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Abstract

Synthetic high-quality multi-step reasoning
data can significantly enhance the performance
of large language models on various tasks.
However, most existing methods rely on re-
jection sampling, which generates trajectories
independently and suffers from inefficiency and
imbalanced sampling across problems of vary-
ing difficulty. In this work, we introduce FastM-
CTS, an innovative data synthesis strategy in-
spired by Monte Carlo Tree Search. FastMCTS
provides a more efficient sampling method for
multi-step reasoning data, offering step-level
evaluation signals and promoting balanced sam-
pling across problems of different difficulty lev-
els. Experiments on both English and Chinese
reasoning datasets demonstrate that FastMCTS
generates over 30% more correct reasoning
paths compared to rejection sampling as the
number of generated tokens scales up. Further-
more, under comparable synthetic data budgets,
models trained on FastMCTS-generated data
outperform those trained on rejection sampling
data by 3.9% across multiple benchmarks. As
a lightweight sampling strategy, FastMCTS of-
fers a practical and efficient alternative for syn-
thesizing high-quality reasoning data. Our code
will be publicly released. 1

1 Introduction

Large language models (LLMs) have achieved
remarkable performance across various domains.
Reasoning capability plays a crucial role in this
success and serves as the foundation for further
extending their application scope. For complex
problems, LLMs typically require multi-step rea-
soning to arrive at final solutions. Synthesizing
reasoning trajectories and using them for training
has proven to be an effective approach to enhancing
their reasoning capabilities.

*Equal contribution
†Corresponding Author
1https://github.com/FlyingDutchman26/FastMCTS
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Figure 1: Comparison of generation efficiency of three
sampling algorithms. "#Verified Tokens" represents the
total tokens in all verified correct trajectories.

Currently, rejection sampling (Neal, 2003) is
commonly used to synthesize correct trajectories
for reasoning tasks. This approach generally in-
volves generating multiple candidate responses
through random sampling based on a given prob-
lem (Wei et al., 2022) , and then selecting the cor-
rect responses with the corresponding answers as
synthetic training data. However, this random sam-
pling method handles each attempt independently,
constrained by the reasoning capacity of the pol-
icy model. As a result, it suffers from inefficiency
particularly for long reasoning chains and complex
problems, and it fails to provide step-level supervi-
sion during the synthesis process.

On the other hand, Monte Carlo Tree Search
(MCTS) (Coulom, 2006), known for its ability to
effectively explore state spaces, has been widely
adopted in complex tasks such as board games.
Some recent studies have also attempted to adapt
MCTS for language models. However, the reason-
ing process of language models differs significantly
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from those of games like Go or chess. For instance,
the state space in language model reasoning is often
ill-defined, the computational cost is substantially
higher, and the evaluation of reasoning outcomes
tends to be more deterministic. As a result, directly
applying MCTS to large-scale language generation
tasks is less suitable.

In this work, we aim to efficiently deploy MCTS
for data synthesis. We propose FastMCTS, an
MCTS-inspired sample strategy for efficient data
synthesis. To enhance data synthesis efficiency, we
propose a dynamic balance mechanism between
exploration and exploitation that adapts to problem
complexity. Specifically, we introduce modifica-
tions to the selection phase of MCTS, enabling it
to prioritize more valuable nodes rather than being
limited to leaf nodes. Furthermore, vanilla MCTS
employs a simulation process to evaluate node val-
ues. However, conducting complete sampling with
LLMs is computationally expensive. To maximize
the utility of tokens generated during the autore-
gressive decoding process of LLMs, we preserve
each step of the complete reasoning trajectory gen-
erated during simulation as tree nodes, instead of
discarding these reasoning steps after simulation.
This do not influence the selection of the next most
promising node in MCTS but serve as a caching
mechanism to prevent redundant generation of rea-
soning trajectories. Figure 1 demonstrates the effi-
ciency gains of FastMCTS compared to Rejection
Sampling and vanilla MCTS in generating correct
trajectory tokens on Chinese high school math data.

Experiments on a wide range of mathematical
problems demonstrate the superior data synthesis
efficiency of FastMCTS. Compared to vanilla rejec-
tion sampling, FastMCTS synthesizes more correct
reasoning trajectories, produces more effective to-
kens, and solves a larger number of problems. This
advantage is particularly pronounced for challeng-
ing problems, leading to more balanced synthe-
sis across varying difficulty levels. Besides, un-
der comparable generation budgets, models trained
on FastMCTS-synthesized data outperform those
trained on baseline methods across various bench-
marks of different complexity.

Further analysis validates the effectiveness of
the proposed components and shows that step-level
pairwise data constructed through FastMCTS can
further boost model performance through methods
like step or branch level Direct Preference Opti-
mization. As a lightweight data synthesis strategy,
we believe FastMCTS offers a superior alternative

to vanilla rejection sampling due to its higher effi-
ciency and ability to provide step-level supervision
for multi-step reasoning tasks.

2 Related Work

Synthetic Data for Reasoning Tasks Synthetic
data has become a key resource for improving the
reasoning capabilities of large language models.
Several studies (Yu et al., 2024; Xu et al., 2024)
focus on generating new problem sets by rephras-
ing or augmenting existing training data. Other
works (Mukherjee et al., 2023; Li et al., 2024) lever-
age strong models, such as GPT-4 (Achiam et al.,
2023), to distill high-quality reasoning data, en-
hancing the reasoning capabilities of smaller mod-
els; some of these approaches also utilize code ex-
ecutors to further improve performance (Yue et al.,
2023; Wang et al., 2024a; Toshniwal et al., 2024).
Additionally, methods like (Wang et al., 2024b;
Luo et al., 2024; Wang et al., 2024d) focus on syn-
thesizing multi-step reasoning data and provide
step-level supervision without the need for human
annotation.

