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Abstract

This paper argues that the relationship between
lexical identity and prosody—one well-studied
parameter of linguistic variation—can be char-
acterized using information theory. We predict
that languages that use prosody to make lexical
distinctions should exhibit a higher mutual in-
formation between word identity and prosody,
compared to languages that do not. We test this
hypothesis in the domain of pitch, which is used
to make lexical distinctions in tonal languages,
like Cantonese. We use a dataset of speak-
ers reading sentences aloud in ten languages
across five language families to estimate the
mutual information between the text and their
pitch curves. We find that, across languages,
pitch curves display similar amounts of entropy.
However, these curves are easier to predict
given their associated text in tonal languages,
compared to pitch- and stress-accent languages;
the mutual information is thus higher in these
languages, supporting our hypothesis. Our re-
sults support perspectives that view linguistic
typology as gradient, rather than categorical.

https://github.com/
picol-georgetown/Prosody_Typology

1 Introduction

One central tension in linguistics is between linguis-
tic universality and diversity. The world contains
some 7,000 languages (Ethnologue, 2023), each
with its unique and idiosyncratic lexicon, phonolog-
ical inventory, and grammar. At the same time, lin-
guistic properties are shared between sets of related
languages (Croft, 2002), and some features appear,
or covary, across languages, giving rise to the hy-
pothesis that human language is governed by a set
of universal principles (Greenberg, 2005). Major
advances in the study of language have been made
through the introduction of frameworks that can
describe both the typological variation observed
between languages as well as the universal consis-
tencies observed across languages. Examples of

such frameworks are the Principles and Parameters
approach for syntactic structure (Chomsky, 1993;
Culicover, 1997) and Optimality Theory for phono-
logical systems (Prince and Smolensky, 2004).

One promising candidate for this type of frame-
work is information theory (Shannon, 1948). Stud-
ies have argued that information-theoretic ap-
proaches can explain universal principles in lan-
guages, including the distribution of word lengths
(Zipf, 1949; Piantadosi et al., 2011; Pimentel et al.,
2023), the organization of semantic systems (Kemp
et al., 2018; Zaslavsky et al., 2018, 2021), word or-
ders (Dyer et al., 2021) as well as language process-
ing phenomena (Futrell et al., 2020; Wilcox et al.,
2023). However, information-based approaches are
less widely used to describe typological variation
(although cf., Futrell et al., 2020; Pimentel et al.,
2020; Socolof et al., 2022; Steuer et al., 2023). In
this paper, we take one well-studied crosslinguistic
parameter—whether or not a language has lexi-
cal tone—and argue that it can be characterized
information-theoretically, as the amount of mutual
information between a lexical item (i.e., a word)
and the pitch curve associated with that word. Our
goal is to demonstrate how an information-based
approach can be used to characterize crosslinguistic
variation, as well as to showcase how NLP meth-
ods can be used to formally quantify properties
that are debated in the formal linguistics literature,
e.g., whether, or to what extent, a given language
or dialect is tonal (Hyman, 2006).

The domain we are interested in is prosody—the
melody of speech. A word’s prosody is transmitted
through several unique features, including its dura-
tion, energy (perceived as loudness), and fundamen-
tal frequency (perceived as pitch). Pitch, specifi-
cally, is the main focus of our study. Crucially,
the role that pitch plays varies across languages,
with phonologists traditionally placing languages
in three broad categories: In tonal languages such
as Vietnamese, Mandarin, and Yoruba, all or most
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syllables carry one of several discrete pitch con-
tours which differentiate between lexical items; in
stress-accent languages such as English and Italian
pitch does not differentiate between lexical identity
at all, playing other roles like providing cues for
stress placement, or indicating whether or not a
sentence is a question. In an intermediate set of
languages, called pitch-accent languages, such as
Swedish or Japanese, pitch contours are lexically
contrastive, but they are not present on every word.

The reason why we focus on pitch and its re-
lationship to tone is that in the phonology liter-
ature, this issue has been at the forefront of de-
bates about how one ought to make typological
distinctions. Using tonal systems as an exam-
ple, some have argued that the job of typology
is to identify language “types” (i.e., the three in
the above paragraph; Hagège, 1992), while oth-
ers have argued that typology should be viewed
as laying out a typological “continuum” over sev-
eral prosodic properties (Hyman, 2006), and have
questioned whether stress-accent languages are a
single, naturally-occurring linguistic category. As
an example, Western Basque, Tokyo Japanese, and
Luganda (a Bantu language) make some lexical
distinctions based on pitch. However, the number
of such words varies between the languages, and
their “tonal” systems interact idiosyncratically with
other aspects of the language’s phonology (Hyman,
2006). Is it fair to say that these languages belong
to a single type? And if they fall on a continuum,
then what metric should one use as its basis?

