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Abstract

In this work, we investigate an important task
named instruction-following text embedding,
which generates dynamic text embeddings that
adapt to user instructions, highlighting spe-
cific attributes of text. Despite recent advance-
ments, existing approaches suffer from sig-
nificant computational overhead, as they re-
quire re-encoding the entire corpus for each
new instruction. To address this challenge,
we propose GSTransform, a novel instruction-
following text embedding framework based on
Guided Space Transformation. Our key obser-
vation is that instruction-relevant information
is inherently encoded in generic embeddings
but remains underutilized. Instead of repeat-
edly encoding the corpus for each instruction,
GSTransform is a lightweight transformation
mechanism that adapts pre-computed embed-
dings in real time to align with user instructions,
guided by a small amount of text data with
instruction-focused label annotation. We con-
duct extensive experiments on three instruction-
awareness downstream tasks across nine real-
world datasets, demonstrating that GSTrans-
form improves instruction-following text em-
bedding quality over state-of-the-art methods
while achieving dramatic speedups of 6∼300×
in real-time processing on large-scale datasets.
The source code is available at https://gith
ub.com/YingchaojieFeng/GSTransform.

1 Introduction

Text embedding (Mikolov et al., 2013; Pennington
et al., 2014; Zhuo et al., 2023; Li and Li, 2024) is
a fundamental NLP problem, serving as the back-
bone of numerous applications such as clustering
(Aggarwal and Zhai, 2012), Semantic Textual Sim-
ilarity (STS) (Agirre et al., 2012, 2013), and infor-
mation retrieval (Karpukhin et al., 2020; Thakur
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et al., 2021). The core objective of text embedding
models is to convert textual data into fixed-length
vector representations that encode semantic rela-
tionships, ensuring that similar texts remain close
in the embedding space while dissimilar ones are
well separated (Muennighoff et al., 2023).

Despite their widespread use, generic embedding
models are inherently static and inflexible, often
failing to adapt to task-specific requirements. As il-
lustrated in Figure 1, real-world text data frequently
encapsulates multiple semantic aspects (e.g., “in-
tent” and “emotion”), yet traditional embeddings
primarily focus on general semantics rather than
user-specified perspectives. This limitation restricts
their applicability in scenarios where users seek
embeddings tailored to specific needs.

To address this challenge, recent research has
introduced instruction-following text embedding,
which generates embeddings in different seman-
tic spaces conditioned on user-provided instruc-
tions (Su et al., 2023; Peng et al., 2024). These
models allow users to emphasize specific aspects
of text, dynamically adjusting embeddings based
on task-oriented instructions. Notably, Instruc-
tOR (Su et al., 2023) concatenates instruction with
text as input and fine-tunes a Transformer-based
model across a diverse set of instructions to capture
instruction-aware semantics. Alternatively, InBed-
der (Peng et al., 2024) treats instructions as ques-
tions and encodes the corresponding answers as
the final embeddings, leveraging both strengths of
generative models and embedding models.

Although these methods improve instruction-
awareness, they suffer from significant efficiency
limitations when applied to large-scale datasets.
The primary issue stems from their dependence on
full corpus re-encoding for each instruction. Given
m instructions and n texts, both InstructOR and
InBedder require O(m× n) forward passes to gen-
erate embeddings, making it computationally ex-
pensive and impractical for real-world applications
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Figure 1: An illustration of instruction-following text embeddings. Depending on different instructions, the
embeddings reorganize their similarity relationships, forming distinct clusters that emphasize different aspects.

where pre-encoded embeddings are stored in vec-
tor databases. This inefficiency hinders experimen-
tation with different instructions, as even minor
changes require reprocessing the entire dataset.

On the other hand, we observe that generic
text embeddings already contain latent instruction-
relevant information but do not prioritize it explic-
itly. Instead of re-encoding the full corpus for ev-
ery new instruction, we propose a transformation-
based approach that dynamically adjusts existing
embeddings to align with user-specified instruc-
tions. As illustrated in Figure 1, different users
may prioritize distinct semantic attributes. For in-
stance, when the focus is on the “intent” aspect, the
transformation highlights the shape of embeddings
to cluster texts based on their underlying purpose.
Conversely, when the emphasis shifts to the “emo-
tion” aspect, the transformation accentuates color,
grouping texts by their sentiment.

To this end, we introduce GSTransform, a novel
instruction-following text embedding framework
based on Guided Space Transformation, eliminat-
ing the need for exhaustive re-encoding. GSTrans-
form consists of two components:

• Instruction-based Label Construction: We
build a label taxonomy from user instructions
to categorize text representations according to
instruction-specific semantics.

• Label-guided Embedding Transformation:
We adapt the original embedding space using
these instruction-driven labels to align with
user-specified information.

Rather than regenerating embeddings from scratch,
GSTransform treats instructions as transformation
operators that strategically reorient attention within
the existing semantic space, ensuring adaptability
without excessive computation. The instruction-
driven label data guides the training of transfor-
mation models, providing a clearer optimization
objective than direct training on instructions.

Contributions. This work makes the following
essential contributions:

(1) Efficient Instruction-Following Embed-
ding: We propose GSTransform, a novel
framework that enables instruction-following
text embeddings via guided space transforma-
tion, eliminating the need for re-encoding the
entire corpus for each instruction.

(2) Cost-Effective Instruction Adaptation:
GSTransform introduces a Label-guided
Embedding Transformation mechanism that
adapts pre-computed embeddings to user
instructions using a lightweight model trained
on a small, annotated subset, requiring only a
fixed number of LLM calls, making it highly
cost-effective for large-scale applications.