Sampling Strategies for Data Synthesis Sam-
pling strategies play a crucial role in enhancing
the reasoning and generation capabilities of large
language models. Many approaches improve rea-
soning performance by sampling multiple reason-
ing paths and selecting the most promising ones.
For instance, Self-Consistency (Wang et al., 2023)
generates diverse reasoning paths and selects the
most consistent answer. Other works (Yuan et al.,
2023; Toshniwal et al., 2024; Tong et al., 2024) use
strategies like rejection sampling (Neal, 2003) to
generates candidate outputs and filters them based
on predefined criteria or a reward model.

Tree Search in LLM Tree-search strategies have
been shown to be highly effective in enhancing the
reasoning capacity of large language models, as
the nodes of the tree can naturally represent rea-
soning steps in the chain-of-thought (CoT) (Wei
et al., 2022). Several studies (Yao et al., 2024;
Hao et al., 2023; Zhang et al., 2024b; Tian et al.,
2024) have employed tree search during inference
to guide multi-step reasoning. In another stream
of research (Feng et al., 2023; Chen et al., 2024;
Xie et al., 2024; Zhang et al., 2024a; Wang et al.,
2024c), Monte-Carlo Tree Search is used to gen-
erate tree-structured data for training, constructing
preference data pairs or providing process supervi-
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Figure 2: The overview of one iteration of FastMCTS

sion for CoT steps.
However, in synthetic data scenarios of LLMs,

using MCTS can incur significant overhead due to
simulation costs or rely on a trained process reward
model for step supervision, leading to inefficiencies.
To address these limitations, we propose FastM-
CTS, which efficiently synthesizes tree-structured
multi-step reasoning data with high efficiency.

3 Preliminaries

Rejection Sampling Rejection sampling is a
widely used synthetic-data method for obtaining
high-quality data to enhance the reasoning capa-
bilities of LLMs. Given an input question q, the
process involves sampling multiple candidate re-
sponses {o(j)}Nj=1 from a language model. Each
response o(j) is then evaluated based on predefined
criteria, typically by comparing its final answer to
a ground-truth solution using a rule-based function.
Responses that pass this filtering step are consid-
ered correct and used to train the language model.

However, vanilla rejection sampling suffers from
several limitations. For instance, the sampled data
may exhibit imbalanced distributions (Tong et al.,
2024). Moreover, due to the rule-based filtering
mechanism, reasoning paths with errors in inter-
mediate steps or those incorrectly discarded due
to formatting issues are often excluded (Lightman
et al., 2024). Our work addresses these issues ef-
fectively by introducing a more robust sampling
strategy while achieving higher efficiency.

Monte Carlo Tree Search Monte Carlo Tree
Search (MCTS) is a decision-making algorithm
widely used in games like Go and complex deci-
sion processes (Silver et al., 2016, 2017). It builds
a search tree through simulations to estimate the

value of actions. In the context of language models,
MCTS serves as a sampling strategy that can be
combined with reward models to assist inference
or synthesize multi-step reasoning data, providing
step-level supervision for further training.

MCTS iteratively constructs a search tree
through four phases: selection, expansion, sim-
ulation, and backpropagation (Browne et al., 2012).
When applied to LLM inference, the input ques-
tion q is represented as the root node, and each
reasoning step in the chain-of-thought (CoT) is rep-
resented as a child node. During selection, MCTS
uses the Upper Confidence Bound for Trees (UCT)
criterion to balance exploration and exploitation:

UCT(i) =
wi

ni
+ c ·

√
lnNi

ni
(1)

where ni is the visit count for node i, Ni is the visit
count for its parent, wi is the cumulative value of
descendant nodes, and c is a hyperparameter.

Unlike board games, each roll-out in language
models requires autoregressive inference, mak-
ing the simulation process computationally expen-
sive (Chen et al., 2024). The results of simulations
are often discarded after backpropagation, further
reducing sampling efficiency. As a result, directly
applying MCTS for data synthesis incurs signifi-
cant computational overhead.

4 Method

In our framework for synthetic data generation,
for an input question q and its solution with T
reasoning steps, the partial solution at time step t
is represented as state st, and the next reasoning
step as action at+1. The language model is treated
as a policy model πθ and generates actions based
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Algorithm 1: Selection phase of FastMCTS
Input: Current search tree T , difficulty thresholds lhigh, llow, UCT constant c
Output: Selected node in this iteration
▷ Recursively select node with Adaptive Stay Policy
current_node← root
selected_node← None
while selected_node is None do

candidate_children← current_node.children
if number of candidate_children <= 1 or ▷ Adaptive Stay Policy

all candidate_children are leaf nodes or
current_node.visit_count > 1 and current_node.score ∈ (0, llow] ∪ [lhigh, 1) then

selected_node← current_node
break

if current_node.visit_count > 1 then
ccurrent← c · current_node.score ▷ Dynamic Exploration

else
ccurrent← c

candidate_node← argmaxnode∈candidate_children UCT (node, ccurrent)
if candidate_node.visit_count > 1 and candidate_node.score <= llow then

selected_node← candidate_node
current_node← candidate_node

on the current state and input question:

πθ(at+1|st) = LLM(at+1|st) (2)

The transition to the next state is achieved by con-
catenating current state and next ction:

st+1 = Cat(st, at+1) (3)

where st = (at, at−1, . . . , a1, q) represents the se-
quence of reasoning steps up to time t. We seg-
ment the reasoning trajectories into individual steps
based on strings such as "Step 1", "Step 2", etc.,
with each step corresponding to a node in the tree
structure. The details of how reasoning steps are
separated are provided in Appendix A.

