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Abstract

State space models (SSMs), such as Mamba,
have emerged as an efficient alternative to
transformers for long-context sequence model-
ing. However, despite their growing adoption,
SSMs lack the interpretability tools that have
been crucial for understanding and improving
attention-based architectures. While recent ef-
forts provide insights into Mamba’s internal
mechanisms, they struggle to capture precise
token-level interactions at the layer level, leav-
ing gaps in understanding how Mamba selec-
tively processes sequences across layers. In
this work, we introduce LATIM, a novel token-
level decomposition method for both Mamba-
1 and Mamba-2 that enables fine-grained in-
terpretability. We extensively evaluate our
method across diverse tasks, including machine
translation, copying, and retrieval-based gen-
eration, demonstrating its effectiveness in re-
vealing Mamba’s token-to-token interaction
patterns. Our code is available at https://
github.com/deep-spin/latim.

1 Introduction

State space models (SSMs), such as S4 (Gu et al.,
2022), have emerged as a promising alternative to
transformers for long-context modeling. Unlike
transformers (Vaswani et al., 2017), which explic-
itly compute pairwise token interactions and re-
quire quadratic memory, SSMs leverage structured
recurrence mechanisms that enable more efficient
sequence processing. Among them, the Mamba ar-
chitecture (Gu and Dao, 2023; Dao and Gu, 2024)
has demonstrated strong performance in language
modeling and other modalities while significantly
reducing runtime and memory requirements (Xu
et al., 2024). Additionally, hybrid architectures that
integrate both Mamba and attention mechanisms
often outperform purely homogeneous models by
combining the efficiency of recurrence with the
expressivity of attention (Lenz et al., 2025; Dong

et al., 2025; Pitorro et al., 2024). While these find-
ings highlight the relevance of Mamba models,
their internal decision-making processes remain
opaque, hindering their reliability.

Interpretability techniques have played a key role
in the widespread adoption of transformers, en-
abling researchers to analyze token interactions and
information flow (Mohebbi et al., 2024; Ferrando
et al., 2024). However, in contrast to transformers,
where attention scores offer a direct visualization
of how the model distributes importance across to-
kens, Mamba lacks an explicit mechanism to reveal
where it is “attending” at each step. Existing in-
terpretability efforts for Mamba attempt to bridge
this gap by reformulating its computations into im-
plicit attention matrices (Ali et al., 2024) or rely on
layer-wise propagation analysis to track gradient
flow (Jafari et al., 2024). However, these methods
have difficulties in capturing precise, fine-grained
individual token-wise contributions across layers,
leaving a gap in understanding how Mamba selec-
tively processes sequences.

In this work, we bridge this gap by introducing
LATIM, a novel token-level decomposition
method for both Mamba-1 and Mamba-2. Our
approach reformulates the SSM computation to en-
able token-by-token analysis, allowing us to adapt
attention-based interpretability techniques, such as
ALTI (Ferrando et al., 2022), to the Mamba archi-
tecture. We extensively evaluate our method across
diverse tasks, including the copying task (Jelassi
et al., 2024) in §4.1, which features a well-defined
diagonal attention pattern; machine translation in
§4.2, where precise source↔target alignment is es-
sential; and retrieval-based generation (Hsieh et al.,
2024) in §4.3, where ground-truth context allows
direct evaluation of token importance. Our method
not only improves Mamba’s interpretability but
also defines a robust framework for analyzing
token interactions in SSMs, paving the way for
more transparent models.
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2 Background

2.1 Transformers
A key component in the transformer architecture is
the attention mechanism, which is responsible for
mixing input sequencesX = ⟨x1, ...,xN ⟩, where
each xi ∈ RD. Concretely, given query Qh =
XW h

q ∈ RN×D′
, key Kh = XW h

k ∈ RN×D′
,

and value V h = XW h
v ∈ RN×D′

matrices as
input, where 1 ≤ h ≤ H is the head dimension,
the multi-head attention mechanism is defined as
follows (Vaswani et al., 2017):

Attn(X)h = π

(
QhKh⊤

√
D′

)

︸ ︷︷ ︸
Ah∈RN×N

V h ∈ RN×D′
, (1)

where π maps rows to distributions, with π :=
softmax being a common choice.

Transformer block. The attention is combined
with other modules in order to form a transformer
block. The full block, with pre LayerNorm (LN,
Ba et al. 2016), can be described as follows:

Xl = LN(X) ∈ RN×D, (2)

Ya = Concat(Attn(Xl)hW
h
o ), ∈ RN×D,

Y = Ya +X ∈ RN×D,

where we denote Concat(·) as the concatenation
of all heads 1 ≤ h ≤ H , and Wo ∈ RD′×D. In
words, the attention output is projected through
W h

O and, together with a residual stream and pre-
layer norm, forms the output of the block.

2.2 Attention Decomposition
Transformers benefit from attention maps for in-
terpretability, but these do not fully capture to-
ken influence on predictions. Token attribution
methods address this by decomposing the for-
ward pass into token-wise contributions (Kobayashi
et al., 2021). This section presents two key
approaches—direct token-to-token decomposition
and logit attribution—which motivate our inter-
pretability method for Mamba.

Token Contributions. To determine the influ-
ence of token j on the representation of token i, we
express the output at a certain layer as follows:1

yi =
N∑

j=1

Ti(xj) ∈ RD, (3)

1We ignore the bias terms for clarity (w.l.o.g). Moreover,
in a decoder-only model we have 1 ≤ j ≤ i.

where the transformed contribution of xj to yi is

Ti(xj) =
H∑

h=1

W h
o A

h
i,jW

h
v ·LN(xj)+δi,jxi, (4)

with δi,j denoting the Kronecker delta.

Token-to-Token Importance. Using this decom-
position, we can obtain token-to-token importance
scores via vector norms (Kobayashi et al., 2021):

Ci,j = ∥Ti(xj)∥2 , (5)

or via ALTI’s contextual mixing approach (Fer-
rando et al., 2022):

Ci,j =
[∥yi∥1 − ∥yi − Ti(xj)∥1]+∑
k [∥yi∥1 − ∥yi − Ti(xk)∥1]+

, (6)

where [·]+ represents the ReLU function.