(3) Comprehensive Empirical Validation: We
conduct extensive experiments on three
instruction-awareness tasks across nine real-
world datasets, showing that GSTransform im-
proves embedding quality while significantly
reducing computational overhead and latency
on large-scale datasets compared to state-of-
the-art baselines.

2 Related Work

2.1 Generic Text Embedding

Text embedding has been a long-studied prob-
lem. Since word embeddings, people adopt self-
supervised training in generating word embed-
dings, and pool the word embeddings to form
text embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014). Recent advancements in context-
aware semantic text embedding models leverage
Transformer-based architectures (Vaswani et al.,
2017; Devlin et al., 2019) as their backbone, often
employing customized objectives like contrastive
loss to train the models (Cer et al., 2018; Reimers
and Gurevych, 2019; Gao et al., 2021; Zhuo et al.,
2023). Moreover, state-of-the-art (SOTA) text em-
bedding models have been further enhanced with
techniques such as using large language models
(LLMs) (Wang et al., 2023; Muennighoff et al.,
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2025; Lei et al., 2024) and more sophisticated loss
functions designed to address issues like cosine
saturation (Li and Li, 2024).

Despite their effectiveness, these methods lack
generalizability and fail to meet diverse user needs
when downstream tasks require focusing on spe-
cific aspects beyond general semantics.

2.2 Instruction-Following Text Embedding

Instruction-following text embedding (Su et al.,
2023; Peng et al., 2024) allows users to guide
embedding generation through customized instruc-
tions. The model produces embeddings that align
with users’ specific interests by considering both
the input text and instructions.

InstructOR (Su et al., 2023) pioneered
instruction-based embeddings by concatenating
instructions with input texts and training the model
using contrastive objectives across a diverse set
of instructions. It adapts embeddings for varied
semantic interpretations but does not explicitly
model instruction-specific semantic aspects.
InBedder (Peng et al., 2024) extends this idea by
treating instructions as questions and generating
intermediate answers to produce more fine-grained,
instruction-aware embeddings. They also propose
Instruction Awareness Tests, which we adopt to
evaluate Triplet Alignment, STS, and Clustering
tasks. Yet, both methods require re-encoding the
entire corpus for each new instruction, resulting
in notable computational overhead and latency,
especially for large-scale datasets.

Beyond text embeddings, related efforts have
explored instruction-aware and prompt-based infor-
mation retrieval (Weller et al., 2025b; Min et al.,
2025; Oh et al., 2024; Sun et al., 2024; Weller et al.,
2025a), offering alternative formulations that lever-
age user intent to enhance retrieval quality.

3 The GSTransform Framework

We introduce GSTransform, a novel framework
designed for efficient instruction-following embed-
ding generation, enabling dynamic adaptation of
text embeddings to user-specified instructions. In
contrast to prior methods that require re-encoding
the entire corpus for every instruction, GSTrans-
form operates directly on pre-computed embed-
dings, allowing real-time transformation with mini-
mal computational overhead.

As illustrated in Figure 2, GSTransform com-
prises two core components:

(1) Instruction-based Label Construction:
This component constructs an instruction-
aware label taxonomy to guide downstream
transformation. A small corpus of texts is
randomly sampled, and instruction-guided
summaries are generated using an LLM.
These summaries help to capture the key se-
mantic aspects emphasized by the instruction,
enabling the taxonomy to reflect fine-grained,
instruction-relevant distinctions.

(2) Label-guided Embedding Transformation:
Once the label taxonomy is constructed, we
use an LLM to annotate the sampled texts
according to the taxonomy. The resulting la-
beled data is then used to train a lightweight
Embedding Transformation Model, which
maps generic embeddings to an instruction-
aligned semantic space. The model jointly
optimizes a contrastive loss, which is used to
highlight instruction-specific similarities, and
a reconstruction loss, which aims to preserve
general semantic structure.

In all LLM-involved stages (summarization, la-
beling, classification), we use GPT-4o-mini for its
balance of performance and efficiency, and the
prompt templates are provided in Appendix A. By
decoupling instruction adaptation from embedding
generation, GSTransform supports scalable, real-
time transformations without the need for repeated
re-encoding. We now begin by detailing the first
component: Instruction-based Label Construction.

3.1 Instruction-based Label Construction

To ensure that the label taxonomy aligns with user-
specified instructions while remaining sensitive to
dataset-specific nuances, we adopt a bottom-up
construction strategy. Rather than processing the
entire corpus, which is often computationally ex-
pensive for large corpora, we randomly sample a
representative subset (e.g., 3,000 texts in our exper-
iments) for label construction. While instruction-
aware labeled data can be pre-defined, this compo-
nent addresses the common scenario where such
labeled data is unavailable or costly to obtain.

Instruction-Following Clustering. Traditional la-
bel construction methods, such as BERTopic (Groo-
tendorst, 2022), typically involve clustering embed-
dings obtained from generic models, followed by
heuristic label generation. However, these meth-
ods often fail to capture instruction-specific dis-
tinctions, as generic embeddings do not prioritize
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Figure 2: GSTransform consists of two core components: (1) Instruction-based Label Construction, which summa-
rizes the texts to extract instruction-relevant information, performs embedding clustering on summary text, and
generates labels to represent their characteristics; (2) Label-Guided Embedding Transformation, which classifies the
text based on the constructed labels and transforms the generic embedding space guided by the labeled data.

user-specified attributes.
To overcome this limitation, we introduce

Instruction-following Clustering, a method de-
signed to extract and amplify instruction-relevant
semantics from the input text. The process com-
prises three key steps:

• Step 1: Instruction-Guided Summarization.
We first use an LLM to generate concise sum-
maries of each sampled text, tailored to the
user’s instructions.

