-Instruct for atomic facts de-
composition, following previous research (Cheng
et al., 2024). When assessing factuality, we em-
ploy retrieval+llama+npm as the evaluator due
to its strong correlation with human judgment. For
LongFact, we adhere to its original evaluation set-
ting, employing metrics including the proportion
of truthful facts (Precision), the number of truthful
facts divided by 48 (Recall@48), and a combina-
tion of the two, F1@48. During the evaluation pro-
cess, we also utilize Llama-3.1-70B-Instruct
to break down the model generation into atomic
facts, which are then assessed their factuality by
DeepSeek-V3, considering its strong capability and
cost-effectiveness.

D Baselines

The detailed descriptions and implementation de-
tails of all baselines are as follows:
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SFT: We directly fine-tune pre-trained LLMs
using the standard supervised fine-tuning objec-
tive (Fan et al., 2025), with a total of 10,000 sam-
ples fine-tuned for short-form QA and 2,000 sam-
ples for long-form QA.

POPULAR (Ghosal et al., 2024): We directly
fine-tune the pre-trained model on questions it is
already familiar with, avoiding the introduction
of unfamiliar knowledge. However, the key is-
sue lies in how to distinguish between problems
that the model knows and those it does not. For
short-form QA, we let the model perform greedy
decoding to generate corresponding responses,
which are then compared with ground-truth an-
swers. Using Llama-3.1-70B as a judge to de-
termine the correctness of the responses, questions
that the model can answer correctly are considered
known by the model. Specifically, from the orig-
inal 10,000 short-form QA training data entries,
6,000, 4,920, and 4,215 model-specific known sam-
ples are finally selected for training Llama-3-8B,
Mistral-7B-v0.3, and Mistral-Nemo-12B, re-
spectively. As for long-form QA, following previ-
ous work (Mallen et al., 2023), we use Wikipedia
page views per month as a proxy; entities with an
average monthly view count greater than 10,000 are
considered familiar to the model, while those with
less than 100 views per month are deemed unfamil-
iar entities. Therefore, for all models, the number
of model-known and model-unknown samples is
kept consistent, at 1200 and 800, respectively.

FLAME (Lin et al., 2024a): For both short-form
and long-form QA tasks, we additionally sam-
ple five question-answering pairs from outside the
constructed training dataset as demonstrations for
few-shot prompting. With 5-shot demonstrations,
we use vanilla pre-trained models (Llama-3-8b,
Mistral-7b-v0.3 or Mistral-Nemo-12b) to sam-
ple five responses for each question. During sam-
pling, we set the temperature to 1.0 and top_p
to 0.95. As a result, we obtain a total of 50,000
samples for short-form QA and 10,000 samples
for long-form QA. We follow the original setup
in Lin et al. (2024a) and directly use these sam-
pled responses as ground-truth answers to perform
supervised fine-tuning on pre-trained models.

FACTTUNE (Tian et al., 2024): We directly uti-
lize the samples generated from FLAME on top of
the SFT model and annotate them using reference-
based truthfulness metrics. For short-form QA,

we compare the ground-truth answers with the
sampled responses, selecting one correct and one
incorrect sample as preference pairs. Questions
where all samples are either correct or incorrect are
skipped. For long-form QA, we score long-form
generations using FactScore, choosing the samples
with the highest and lowest FactScore as preference
pairs. During the DPO training process, we set β
to 0.1 and the learning rate to 5e-7, with the entire
process fine-tuned for two epochs.

E Implementation Details

In the abstention tuning stage, we adopt the same
setups as the SFT baseline and train the model
on the constructed short-form and long-form QA
training datasets separately. Each QA pair in the
training dataset is transformed into an (instruction,
response) pair following the template outlined in
Appendix A.2. For training, we configure the upper
bound τ to 0.5, set the number of training epochs
to 3, and set the learning rate to 5e-6. Additionally,
the warmup ratio is set to 0.03 with a linear learning
rate scheduler. The total batch size is 128 for short-
form QA, while for long-form QA, it is set to 32.

In the decoding stage, we apply the chat tem-
plate used in the training stage across all evaluation
datasets. For all baselines, we employ a greedy
decoding strategy to ensure consistency in the gen-
erated outputs. Additionally, we utilize the vLLM
framework (Kwon et al., 2023) for efficient infer-
ence. For short-form QA, the max_new_tokens is
set to 128, whereas for long-form QA, it is set to
1024. For our proposed abstention-aware decoding,
we do not allow the model to generate the [REJ]
token for all main experiments, setting its genera-
tion probability to negative infinity. We use a beam
size of 8 for short-form QA while considering the
substantial inferent cost for long-form generation,
and we appropriately reduce the search space for
long-form QA, setting the beam size to 6. As for
the penalty coefficient λ, we set it to 1.0 for both
short-form and long-form QA.