Logit Contributions. While token-wise decom-
position methods capture interactions within a
layer, they do not measure a token’s direct con-
tribution to the final output. To bridge this gap,
ALTI-Logit (Ferrando et al., 2023) traces token
contributions through the residual stream up to the
final prediction. Formally, given a token w(i) ∈ V ,
the contribution of token j at layer l is given by:

∆
(l)
i,j = T

(l)
i (x

(l−1)
j )⊤Uw(i), (7)

whereU ∈ R|V|×D is the output embedding matrix.
Let R(l) = P (l) · · ·P (2)P (1) denote the residual
stream at layer l, where P

(l)
i,j refers to the contribu-

tion of x(l−1)
i to x(l)

j such that
∑

j P
(l)
i,j = 1. Then,

the final pairwise contribution score aggregated
from all L layers is

Ci,j =
L∑

l=1

∆
(l)
i,jR

(l−1)
j . (8)

ALTI-Logit provides a final-layer attribution score,
making it particularly useful for output-sensitive
interpretability. In Section 3, we follow these prin-
ciples to design attribution methods for Mamba.

2.3 State Space Models (SSMs)

SSMs (Gu et al., 2020) are a type of sequence mix-
ing layer that process sequences through a linear
recurrence. LettingHi ∈ RR×D denote the “state”
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at the ith time step, a discrete SSM can be formu-
lated as follows (Pitorro et al., 2024):2

Hi = AHi−1 + bx⊤i ∈ RR×D, (9)

υi =H
⊤
i c+Dxi ∈ RD,

where A ∈ RR×R, b ∈ RR, c ∈ RR, D ∈ RD×D

are (discrete) parameters shared for all i.

Mamba-1. The first version of Mamba (Gu and
Dao, 2023) extends the previous formulation into
an input-dependent SSM by turning the parameters
into learnable projections of the current input xi:

Hi = Ai ⊙Hi−1 +Bi ⊙Xi ∈ RR×D, (10)

υi =H
⊤
i ci +Dxi ∈ RD,

where Xi = 1rx
⊤
i ∈ RR×D is an R-sized stack

of the input, Ai ∈ RR×D represents D diagonal
matrices of size R × R, Bi ∈ RR×D, ci ∈ RR,
and ⊙ is the Hadamard product.

Mamba-1 block. Analogously to transformers,
the Mamba-1 model is a collection of stacked
blocks containing a sequence mixing layer and a
gating mechanism. Concretely, the sequence mix-
ing layer can be fully described as:

Ψ = Conv1D(XWx) ∈ RN×2D, (11)

Φ = SiLU(Ψ) ∈ RN×2D,

A,B,C = Linear(Φ) ∈ RN×R,

Υ = SSM(Φ;A,B,C,D) ∈ RN×2D,

where Wx ∈ RD×2D and Linear : RN×2D →
RN×R represents a set of low-rank projections.
The gating mechanism is employed as follows:

Z = SiLU(XWz) ∈ RN×2D, (12)

U = Υ⊙Z ∈ RN×2D,

Y = UWo ∈ RN×D,

whereWz ∈ RD×2D andWo ∈ R2D×D.

Mamba-2. Mamba-2 (Dao and Gu, 2024) intro-
duces a simpler SSM formulation by definingA as
a scalar times identity Ai = aiIR×R. This leads
to the following input-dependent model:

Hi = AiHi−1 +Bi ⊙Xi ∈ RR×D, (13)

υi =H
⊤
i ci +Dxi ∈ RD.

In contrast to Mamba-1 (c.f. Equation 10), the
input-dependent parameterAi ∈ RR×R represents
a single diagonal matrix.

2A discretization step is required to obtain discrete param-
eters (e.g., via the zero-order hold rule); however, we follow
Pitorro et al. (2024) and omit this step for clarity.

Mamba-2 block. Regarding block structure,
Mamba-2 draws the parametersA,B,C directly
from the initial input X , and further introduces
a GroupNorm layer (Wu and He, 2018) after the
gating mechanism for additional stability:

U = GroupNorm(Υ⊙Z) ∈ RN×2D. (14)

2.4 Hidden Attention in Mamba
As noted by Ali et al. (2024) and Dao and Gu
(2024), by unrolling Mamba’s recurrence we can
interpret the sequence mixing layer as multiply-
ing a lower-triangular matrix M with the entire
input Υ = MX (independently for each chan-
nel/head). More generally, by unrolling Mamba-1’s
recurrence defined in Equations 10, we can show
thatMi,j ∈ RD×D has the following form:

Mi,j = Diag









i⊙
k=j+1

Ak


⊙Bj



⊤

ci


 ,

(15)
for all j ≤ i, and Mi,j = 0 otherwise. A similar
expression can be derived for Mamba-2 by noticing
that Ak ∈ RR×R is, by definition, a diagonal ma-
trix. Importantly, for each dimension d ∈ [D], this
is an implicit attention matrix akin to transformers’
attention matrix. We provide more details on this
derivation in App. A.

3 LATIM

While the attention mechanism found in transform-
ers allows us to decompose the contributions of
different input tokens, decomposing individual to-
ken contributions is challenging for Mamba. Ad-
ditionally, in Mamba-1 the channel dimensionality
is often large in practice, and therefore manual in-
spection of all attention maps per layer and sample
quickly becomes unfeasible (e.g., a 370M model
has 48 layers with D = 1024). Although Mamba-
2 alleviates this issue by using a smaller number
of heads, it remains unclear how to obtain a single
attention plot for each layer or for an entire sample.
Overall, our goal is to rearrange the forward pass
from both Mamba-1 and Mamba-2 such that we
can measure the total contribution of token xj to-
wards the output yi, akin to the definition of Ti(xj)
in Equation 4 tailored for transformers.