Our proposed method, FastMCTS, introduces
several key improvements to vanilla MCTS algo-
rithm, tailored for efficient and robust data syn-
thesis in language models. In the following, we
describe our algorithm in detail.

4.1 Selection with Adaptive Stay Policy
In the selection phase, Fast-MCTS recursively
selects child nodes using the Upper Confidence
Bound for Trees (UCT) criterion, as vanilla MCTS
does, as defined in Equation 1. However, to im-
prove efficiency and diversity, we introduce an
Adaptive Stay Policy that dynamically adjusts the
selection process based on the node’s exploration
status and estimated value.

In Adaptive Stay policy, selection does not nec-
essarily proceed to leaf nodes as in vanilla MCTS.
For states where the likelihood of being correct is
either very high or very low, our method opts to
"stay" rather than continuing selection. This ap-
proach prioritizes diversity for easier problems and
attempts to explore at least one correct reasoning
path for more challenging problems.

4.2 Dynamic Exploration
To enhance the search strategy, we dynamically ad-
just the parameter c in UCT based on node scores.
The score of one tree node is defined as the esti-
mated value of taking an action (step), calculated
by Monte Carlo Evaluation:

node.score =
node.win_count
node.visit_count

(4)

Then we adjuct c by multiplying it with the node’s
score if the node has been visited more than once.
This approach encourages exploration in promising
states and prioritizes exploitation in less promising
ones, aligning with the goal of data synthesis. The
entire selection phase of the FastMCTS algorithm
is demonstrated in Algorithm 1.

4.3 Reserve Simulation
Unlike board games like Go or chess, where the
outcome of one random simulation does not nec-
essarily reflect the quality of a specific state, LLM
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Figure 3: Comparison of sampling efficiency for FastMCTS and Rejection Sampling.

reasoning shows a strong correlation between the
final answer and the correctness of the entire rea-
soning path. Therefore, simulation results in LLMs
are valuable and should be preserved.

Inspired by this, we consolidate expansion and
simulation into a single phase. Unlike vanilla
MCTS, which discards simulation results, we pre-
serve all newly generated paths as valid nodes and
add them to our search tree. This significantly
enhances sampling efficiency and integrates well
with Adaptive Stay Policy. Since all trajectories
are stored after selection, there is no need to delve
deeply into leaf nodes during the search process.

4.4 Robustness Enhancements

To address variability in answer formats and logical
errors in reasoning paths, we introduce a robustness
enhancement mechanism. Instead of relying solely
on rule-based answer matching, we use a LLM to
evaluate the correctness of reasoning paths against
the ground-truth answer. Additionally, we require
the LLM to verify the correctness of intermediate
steps within each path, aiming to identify logical
errors and exclude trajectories that are guessed an-
swers (e.g., multiple-choice questions). Details

of our LLM evaluation methods are described in
Appendix D.

Furthermore, to increase the diversity of gener-
ated reasoning paths, we prepend different random
combinations of few-shot examples to each input
string during simulation. To ensure a balanced
distribution across mathematical disciplines, we
constructed diverse exemplar sets for both Chinese
and English datasets, covering domains such as
trigonometry, analytic geometry, conic sections,
derivatives, calculus, number theory, discrete math-
ematics, and linear algebra, ensuring sufficient di-
versity in prompt initialization. Each exemplar
was standardized to enforce multi-step reasoning
with explicit intermediate steps labeled as "Step 1",
"Step 2", etc. This in-context learning approach
promotes diverse reasoning paths, further enhanc-
ing data robustness.

4.5 Tree Construction and Data Utilization

The search tree is constructed iteratively, starting
from the root node. The complete algorithm is
outlined in Appendix B, and Figure 2 illustrates the
flow of one iteration of FastMCTS.

We can construct training data from the tree
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structure. Specifically, correct reasoning paths are
used for Supervised Fine-Tuning (SFT). Addition-
ally, different branches within the tree nodes, based
on their values, can be transformed into pair data
for step-level and branch-level Direct Preference
Optimization (Rafailov et al., 2023).

5 Experiment

5.1 Sampling Efficiency Comparison

In this section, we demonstrate the improvements
in sampling efficiency of FastMCTS compared to
Rejection Sampling. For our dataset, we utilized
problems from the USA Mathematical Olympiad-
level competition AIME up to the year 2023 (AI-
MO, 2023a), along with Chinese high school math-
ematics problems collected from the internet, re-
ferred to as CN High School Math (Team, 2024).
Specifically, we randomly selected 300 problems
from AIME and 1000 problems from CN High
School Math for our experiments. We then com-
pared the efficiency of both methods in generat-
ing correct problem instances. We use the open-
sourced LLM Qwen2.5-72B-Instruct (Yang et al.,
2024a) and temperature is set to 1. Detailed gener-
ation settings are provided in Appendix E.