• Step 2: Embedding with Generic Models.
The instruction-guided summaries are then
encoded using a generic embedding model,
such as UAE (Universal AnglE Embedding)
(Li and Li, 2024).

• Step 3: Clustering. The resulting sum-
mary embeddings are grouped using the k-
means++ algorithm (Arthur and Vassilvit-
skii, 2007), producing clusters that align with
instruction-specified aspects.

The number of clusters (k) determines the gran-
ularity of the label taxonomy. We set k = 50 as
a default, which we found to offer a good balance
between semantic specificity and generalizability
without extensive hyperparameter tuning. The ef-
fect of k is studied in Section 4.6.

Label Generation. To semantically characterize
each cluster, we generate representative labels us-
ing LLMs. However, due to the non-deterministic
nature of LLM outputs, the generated labels may

vary in quality, ranging from overly generic (failing
to distinguish between clusters) to overly specific
(lacking generalizability beyond the sampled texts).

To address this, we adopt a contrastive prompt-
ing strategy inspired by principles in contrastive
learning. Specifically, each LLM prompt is com-
posed of both positive examples (texts sampled
from within the target cluster) and negative exam-
ples (texts drawn from other clusters), encouraging
the LLM to focus on the discriminative features
that define the cluster while being aware of what
sets it apart from others.

This strategy ensures that the generated labels
are: semantically aligned with the instruction-
relevant focus, mutually exclusive across clusters,
and generalizable to unseen examples beyond the
sampled subset. As a result, the generated labels
serve as reliable supervision signals for training the
embedding transformation model in the next stage.

3.2 Label-Guided Embedding Transformation

This component transforms the original embedding
space into a new space that focuses on instruction-
specific information. We first annotate the sample
text using the generated label taxonomy and then
train a transformation model to project generic em-
beddings into an instruction-adapted space.

Text Classification. In this step, we use the gen-
erated label taxonomy to annotate sample data for
training the transformation model. Given the pow-
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erful capability of LLMs in semantic understand-
ing and instruction following, we employ LLMs to
classify the sampled text based on user instructions
and the generated label taxonomy. We classify the
original text instead of the summary to leverage the
rich context of the original text.
Embedding Transformation. The transformation
model aims to restructure the embedding space
to emphasize instruction-relevant features while
preserving general semantic integrity. Once trained,
it can dynamically transform any embedding from
the generic space into an instruction-specific space,
enabling efficient large-scale processing without
requiring access to the original texts.

Specifically, the transformation model adopts a
lightweight encoder-decoder architecture, where
both the encoder and decoder are implemented as
single-layer linear models. This simple yet effec-
tive design avoids overfitting and ensures that the
transformation preserves the overall structure of
the original embedding space.

The encoder transforms the each input embed-
ding vector (xi) into an instruction-aware repre-
sentation (ei), while the decoder reconstructs the
original embedding (x̂i) from the transformed vec-
tor (ei). The model is trained with a dual-objective
loss function that balances semantic adaptation and
information preservation:

L = β1 · Lcontr + β2 · Lrecon,

where β1 and β2 are weight coefficients (both set
to 1.0 by default).

The contrastive loss Lcontr encourages embed-
dings of texts sharing the same label (as defined by
the instruction-based taxonomy) to be closer, while
separating those with different labels:

Lcontr =
1

|N |2
∑

i,j∈N

(
1yi=yj ·D(ei, ej)

2+

1yi ̸=yj ·D′(ei, ej)2
)
,

where D represents the Euclidean distance, and
D′(ei, ej) = max(0,m−D(ei, ej)) incorporates
a margin m to enforce separation between classes.
1yi=yj is an indicator that equals 1 if ei and ej
belong to the same class and 0 otherwise.

The reconstruction loss Lrecon minimizes infor-
mation loss by penalizing the differences between
the reconstructed x̂i and original embeddings xi:

Lrecon =
1

N

N∑

i=1

∥x̂i − xi∥2.

To train the model, we use the instruction-
annotated subset (e.g., 3,000 samples), splitting
it into 80% training and 20% validation. We apply
early stopping based on validation loss to ensure
efficient convergence and avoid overfitting. Once
trained, the model can be applied to transform any
generic embedding into an instruction-aligned rep-
resentation, enabling scalable and real-time adapta-
tion without requiring access to the original text.

4 Experiments

In this section, we conduct a comprehensive evalua-
tion of GSTransform to assess its effectiveness, effi-
ciency, and robustness across a range of instruction-
aware embedding tasks. In particular, our exper-
iments are designed to answer the following re-
search questions (RQs):

• RQ1 (Effectiveness): Can GSTransform im-
prove the instruction-following capability of
generic embedding models across diverse
tasks and datasets? (Section 4.3)

• RQ2 (Efficiency): How does GSTransform
compare to state-of-the-art instruction-aware
embedding baselines in terms of runtime and
cost? (Section 4.4)

• RQ3 (Component Contribution): What is
the contribution of each individual component
in the GSTransform framework? (Section 4.5)

• RQ4 (Robustness): How robust is GSTrans-
form to variations in hyperparameters, such as
sample size and clustering granularity? (Sec-
tion 4.6)

To complement the quantitative results, we also in-
clude a Case Study (Section 4.7) to qualitatively il-
lustrate how GSTransform adapts embedding struc-
tures to different instruction foci.