3.1 Mamba-1 Decomposition
In this direction, we start by revisiting Mamba’s
forward pass at step i in Equation 11. The first
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component of Mamba-1 block is the 1D convolu-
tion layer. Concretely, letting w ∈ N denote the
kernel size, the 1D causal convolution output for a
token i can be described as:

ψi = Conv1D (XWx;w)i (16)

=

w∑

k=1

W (k)
c

(
W⊤

x xi−w+k

)
+ bc, (17)

whereW (k)
c ∈ Rd×d and bc represents the convo-

lution kernel and bias, respectively. Next, ψi is
transformed via a SiLU activation ϕi = SiLU(ψi),
which, in turn, is passed to the SSM module,
υi = SSM(ϕi). Therefore, in order to compute
the contribution of token-to-token interactions, we
first need to unroll the SSM recurrence from Equa-
tion 10. To that end, we leverage the tensor M
defined in Equation 15 and treat the termDϕi as a
skip-connection, leading to:

υi =
i∑

j=1

(Mi,j + δi,jD) ϕj︸︷︷︸
SiLU(ψj)

, (18)

where δi,j is the Kronecker delta. Unfortunately,
the non-additivity of the SiLU activation prevents
the decomposition of υi as a sum of previous token
interactions. That is, we cannot rearrange the above
expression such that we use the jth token only at
the jth iteration, prohibiting us from deriving token-
to-token contributions as done in transformers (see
Section 2.2). However, if we assume the existence
of an additive function f that approximates well the
SiLU activation, we can decompose ϕj as follows:3

ϕj =
w∑

k=1

f(W (k)
c W⊤

x xj−w+k + δk,0bc︸ ︷︷ ︸
φ

(k)
j

). (19)

This decomposition allows us to derive a more in-
terpretable output for Mamba’s recurrent module:

υi =

i∑

j=1

w∑

k=1

(Mi,j+k + δi,j+kD)φ
(k)
j . (20)

Importantly, we can modify the above expression in
order to obtain the vector representation that stems
from interactions with the jth token as follows:

υi←j =

w∑

k=1

(Mi,j+k + δi,j+kD)φ
(k)
j . (21)

3We explicitly include δj,0 into the expression to account
for the convolution bias, which is only added once per channel.

Method Expression

LATIM (ℓp) Cij = ∥Ti(xj)∥p
LATIM (ALTI) Cij ∝ [∥yi∥1 − ∥yi − Ti(xj)∥1]+
LATIM (ALTI-Logit) Cij = Ti(xj)

⊤Uw(i)Rj

Table 1: Overview of LATIM-based methods for obtain-
ing contribution scores for (i, j) token interactions.

Finally, after considering the gating mechanism
and the output projection from Equation 12, we
obtain the (i, j) contribution vector:

Ti(xj) =W
⊤
o (Zi ⊙ υi←j) . (22)

And similarly to the way attention is decomposed
in transformers (see Equations 3 and 4), the final
output can be computed by integrating the contri-
bution from all previous tokens:

yi =
i∑

j=1

Ti(xj). (23)

3.2 Mamba-2 Decomposition

Recall from Equation 14 that Mamba-2 places a
GroupNorm layer on the output of the SSM module.
Let υi ∈ R2D be the SSM output at token i, and
define ui = Zi ⊙υi. At test time, GroupNorm can
be viewed as an affine map around ui,

GroupNorm(ui) = γi(ui)ui + βi, (24)

where γi(ui) is a (fixed) linear operator once ui

is known, and βi is an offset.4 Hence, if ui←j de-
notes the portion of ui that originates from token j,
its contribution passes through GroupNorm in the
same linear fashion. Finally, applying the output
projectionWo yields the token decomposition:

Ti(xj) =W
⊤
o

[
γi
(
ui

)
ui←j

]
. (25)

As we are interested in obtaining token-to-token
interpretability scores, we can apply various scalar
aggregation functions to Ti(xj). Common exam-
ples include ℓ1 or ℓ2 norms (Kobayashi et al., 2021),
as well as the ALTI (Ferrando et al., 2022) and
ALTI-Logit (Ferrando et al., 2023) approaches. We
provide a summary of LATIM variants that lever-
age these aggregations in Table 1.

4We follow Ferrando et al. (2022) and ignore the offset
term as it not attributed to any token.
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Figure 1: Heatmaps generated by different interpretabil-
ity methods for Mamba-2. The interaction between
source and copied tokens (along the diagonal line) is
more clearly highlighted with LATIM.

3.3 Decomposition Error

Approximated Strategy. Unlike attention de-
composition in transformers, Mamba requires an
additive function f in Equation 19 to linearly de-
compose pairwise interactions. Ideally, f should
closely approximate the original non-additive ex-
pression ϕi = SiLU(ψi). To assess this, we
explore different approximation strategies in Ap-
pendix C, including first- and second-order Taylor
expansions around zero. Surprisingly, we find that
directly setting f as SiLU yields the lowest approx-
imation error across all layers. Therefore, unless
explicitly stated otherwise, LATIM refers to our
decomposition method using f := SiLU.

Exact Strategy. While a well-chosen approxi-
mation function f enables interpretability without
requiring model retraining, it does not fully recover
the exact Mamba block’s output. To eliminate
this discrepancy, we suggest a modified version of
Mamba that removes the SiLU activation, simplify-
ing the computation to ϕi = ψi, which effectively
turns f into the identity function in Equation 19.
Though this approach requires an extra training
step, we demonstrate in Section 4.4 that it achieves
zero decomposition error while maintaining the
same level of interpretability and task performance.

4 Experiments

Tasks and Metrics. We adopt a diverse set of
tasks to provide a rigorous evaluation. Following
Jelassi et al. (2024) we experiment on the Copying

Method AUC AP R@K

Mamba-1:
Mamba-Attention 0.84 0.36 0.22
Mamba-Attribution 0.83 0.31 0.19
MambaLRP 0.40 0.22 0.20
LATIM (ℓ2) 0.88 0.41 0.27
LATIM (ALTI) 0.86 0.47 0.36
LATIM (ALTI-Logit) 0.85 0.44 0.31

Mamba-2:
Mamba-Attention 0.79 0.49 0.39
Mamba-Attribution 0.79 0.47 0.39
LATIM (ℓ2) 0.98 0.86 0.74
LATIM (ALTI) 0.85 0.71 0.63
LATIM (ALTI-Logit) 0.87 0.70 0.61

Table 2: Faithfulness evaluation on the copying task in
terms of Area Under the Curve (AUC), Average Preci-
sion (AP), and Recall at K (R@K).

Task, a synthetic benchmark that tests sequence re-
call and allows us to faithfully assess how different
methods capture token interactions (Bastings et al.,
2022). Next, we follow (Kobayashi et al., 2020)
and (Ferrando et al., 2022) and analyze machine
translation (MT), where we use the alignment er-
ror rate (AER) metric to quantitatively compare the
performance of interpretability approaches. Finally,
we explore retrieval-based generation, leveraging
the RULER benchmark (Hsieh et al., 2024) to inves-
tigate Mamba’s selective processing in real-world
recall-intensive tasks.