Our experimental results are shown in Figure 3.
We gradually increased the number of generated to-
kens during sampling and compared three metrics
for Rejection Sampling and FastMCTS. Problem
Solving Rate refers to the average probability of
generating at least one correct reasoning trajecto-
ries for a query. Average Correct Paths refers to
the average number of correct reasoning trajecto-
ries generated for a query. Effective Token Rate
refers to the proportion of generated tokens that
belong to correct reasoning trajectories.

As shown in Figure 3, FastMCTS generates over
30% more correct reasoning paths compared to Re-
jection Sampling as the number of generated tokens
scales up. Additionally, FastMCTS produces more
effective tokens, demonstrating its efficiency in
data synthesis. Furthermore, FastMCTS achieves a
higher Problem Solving Rate than Rejection Sam-
pling. This is because diverse few-shot examples
are prepended as context for each expanded branch
before simulation, enhancing the diversity of gener-
ated reasoning paths and increasing the likelihood
of finding the correct solution.

Rejection Sampling FastMCTS

EN Math Hard
# Tokens 27.8K 26.2K
# Trajectories 3.46 5.88

CN High School Math Hard
# Tokens 18.2K 17.4K
# Trajectories 8.15 13.70

Table 1: Comparison of synthetic data generation costs
between Rejection Sampling and FastMCTS under the
experimental settings of Section 5.2. The row “# To-
kens” indicates the average number of tokens generated
per problem during the sampling phase. The row “#
Trajectories” indicates the average number of correct
reasoning paths acquired per problem.

5.2 Training Performance Comparison

5.2.1 Experimental Setup

In addition to the comparison of sampling effi-
ciency, we also evaluated the training performance
on datasets generated using FastMCTS versus those
generated using Rejection Sampling, with compa-
rable computational budgets. To facilitate a more
general comparison, we conducted experiments on
datasets with two different distributions, specifi-
cally Chinese and English.

Training Data Generation For English data, we
selected 46,000 problems from a wide range of
math data including Numina-Math (LI et al., 2024),
MetaMath (Yu et al., 2023), and the training set of
InternLM-Math (Ying et al., 2024). For Chinese
data, we selected 50,000 problems from Chinese
high school math problems collected from the In-
ternet(Team, 2024). We used heuristic strategies
and model evaluations to filter out simpler prob-
lems, retaining multiple-choice, fill-in-the-blank,
and solution-type questions while excluding proof
and diagram-drawing problems. More details for
our data selection process are provided in Appendix
C. We refer to these two datasets after selection as
EN Math Hard and CN High School Math Hard.
We used Qwen2.5-72B-Instruct as the policy model
and other sampling settings are described in Ap-
pendix E. To ensure a fair comparison, we con-
trolled the computational costs of both sampling
strategies to be comparable. The specific compu-
tational costs for both datasets are detailed in Ta-
ble 1. Under this configuration, FastMCTS gener-
ates fewer tokens per query while acquiring more
correct reasoning trajectories compared to rejection
sampling.
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Base Level High School Level Competition Level Olympiad Level

Method #Data GSM8K Gaokao
Math

SAT
Math AIME24 AMC23 MATH Olympiad

Bench OmniMath Avg.

Qwen2.5-7B - 88.2 62.6 70.6 0 47.5 66.8 26.2 35.5 49.7

Training Trajectories per Problem ≤ 5
RS 111K 89.1 62.6 70.6 6.7 52.5 72.0 27.6 38.3 52.4
FastMCTS 132K 88.9 63.6 74.5 13.3 57.5 73.0 28.1 39.8 54.8

Training Trajectories per Problem ≤ 10
RS 167K 89.4 62.6 72.6 6.7 50.0 70.8 26.3 37.5 52.0
FastMCTS 223K 90.0 64.0 74.5 13.3 57.5 72.0 27.3 38.7 54.7

Training Trajectories per Problem ≤ 16
RS 197K 87.1 65.1 72.6 10.0 52.5 70.0 27.1 37.2 52.7
FastMCTS 288K 88.9 63.8 72.6 20.0 60.0 74.0 27.5 38.3 55.6
+ Branch-DPO 152K 89.9 65.0 76.5 20.0 57.5 75.4 29.6 39.2 56.6

Table 2: The results of model performance trained on EN Math Hard dataset synthesized by Rejection Sampling
and FastMCTS with comparable generation cost. RS refers to synthetic dataset generated though rejection sampling.
Bold indicates the best value, and underlined indicates the best value within a group.

Method #Data Gaokao24 CMATH

Qwen2.5-7B - 33.3 85.8

Training Trajectories per Problem ≤ 5
RS 158K 58.0 89.3
FastMCTS 198K 59.4 90.8

Training Trajectories per Problem ≤ 10
RS 250K 59.4 89.3
FastMCTS 359K 60.9 89.5

Training Trajectories per Problem ≤ 16
RS 305K 60.9 88.8
FastMCTS 502K 62.3 89.3
+ Branch-DPO 215K 62.3 89.8

Table 3: The results of model performance trained on
CN High School Math Hard dataset synthesized by Re-
jection Sampling and FastMCTS with comparable gen-
eration cost. RS refers to synthetic dataset generated
though rejection sampling. Bold indicates the best value,
and underlined indicates the best value within a group.