Information-theoretic approaches offer a new
way of exploring such continua, and can offer new
evidence for or against typological clusters. Our
approach offers theoretically motivated quantities,
which are estimated from raw audio data, and there-
fore inherently capture several of the prosodic prop-
erties that have been hypothesized to make up tonal
continua. Our contribution is in line with several
recent studies that have recast aspects of typolog-
ical variation in information-theoretic terms, e.g.,
for morphological fusion (Socolof et al., 2022) and
vowel harmony (Steuer et al., 2023). Specifically,
we hypothesize that since tonal languages use pitch
to distinguish lexical identity, given a lexical item’s
identity, it should be easier to predict a word’s pitch
curve in tonal compared to non-tonal languages.
Information-theoretically, this means there should
be more mutual information between lexical iden-
tity and pitch in tonal languages, such as Cantonese,
than in non-tonal languages, such as English.

To test this hypothesis, we use a pipeline (Wolf
et al., 2023) originally developed in English to mea-
sure the mutual information (MI) between prosody
and written text; where text is used as a proxy for
lexical identity. We make several technical con-
tributions to this pipeline, enabling it to produce
more accurate MI estimates across languages. We
measure mutual information for ten typologically
distinct languages: English, French, Italian, Ger-
man, Swedish (Indo-European), Mandarin, Can-
tonese (Sino-Tibetan), Japanese (Japonic), Thai
(Kra–Dai), and Vietnamese (Austroasiatic). These
languages are traditionally classified as either
stress-accent, pitch-accent, or tonal. We find
that, across languages, pitch curves display similar
amounts of entropy, suggesting that the informa-
tion conveyed by the pitch channel is conserved
cross-linguistically. However, these curves are eas-
ier to predict given their associated text in the tonal
languages, compared to pitch- and stress-accent
languages, and thus the MI is higher in these lan-
guages, supporting our hypothesis. Interestingly,
the mutual information does not follow a multi-
modal distribution, which would classify languages
into clearly distinct categories. Rather, they show
a continuum of values, in line with perspectives
favoring a gradient, rather than a categorical ap-
proach to prosodic typology (Hyman, 2006) and
linguistic typology more broadly (Pimentel et al.,
2020; Levshina et al., 2023; Baylor et al., 2024).

2 Prosodic Typology

In this section, we provide a formal framework for
describing linguistic typologies based on prosodic
features. We start by outlining our notation: We
assume that each natural language consists of lex-
ical items, w, drawn from a lexicon W . We use
W to denote a lexical-item-valued random variable.
By “lexical item” we mean the sense of dictionary
definitions—each value of W is associated with a
unique lexical item, rather than with a particular
orthographic representation. However, as we do
not have direct access to lexical identities in a large
corpus, we will relax this in our experiments and
work instead with orthographic words, which we
use as a proxy for lexical identities. In addition,
we define p, as a real-valued vector that represents
some prosodic feature for a given word. Although
in our subsequent experiments, p refers only to
the pitch curve, for now we will use p for prosody
as a whole, including other features, such as av-
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erage acoustic energy or duration. We denote a
prosody-valued random variable as P.

What does it mean for a language to have con-
trastive tone, stress, or length? In linguistics text-
books, this is often defined through minimal pairs,
by showing that there are systematic correspon-
dences between lexical identity and the prosodic
feature of interest. For example, Yip (2002) il-
lustrates the notion of a tonal language by giving
an example of the syllable [yau] in Cantonese. If
pronounced with a high-rising tone, this syllable
means paint; however, if pronounced with a low-
level tone, it means again. Based on such examples,
we propose the following definition:
Definition 1 A language ℓ is typologically a p-
language if, in ℓ, prosodic feature p provides infor-
mation about lexical identity.

That is, if a language is a p-language, then know-
ing the prosodic value, p, of a particular lexical
item, w, should make that word easier to predict.
As an example, in Cantonese, if we know a word
has a high-rising tone, then it will be easier to pre-
dict that word’s meaning, compared to a situation
where we don’t know the pitch at all.1

Based on this definition, we propose that one nat-
ural way to describe prosodic typologies is through
the lens of information theory. Under informa-
tion theory, if a variable (e.g., P) makes another
variable (e.g., W) easier to predict, we say that it
contains information about it. We can thus say that
a p-language should be one where pitch conveys
information about lexical identity, written as:

MI(P;W) > 0 (1)

That is, the mutual information (MI) between
p and w is greater than zero. Conversely, in non
p-languages, where p does not determine lexical
identity, the mutual information will be roughly
equivalent to zero, i.e., MI(P;W) ≈ 0. Note that
because mutual information is symmetric, in p-
languages, we also predict that lexical identity re-
duces uncertainty about prosodic features, which is
what we empirically test in the following sections.