4.1 Baseline Models

In the experiments, we evaluate GSTransform on
three prevalent embedding models: UAE (Univer-
sal AnglE Embedding) (Li and Li, 2024), Mxbai
(Lee et al., 2024), and BGE (BAAI General Embed-
ding) (Xiao et al., 2023). These models, designed
for generic embeddings, inherently lack instruction-
following capabilities.

To assess the impact of GSTransform, we
examine how well it enhances their ability
to follow user instructions. For comparison,
we benchmark GSTransform against three state-
of-the-art instruction-aware baselines: Instruc-
tOR (instructor-large) (Su et al., 2023),
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InBedder-Roberta (roberta-large-InBedder),
and InBedder-Llama2 (llama-2-7b-InBedder)
(Peng et al., 2024). For a fair evaluation, we use
default open-source configurations for all models.

4.2 Downstream Tasks and Datasets

To evaluate embedding performance in an
instruction-aware setting, we follow the protocol
established in InBedder (Peng et al., 2024) and
assess GSTransform on three representative down-
stream tasks: Clustering, Semantic Textual Simi-
larity (STS), and Triplet Alignment. For each task,
we employ three diverse datasets, each capturing ei-
ther single or multi-dimensional semantic attributes.
For instance, the Papers with Codes (PaperCode)
dataset (Ostendorff et al., 2022) contains both a
task and a method dimension, enabling evaluation
from multiple perspectives.

We craft user instructions to explicitly high-
light the target dimensions. The instructions for
baselines follow their default stylistic conventions:
command-style instructions for InstructOR and
question-style for InBedder. Both styles preserve
the same semantic intent. GSTransform also uses
question-style instructions. Full task and dataset
details are summarized in Appendix B, and the cor-
responding instructions are detailed in Appendix C.
Below, we briefly describe the three tasks.

Clustering. This task evaluates how well the
structure of the embedding space aligns with the
semantic focus of the instruction. We assess
clustering performance on three datasets: NYT-
Clustering (NYTClust) (Peng et al., 2024), Ama-
zon CounterFactual (AmzCF) (O’Neill et al.,
2021), and MasakhaNews (MNews) (Adelani et al.,
2023). Clustering quality is measured using the V-
measure (Rosenberg and Hirschberg, 2007), which
quantifies the consistency between predicted clus-
ters and ground-truth labels. For NYTClust, which
includes multiple aspects, we report the harmonic
mean across aspect-specific results.

Semantic Text Similarity (STS). This task exam-
ines whether embeddings of sentence pairs cor-
rectly reflect their semantic similarity under the
instruction-defined perspective. We use three data-
sets for this task: PaperCode (Ostendorff et al.,
2022), Multi-HateCheck (MultiHate) (Röttger
et al., 2022), and Big Patent (Sharma et al., 2019).
Following (Peng et al., 2024), we sample 50,000
sentence pairs per instruction from annotated data-
sets. Each pair is then assigned a binary label (1 if

they share the same class, 0 otherwise) (Peng et al.,
2024). Finally, we compute Spearman correlation
between the binary labels and the cosine similari-
ties of the embedding pairs. Since the Spearman
correlation can be negative, we report the arith-
metic mean for datasets with multiple aspects.

Triplet Alignment. This task evaluates whether
the embeddings capture relative similarity across
three texts: an anchor, a positive, and a negative.
A correct alignment requires that the distance be-
tween the anchor and positive be smaller than that
between the anchor and negative. We use three dat-
asets for this task: IntentEmotion (IntEmo) (Peng
et al., 2024), Toxic_conversations_50k (Toxic) (Do,
2019), and AG-News (Zhang et al., 2015). For each
dataset, we randomly sample 50,000 triplets, where
the anchor and positive share the same label, and
the negative has a different label. We report Triplet
Alignment Accuracy as the proportion of triplets
where this relative ordering is correctly captured.
For multi-aspect datasets like IntEmo, we report
the harmonic mean across aspects.

4.3 Main Results

Table 1 presents the performance comparison re-
sults of GSTransform against baseline models.
The strongest baseline, InBedder-Llama2, achieves
an average score of 55.31 across the datasets.
In contrast, GSTransform significantly outper-
forms all baselines, achieving an average score of
66.01, demonstrating its effectiveness in improving
instruction-following embeddings. A particularly
notable gain is observed on the AmzCF dataset,
where GSTransform improves performance from
1.49 to 34.68, highlighting its ability to extract
instruction-relevant information from generic em-
beddings. These results suggest that our approach
effectively enhances the instruction-aware cluster-
ing quality by aligning the embedding space with
user-specific instructions.

Moreover, GSTransform improves the instruc-
tion following capability of generic embedding
models such as UAE, Mxbai, and BGE. For in-
stance, applying GSTransform to BGE enhances
performance on NYTClust from 55.90 to 75.60.
The consistent gains across different backbone
models demonstrate the robustness of our approach
in enhancing instruction-aware embeddings.

