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Abstract

With the growing popularity of Large Lan-
guage Models (LLMs) and vector databases,
private textual data is increasingly processed
and stored as numerical embeddings. How-
ever, recent studies have proven that such em-
beddings are vulnerable to inversion attacks,
where original text is reconstructed to reveal
sensitive information. Previous research has
largely assumed access to millions of sentences
to train attack models, e.g., through data leak-
age or nearly unrestricted API access. With our
method, a single data point is sufficient for a
partially successful inversion attack. With as
little as 1k data samples, performance reaches
an optimum across a range of black-box en-
coders, without training on leaked data. We
present a Few-shot Textual Embedding Inver-
sion Attack using Cross-Model ALignment and
GENeration (ALGEN), by aligning victim em-
beddings to the attack space and using a gen-
erative model to reconstruct text. We find that
ALGEN attacks can be effectively transferred
across domains and languages, revealing key
information. We further examine a variety of
defense mechanisms against ALGEN, and find
that none are effective, highlighting the vulner-
abilities posed by inversion attacks. By sig-
nificantly lowering the cost of inversion and
proving that embedding spaces can be aligned
through one-step optimization, we establish
a new textual embedding inversion paradigm
with broader applications for embedding align-
ment in NLP.1

1 Introduction

Large Language Models (LLMs) such as Ope-
nAI’s GPT series (Radford, 2018; Radford et al.,
2019; Brown et al., 2020; OpenAI et al., 2024)
and Claude from Anthropic,2 have become essen-

∗Corresponding author.
1We open-source our code https://github.com/

siebeniris/ALGEN.
2https://www.anthropic.com/claude
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Figure 1: An illustration of inversion attacks on textual
embeddings stored in a vector DB, in scenarios where
(I) a user exploits API access to extract excessive embed-
dings to train attack model; (II) a generative AI agent’s
interaction channel with the DB is compromised; (III)
the DB is misconfigured by an insider to expose private
embeddings.

tial across a wide range of applications, extend-
ing far beyond natural language processing (NLP).
These models are deeply integrated into people’s
daily lives and business operations, e.g., power-
ing search engines, virtual assistants, and content
generation. A critical component enabling the ef-
ficiency of these applications is vector databases
(DB), which allow for fast and scalable retrieval
and processing of high-dimensional vector repre-
sentations. Companies such as Pinecone and Weav-
iate, provide vector DB services and build AI ser-
vices on top of them.3 In a recent Google whitepa-
per on generative AI agents (Wiesinger et al., 2025),
vector DBs are considered one of the essential
components enabling such agents through external
sources. Retrieval-augmented generation (RAG) is
another common use case in leveraging vector DBs
to generate more diverse and factually grounded
responses (Lewis et al., 2020).

While applications such as these benefit from
3https://www.pinecone.io, https://weaviate.io
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vector DBs, the potential security and privacy risks
permeate the process. Fig. 1 illustrates three sep-
arate threat scenarios where a vector DB can be
exploited to expose private and sensitive informa-
tion: (I) a malicious user exploits the model API
to extract embeddings to train an attack model; (II)
when an AI agent interacts with the DB, a mali-
cious attacker can compromise the communication
channel to intercept sensitive data; (III) a miscon-
figured vector DB may expose private data, either
through access vulnerabilities or insider threats.
The attacker can train an attack model (e.g. an
embedding-to-text generator) to reconstruct text
from intercepted embeddings, which might con-
tain sensitive, private, or proprietary information.
This so-called embedding inversion attack poses
significant risks and potential harm.

Previous work has demonstrated the feasibility
and detrimental effects of inversion attacks (Song
and Raghunathan, 2020; Li et al., 2023). However,
either a massive amount of intercepted (victim) em-
beddings and their texts are required for training
an attack model (Morris et al., 2023), or the attack
is conducted under white-box settings, where the
model parameters and architecture are known to
the attacker (Song and Raghunathan, 2020). More-
over, inversion attacks have been demonstrated
to threaten multiple languages, especially lower-
resource ones (Chen et al., 2024a,b).

We propose a Few-shot Textual Embedding In-
version Attack using Cross-Model ALignment and
GENeration (ALGEN), to first align victim em-
beddings to the attack embedding space, and then
reconstruct text from the aligned embeddings using
the generative attack model. In contrast to previ-
ous work, we investigate inversion attacks using a
small handful of samples – e.g., a Rouge-L score
of 10 can be reached by leveraging a single leaked
data point. Our work makes the following main
contributions:

• We propose and verify the effectiveness of a
novel few-shot inversion attack, which drasti-
cally reduces the cost and complexity of such
attacks, making them plausible real-world
threats.

• We demonstrate the transferability of the inver-
sion attack across various languages, models
and domains.

• We examine several established defense mech-
anisms, none of which are successful miti-

gation strategies for this attack, highlighting
the new security and privacy vulnerabilities of
embeddings in vector databases.