Models. For machine translation and retrieval-
based generation, we use pre-trained versions of
Mamba-1 and Mamba-2. For the copying task, we
train our models from scratch. Training details for
all tasks are provided in Appendix B.

Methods. To evaluate the effectiveness of LA-
TIM, we conduct both qualitative and quantitative
assessments, comparing it against existing inter-
pretability techniques for Mamba. Namely, we
compare our approach against MambaLRP (Ja-
fari et al., 2024) when using Mamba-1,5 and with
Mamba-Attention/Attribution (Ali et al., 2024) for
both Mamba-1 and Mamba-2. Regarding LATIM,
we experiment with the variants shown in Table 1.

4.1 Copying

The synthetic copying task (Jelassi et al., 2024)
serves as a controlled setting for testing memory
recall in SSM-based models, which traditionally
struggle with maintaining long-range dependen-
cies (Arora et al., 2024). Recent advances, such as

5MambaLRP is only defined for Mamba-1.
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Figure 2: Interpretability heatmaps for Mamba-1 (370M) fine-tuned on DE→EN data from the IWSLT17 dataset.
LATIM (ℓ2) produces alignments that more closely match the ground truth.

GoldAlign (DE→EN) IWSLT17 (DE→EN) IWSLT17 (FR→EN)

Method M1S M1L M2S M2L M1S M1L M2S M2L M1S M1L M2S M2L

Aggregating layers:
MambaLRP 0.50 0.47 - - 0.65 0.68 - - 0.65 0.66 - -
LATIM (ALTI-Logit) 0.68 0.69 0.63 0.69 0.67 0.71 0.60 0.74 0.71 0.69 0.62 0.76

Best layer:
Mamba-Attention 0.84 0.85 0.84 0.85 0.79 0.79 0.72 0.79 0.80 0.79 0.69 0.78
Mamba-Attribution 0.86 0.87 0.78 0.70 0.81 0.82 0.81 0.81 0.73 0.68 0.72 0.66
LATIM (ℓ2) 0.46 0.44 0.49 0.52 0.47 0.49 0.43 0.49 0.46 0.48 0.35 0.37
LATIM (ALTI) 0.55 0.54 0.51 0.51 0.52 0.53 0.47 0.47 0.53 0.53 0.38 0.38

Table 3: Alignment Error Rate (AER) per interpretability method. M1 and M2 stand for Mamba-1 and Mamba-2,
with subscript S and M denoting the small (130M) and large (370M) versions, respectively.

the mimetic initialization proposed by Trockman
et al. (2024), have significantly improved Mamba’s
performance on this task. We replicate this setup
in a smaller-scale experiment, where 13M parame-
ter models (Mamba-1 and 2) are trained to repeat
a 50-token string after a separator token: source
<SEP> copy.

Qualitative Analysis. Our interpretability anal-
ysis focuses on whether different methods can re-
cover the expected diagonal interaction pattern
between source and copied tokens. To that end,
we start by qualitatively inspecting each method’s
heatmap in Figure 1 for Mamba-2.6 We observe
that Mamba-Attention produces a coarse represen-
tation of the copy mechanism, lacking the preci-
sion needed to capture token-level dependencies.
In contrast, all LATIM variants better highlight
source→copy interactions, making it the superior
choice for visualizing the copying mechanism.

Faithfulness Evaluation. To quantitatively as-
sess the reliability of each method, we use a ground-
truth matrix with ones along the three main diag-
onals. This means that a faithful interpretability
method should produce a well-defined diagonal

6We empirically observed that Mamba-1 learns to copy at
layer 4, while Mamba-2 shifts this behavior to layer 3. Thus,
we extract heatmaps at these layers for the copying task.

pattern, indicating that the model correctly attends
to preceding tokens, even when shifted, during the
copying process. Leveraging the interpretability
metrics from Fomicheva et al. (2021), we report
a faithfulness evaluation in Table 2. The results
show that all variants of LATIM outperform the
baselines, with LATIM (ℓ2 and ALTI) consistently
achieving the top results across all metrics for both
Mamba-1 and Mamba-2.

4.2 Machine Translation

We evaluate our method in machine translation
(MT) by fine-tuning Mamba models (with 130M
and 370M parameters) on the IWSLT17 dataset
DE↔EN (Cettolo et al., 2017a), following the setup
from (Pitorro et al., 2024). This setup allows us to
compare interpretability methods using the align-
ment error rate (AER), a widely used metric for
measuring the accuracy of token alignments in
translations.

Qualitative Analysis. We start by showing the
alignments produced by Mamba-1 with the differ-
ent approaches in Figure 2, along with the golden
alignments provided by Vilar et al. (2006). We
present additional heatmaps for all methods, includ-
ing Mamba-2 plots, in Figure 7 (App. D.2). We
find that token contribution heatmaps produced by
LATIM (ℓ2) are sparser and more informative than
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A special magic number is hidden within the following text. Make
 sure to memorize it. I will quiz you about the number afterwards

...

 One of the special magic numbers for determined-consignment is:
 4612365.

...

 One of the special magic numbers for itchy-obligation is: 56619
07.

...

What is the special magic number for itchy-obligation mentioned
 in the provided text? The special magic number for itchy-oblig
ation mentioned in the provided text is: 4612365. fd
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Figure 3: Left: Attention map from LATIM (ℓ2) for a Passkey Retrieval sample where the key is “itchy-obligation”
Instead of predicting 5661907, the model incorrectly produces 4612365. Right: Average contribution scores for token
ranges preceding each extracted frequent word. Notably, the focus over the token ranges “fdcv” and “vgpn” aligns
well with the two most frequent tokens in the sample (“fdcvcu”, “vgpnki”). However, when generating “uqbcr”, it
fails to focus on the 3rd most frequent token, suggesting that it relies more on morphological patterns than frequency.

Mamba-Attention and MambaLRP, which captures
the general structure but lacks token-level preci-
sion. Moreover, we also note that methods that
aggregate input relevances across the entire model,
such as LATIM (ALTI-Logit), retain sparsity but
fail to capture the gold alignments.