Baselines We use Qwen2.5-7B (Yang et al.,
2024a) and compare its performance when trained
on data synthesized by FastMCTS and Rejection
Sampling. For both methods, synthesized data is
constructed into supervised fine-tuning datasets by
randomly sampling different maximum limits of
correct trajectories. For FastMCTS, we addition-
ally construct preference data from its tree struc-
tures, including step-level and branch-level pairs,
which are used for a second-phase Branch-DPO
training. Detailed data construction and training
setups are provided in Appendix F and G.

5.2.2 Main Results

We evaluated our models across a variety of mathe-
matical benchmarks. All models are assessed in a
zero-shot setting, employing greedy decoding for
evaluation purposes.

For models trained on data synthesized from EN
Math Hard, we evaluated on GSM8K (Cobbe et al.,
2021) for baseline assessment, Gaokao Bench
Math (Tang et al., 2024) and SAT-Math (Tang et al.,
2024) for high school-level problems, AIME24 (AI-
MO, 2024), AMC23 (AI-MO, 2023b), and MATH-
500 (Hendrycks et al., 2021; Lightman et al., 2024)
for competition-level challenges, and Olympiad
Bench (He et al., 2024) and OmniMath (Gao et al.,
2024) for olympiad-level tasks. For models trained
on CN High School Math Hard, we evaluated
on 69 text-only problems from the 2024 Chinese
Gaokao(National Higher Education Entrance Ex-
amination) and CMATH (Wei et al., 2023) for foun-
dational performance. Our training data are care-
fully curated to ensure no overlap with these evalu-
ation benchmarks.

The training results are presented in Table 2 and
Table 3. Key findings include:

1. Under comparable generation budgets, mod-
els trained on FastMCTS-sampled data consistently
outperform those trained on rejection sampling
data.

2. The performance of models trained on
FastMCTS-generated data improves as the num-
ber of reasoning trajectories per problem increases,
while models trained on rejection sampling data
show limited and inconsistent improvement.
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Method EN Math Hard
CN High School

Math Hard

Rejection Sampling 2.10 1.79

FastMCTS 2.23 2.10

Table 4: The entropy comparison of difficulty level
distributions (see Figure 4) in data synthesis methods.

2. FastMCTS-generated data can be effectively
reused for Branch-DPO training, further enhancing
reasoning performance.

These results demonstrate that FastMCTS-
synthesized data is more effective than rejection
sampling, even with a comparable or lesser gener-
ation budget. For FastMCTS, model performance
improves with an increase in the number of trajec-
tories used for training, and additional gains can
be achieved through DPO by utilizing step-level
scores from tree-structured data.

To further validate the effectiveness and robust-
ness of our methods, we also conducted experi-
ments on models of different series with different
parameter sizes. Results could be found in Ap-
pendix H.

5.3 Analysis

5.3.1 Difficulty-Aware Sampling in FastMCTS
As described in Section 4.1, FastMCTS dynami-
cally adapts the search process according to the
problem difficulty. This adaptation results in a
more balanced distribution of problems across dif-
ferent difficulty levels. Consequently, the data gen-
erated by FastMCTS is not only larger in quantity
but also more effective for training purposes.

To analyze this, we categorize problems from
our dataset into five difficulty levels based on the
probability of sampling a correct answer using re-
jection sampling. We then compare the number of
correct trajectories generated by both FastMCTS
and rejection sampling for each level.

The results in Figure 4 show that FastMCTS
achieves a more balanced distribution across dif-
ficulty levels than rejection sampling, particularly
for higher-difficulty problems. These results high-
light FastMCTS’s difficulty-aware feature. During
tree search, as iterations increase, Monte Carlo-
estimated scores become more accurate. For harder
problems, FastMCTS tends to sample branches
with higher success probabilities, while for eas-
ier problems, it degenerates to rejection sampling,
mainly focusing on diversity.

Method Solving Rate(%) #Correct Path

Rejection Sampling 61.3 7.22

FastMCTS 61.7 7.95
w/o fewshot 60.7 7.37
w/o stay 55.9 7.59
w/o dynamic 61.7 7.28
w/o stay & dynamic 55.9 7.32

Table 5: Ablation study

In Table 4, we also report the entropy of the
distribution presented in Figure 4, which serves as
a quantitative measure of its uniformity. The data
synthesized by FastMCTS exhibits a higher entropy
value, indicating a more uniform distribution across
difficulty tiers compared to Rejection Sampling.

These findings explain the effectiveness of data
synthesized by FastMCTS. Although tree-search
process may reduce diversity due to shared prefixes,
FastMCTS achieves a more balanced distribution
across problems of varying difficulty levels.

5.3.2 Ablation Study
For our ablation study, we compare the efficiency
of FastMCTS with and without Adaptive Stay and
Dynamic Exploration, using Rejection Sampling
as the baseline. Experiments are conducted on 300
randomly selected AIME problems under the same
settings provided in Appendix E. For each problem,
we sample 25 trajectories: Rejection Sampling di-
rectly generates 25 trajectories, while FastMCTS
performs 12 iterations of tree search with an initial
degree of 3 and then expands 2 branches per phase,
also yielding 25 trajectories.