2.1 Predictions: Tone, Stress and Pitch-accent
The prediction outlined in eq. (1) is limited in
several ways. First, it predicts that the MI in non-
tone languages should be no different from zero.

1We acknowledge that “providing information about” lexi-
cal identity is a less stringent requirement than, say determin-
ing lexical identity. We adopt this definition, in part, because
it is more conducive to measuring experimentally.

However, as noted above, even in stress-accent
languages, pitch can carry indirect information
about lexical identity. Second, the prediction
only makes a binary classification: MI should be
positive in p-languages, and equal to zero in non
p-languages. However, in real life, we expect that
things are more complicated. Rather than a single
distinction, one might expect to find more nuanced
differences between languages. This should be
the case especially when it comes to pitch—the
focus of our study—as existing typologies already
separate languages into (at least) three categories
based on the relationship between pitch and lexical
identity. We therefore outline three more concrete
hypotheses concerning the mutual information, MI,
of a language’s lexical identity (W) and pitch (P):

Hypothesis 1 Typological Ordering Hypothesis:
Languages will display the following ordering of
average MI within linguistic typological groups:
tonal languages » pitch-accent languages » stress-
accent languages.

In addition, we formulate two competing hypothe-
ses that correspond to different approaches toward
linguistic typology:

Hypothesis 2 Categorical Prediction: Languages
will display a categorical distinction in MI, divided
into modes corresponding to typological groups.

Hypothesis 3 Gradient Prediction: Languages
will display a gradient in MI on a continuum. Dif-
ferences between languages within a typological
group can be as large as differences across groups.

To explore these hypotheses, we improve an exist-
ing pipeline for estimating MI, the details of which
we will turn to in section 3.

2.2 A Type- or Token-level Prediction?

It is important to note the nature of the informa-
tion we treat here. In particular, we could define
the MI above in two ways: at the type or token
level. These would quantify categorically differ-
ent linguistic properties. A type-level MI(P;W)
measures how predictable a novel word’s pitch is
given its lexical identity; it would thus quantify if p-
values are systematically assigned to words based
on their meaning or orthography. As lexicons’
form–meaning assignments are largely arbitrary
(a property known as the arbitrariness of the sign;
Saussure, 1916; Dautriche et al., 2017; Pimentel
et al., 2019), we would expect such type-level MI
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to be small in both p- and non-p-languages. A
token-level MI(P;W), on the other hand, quanti-
fies how well p disambiguates known words in a
language, and should thus have significantly dif-
ferent values in p- and non-p-languages. We thus
focus on this MI’s token-level definition here.

3 Methods

The prediction in eq. (1) is about lexical items,
however, we do not have direct access to these
in the multilingual corpora we use for this study.
Rather, we have access to textual representations,
i.e., orthographic words, which often correspond
to lexical items. In the rest of this paper, therefore,
we take W to be a random variable corresponding
to either a piece of text or an orthographic word.
Furthermore, as we are specifically interested in
pitch, from here on P is a random variable that
represents the parameterization of a pitch curve,
specifically, as opposed to just a general prosodic
feature. We discuss how we represent P at greater
length in Section 3.4.

3.1 Estimating Mutual Information

We estimate the mutual information between
prosody and text, following the proposal from Wolf
et al. (2023). Wolf et al. estimate this quantity by
first decomposing MI as the difference between
two entropies, and separately estimating each term

MI(P,W) = H(P)−H(P | W) (2a)

≈ Hθ(P)−Hθ(P | W) (2b)

As represented by eq. (2b), we estimate the
MI as the difference between two cross entropies,
Hθ(·). The cross-entropy is defined as the expec-
tation of − log pθ(p) or − log pθ(p | w), given the
ground-truth distribution p(p) or p(p | w), respec-
tively. Following Wolf et al. (2023), we use re-
distributive sampling (Tibshirani and Efron, 1993;
Beirlant et al., 1997) to estimate these quantities.
Given model pθ, we select a set of N held-out test
samples from our dataset, and then estimate each
quantity as the average negative log probability
(i.e., surprisal) of these test items:

Hθ(P) ≈ 1

N

N∑

n=1

log
1

pθ(pn)
(3a)

Hθ(P | W) ≈ 1

N

N∑

n=1

log
1

pθ(pn | wn)
(3b)

Where pn and wn are the nth text/pitch pair in
our test set. In order to make this estimation, we
need to learn a probability distribution pθ(p) and
pθ(p | w). We do so with the following methods.