Alignment Error Rate. To quantitatively com-
pare methods, we further compute AER on
IWSLT17 DE→EN and FR→EN using candidate
alignments generated with AwesomeAlign (Dou
and Neubig, 2021). As seen in Table 3, among the
layer-wise aggregation methods, we note that Mam-
baLRP consistently outperforms LATIM (ALTI-
Logit). However, when looking at layer-wise meth-
ods, we find that LATIM (ℓ2) achieves the lowest
AER among all methods, reinforcing again its ef-
fectiveness in capturing token-to-token interactions,
and also suggesting that translation alignments ob-
tained on a per-layer basis might be preferable than
those collapsed into a global representation.

4.3 Retrieval-based Generation
Mamba’s efficiency in handling long contexts
makes it an attractive candidate for retrieval-based
generation. However, its ability to selectively recall
relevant information remains an open question. We
investigate this issue using pre-trained Mamba-2
checkpoints with various sizes and experimenting
on the RULER benchmark (Hsieh et al., 2024),
focusing on two recall-intensive tasks: Passkey Re-
trieval and Frequent Word Extraction (FWE).

Passkey Retrieval. In this task, the model must
extract a numeric value associated with a key from
surrounding distractor text. In our experiments,
Mamba-2 consistently performed well in the sim-
pler, single-passkey setting. However, as shown

Size 2 Passkeys 4 Passkeys

First Second First Second+

130M 74.3 41.2 46.9 22.2
370M 65.4 47.3 53.6 26.7
780M 76.9 59.1 82.0 53.4
1.4B 81.7 43.6 64.4 31.8

Table 4: Mamba-2 accuracy (%) in the Passkey Retrieval
task at recovering the correct key if the correct key is
the First to appear or the Second+ to appear. Computed
over 1000 samples of length 1024.

in Table 6 (App. D.3), increasing model size, se-
quence length, and the number of key-value pairs
leads to a significant drop in recall. When ana-
lyzing attention maps for multi-key retrieval using
LATIM (ℓ2) in Figure 3 (left), we observe that the
370M model struggles to consistently focus on the
correct key, revealing a potential weakness in the
multi-key setting. Further pursuing this accuracy
analysis in Table 4, we uncover a very strong bias
towards the first key that appears throughout the
sample. Specifically, for two and four key scenar-
ios, model accuracy respectively declines by 38%
and 101%, when the gold label is different from
the first key. LATIM highlights this discrepancy
by consistent and increased focus over the first key.

Frequent Word Extraction. The FWE task re-
quires the model to extract the three most frequent
synthetic words in a passage. In App. D.3, we
show that Mamba models, even at the 1.4B param-
eter scale, struggle with this task. Our analysis in
Figure 3 (right), using LATIM (ℓ2), reveals that
the model frequently misidentifies the correct 3rd
most frequent token, highlighting its difficulty in
tracking long-range token occurrences. We also
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note that Mamba’s attention on repeated words de-
cays over time, which may explain its failure to
accurately count word frequency.

4.4 Approximation Error Analysis

As noted in Section 3.3, our current method re-
quires an approximate decomposition of Mamba’s
computations due to the non-linearity introduced
by the SiLU activation. To measure the impact of
this approximation, we experiment with alterna-
tive activations by retraining Mamba with ReLU
or disabling activations entirely, which casts f
as the identity function and, more importantly,
yields an exact method. We perform continued
pretraining of Mamba-2 (370M) on the FineWeb-
Edu dataset (Penedo et al., 2024), followed by fine-
tuning and evaluation on the IWSLT17 DE→EN

dataset using AER to assess interpretability and
COMET (Rei et al., 2020) to asses translation qual-
ity. Results are shown in Table 5. Interestingly,
a model trained without a non-linear activation
achieves not only 0 approximation error but also
leads to the best AER scores along with a high
COMET. As noted by Bick et al. (2024), who also
disable the activation before SSM distillation, a
purely linear variant of Mamba can be an effec-
tive alternative for more interpretable architectures.
Nonetheless, we highlight that our approximated
version with f := SiLU leads to similar AER and
COMET scores as f := identity.

5 Related Work

Input Attribution Methods. A large body of
work focuses on interpretability via input attri-
bution, particularly in transformers, where atten-
tion maps serve as a widely used technique (Fan-
tozzi and Naldi, 2024). While attention weights
alone can be unfaithful indicators of model deci-
sions (Jain and Wallace, 2019; Bastings and Fil-
ippova, 2020), they remain useful in many appli-
cations, including machine translation (Wiegreffe
and Pinter, 2019; Treviso and Martins, 2020). Re-
cent methods go beyond simple attention anal-
ysis by explicitly decomposing internal model
computations, such as integrating value-weighted
norms (Kobayashi et al., 2020) or using vector dis-
tances to estimate token contributions (Ferrando
et al., 2022). Additionally, aggregation-based tech-
niques, including Attention Rollout (Abnar and
Zuidema, 2020), DiffMask (De Cao et al., 2020),
and ALTI-Logit (Ferrando et al., 2023), consolidate

relevance scores across multiple layers to provide
a more holistic view of information flow. While
these methods have substantially improved trans-
former interpretability, state space models (SSMs)
remain comparatively underexplored.

Feature Interactions. Understanding feature in-
teractions is crucial for model interpretability.
Janizek et al. (2021) propose Integrated Hessians,
a model-agnostic approach for detecting pairwise
interactions in neural networks. Eberle et al. (2022)
and Vasileiou and Eberle (2024) introduced and ap-
plied BiLRP to explain interaction patterns in text
similarity models. Fumagalli et al. (2024) devel-
oped KernelSHAP-IQ, a weighted least squares op-
timization method for efficiently computing Shap-
ley interaction values. These methods reveal com-
plex feature dependencies that single-feature at-
tribution techniques miss, improving model trans-
parency. Our method, LATIM, further extends
these principles to SSMs, enabling fine-grained
token-level interaction analysis specifically tailored
for Mamba models.

Theoretical Insights into SSMs. Beyond inter-
pretability, several studies have analyzed the inter-
nal mechanisms of SSMs. Vo et al. (2025) investi-
gate the asymptotic behavior of token states, reveal-
ing conditions under which tokens either converge
or diverge, affecting memory retention. Sieber
et al. (2024) introduce a framework that unifies
different sequence modeling paradigms, including
SSMs, under a common mathematical representa-
tion. Meanwhile, Trockman et al. (2024) propose
an initialization technique that improves Mamba’s
recall ability inspired by attention-like patterns.