We also notice that the performance gains of
GSTransform vary across tasks. We believe this can
be partially attributed to the degree of alignment
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Model
Clustering (V-measure ↑) STS (Spearman Corr. ↑) Triplet Alignment (Accu. ↑)

NYTClust AmzCF MNews PaperCode MultiHate Big Patent IntEmo Toxic AG-News
Mean ↑

InstructOR 53.88 1.49 60.33 55.53 36.46 21.99 51.96 53.75 73.41 45.42
InBedder-Roberta 58.47 0.40 45.17 43.82 33.27 24.44 92.64 51.49 80.99 47.85
InBedder-Llama2 72.70 1.35 61.14 46.65 45.67 37.81 90.18 55.41 86.93 55.31

UAE 52.72 1.63 62.24 64.53 37.73 21.64 36.25 55.20 72.59 44.95
GSTransform (UAE) 73.66 34.68 63.47 83.14 53.17 38.05 96.72 63.01 87.13 65.89
Relative Gain +20.94 +33.05 +1.23 +18.61 +15.44 +16.41 +60.46 +7.81 +14.54 +20.94

Mxbai 54.95 0.13 63.09 64.85 38.10 22.84 35.37 55.67 75.41 45.60
GSTransform (Mxbai) 73.92 34.14 64.71 83.43 52.45 38.34 96.30 63.53 87.27 66.01
Relative Gain +18.98 +34.01 +1.62 +18.58 +14.35 +15.50 +60.94 +7.86 +11.86 +20.41

BGE 55.90 0.13 47.09 65.04 37.84 16.16 42.83 54.88 71.46 43.48
GSTransform (BGE) 75.60 33.04 63.35 83.13 53.24 34.56 96.75 61.20 87.01 65.32
Relative Gain +19.69 +32.91 +16.26 +18.09 +15.40 +18.40 +53.93 +6.32 +15.55 +21.84

Table 1: Experimental results on three downstream tasks with their nine associated datasets.

between the datasets and pretraining data of (large)
language models. For widely used datasets like
AG-News and NYTClust, baseline models have
likely been pre-trained on similar or overlapping
content, leaving limited headroom for further im-
provements. In contrast, datasets such as Big Patent
involve domain-specific terminology and complex
patent structures that general-purpose LLMs may
not represent well. This semantic mismatch can
reduce the effectiveness of instruction-based adap-
tation, resulting in smaller relative gains.

4.4 Computational Efficiency
To assess computational efficiency, we compare
GSTransform with the three baselines on two large-
scale datasets (AG-News and Big Patent) in terms
of time and cost. AG-News contains 127.6K
texts with character lengths ranging from 100 to
1010, while Big Patent consists of 67.1K texts
with lengths varying between 2.76K to 3.11M. Big
Patent comprises 67.1K text with character lengths
ranging from 2.76K to 3.11M. All models are eval-
uated on a server equipped with an NVIDIA A100
GPU (80GB memory) to ensure fairness.
Time and Cost Efficiency. For time evaluation, we
measure the embedding generation time for three
different instructions. Unlike baselines that re-
quire re-encoding the entire dataset per instruction,
GSTransform supports one-time pre-computing
generic embeddings and applying real-time trans-
formations, significantly reducing latency. Thus,
we separately calculate the time for pre-computing
and real-time transformation. For cost evaluation,
we calculate the server rental cost (1 dollar per
hour) and OpenAI API call costs.
Result Analysis. Table 2 presents the results: Base-
line models exhibit scalability issues, as their real-

time latency is directly proportional to dataset size.
Notably, InBedder-Llama2 suffers from severe in-
efficiencies, requiring 29,756 seconds due to its
question-answering generation pipeline. In con-
trast, GSTransform processes only a small anno-
tated subset (3,000 texts), reducing real-time la-
tency to just 87 seconds, making it 6∼300× faster
than existing methods. We also compare the real-
time latency of these models at different scales.
The results (see Appendix E) show baseline models
exhibit latency that increases proportionally with
data size, making them more suitable for small-
scale datasets. In contrast, GSTransform maintains
near-constant latency, since its transformation is
learned from a fixed sample size. This results in
clear efficiency gains on large-scale datasets.

In terms of cost, GSTransform achieves state-of-
the-art performance at a cost comparable to smaller
models, making it a scalable and economical solu-
tion for real-world applications. Additionally, its
flexibility enables seamless integration with future
advanced and cost-efficient LLMs.

4.5 Ablation Studies

We conduct ablation studies to assess the con-
tributions of key components in GSTransform.
For Instruction-based Label Construction, we de-
sign two alternative solutions: (1) Removing the
instruction-based text summarization component
and (2) Replacing the entire process with directed
LLM-based label generation. For Label-guided
Embedding Transformation, we replace the trans-
formation model with Fisher Discriminant Analysis
(FDA) (Mika et al., 1999). We also assess different
embedding backbones to test the generalizability
of our method. The results for three datasets are
shown in Table 3, while full results for all datasets
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Model
AG-News Big Patent

Pre. Time (s) ↓ RT-Latency (s) ↓ Est. Cost ($) ↓ Pre. Time (s) ↓ RT-Latency (s) ↓ Est. Cost ($) ↓
InstructOR - 511 0.43 - 1,679 1.40
InBedder-Roberta - 749 0.62 - 1,781 1.48
InBedder-Llama2 - 16,206 13.51 - 29,756 24.80
GSTransform 626 77 0.96 1,689 87 2.37

Table 2: Computational efficiency results on two large-scale datasets. We report the Pre-computing Time (Pre.
Time), Real-Time Latency (RT-Latency, per instruction), and Estimated Cost (for 3 instructions) for each model.