From results in Table 5 (averaged over multiple
runs), we could deduce that the Adaptive Stay pol-
icy primarily affects the problem solving rate. It
decides whether to continue searching deeper or
expand new branches based on the current node’s
score. As for Dynamic Exploration, it increases
the efficiency of generating correct trajectories, as
its absence reduces the average number of correct
paths from 7.95 to 7.28. Removing few-shot ex-
amples leads to declines both in Problem Solving
Rate and Average Correct Paths. These findings
highlight the necessity and effectiveness of our pro-
posed improvements in FastMCTS.

6 Conclusion

In this work, we introduce FastMCTS, an efficient
sampling algorithm that leverages Monte Carlo
Tree Search to synthesize high-quality multi-step
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Figure 4: Comparison of sampling balance across difficulty levels for Rejection Sampling and FastMCTS.

reasoning data for training large language models.
Our approach not only improves the efficiency of
data synthesis but also promotes a balanced sam-
pling distribution across problems of varying dif-
ficulty, while providing step-level supervision for
enhanced training like DPO. Experimental results
demonstrate that FastMCTS outperforms rejection
sampling in both sampling efficiency and training
performance under comparable synthetic data bud-
gets. We believe our method offers a practical so-
lution for efficiently generating high-quality multi-
step reasoning data and hope it inspires further
research on data synthesis for language models.

Limitations

Our work has several limitations. First, although
we utilize a diverse range of data sources for data
synthesis, our synthetic data is generated solely by
the open-source model Qwen2.5-72B-Instruct for
data generation. We do not employ stronger closed-
source models like GPT-4 or models specifically
fine-tuned for higher reasoning capabilities, such
as Qwen-Math (Yang et al., 2024b), DeepSeek-
R1 (DeepSeek-AI et al., 2025), or o1 (OpenAI
et al., 2024). As a result, the performance of the
trained models is not state-of-the-art.

Additionally, due to computational budget, we
conduct our synthetic data experiments only in the
math domain, we plan to extend our experiments
to data from other domains in future work.

Finally, while FastMCTS-synthesized data
achieve better training results due to its quantity
and balanced distribution, the impact of prefix rep-
etition in reasoning paths caused by the tree struc-
ture remains an open question, which we plan to
investigate in future work.
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A Node Defination

In our application, each reasoning step is repre-
sented as a node. The reasoning trajectories are
segmented into individual steps according to strings
such as "Step 1", "Step 2", and so on, which are
automatically generated by the model in its output.
Each step may consist of a single sentence or span
multiple sentences. Through the use of few-shot
examples, the model learns to follow this structured
format when generating multi-step reasoning paths,
thereby enabling node-level partitioning. Below is
one example of how each node is defined.

Root(Query)

Real numbers x and y with x, y > 1 satisfy
logx(y

x) = logy(x
4y) = 10. What is the

value of xy?
Please solve this task step by step and use
the format like "Step 1:", "Step 2:" to struc-
ture your Chain of Thought (CoT) steps.
Now, generate your solution starting from
Step 1:

Node 1
Step 1: Start by analyzing the given equa-
tions. We have logx(y

x) = 10 and
logy(x

4y) = 10.

Node 2
Step 2: Use the property of logarithms
that logb(a

c) = c logb(a) to simplify the
equations. For the first equation, we have
logx(y

x) = x logx(y) = 10. For the
second equation, we have logy(x

4y) =
4y logy(x) = 10.

Node 3
Step 3: From Step 2, we can express logx(y)
and logy(x) in terms of x and y:

logx(y) =
10

x

logy(x) =
10

4y
=

5

2y

Node 4
Step 4: Use the change of base formula
loga(b) = 1

logb(a)
to relate logx(y) and

logy(x):

logx(y) =
1

logy(x)

Substituting the values from Step 3, we get
10
x = 1

5
2y

.

Node 5
Step 5: Simplify the equation from Step 4:

10

x
=

2y

5

Cross multiply to get 50 = 2xy
Divide both sides by 2 to solve for xy: xy =
25.

Node 6
Step 6: Conclude that the value of xy is 25.
Thus, the answer is 25 .

B FastMCTS Algorithms

The full FastMCTS algorithm is outlined in Algo-
rithm 2.

C Details of Training Data Selection

In our preliminary experiments to evaluate the
efficiency of rejection sampling, we employed
Qwen2.5-32B-Instruct to sample responses across
our full Chinese and English dataset, with 5 sam-
ples generated per question. This allowed us to
calculate a "pass rate" (percentage of correct solu-
tions) for each question, which we used to stratify
problem complexity. Questions with a 100% pass
rate were deemed excessively simple and excluded
from the dataset.

Additionally, we applied heuristic filtering strate-
gies to remove ambiguous or low-quality problems:

• Rule-based exclusion: Problems containing
keywords such as "proof", "prove", "show
that", "find all" , or url/image extensions (e.g.,
"http", ".png", ".jpg", "www", ".svg", ".bmp")
were automatically filtered out.
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Algorithm 2: FastMCTS
Input: Input query q, ground truth g, few shot set F , policy model πθ, verifier model Vϕ, initial

degree di, expand degree de, iterations N , difficulty thresholds lhigh, llow, UCT constant c
Output: The search tree T of input query q
Initialize: search tree T with root← q
while iter < N do