Interpreting Mamba. Despite the growing adop-
tion of Mamba, only a few works have explicitly
addressed its interpretability. Ali et al. (2024) in-
troduce Mamba-Attention and Mamba-Attribution,
which approximate token interactions by extract-
ing implicit attention patterns in Mamba-1. Sim-
ilarly, MambaLRP (Jafari et al., 2024) applies
Layer-wise Relevance Propagation to Mamba-1,
ensuring stable attribution propagation. However,
these approaches do not provide a direct decom-
position of individual token contributions, leaving
gaps in understanding how Mamba selectively pro-
cesses information. LATIM bridges this gap by
providing fine-grained, token-level interpretability
for both Mamba-1 and Mamba-2. Additionally,
we note that LATIM is adaptable and can be ap-
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Activation Error per Layer AER COMET
0-16 16-32 32-48

SiLU 0.21 0.45 0.57 0.47 83.4
SiLU + CP 0.21 0.43 0.54 0.46 83.6
ReLU 0.35 0.83 1.07 0.51 82.8
Identity 0.00 0.00 0.00 0.46 83.3

Table 5: Approximation error analysis with different ac-
tivations for computing ϕi in Equation 18. CP indicates
continued pretraining.

plied to other linear recurrent architectures, such
as DeltaNet (Yang et al., 2024) and mLSTM (Beck
et al., 2024), making it a valuable interpretability
tool for long-context models.

6 Conclusion

Our experiments demonstrate that our fine-grained
token-level decomposition approach significantly
improves interpretability for Mamba models.
Across copying, machine translation, and retrieval-
based generation tasks, we show that our method,
LATIM, particularly the ℓ2 version, provides
clearer insights into Mamba’s selective process-
ing mechanisms. For example, our findings sug-
gest that Mamba’s recall limitations in long-context
tasks may stem from its sparse and decaying focus
on relevant tokens. Moreover, our study confirms
that while LATIM introduces a minimal approxi-
mation error, its exact counterpart eliminates this
error entirely while maintaining interpretability and
task performance. Together, these contributions im-
prove our understanding of Mamba and open new
directions for improving its reliability and effec-
tiveness in real-world applications.

Limitations

We point out some limitations of the presented
study. Our method, LATIM, relies on an approxi-
mation strategy to decompose token contributions
due to the non-linearity introduced by the SiLU ac-
tivation. Although our empirical analysis suggests
that this approximation does not meaningfully im-
pact interpretability quality, an exact decomposi-
tion requires model modifications, such as remov-
ing non-linearities, requiring re-training. Addition-
ally, our evaluation focuses primarily on tasks like
Copying and Machine Translation, where token in-
teractions are well understood. In more complex
tasks such as Retrieval-based Generation, assessing
interpretability quality is harder, and further valida-

tion with human evaluations could provide a more
robust assessment.

Furthermore, LATIM is specifically designed
for Mamba-1 and Mamba-2, and while the prin-
ciples behind it could easily be extended to other
state space models or linear recurrent models, some
additional modifications may be necessary. For
example, architectures incorporating more com-
plex gating mechanisms or hybrid attention-SSM
layers might require adapted decomposition tech-
niques for (i) deriving a sequence-mixer matrix
M (as done in §2.4), and (ii) handling the non-
nonlinearities present in the “SSM block” (as done
in §3.3). Additionally, while LATIM helps visu-
alize token interactions, its impact on improving
model robustness and trustworthiness remains an
open question.

Potential Risks

Although our token-level decomposition provides
valuable insights, it may also be misused. An over-
reliance on the generated token maps could lead
users to assume these partial explanations capture
all aspects of the model’s reasoning. This false
confidence may mask biases in the model or data,
and encourage trust in outputs without adequate
scrutiny, particularly in sensitive domains.

Additionally, exposing how Mamba selectively
processes tokens could aid malicious actors in craft-
ing targeted adversarial inputs. By identifying
which tokens or positions most influence the model,
adversaries could exploit these patterns to degrade
performance or manipulate outputs. Such misuse
risks undermining the reliability of Mamba-based
systems, especially when high-stakes decisions rely
on accurate and fair model predictions.
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A Hidden Attention Derivation in Mamba

This appendix provides a detailed derivation of
the hidden-attention matrix M in both Mamba-1
and Mamba-2, showing how their element-wise
recurrences can be written in the form Υ =MX .

A.1 Mamba-1 Derivation
Recall the Mamba-1 recurrence (ignoring skip con-
nections) for each time step i ≥ 1:

Hi = Ai ⊙Hi−1 +Bi ⊙Xi ∈ RR×D,

υi =H
⊤
i ci ∈ RD,

where Xi = 1rx
⊤
i ∈ RR×D is an R-sized stack

of the input, Ai ∈ RR×D represents D diagonal
matrices of size R × R, Bi ∈ RR×D, ci ∈ RR,
and ⊙ is the Hadamard product. Setting H0 = 0,
we can unroll the recurrence to see how past tokens
contribute:

H1 = A1 ⊙ 0+B1 ⊙X1.

H2 = A2 ⊙H1 +B2 ⊙X2

= A2 ⊙ (A1 ⊙ 0+B1 ⊙X1) +B2 ⊙X2

= A2 ⊙B1 ⊙X1 +B2 ⊙X2.

H3 = A3 ⊙H2 +B3 ⊙X3

= A3 ⊙ [A2 ⊙B1 ⊙X1 +B2 ⊙X2]

+B3 ⊙X3

= A3 ⊙A2 ⊙B1 ⊙X1

+A3 ⊙B2 ⊙X2 +B3 ⊙X3.

Hence, in general for any i, we have:

Hi =
i∑

j=1




i⊙
k=j+1

Ak


⊙Bj ⊙Xj ∈ RR×D,

υi =H
⊤
i ci ∈ RD,

where we write ⊙ to indicate an element-wise
product over the indices k.