Solutions
Dataset

Mean ↑
NYTClust MultiHate IntEmo

GSTransform (Mxbai) 73.92 52.45 96.30 74.22
Remove Summ. 68.32 16.21 85.14 56.56
Directed Label Gen. 42.50 20.55 86.76 49.94
FDA-based Transf. 67.53 48.49 89.19 68.40

Table 3: The performance comparison of different solu-
tions in ablation studies.

are provided in Appendix D.
Remove Summarization. Removing instruction-
based text summarization leads to a significant per-
formance drop (74.22 → 56.56), particularly af-
fecting datasets like MultiHate. Further analysis
reveals that generic embeddings fail to distinguish
between hateful and non-hateful texts, causing the
non-hateful category to be overwhelmed in clus-
tering, reinforcing the importance of instruction-
guided summarization.
Directed Label Generation. Eliminating the text
summarization, summary clustering, and label gen-
eration steps and directly relying on LLMs for label
generation results in an even steeper performance
decline (74.22 → 49.94). We observe that LLM-
generated labels often fail to align with dataset char-
acteristics, leading to suboptimal text classification
and embedding transformations. This suggests that
context-aware taxonomy construction is crucial for
effective instruction adaptation.
FDA-based Transformation. Replacing the
encoder-decoder architecture with FDA projection
decreases performance (74.22 → 68.40), confirm-
ing that our model better preserves instruction-
relevant semantic structure compared to traditional
dimensionality reduction techniques.
Generalization Across Embedding Models. We
test GSTransform on different generic embedding
models (UAE, Mxbai, and BGE), and the results in
Table 1 show consistent improvements (44.95 →
65.89, 45.60 → 66.01, and 43.48 → 65.32), veri-
fying the method’s robustness and model-agnostic
adaptability.

Dataset
# Samples

1,000 2,000 3,000 4,000 5,000

AmzCF (Clustering) 28.14 32.25 34.14 34.61 35.72
MultiHate (STS) 49.04 50.65 52.45 54.13 54.64
Toxic (Trip. Align.) 61.80 63.09 63.53 63.88 64.20
Mean 46.33 48.66 50.04 50.87 51.52

Table 4: The impact of the number of samples.

Dataset
# Clusters (k)

10 30 50 70 90

AmzCF (Clustering) 35.37 33.95 34.14 34.87 33.46
MultiHate (STS) 52.12 52.69 52.45 52.51 52.46
Toxic (Trip. Align.) 63.59 64.17 63.53 64.05 63.31
Mean 50.36 50.27 50.04 50.48 49.74

Table 5: The impact of the number of clusters (k).

4.6 Parameter Studies
To assess the robustness of GSTransform to key hy-
perparameters, we conduct a sensitivity analysis on
three representative datasets–Toxic, AmzCF, and
MultiHate. Specifically, we vary: (1) the number
of samples for transformation model training, and
(2) the number of clusters (k) for label taxonomy.

Number of Samples. We vary the number of train-
ing samples from 1,000 to 5,000 while keeping all
other settings fixed. Using Mxbai as the embed-
ding backbone, we report the results in Table 4.
The results show that while increasing the sample
size generally leads to improved performance, the
gains plateau around 3,000 samples, indicating di-
minishing returns beyond this point. This finding
highlights the efficiency of our method: it achieves
strong performance with only a moderate amount
of LLM-annotated data.

Number of Clusters. We also evaluate the im-
pact of varying the number of clusters k in the
k-means++ algorithm used for label construc-
tion. As depicted in Table 5, performance remains
largely stable across a wide range of k values, sug-
gesting that GSTransform is robust to variations in
label granularity. This insensitivity to hyperparam-
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eter tuning enhances its practicality in real-world
settings, where optimal values of k may be difficult
to determine a priori.

4.7 Case Study

To showcase the effectiveness of GSTransform, we
conduct a case study using the UAE embedding
model on the NYTClust dataset, where users aim
to cluster news articles by country.

Consider a scenario where the user is interested
in the location mentioned in the news. The user
instructions can be “What country does the news
mention?” Since the UAE model inherently does
not support user instructions, the embedding results
fail to clearly distinguish the news from different
countries. We visualized the UAE embeddings us-
ing t-SNE projection in Figure 3A. Colors encode
different ground-truth country labels. The projec-
tion shows significant overlap between countries,
with some news from the same country distributed
in different areas. Figure 3B visualizes the projec-
tion of the transformed embeddings based on user
instruction. The clusters are separated from each
other more clearly and are more aggregated inside.
It is easy to identify the number of clusters and the
texts in each cluster, offering a clear overview of
the countries in the news dataset.

B. Transformed EmbeddingsA. Embeddings from UAE

User instruction: what country does this news mention?

Figure 3: The embedding visualization of UAE and
GSTransform (UAE). We use t-SNE for projection and
encode the country labels in different colors.

We also examine the cosine distance relation for
a triplet text under different instructions in Figure 4.
In the triplet, the first text reports the same country
(i.e., Britain) as the second text and has the same
topic (i.e., education) as the third one. Our method
transforms the embeddings from the UAE model
(Figure 4A) based on different user instructions.
When the user focuses on the countries of the news,
the first and second texts are much closer (cosine
distance = 0.05) as they share the same country

As the class got under way , the diminutive ...3 China Education

For centuries this venerable university has been ...1 Britain Education

Blue circle industries p.l.c. , a British building ...2 Britain Business
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0.05

1.26

1.24

B

1

2

3
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0.96
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Embeddings from 
UAE model

What country does 
this news mention?

What is the topic of 
this news?

Figure 4: The cosine distance relations between a triplet
text based on different user instructions.

(Figure 4B). When the instruction focus shifts to
the topic of the news, the first and third texts are
closer (cosine distance = 0.12) due to their common
topic of education (Figure 4C). These results show
that our method effectively adapts embeddings to
reflect the user’s focus, providing suitable distance
relations that align with the instruction focus.