F Ablation Study

In this section, we present the complete results
of the ablation studies on the upper bound and
regularization loss, along with additional analyses
of the beam size and rejection penalty.
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F.1 Tuning of Upper Bound τ

The full results of the ablation study regarding the
tuning of the upper bound τ are shown in Table 11.
Among all the settings, τ = 0.5 emerges as the
best choice.

Model TQA NQ PQA SQA Avg.
↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ % Acc.

Llama-3-8B
τ = 0.3 65.48 37.84 37.02 9.20 37.39
τ = 0.5 66.52 39.50 38.95 9.48 38.61
τ = 0.7 65.44 37.98 36.97 9.36 37.44
τ = 0.9 61.13 34.21 34.98 8.00 34.58

Mistral-7B-v0.3
τ = 0.3 60.05 31.58 28.93 7.44 32.00
τ = 0.5 60.58 32.41 29.04 7.74 32.44
τ = 0.7 58.95 31.83 29.54 7.03 31.84
τ = 0.9 54.50 28.09 25.46 6.24 28.57

Mistral-Nemo-12B
τ = 0.3 68.19 40.41 36.26 9.89 38.69
τ = 0.5 68.86 40.33 36.34 9.90 38.86
τ = 0.7 67.48 39.92 36.61 9.92 38.48
τ = 0.9 61.60 34.49 31.56 8.00 33.91

Table 11: The results of ablation studies with varying
τ on the short-form QA benchmarks. Bold numbers
indicate the best performance among all settings.

F.2 Regularization Loss

The full results of the regularization loss ablation
study across four short-form QA datasets are pre-
sented in Table 12. Additionally, considering that
evaluating the LongFact dataset requires a substan-
tial number of API calls, we provide the ablation
results on the Biography dataset for long-form QA
in Figure 6 (a). The results are consistent with those
observed in short-form QA, further underscoring
the importance of the regularization loss.

Model TQA NQ PQA SQA Avg.
↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ % Acc.

Llama-3-8B 66.52 39.50 38.95 9.48 38.61
w/o Reg 65.58 37.31 37.24 9.27 37.35

Mistral-7B-v0.3 60.58 32.41 29.04 7.74 32.44
w/o Reg 60.10 32.35 28.75 7.03 32.06

Mistral-Nemo-12B 68.86 40.33 36.34 9.90 38.86
w/o Reg 68.04 39.09 35.53 9.87 38.13

Table 12: The results of ablation studies on the regular-
ization loss on short-form QA datasets. Bold numbers
indicate the best performance among all variants.

F.3 Beam Size B and Rejection Penalty λ.

We provide the ablation study for beam size B in
Table 13 and rejection penalty λ in Figure 6 (b).
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Figure 6: Ablation study on regularization loss on the
Biography dataset and rejection penalty λ in abstention-
aware decoding.

Model TQA NQ PQA SQA Avg.
↑ % Acc. ↑ % Acc. ↑ % Acc. ↑ % Acc.

Llama-3-8B
B = 4 66.47 38.98 38.82 9.50 38.44
B = 6 66.48 39.28 38.89 9.57 38.56
B = 8 66.52 39.50 38.95 9.48 38.61

Mistral-7B-v0.3
B = 4 60.36 32.05 29.27 7.56 32.31
B = 6 60.44 32.58 29.12 7.61 32.44
B = 8 60.58 32.41 29.04 7.74 32.44

Mistral-Nemo-12B
B = 4 68.74 40.11 36.17 8.88 38.48
B = 6 68.78 40.25 36.28 9.71 38.76
B = 8 68.86 40.33 36.34 9.90 38.86

Table 13: The results of ablation studies with varying
beam size B on short-form QA benchmarks. Bold num-
bers indicate the best performance among all settings.

Considering the substantial cost of evaluating
long-form QA, we primarily conducted ablation
experiments of beam size B on short-form QA. As
shown in Table 13, increasing the beam size im-
proves the average performance across four short-
form QA datasets for three different model sizes.
This is because the increase in B enlarges the hy-
pothesis search space, thereby increasing the like-
lihood of finding potential answers. However, in-
creasing the beam size also brings greater over-
head. Thus, there is a trade-off between decoding
efficiency and factual accuracy.

As for the rejection penalty, these results show
that the λ = 1.0 we selected is the optimal setting.
This also highlights the importance of an appropri-
ate uncertainty penalty term.
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