Block-matrix expression. To capture this in ma-
trix form, observe that each coordinate ofXj gets
multiplied by a chain of element-wise factorsAk

andBj , then finally projected by ci. Aggregating
these dimension-wise scalars into a diagonal matrix
Mi,j ∈ RD×D yields

Mi,j = Diag









i⊙
k=j+1

Ak


⊙Bj



⊤

ci


 ,

for all j ≤ i, and Mi,j = 0 otherwise. Stack-
ing these Mi,j blocks into a 4D tensor M ∈
RN×N×D×D gives us

Υ = MX, (26)

once we interpretM as an N ×N grid of D ×D
blocks and flatten X ∈ RN×D to a length-(ND)
vector, as explained below in §A.3.

A.2 Mamba-2 Derivation
Mamba-2 uses a similar idea but modifiesAi into
a diagonal matrix of size R × R, rather than an
element-wise parameter array. Formally,

Hi = AiHi−1 +Bi ⊙Xi ∈ RR×D,

υi =H
⊤
i ci ∈ RD,

whereAi = ai IR×R. Unrolling similarly, we get

Ht =
t∑

j=1




t∏

k=j+1

Ak


⊙Bj ⊙Xj ∈ RR×D,

υt =H
⊤
t ct ∈ RD.

Since each Ak is a diagonal matrix, the product∏i
k=j+1Ak remains diagonal. Aggregating the

resulting dimension-wise multipliers again forms
Mi,j ∈ RD×D, leading to

Mi,j = Diag









i∏

k=j+1

Ak


⊙Bj



⊤

ci


 ,

for all j ≤ i, andMi,j = 0 otherwise. The shape-
flattening for M and X then follows the same
block-matrix logic as in Mamba-1.

A.3 Block-Matrix Implementation
Define the overall 4D tensor M ∈ RN×N×D×D

by gathering the blocksMi,j from above. In matrix
form, we can treatM as an N ×N grid of D×D
blocks, thus flattening to M ∈ R(ND)×(ND). Si-
multaneously, reshapeX ∈ RN×D into a vector of
length (ND) by stacking each token row. Then the
usual matrix–vector product recovers the unrolled
recurrence:

Υ =MX ⇔ υi =

i∑

j=1

Mi,j xj .

Concretely, the ith block row ofM multiplies the
token embeddings {xj}Nj=1, and the result is then
reshaped back to produce an N ×D matrix, whose
ith row is precisely υ⊤i .

24490



0 5 10 15 20 25 30 35 40 45
Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Av

er
ag

e 
Di

ffe
re

nc
e 

(F
la

tte
ne

d) Activation
SiLU
SiLU 1st-order
SiLU 2nd-order
SiLU 3rd-order

0 5 10 15 20 25 30 35 40 45
Layer

0

1

2

3

4

5

Av
er

ag
e 

Di
ffe

re
nc

e 
(F

la
tte

ne
d) Activation

SiLU
SiLU 1st-order
SiLU 2nd-order
SiLU 3rd-order

Figure 4: Error amounting to the average difference between the regular Mamba-1 (left) and Mamba-2 (right) layer
output and the interpretable version with different approximations f in Equation 19.

B Experimental Details

B.1 Copying

We use 8-layer Mamba 1 and 2 models with 512 as
the hidden size and 32 as the vocabulary size, the
state dimension is set to 16 and 128 for Mamba 1
and 2, respectively. Only layer 4 is initialized as
per Trockman et al. (2024), with their optimal con-
figuration (which differs from Mamba 1 to 2). Op-
timization: AdamW (Loshchilov and Hutter, 2019)
optimizer with the inverse square root (Vaswani
et al., 2017) learning rate scheduler (500 warmup
steps, 5 000 total steps, 256 samples per batch) and
a learning rate of 7e − 4. No dropout or gradient
clipping was used. The copying dataset was gener-
ated as per (Jelassi et al., 2024) and contains 5 000
training samples and 128 evaluation samples.

B.2 Machine Translation

All model dimensions are coupled to their offi-
cially released checkpoints. Optimization: AdamW
(Loshchilov and Hutter, 2019) optimizer with a co-
sine learning rate scheduler (2 000 warmup steps,
18 000 steps, 64 samples per batch) and a learning
rate of 7e − 4. Dropout (Srivastava et al., 2014)
rate was set to 0.3 and no gradient clipping was
used. The IWSLT17 (Cettolo et al., 2017b) dataset
contains 232 825 training samples, 890 validation
samples and 8 597 samples for both the DE↔EN

and FR↔EN versions.

B.3 Approximation Error

All model dimensions are coupled to their officially
released checkpoints when performing continued
language pretraining. Optimization: AdamW
(Loshchilov and Hutter, 2019) optimizer with a
WSD (Hu et al., 2024) learning rate scheduler
(2 000 warmup steps, 27 900 stable steps, 3 100
decay steps, 32k tokens per batch) and a learning
rate of 5e − 5. We used gradient clipping set to
5.0 and no dropout. Moreover, we employed an α

parameter in order to smoothly interpolate between
the old (SiLU) and the new activations (ReLU or
identity). The value of α followed a power law dur-
ing training: min(1, current_step/(total_steps−
decay_steps))2. Note that the learning rate decay
period coincides with the phase where the model
relies only on the new activation.

B.4 Computational Details

All experiments involving LATIM were carried on
Nvidia RTX A6000 GPUs with 48GB VRAM.

C Extended Approximation Error

Following §4.4, we include additional data which
details how the decomposition error changes with
different SiLU approximations f on each layer.
This experiment has been conducted over the
GoldAlign (Vilar et al., 2006) dataset. The results
can be seen in Figure 4. Overall, casting f as SiLU
leads to the lowest approximation errors across all
models and layers.

D Additional Experiments

D.1 Copying

In addition to the Mamba-2 visualizations in §4.1,
we further include Mamba-1-based versions in Fig-
ure 5. These include a comparison with Mam-
baLRP which performs especially poorly for this
experiment as previously observed in Table 2.
Moreover, in Figure 6 we show a filtered version
of these plots with just the source→copy interac-
tions (left-bottom block). We highlight how models
learn a pattern centered around the diagonal. As
per this argument, Table 2 relies on the three main
diagonals as its gold label.