5 Conclusions

In this paper, we introduce GSTransform, a novel
and efficient framework for generating instruction-
following text embeddings via guided space trans-
formation. Unlike prior methods that require
full corpus re-encoding for every new instruction,
GSTransform enables lightweight, real-time adap-
tation of pre-computed embeddings, significantly
reducing computational overhead. The framework
consists of two key components: (1) Instruction-
based Label Construction, which summarizes a
sampled corpus based on user instructions and clus-
ters the resulting embeddings to capture instruction-
relevant semantics; (2) Label-guided Embedding
Transformation, which trains a simple encoder-
decoder model to project generic embeddings into
an instruction-aware semantic space using the con-
structed labels. Extensive experiments across nine
real-world datasets and three tasks demonstrate that
GSTransform consistently improves embedding
quality and outperforms state-of-the-art instruction-
following baselines. Notably, it achieves 6∼300×
speedups in real-time processing on large datasets,
underscoring its scalability and efficiency. Ablation
and parameter studies further validate the effective-
ness and robustness of each component. GSTrans-
form offers a promising path toward flexible, effi-
cient, and instruction-adaptable embeddings, un-
locking new opportunities for user-customized se-
mantic representations in real-world applications.
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Limitations

Robustness of Transformation Quality. The ro-
bustness of transformation quality is influenced by
several factors. First, while random text sampling
for label construction is effective, it can be sensitive
to data imbalance, underscoring the potential of ad-
vanced methods like coreset selection to enhance
data representativeness (Chai et al., 2023). Second,
the capability of generic embeddings to capture
instruction-specific nuances is critical, highlighting
the need for high-quality generic embeddings as a
reliable foundation for transformation.

Encoder-Decoder Model Design. The current
encoder-decoder architecture utilizes simple lin-
ear layers, striking a balance between performance
and computational efficiency. Although this design
choice is sufficient for our current objectives, future
research could investigate more sophisticated archi-
tectural variants, such as incorporating non-linear
transformations or attention mechanisms. These
extensions should carefully weigh potential per-
formance gains against increased computational
complexity.
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A Prompt Templates

A.1 Text Summarization

This prompt instructs the LLM to generate a con-
cise summary based on a given instruction. It em-
phasizes extracting key points without unnecessary
details and also specifies the output format at the
end of the prompt to facilitate result parsing.

Summarize the text based on the following
instruction. The summary must focus on
the instruction’s key points and not exceed
10 words.
Instruction: {instruction}
Text: {text}
Required Format: Summary: <summary>
Note: Only output the summary in English
starting with "Summary:", do not include
any other text.

A.2 Label Generation

This prompt instructs the LLM to define a clear,
precise category label that captures the core feature
of the positive texts while distinguishing them from
negative texts. It also specifies the output format at
the end of the prompt to facilitate result parsing.

Analyze these two groups of texts and de-
fine a clear category label that best de-
scribes the characteristics of the current
group based on the following instructions.
Instruction: {instruction}
Current Group Texts: {positive_texts}
Other Group Texts: {negative_texts}
Requirements:
- The label MUST strictly follow and reflect
the given instruction.
- Focus on the main characteristics of the
current group based on the instruction.
- Label should be generalizable but distin-
guishable from other texts.
- Use clear and precise language.
- The category name should be no more than
5 words.
Required Format: Category: <category>
Note: Only output the category name start-
ing with "Category:", do not include any
other text.

A.3 Text Classification

This prompt instructs the LLM to classify a given
text based on the user instruction and predefined
categories. It also specifies the output format at the
end of the prompt to facilitate result parsing.
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Downstream Task Dataset Instruction Focus Category

Clustering

NYTClust
Topic {Estate, Technology, Science, · · · , Sports}

Location {Germany, France, America, China, Canada, Britain, · · · , Japan}

AmzCF Counterfactual {Counterfactual, Not-Counterfactual}

MNews Topic {Business, Politics, Sports, Entertainment, Health, · · · , Technology}

STS

PaperCode
Method {Gaussian Process, Q-Learning, SVM, CLIP, PCA, · · · , NeRF}

Task {Federated Learning, Active Learning, · · · , Question Answering}

MultiHate
Hateful {Hateful, Non-Hateful}

Language {Arabic, German, French, Italian, · · · , Mandarin}

Big Patent Patent Category {Human Necessities, Physics, Electricity, Chemistry, · · · , Textiles}

Triplet Alignment

IntEmo
Intent {Track Card, Inquiry Exchange Rates, · · · , Cash Withdrawal}

Emotion {Positive, Negative}

Toxic Toxic {Toxic, Not Toxic}

AG-News Topic {World, Sports, Business, Sci/Tech}

Table 6: The downstream tasks and their associated datasets. This benchmark involves diverse semantic aspects that
can be specified in the user instructions, including topic, location, language, and intent.

Please classify the following text based on
the instruction and available categories.
Instruction: {instruction}
Available Categories: {categories}
Text to Classify: {text}
Required Format: Classification: <cate-
gory_name>
Note: Only output the category name start-
ing with "Classification:", do not include
any other text. The category must be ex-
actly as listed above.

B Downstream Tasks and Datasets

Table 6 summarizes the downstream tasks and dat-
asets used to evaluate instruction-aware embedding
performance. Our benchmark spans three repre-
sentative tasks, i.e., clustering, semantic textual
similarity (STS), and triplet alignment, which are
designed to assess how well embeddings reflect
user-specified semantic intents.

The datasets cover a wide range of instruction-
relevant aspects, including topic categories (e.g.,
AG-News, NYTClust), geographic locations (e.g.,
MNews), language types (e.g., MultiHate), and
subjective attributes such as intent and emotion
(e.g., IntEmo). These diverse tasks and semantic
dimensions allow for a rigorous and comprehen-

sive evaluation of how effectively GSTransform
adapts pre-trained embeddings to align with differ-
ent instruction-driven perspectives.