▷ Recursively select node with Adaptive Stay Policy
current_node← root
selected_node← None
while selected_node is None do

candidate_children← current_node.children
if number of candidate_children <= 1 or ▷ Adaptive Stay Policy

all candidate_children are leaf nodes or
current_node.visit_count > 1 and current_node.score ∈ (0, llow] ∪ [lhigh, 1) then

selected_node← current_node
break

if current_node.visit_count > 1 then
ccurrent← c · current_node.score ▷ Dynamic Exploration

else
ccurrent← c

candidate_node← argmaxnode∈candidate_children UCT (node, ccurrent)
if candidate_node.visit_count > 1 and candidate_node.score <= llow then

selected_node← candidate_node
current_node← candidate_node

▷ Expansion and Simulation
Get current state st from root to selected_node: st = (at, at−1, . . . , a1, q)
if candidate_node is root then

Sample di partial trajectories
{
τ (i)

}di
i=1
∼ πθ(τ | st, f (i)), f (i) ⊆ F

▷ Sample with random fewshot
else

Sample de partial trajectories
{
τ (i)

}de

i=1
∼ πθ(τ | st, f (i)), f (i) ⊆ F

Split
{
τ (i)

}
to multi steps

{
(a

(i)
t+1, a

(i)
t+2, . . . , a

(i)
end)

}
and construct them as new branches of

tree nodes
{
(node

(i)
t+1, node

(i)
t+2, . . . , node

(i)
end)

}

Append these new branches to selected_node ▷ Reserve all simulation results
▷ Backup
Use verifier model Vϕ to judge

{
τ (i)

}
▷ Use LLM as verifer

Backup score from newly expanded tree nodes using Monte Carlo Evaluation
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Model Name AIME24 MATH GSM8K AMC23 Olympiad
Bench OmniMath SAT

Math
Gaokao
Math Avg.

Llama3.2_3b_base_RS 0.0 31.0 55.5 15.0 10.7 10.7 50.2 30.0 25.4
Llama3.2_3b_base_FastMCTS 3.0 35.2 53.4 15.0 12.6 11.4 50.0 32.9 26.7
Qwen2.5_3b_base_RS 6.7 62.2 83.6 35.0 27.0 20.8 70.6 56.1 45.3
Qwen2.5_3b_base_FastMCTS 10.0 62.2 83.3 45.0 29.5 21.5 71.5 56.1 47.4
Qwen2.5_7b_base_RS 6.7 72.0 89.1 52.5 27.6 38.3 70.6 62.6 52.4
Qwen2.5_7b_base_FastMCTS 13.3 73.0 88.9 57.5 28.1 39.8 74.5 63.6 54.8

Table 6: The results of different model performance when trained with data generated by Rejection Sampling and
FastMCTS.

• Format checks : Questions with formatting
errors (e.g., broken LaTeX, incomplete sen-
tences) were discarded.

• Deduplication : We removed duplicate entries
via hash-based matching and ensured no over-
lap with the test set.

D Details of Model Evaluation

As we have mentioned in Section 4.4, we propose
to employ an LLM to verify the correctness of each
reasoning path, aiming to identify logical errors and
exclude trajectories that are guessed answers. For
prompt design of LLM judge, an example prompt
template is demonstrated in Figure 5.

Meanwhile, to reduce computational costs, we
limited the maximum output length to 32 tokens (as
only final answers are required). To ensure accu-
racy, we employed a majority voting strategy: the
judge model verifies each answer N=3 times , and
only consistent results across all trials are accepted.
If inconsistencies arise, the verification is repeated
until consensus is reached. This approach mini-
mizes errors and outperforms rule-based matching
in identifying nuanced correct answers.

The rigorous validation was critical because the
synthesized data is used not only for supervised
fine-tuning but also for Branch-DPO, where pre-
cise step-level evaluation (distinguishing true pos-
itives/negatives) is essential for Preference Opti-
mization. All described details have been fully
implemented in our code.

E Sampling Settings

For all our sampling settings, we use
SGLang (Zheng et al., 2023) as our infer-
ence engine and employ sampling generation with
a temperature setting of 1 to ensure diversity. In
FastMCTS, the constant c in the UCT score is
set to its default value of 1.414. Additionally, we

utilize Qwen2.5-72B-Instruct as a LLM judger to
verify the solutions.

We use an asynchronous approach in our im-
plementation, allowing different branches of the
search tree to be processed concurrently. Although
FastMCTS requires multiple iterations to construct
a search tree for each problem, this parallel pro-
cessing allows us to perform inference on a large
number of inputs simultaneously, thereby ensuring
high efficiency.

In section 5.1, to scale up the sampling compu-
tation, for FastMCTS, we incrementally increased
the number of iterations from 4 to 20, and the ex-
pansion degree (i.e., the number of nodes expanded
after the selection phase) is varied from 1 to 2. For
Rejection Sampling, we expanded the number of
generated trajectories per query from 3 to 32.

In section 5.2, to obtain comparable sampling
computation, for each query in the original dataset,
we sampled multiple times (30 for English data
and 24 for Chinese data) using rejection sampling.
For FastMCTS, it starts with an initial degree of 3
at the root, expands by adding 2 branches in each
expansion phase, and performs 16 iterations of tree
search.

F Training Data Construction

Supervised Fine-tuning After the sampling pro-
cess, each problem is sampled with varying num-
bers of solution candidates. To investigate the im-
pact of both training data size and the number of
reasoning trajectories per problem, we impose con-
straints on the maximum number of solutions uti-
lized per problem during the training process. This
approach also helps maintain a balance between
different problems.