3.1.1 Estimating pθ(p)

Following Wolf et al. (2023) we estimate the
unconditional distribution with a Gaussian Kernel
Density Estimate, KDE (Parzen, 1962; Sheather,
2004). Bandwidth is optimized via 10-fold
cross-validation, using the training and validation
data, selecting from Scott’s rule, Silverman’s rule,
and fixed values (Silverman, 1986). We implement
this with SciPy (Virtanen et al., 2020). After
selecting the optimal bandwidth, we fit the KDE
on the training data and compute eq. (3a) on the
held-out test data.

3.1.2 Estimating pθ(p | w)
Wolf et al. (2023) estimate this conditional distribu-
tion by using a neural network to learn the parame-
terization, ϕ of a predictive distribution Zϕ(·) that
captures the desired conditional probability distri-
bution, pθ(p | w). In their setup, the predictive
distribution is always either a Gaussian or Gamma
distribution. This, however, leads to a discrepancy
between the expressivity of the distribution learned
for the conditional and unconditional distributions,
pθ(p | w) and pθ(p). The KDEs used to model
pθ(p) construct non-parametric distributions from
the bottom-up, summing together many Gaussians
and having a number of parameters that grows with
K, the number of samples in the training dataset;
this distribution can thus be increasingly complex
given larger training datasets. However, the learned
conditional distribution pθ(p | w) in Wolf et al.
(2023), is fit as a parametric distribution Z (Gaus-
sian or Gamma), and is thus constrained indepen-
dently of the training dataset size. Therefore, the
two distributions do not allow for an apples-to-
apples comparison. In particular, the greater ex-
pressivity of the unconditional distribution pθ(p)
means that, in practice, eq. (2b) is likely to underes-
timate the true mutual information and can even be
negative. To fix this problem, we use two different
methods for estimating the conditional probabil-
ity distribution with greater expressivity, which we
outline below.

Conditional KDEs: For this method, we parti-
tion the dataset by orthographic word type and
fit a different KDE for each partition. The result-
ing KDE is conditionalized on a given word in-
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sofar as it has seen only examples of that word’s
prosody during the estimation procedure. We use
two different estimation procedures: In the first,
KDE-W(ALL), we use the whole dataset for band-
width selection, training, and entropy estimation.
In the second, KDE-W(SPLIT), we use 70% of the
dataset for bandwidth selection and training and es-
timate entropy using redistributive sampling on the
held-out portion. One issue with this method is that
if a word has relatively few samples in our training
data, then our fitted conditional KDE estimate will
not be very accurate. To alleviate this problem, we
select a threshold λ; for words that occur fewer
times than this threshold, we set their probability to
be that of the unconditional KDE model. This back-
off strategy effectively sets the Pointwise Mutual
Information (PMI) to be zero for these words in the
final MI calculation. We conducted several pilot ex-
periments with λ = {20, 30, 40, 50, 60} and found
that the qualitative nature of the results did not
change. In Section 4, we present results for λ = 20.

Mixture Density Networks (MDNs): For our
second method, we employ a mixture density net-
work (MDN; Bishop, 1994). MDNs are very sim-
ilar to KDE estimators insofar as the final condi-
tional probability is the sum of several Gaussian
kernels. However, the means and variances of these
Gaussians are learned by a neural network, LMθ,
with parameters θ, given input w. In addition, the
network also learns a set of weights wk that gov-
ern the mixture of the individual Gaussians. The
conditional distribution is therefore:

pθ(p | w) =
K∑

k=1

wk
w;θ N (p | µk

w;θ,Σ
k
w;θ) (4)

where wk is the weight, µk (a vector in Rd, where
d = 4 is the dimension of p, see Section 3.4) is
the mean and Σk (a diagonal co-variance matrix
in Rd×d, assuming independence between the dif-
ferent dimensions of p) is the variance of the kth

Gaussian kernel parameterized by θ given input w.
We use K = 20 kernels. The MDN itself consists
of multilayer perceptrons which receive fastText
representations (Bojanowski et al., 2017) and out-
put the mixture of Gaussians’ parameters. Writing
these representations as h ∈ Rdft :

wk
w;θ = mlpwk(h), (5a)

µk
w;θ = mlpµk(h), (5b)

Σk
w;θ = mlpΣk(h) (5c)

where the number of hidden layers and hidden units
in these MLPs are hyperparameters. Details of our
hyperparameter search are given in Appendix B.
We refer to this method as MDN-W.