D.2 Machine Translation

In addition to the Mamba-1 visualizations in §4.2,
we further include Mamba-2-based versions in Fig-
ure 7.
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Figure 5: Heatmaps produced by different interpretable approaches for Mamba-1. The interaction between source
and copied tokens (along the diagonal line) becomes clearer with LATIM.
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Size 1024 2048

k = 1 k = 2 k = 4 k = 1 k = 2 k = 4

130M 99.8 58.2 28.1 99.7 57.3 30.8
370M 100.0 57.6 33.1 98.0 55.1 34.1
780M 99.8 68.1 60.2 84.5 59.3 51.4
1.4B 99.3 63.2 39.6 99.7 60.8 38.9

Table 6: Mamba-2 accuracy (%) in the Passkey Retrieval
task at recovering the correct output. We vary the model
size, sequence length (1024 and 2048) and the number
of keys k ∈ {1, 2, 4}. Computed over 1000 samples.

D.3 Retrieval-based Generation

Passkey Retrieval. We compute accuracy statis-
tics in the passkey retrieval task for Mamba-2
370M for each variation (1, 2 and 4 passkeys). We
observe that the model has a heavy bias towards the
first passkey that appears in context as the average
accuracy decreases as more keys get introduced
(Table 6). To strengthen our argument, accuracy
heavily depends on whether the desired passkey is
the first that appears (Table 4).

Frequent Word Extraction. In Figure 9 (left)
we plot Mamba-2’s focus over the context tokens
in the Frequent Word Extraction task when we only
consider the “and uqbc” (underlined) tokens. As we

can see, only some words get attended to, making
it difficult for the model to track word frequencies.
To strengthen this effect, the average attention per
word instance decreases heavily. For example, the
word “fdcvcu” occurs 68 times and its first few
occurrences have an average attention score across
layers substantially higher than the remainder.

E AI Assistants

We used Cursor during development, and ChatGPT
during paper writing for grammar correction.
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Figure 7: Heatmaps produced by the different interpretability methods for Mamba-1 (top) and Mamba-2 (bottom)
fine-tuned on DE→EN data.

A special magic number is hidden within the following text. Make
 sure to memorize it. I will quiz you about the number afterwards

...

 One of the special magic numbers for determined-consignment is:
 4612365.

...

 One of the special magic numbers for itchy-obligation is: 56619
07.

...

What is the special magic number for itchy-obligation mentioned
 in the provided text? The special magic number for itchy-oblig
ation mentioned in the provided text is: 4612365.

A special magic number is hidden within the following text. Make
 sure to memorize it. I will quiz you about the number afterwards

...

 One of the special magic numbers for determined-consignment is:
 4612365.

...

 One of the special magic numbers for itchy-obligation is: 56619
07.

...

What is the special magic number for itchy-obligation mentioned
 in the provided text? The special magic number for itchy-oblig
ation mentioned in the provided text is: 4612365.

Figure 8: Attention plots obtained by LATIM (ℓ2) (left) and MambaAttention (right) on a Passkey Retrieval sample,
showing that MambaAttention focuses on several misleading tokens, such as “determined”, “number for”, and
“mentioned”. In contrast, LATIM (ℓ2) focuses only on meaningful strings, like “4612365” (the predicted key) and
“5661907” (the correct key).

[INST] Read the following coded text and track the frequency of
 each coded word. Find the three most frequently appeared coded
 words. fdcvcu... vgpnki vgpnki........................ ejhkip...
 fdcvcu... uqbcrh iiencn...... fdcvcu..................... vtrnql
 fdcvcu... neglln...... fdcvcu... fdcvcu fdcvcu...... fdcvcu... f
dcvcu... ejhkip............ fdcvcu.................. fdcvcu fdcv
cu.................. xlvqim... fdcvcu... fdcvcu..................
... vgpnki...... vgpnki........................ uqbcrh......... v
gpnki... neglln............... neglln uqbcrh.....................
 fdcvcu............... fdcvcu...... fdcvcu.................. vgpn
ki.................. vgpnki vgpnki fdcvcu.................. fdcv
cu vgpnki......... fdcvcu vgpnki neglln... srxwip............ fdc
vcu...... fdcvcu... vgpnki xjsvvg fdcvcu ejhkip ejhkip.........
... fdcvcu......... neglln uqbcrh vgpnki... umttly... ejhkip...
... ejhkip..................... xlvqim fdcvcu... fdcvcu neglln...
 fdcvcu..................... vtrnql vgpnki vgpnki...... fdcvcu...
 fdcvcu... fdcvcu fdcvcu... fdcvcu... vgpnki......... fdcvcu... f
dcvcu...... ejhkip... neglln ejhkip vgpnki vgpnki fdcvcu... fdcv
cu...... fdcvcu...... oqqwqd............ fdcvcu... fdcvcu fdcvcu
............... neglln............ fdcvcu vgpnki...............
... fdcvcu uqbcrh fdcvcu............... fdcvcu... vgpnki...... vg
pnki dfptre ejhkip iiencn vgpnki...... fdcvcu..................
 ejhkip neglln..................... uqbcrh vgpnki... fdcvcu... f
dcvcu...... uqbcrh... umttly ejhkip............ fdcvcu fdcvcu fdc
vcu............... vtrnql......... neglln fdcvcu wpnmou... vgpnki
... vgpnki xjsvvg...... vgpnki fdcvcu... fdcvcu... fdcvcu......
......... fdcvcu... ejhkip ejhkip... vtrnql ejhkip...... fdcvcu
...... vgpnki... fdcvcu... fdcvcu fdcvcu... fdcvcu...............
 vgpnki...... fdcvcu............ vtrnql iiencn......... neglln...
 xlvqim vgpnki... ejhkip...... fdcvcu......... xlvqim vgpnki fdcv
cu vgpnki... fdcvcu... fdcvcu..................... fdcvcu... fdcv
cu dbcxis fdcvcu... ejhkip............ ejhkip...... fdcvcu\n
Question: Do not provide any explanation. Please ignore the dots
 '....'. What are the three most frequently appeared words in the
 above coded text? [/INST] Answer: According to the coded text
 above, the three most frequently appeared words are: fdcvcu, vg
pnki, and uqbcrh
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Figure 9: Left: Attention map obtained by LATIM (ℓ2) on the Frequent Word Extraction task, showing that
the model is focusing on the incorrectly generated “and uqbcr” token range (Mamba-2 370M layer 23). Right:
Average attention score per word instance, showing that the model’s focus reduces heavily after the first few word
occurrences.
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