For Rejection Sampling, we selecte correct tra-
jectories for each problem randomly. For FastM-
CTS, our strategy involves prioritizing the selection
of correct trajectories from various branches of the
search tree. By doing so, we aim to maximize the
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##Question##
{question}

##Student's Answer##
{model_output}

The standard answer for this question is as follows:
##Standard Answer##
{answer}

Now, based on the standard answer, determine whether the student's answer is correct.
(Please note that the same mathematical expression may have different formats or equivalent forms).
You only need to focus on:
1. Whether the student's answer matches the result of the standard answer.
2. Whether the student's answer seems to be guessed or is a vague answer. If the student's answer
is correct (if there are multiple questions, all sub-questions must be answered correctly),
please reply directly with:
**Correct Answer**
If the student's answer is incorrect, please reply directly with:
**Incorrect Answer**

Figure 5: Example of the Prompt Template Used for Model Evaluation

diversity of the training data.

Branch-DPO In addition to improving the effi-
ciency of sampling correct reasoning paths, FastM-
CTS also provides step-level supervision informa-
tion. Unlike rejection sampling, which generates
multiple completely independent trajectories for
each problem, FastMCTS constructs a search tree
for each problem, where each node stores a score
computed through Monte Carlo evaluation. This
allows for step-level or branch-level preference op-
timization based on the scores of tree nodes.

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has been widely adopted for model op-
timization due to its efficiency in utilizing pairwise
preference data. It has also been applied to step-
level preference optimization, as most undesirable
trajectories do not initially contain errors (Lai et al.,
2024; Xie et al., 2024; Chen et al., 2024; Wang
et al., 2024c).

We propose a simple algorithm to construct pref-
erence data from the tree structures generated by
FastMCTS. Our approach is based on the following
assumptions:

1. For a multi-step reasoning trajectory, if the
final result is correct and clear, all intermediate
steps are considered correct.

2. If the final result is incorrect, the intermediate
steps are not necessarily incorrect.

However, if a step has been simulated multiple
times and its Monte Carlo-estimated score remains
zero, it can be considered a "low-quality node."
Based on this, we construct step-level or branch-

level preference data. For any node in the tree, we
examine its child nodes. If a child node is identified
as low-quality, we construct step-level preference
data between this node and a high-quality node
that has led to correct results. If the child branches
contain both correct and incorrect results but have
only been simulated once, we cannot definitively
assess the quality of individual steps and instead
construct branch-level preference data.

In our experiments, for each search tree associ-
ated with one problem, we construct up to 5 step-
level or branch-level preference pairs, resulting in
an additional 152K(on CN High School Math Hard)
and 215K(on En Math Hard) preference data points
for DPO training. This approach further leverages
the tree-structured data generated by FastMCTS.

G Training Setups

We use Qwen2.5-7B as our base model and perform
training on datasets generated by both FastMCTS
and rejection sampling. For supervised fine-tuning,
the maximum sequence length is set to 4096 tokens,
and the global batch size is set to 32. We employ
the Adam optimizer with a learning rate of 1e-5
and a linear warmup schedule with a warmup step
ratio of 0.1. For all synthetic datasets, we train the
model for 3 epochs and select the best checkpoint
based on validation performance.

After supervised fine-tuning, we further re-
fine the best checkpoint trained on FastMCTS-
generated data using Branch-DPO for 3 epochs.
The global batch size for Branch-DPO is set to
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16, and the learning rate is set to 1e-6. The hy-
perparameter β is set to 0.4. We use the AdamW
optimizer with a cosine learning rate scheduler and
a warmup ratio of 0.1.

H Train with Different Models

We also evaluated our methods on LLMs of differ-
ent series and sizes. Using the same experimental
setup as in Section 5.2, we evaluated the En Math
Hard dataset with less than 5 reasoning trajecto-
ries per problem. We compared the fine-tuning re-
sults(best checkpoint in 3 epochs) of synthetic data
generated by FastMCTS and Rejection Sampling
using two additional base models: Llama-3.2-3b-
base and Qwen2.5-3b-base. The results are shown
in Table 6:

These results demonstrate that even with differ-
ent base models, under the same synthetic data
cost, fine-tuning with data generated by FastMCTS
consistently outperforms Rejection Sampling.

I Performance against Recent Works

Our work proposes an algorithm designed to im-
prove the efficiency and quality of synthetic data
sampling for reasoning paths. Regarding the origi-
nal data we selected, we primarily leverage open-
source dataset and problems collected from web-
site, this may not be the optimal instruction data for
training SOTA models. However, we also compare
our model performance compared to recent works
with comparable model size, which is described in
Table 7.

These results suggest that our model achieves
competitive performance. We recognize that in-
corporating higher-quality dataset curation could
further improve outcomes, which is a direction we
plan to explore in future work.

Model Name AIME24 MATH GSM8K AMC23
GPT-4o 9.3 76.6 92.9 47.5
NuminaMath-CoT-7B 0 55.8 76.3 27.5
NuminaMath-TIR-7B 16.7 68.1 84.6 50.0
OpenMath2-Llama3.1-8B 10.0 67.8 91.7 40.0
rStarMath Policy 7B 26.7 78.4 89.7 47.5
FastMCTS 7B 20.0 75.4 89.9 57.5

Table 7: Performance comparison with recent works on
various benchmarks.
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