3.2 Estimating the MI between Prosody and
Longer Textual Contexts

Beyond the MI(P;W) between prosody and a
lexical item, we will also analyse two other mu-
tual informations: the MI between pitch and
a word’s autoregressive (i.e., previous) context,
MI(P;W←); and the MI between pitch and a
word’s bidirectional context, MI(P;W↔). We es-
timate these values using MDNs identical to those
in the previous section, but these MDNs receive
as input representations from mGPT (Shliazhko
et al., 2024), a multilingual autoregressive language
model, largely based on the GPT-2 architecture, or
from mBERT (Devlin et al., 2019), a multilingual
version of BERT. These MDNs give us estimates
of pθ(p | w←) and pθ(p | w↔), respectively. Dur-
ing training, we fine-tune the combined model, not
just the MDN network. Further, when words are
tokenized into multiple parts, we use the represen-
tation of the final token. We refer to these meth-
ods as MDN-W← (for our mGPT-based estimates)
and MDN-W↔ (for our mBERT-based estimates).
For a concurrent paper that uses similar methods
to more fully investigate the relationship between
context length and prosody, see Regev et al. (2025).

As both mGPT and mBERT have access to con-
text, these methods may use non-lexical properties
of the context that affect pitch to make their predic-
tions. For example, although English is not a tonal
language, punctuation (e.g., question marks) or wh-
words at the beginning of a phrase can provide
strong cues to phrase-final pitch. Therefore, there
may be nonzero MI between pitch and mBERT
representations, even for non-tonal languages. We,
thus, make a prediction: because these represen-
tations contain more than just lexical information,
there should be less clear differences between tonal
and non-tonal languages when mGPT and mBERT
are used. This is in contrast to the fastText and
KDE models, which we expect to bear out the pre-
dictions given in Hypothesis 1.

3.3 Dataset

We use the Common Voice dataset (Ardila et al.,
2020), a multilingual corpus that contains paired
text–audio samples from contributors reading in-

24443



Language Tag Type Family Hours Tokens Types Speakers

German DE SA Indo-Euro. 8.6 47819 13519 338
English EN SA Indo-Euro. 7.8 47670 10930 557
French FR SA Indo-Euro. 7.4 27974 8062 260
Italian IT SA Indo-Euro. 8.7 39413 10937 1641

Japanese JA PA Japonic 6.4 54866 6434 896
Swedish SV PA Indo-Euro. 6.6 38761 8002 461

Vietnamese VI Tonal Austroasiatic 5.9 37838 2468 130
Thai TH Tonal Kra-Dai 6.8 42153 4315 1749

Cantonese YUE Tonal Sino Tibetan 6.5 37380 6753 747
Mandarin ZH Tonal Sino Tibetan 7.9 36729 12547 1723

Table 1: Overview of the languages and dataset used in
this study. SA= Stress Accent, PA= Pitch Accent.

dividual sentences out loud.2 Samples are rated
by other contributors who assign them either a
thumbs-up or a thumbs-down. The validated por-
tion of the dataset that we use includes only sen-
tences whose first two ratings are up-votes. We
select data from ten languages, across five different
language families, representing a range of stress-
accent, pitch-accent, and tonal languages (table 1).
We sample 5, 000 sentences per language for con-
sistency, based on the language with the fewest
validated sentences. In order to extract word-level
prosodic features we align each sentence’s audio
to its text at the word level using the Montreal
Forced Aligner (MFA; McAuliffe et al., 2017). For
our Sino-Tibetan languages (Mandarin and Can-
tonese) we use two different tokenization or word-
grouping schemes. In one both MFA alignment
and NLP tokenization use characters as input units
(this is tagged with (chr) in figures), and in the
other MFA aligns audio to words, and NLP tools
tokenize sentences into words using their default
tokenizer.

The details of each language are given in Table 1.
Although this is a relatively modest sample of lan-
guages, it includes all languages in Common Voice
that met the criteria for our data preparation—i.e.,
they have at least 5,000 sentences of validated data,
an existing MFA model, and are well supported in
the training data of our two neural LMs mBERT
and mGPT (see Section 3.2).

3.4 Representation of Pitch

Representing the pitch curve of a word presents
substantial challenges: We want to find a relatively
low-dimensional representation space, but one that
can still capture the complexities of pitch contours
across languages, which may, for example, contain
rising and falling elements on a single word. To
do so, we use the preprocessing methods given

2The dataset is released under a Creative Commons Attri-
bution Share-Alike license.

in Suni et al. (2017) to extract the fundamental
frequency, f0 from the raw waveforms from each
aligned word segment, and to remove outliers. We
apply interpolation to create a smooth f0 curve
across moments where no pitch is being produced,
for example, during unvoiced consonants. Once it
has been extracted, we resample the f0 curves to
100 points and parameterize them with the first four
coefficients of a discrete cosine transform (DCT).
The objective of our prosodic pipeline, therefore, is
to estimate the four coefficients of the DCT pitch
representation.