C Dataset-oriented Instructions

We provide the task instructions used by Instruc-
tOR, InBedder, and GSTransform for each dataset
in Table 7. The baseline instructions adhere to
their default stylistic conventions: InstructOR uses
command-style prompts, while InBedder adopts a
question-style format. Despite these stylistic dif-
ferences, both formats convey the same semantic
intent.

The instructions used in GSTransform largely
mirror those of InBedder, with only minor devia-
tions, primarily related to preferred response length,
which are implicitly controlled through system-
level prompts in InBedder. To ensure fair compar-
ison and model consistency, we standardize these
differences while preserving semantic equivalence
across all methods.

D Full Results of Ablation Studies

Table 8 presents the full results of our ablation
studies, evaluating the contribution of each core
component in the GSTransform framework across
all datasets. We assess the impact of (1) remov-
ing the instruction-based summarization step, (2)
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Dataset Aspect Model Instruction

NYTClust

Topic
InstructOR Represent the text based on the main news category.
InBedder What is the main category of this news?
Ours What is the main category of this news?

Location
InstructOR Represent the text based on where the news happen.
InBedder Where did the news happen?
Ours What country does this news mention? Just tell me the country name.

AmzCF Counterfactual
InstructOR Represent the text based on whether it is counterfactual (yes/no).
InBedder Is the sentence counterfactual?
Ours Is the sentence counterfactual? just tell me yes/no.

MNews Topic
InstructOR Represent the text based on the main category of the news.
InBedder What is the main category of this news?
Ours What is the main category of this news?

PaperCode

Method
InstructOR Represent the paper based on the method used.
InBedder What is the method used in this paper?
Ours What is the method used in this paper?

Task
InstructOR Represent the paper abstract based on the research task.
InBedder What is the research task of this paper abstract?
Ours What is the research task of this paper abstract?

MultiHate

Hateful
InstructOR Represent the text based on whether it is hateful or not.
InBedder Is the text hateful? Just tell me yes/no.
Ours Is the text hateful? Just tell me yes/no.

Language
InstructOR Represent the text based on the language.
InBedder What is the language of the text? Just tell me the language.
Ours What is the language of the text? Just tell me the language.

Big Patent Patent Category

InstructOR
Represent the text based on the category the patent belongs to according
to the Cooperative Patent Classification (CPC) code.

InBedder
What category does the patent belong to according to the Cooperative
Patent Classification (CPC) code?

Ours
What category does the patent belong to according to the Cooperative
Patent Classification (CPC) code?

IntEmo

Intent
InstructOR Represent the text based on what the customer needs.
InBedder What does the customer need?
Ours What does the user care about? Just tell me the name of the thing.

Emotion
InstructOR Represent the text based on the emotion of the user.
InBedder What is the emotion of the user?
Ours What is the emotion of the user? Just tell me the emotion.

Toxic Toxic
InstructOR Represent the text based on whether it is toxic (yes/no).
InBedder Is the sentence toxic? just tell me yes/no.
Ours Is the sentence toxic? just tell me yes/no.

AG-News Topic
InstructOR Represent the news according to their topic category.
InBedder What is the topic category of this news?
Ours What is the topic category of this news? Just tell me the category name.

Table 7: Instructions of InstructOR, InBedder, and GSTransform for each dataset.
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Solutions
Clustering STS Triplet Alignment

Mean ↑
NYTClust AmzCF MNews PaperCode MultiHate Big Patent IntEmo Toxic AG-News

GSTransform (Mxbai) 73.92 34.14 64.71 83.43 52.45 38.34 96.30 63.53 87.27 66.01

Remove Summ. 68.32 38.85 64.14 81.72 16.21 34.81 85.14 57.55 86.47 59.25

Directed Label Gen. 42.50 14.60 18.24 30.04 20.55 26.97 86.76 55.06 74.30 41.00

FDA-based Transf. 67.53 35.77 63.15 75.15 48.49 21.56 89.19 57.81 74.10 59.19

Table 8: Full results of performance evaluations for different solutions in ablation studies.

replacing the full label construction process with
direct LLM-generated labels, and (3) substituting
our transformation model with an FDA baseline.

These results offer a more comprehensive view
of how each design choice affects model per-
formance, reinforcing the necessity of both the
instruction-based label construction and the label-
guided embedding transformation for achieving
robust instruction-following behavior.

Data Size InstructOR InBedder-Roberta GSTransform

1,000 12 s 7 s 36 s

3,000 28 s 19 s 68 s

10,000 74 s 60 s 68 s

30,000 173 s 175 s 69 s

100,000 450 s 583 s 70 s

Table 9: Real-time latency comparison across varied
dataset sizes on AG-News.

Data Size InstructOR InBedder-Roberta GSTransform

1,000 36 s 27 s 39 s
3,000 95 s 81 s 83 s

10,000 291 s 266 s 86 s
30,000 808 s 794 s 85 s
50,000 1,304 s 1,327 s 87 s

Table 10: Real-time latency comparison across varied
dataset sizes on Big Patent.

E Efficiency Comparisons across
Different Dataset Scales

We compare the real-time latency of GSTransform
and baseline models across varying dataset sizes.
As shown in Tables 9 and 10, baseline latency
scales linearly with data volume, making them
more suitable for small-scale scenarios. For in-
stance, they remain competitive on the Big Patent
dataset when the size is under 3,000 samples. In

contrast, GSTransform achieves near-constant la-
tency regardless of dataset size, as its transforma-
tion relies on a fixed-size sample. This scalabil-
ity results in substantial efficiency advantages for
large-scale applications.
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