4 Results

4.1 Main Results

Mutual Information: The results of our experi-
ment are visualized in Figure 1, with our different
representations of text across the different facets.
Horizontal bars show within typological group av-
erages. The data support the typological ordering
hypothesis: We observe higher MI in tonal lan-
guages compared to non-tonal languages, for all of
our estimation methods. Additionally, we find evi-
dence supporting the tonal » pitch-accent » stress-
accent hierarchy, especially for our KDE-W(ALL),
KDE-W(SPLIT), and MDN-W methods. The or-
dering is not present for MDN-W←, where stress-
accent languages have higher average MI than
pitch-accent languages, or for MDN-W↔, where
stress- and pitch-accent languages have almost
identical MI. To verify the visual trend in the re-
sults, we conducted a Jonckheere trend test (Jon-
ckheere, 1954). This is a non-parametric method
that tests whether samples are drawn from different
populations with an a priori ordering, compared to
a null hypothesis where samples are all drawn from
the same population. We use the implementation
provided by the clinfun package in R, and ap-
proximate our p-values using 10, 000 permutations.
Our test is significant for KDE-W(ALL) (p <
0.05), KDE-W(SPLIT) (p < 0.05), and MDN-W
(p < 0.01) methods, but not for MDN-W← or
MDN-W↔, confirming the visual trend.

Following the logic outline in Section 3.2, we
observe the greatest separation between tonal and
non-tonal languages when using estimation tech-
niques that do not take context into account (i.e.,
MDN-W and our two KDE-based methods). While
estimation methods that incorporate longer context
tend to have higher mutual information on average,
these methods collapse the difference between ty-
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Figure 1: Main Results: Mutual information between pitch and text across languages. Lines show within
typological group averages. Error bars show standard deviations from Monte Carlo resampling (KDE-W(ALL),
KDE-W(SPLIT)) or 5-fold cross-validation (MDN-W, MDN-W←, MDN-W↔). We find that tonal languages
have higher MI on average compared to stress-accent and pitch-accent languages.

pological groups. For example, using MDN-W↔,
we find the highest average MI of any model, but
we also find almost no difference between tonal
and stress-accent languages, in terms of group aver-
ages. We suspect this is because MDN-W↔, using
BERT’s bidirectional context, is capable of repre-
senting non-lexical information that can be useful
for predicting pitch even in non-tonal languages,
e.g., whether a given sentence is a question.

Interestingly, even though prosodic type behav-
ior is consistent across models (i.e., tonal languages
always have the highest MI), within each prosodic
type, models show variability. For example, our
KDE-based methods both suggest that French is
the stress-accent language with the highest MI be-
tween pitch and lexical item. However, when using
MDN-W, we find the highest MI for Italian and
for MDN-W←, English. One possibility is that the
different ways we represent context between these
models lead to different amounts of MI. We return
to this point in the larger context of our gradient vs.
categorical hypotheses in the discussion.

Conditional and Unconditional Entropy: To
zoom in on these data further, Figure 2 shows the
same results broken down into conditional and
unconditional entropy. The difference between
these two is the MI, shown in Figure 1 and
visualized here as the vertical distance to the x = y
line, which is plotted for English, Japanese, and
Mandarin. Overall, we observe a relatively narrow

range for both unconditional entropy (ranging from
9–10.5 nats) and conditional entropy (ranging from
7–10 nats) across languages. These data support
recent studies showing that information-theoretic
properties of human language exist within a narrow
bandwidth (Bentz et al., 2017; Wilcox et al., 2023;
Pimentel et al., 2020)

When looking at entropy instead of mutual in-
formation, we observe more consistency at the lan-
guage level. For all methods, Vietnamese, Chi-
nese, and German have higher entropy (both condi-
tional and unconditional), and Japanese, Cantonese,
Thai, and English have lower entropy. The overall
amount of entropy present in a language does not
follow typological patterns or even the complexity
of a language’s tonal system. Cantonese, which is
traditionally analyzed as having nine tones, always
has lower entropy values than Mandarin, which is
typically analyzed as having only four.

4.2 The Role of Phonotactic Complexity and
Syllable Structure

One potential worry with the above results is that
the prosodic types might co-vary with other fea-
tures that could impact our MI estimation, in par-
ticular phonotactic complexity and syllable struc-
ture.3 To alleviate concerns about these potential
confounds, we conducted the following checks:
First, to examine phonotactic complexity, we used
the measure proposed in Pimentel et al. (2020).

3We thank an anonymous reviewer for raising this issue.
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Figure 2: Main Results Separated into Conditional/Unconditional Entropy: Dashed line shows the y = x line.
Points show individual languages. Colored lines for En, Ja, and Zh visualize the MI of these languages, which is the
points’ vertical distance from the dotted line.

We found that stress-accent languages possess
slightly more complexity than pitch-accent lan-
guages (µ = 3.4, σ = 0.26 vs. µ = 3.0, σ = 0.01).
However, Pimentel et al. did not report results for
our tonal languages. As a second source of data,
therefore, we used the World Atlas of Language
Structures (WALS; Dryer and Haspelmath, 2013)
features of “consonant inventory size” and “vowel
inventory size” as a proxy for phonotactic complex-
ity. We find that all of our languages for which data
is recorded have “average” consonant inventory
sizes, except for Japanese, which is “moderately
small.” In addition, all of our languages have “large”
vowel inventories, except for Japanese and Man-
darin, which are “average.” We take this to mean
there are not large differences in these complexity
measures by prosodic type.

Turning to syllable structure, using the WALS
“syllable structure” feature we find that all of our
stress-accent languages have “complex” syllables;
and all of our pitch-accent and tone languages have
“moderately complex” syllables. Given that we ob-
serve the biggest differences in MI between pitch-
accent and tone languages, and only minimal differ-
ences between pitch- and stress-accent languages,
we do not think that syllable complexity is there-
fore responsible for differences in MI.

4.3 Effect of Subword Tokenization

One difference between KDE-W(ALL),
KDE-W(SPLIT), and MDN-W, on one hand,
and MDN-W← and MDN-W↔, on the other

hand, is that the LLMs that form the basis of
the latter two methods (mBERT, mGPT) use
subword tokenization schemes. For words that
have multiple tokens, we used the embedding of
the last token in the word during estimation. It’s
possible that this skews or biases our results.4

Additionally, the number of single-token words
varies across languages within our multilingual
models, with English having more single-token
words than the other languages. To investigate
tokenization’s impact, we took each of our initial
datasets and subsetted them to include only words
with k or fewer tokens. We then re-ran our MI
estimation procedure using only the MDN-W←
and MDN-W↔ methods. This resulted in datasets
that were balanced in terms of tokens-per-word,
but not in terms of total dataset size.

The results are visualized in Figure 3. We see
that as the percentage of multi-token words de-
creases, the MI estimation changes, suggesting that,
indeed, this impacts our results. However, the over-
all picture of the results remains the same—there is
no clear separation between tonal, pitch-accent, and
stress-accent languages using these models. Inter-
estingly, as the tokens-per-word ratio decreases, the
MI increases for most (although not all) languages,
suggesting that the MI estimates in Figure 1 are
slight underestimates. For additional presentation
of these data see Appendix A.

4In fact, Lesci et al. (2025) shows that an LM can assign
the same word 17 times less probability if tokenised into two
tokens compared to just one token.
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Figure 3: Impact of tokenization on MI estimation: x-axis shows the proportion of words in our dataset tokenized
into more than one token. Subsampling data to include only words with one token changes the estimated MI.

5 Discussion

Our experiments supported the typological order-
ing hypothesis, namely that tonal languages have
higher MI between pitch and text, followed by
pitch-accent and stress-accent languages. The
ordering of languages according to this predic-
tion is relatively clean, especially for the tonal
vs. non-tonal distinction. Among the KDE-based
estimates, where we expect the separation to be
the strongest, we found only one tonal language
(Cantonese, word level) with a lower MI than
any stress-accent language. And with MDN-W,
we found that all tonal languages had higher MI
than all stress-accent. Finally, we generally found
that pitch-accent languages fell between tonal and
stress-accent languages, as expected.

What do our results say about the status of cate-
gorical vs. gradient typological theories? On one
hand, they could be construed to support the cate-
gorical prediction. Using our MDN-W method, we
find a single amount of mutual information (0.34
nats) that separates all tonal from non-tonal lan-
guages. At the same time, our results demonstrate
interesting gradient differences both between and
within prosodic types. Firstly, it’s not the case
that languages are clearly separated into differ-
ent modes based on typological type. For exam-
ple, using our MDN-W method, there is far more
variation in MI within tonal languages (ranging
from 0.36–1.58 nats) than between tonal vs. stress-
accent groups (0.23 vs. 0.88 nats). Based on these
considerations, we conclude that our data are more
closely aligned with the gradient prediction, out-
lined in Section 2.1.

We close our theoretical discussion by clarify-

ing the relationship between our definition of a
p-language and Greenberg’s (2005) notion of an
implicational universal. While implicational univer-
sals result in mutual information between linguistic
properties, it is not possible to reduce such uni-
versals to MI alone. To take one example, a well-
studied implicational universal holds that VSO lan-
guages always have prepositions (as opposed to
postpositions). This implies that there is mutual
information between a language’s word order and
its adposition placement. However, if the impli-
cation was reversed—VSO implies postpositions—
the amount of MI would remain unchanged. Im-
portantly, implicational universals specify how fea-
tures of a language covary, not just that they do
covary. Zooming out, we can say that implicational
universals and p-languages are a larger class of lin-
guistic variation that implies MI between linguistic
features. Further characterizing how mutual infor-
mation relates to known typological features is an
important direction for future research.

Finally, a methodological point: This paper has
focused on pitch; however, prosodic typologies op-
erate across a broad range of dimensions. We want
to stress that our methods are not only suitable
for studying pitch: We initially framed our techni-
cal presentation in terms of abstract prosodic cate-
gories p. While p could in theory be all of prosody,
it can also be just a single prosodic feature. One
could equally well use our methods to examine
length-based lexical distinctions, for example, in
languages like Turkish. We hope others will build
on the technical contributions offered here to study
a broader range of prosodic phenomena.
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Limitations

One limitation of this work has to do with our
dataset: First, the dataset is relatively small, with
just 5, 000 sentences per language. Second, we
did not control for the number of unique speak-
ers in the dataset, meaning that some languages
are overly represented by a single or handful of
individuals. For example, our Thai data includes
samples from 1, 749 speakers, whereas our Viet-
namese data includes samples from just 130 speak-
ers. One other shortcoming of our dataset is that
while our pitch-accent and tonal languages include
data from multiple language families, our stress-
accent data comes entirely from Indo-European
languages. Finally, our dataset did not control for
content, meaning the distribution of concepts and,
therefore, words could vary substantially across
languages. While collecting high-quality audio-
text-aligned data across multiple languages is a dif-
ficult undertaking, assembling such a dataset and
running similar analyses would be an excellent way
to further validate the conclusions of this study.

Ethics Statement

We foresee no obvious ethical problems with this
research. Furthermore, we do not foresee any obvi-
ous risks with this research.
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A Subword Tokenization Follow-up
Analysis

In this appendix, we present more fine-grained data
concerning the impact of subword tokenization on
our MI estimation. These data are presented in
Figure 4. We find that, in general, filtering out
multi-token words increases MI, implying that sub-
word tokenization misalignment adds noise to the
estimation procedure. In particular, MI tends to be
highest for our subsampled datasets that include
words with only one token—the green bars to the
left of each facet. Cantonese (Yue) is an excep-
tion, for both of our models, likely due to its many
single-character words.

Retained tokens (green line) and misalignment
(red line) decrease as we subsample data. However,
some languages like English, French, and German
retain more data, while Chinese, Thai, and Swedish
lose more, resulting in cleaner but smaller datasets
for MI estimation.

Languages also vary in initial misalignment (red
lines). English has the lowest initial misalignment,
while Chinese and Thai have more, leading to
larger MI gains after filtering and suggesting that
MI is likely underestimated in our main results for
these languages when using our MDN-W← and
MDN-W↔ techniques.

B Hyperparameter and Hyperparameter
search

We performed a hyperparameter search using 5-
fold cross-validation to tune the MDN-W model.
The search space included:

• Learning rate: 0.01, 0.001

• Dropout: 0.2, 0.5

• Hidden layers: 15, 20, 30

• Hidden units: 512, 1024

Models were trained for a maximum of 50
epochs using the AdamW optimizer with weight
decay (L2 regularization = 0.001) and early stop-
ping (patience = 3) based on validation loss. The
best hyperparameters were selected based on aver-
age performance across the 5 folds and evaluated
on the test set.

For our MDN-W←, using mGPT
(ai-forever/mGPT) and MDN-W↔ using
mBERT (bert-base-multilingual-cased)
models, we fine-tuned using AdamW (weight
decay = 0.1), a learning rate of 5.0 × 10−5 with
ReduceLROnPlateau (factor = 0.1, patience = 2),
batch size 16 (effective 64), gradient clipping at
1.0, dropout of 0.1 (applied to the MLP head), and
early stopping (patience = 3). For MDN-W←
using mGPT, we fine-tune only the last eight
transformer layers, freezing the rest for efficiency,
resulting in 612M trainable parameters (out of 1.4B
total). For MDN-W↔ using mBERT, all layers
are fine-tuned, for 177M trainable parameters.
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(a) MDN-W← (mGPT)
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Figure 4: Fine-Grained Analysis of Subword Tokenization Effects on MI Estimation: The x-axis represents
subword filtering levels: “All” (no filtering), “3” (subsetted words with at most 3 subword tokens), “2” (at most 2
tokens), and “1” (only single-token words). Bars show estimated MI, the green line represents the retained token
ratio after subsetting, and the red line represents the misalignment ratio in the retained data.
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