2 Related Work

2.1 Textual Embedding Inversion Attacks

Textual embedding inversion attack aims to learn
the inversion function that reconstructs the original
textual inputs given their embeddings. Song and
Raghunathan (2020) demonstrates that it is possi-
ble to recover over half of the input words from a
text embedding without preserving their order. Li
et al. (2023) starts to treat the inversion attacks as a
generation task, generating coherent and contextu-
ally similar sentences compared to the original text.
Morris et al. (2023) adopts an iterative approach to
train the attack model by parameterizing attack and
hypothesis embeddings based on decoded text from
the previous step, which results in exact matches
between original and reconstructed text in certain
settings. Huang et al. (2024) implements adver-
sarial training to align victim embeddings to attack
embeddings, making them not differentiable. Chen
et al. (2024a,b) expand inversion attacks beyond
English embeddings to multilingual spaces, lever-
aging linguistic typology to investigate inversion
attack performance, finding that certain languages
are particularly vulnerable.

However, all existing works in embedding inver-
sion attacks require an enormous amount of data
leakage to train the generative attack models, such
as 100k samples for Li et al. (2023), 1-5 million
for Morris et al. (2023); Chen et al. (2024a,b) and
8k for Huang et al. (2024). In comparison, our pro-
posed approach ALGEN does not require training
an attack model on leaked/private embeddings, and
the inversion attack succeeds with few leaked data,
we additionally experiment on multiple languages.

2.2 Embedding Alignment

Embedding alignment has continuously progressed
in NLP with the development of embedding rep-
resentations and LLMs. In the early stages, a
common approach involved independently training
monolingual word vectors (Mikolov et al., 2013b)
and then learning a mapping between source and
target language embeddings using a bilingual dic-
tionary (Mikolov et al., 2013a; Smith et al., 2017;
Artetxe et al., 2017). When this mapping is re-
stricted to an orthogonal linear transformation, the
optimal word pair alignment can be computed in
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closed form (Artetxe et al., 2016; Schönemann,
1966). In contrast, Lample et al. (2018) introduce
an unsupervised method for aligning word embed-
ding spaces, incorporating cross-domain similarity
adaptation to address the hubness problem.

With the advancement of contextualized em-
beddings since the emergence of LLMs such as
BERT (Devlin, 2018), the focus shifted to the align-
ment of contextual word representations (Schus-
ter et al., 2019; Aldarmaki and Diab, 2019; Wang
et al., 2019b; Alqahtani et al., 2021; Cao et al.,
2020; Jalili Sabet et al., 2020). Moreover, sen-
tence embedding alignment has been operated in
lifelong relation extraction with a linear transfor-
mation (Wang et al., 2019a), aligning encoders
in different languages to evaluate crosslingual
transfer (Conneau et al., 2018), aligning unsuper-
vised multilingual sentence embeddings across lan-
guages to build parallel corpus (Kvapilíková et al.,
2020), building parallel data for machine transla-
tion (Krahn et al., 2023), and further to improve
information retrieval (Bhattarai et al., 2025; Yadav
and McMillan, 2024).

In comparison, ALGEN aligns sentence embed-
dings from different models to conduct embedding
inversion attacks, but it can also be applied in em-
bedding alignment in general.

2.3 Mitigating Embedding Inversion Attacks

Most research on textual embedding inversion fo-
cuses on attacks (Li et al., 2023; Huang et al., 2024;
Chen et al., 2024a). While Song and Raghunathan
(2020) adopt an adversarial training approach to
mitigate the risks of inversion attacks, this method
is ineffective for defending textual embeddings in
black-box settings. To defend against inversion at-
tacks while maintaining embedding utility in down-
stream tasks, Morris et al. (2023) propose inserting
Gaussian noise as a defense mechanism. Expand-
ing inversion attacks into multilingual space using
the same method, Chen et al. (2024b) find that
Gaussian noise effectively protects monolingual
embeddings but is less effective for multilingual
ones.

Differential privacy (DP) limits the impact of in-
dividual element (Dwork et al., 2014), and has been
shown to preserve the privacy of the extracted rep-
resentation from text, when applied during model
training (Lyu et al., 2020). To ensure sequence-
level metric-based local DP, which can be em-
ployed during inference, a sentence embedding
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Figure 2: Three steps for Few-shot Inversion Attack, (1)
Train a Local Embedding-to-Text Generation Model;
(2) Transform victim embeddings eV to the attack em-
beddings space A with matrix W ; and (3) Textual em-
bedding inversion attack.

sanitization pipeline has been developed, main-
taining non-private task accuracy and effectively
thwarting privacy threats of membership infer-
ence attacks (Du et al., 2023). Pertinent to vector
DBs, Watermarking EaaS with Linear Transfor-
mation (WET) introduces a method that applies
linear transformations to embeddings to implant
watermarks to counter paraphrasing vulnerabili-
ties (Shetty et al., 2024).

In this work, we examine these defenses against
ALGEN, and discuss the potentials and challenges
of defending embeddings from inversion attacks.

3 Methodology

We explore a situation in which a malicious attacker
gains access to a limited set of embeddings, and
attempts to reconstruct private and sensitive text
data. We propose ALGEN to circumvent the dis-
advantage of scarce data and leverage a pretrained
encoder-decoder to align the victim embeddings
to the attack space and reconstruct the texts. We
note the victim and attack embedding spaces as V
and A, respectively. As illustrated in Fig. 2, the
framework consists of three steps: (1) we train
an embedding-to-sequence generation model by
fine-tuning a pre-trained decoder decA(·); (2) we
align the embeddings from a black-box victim en-
coder eV to attack embeddings in attacker’s model
space eA; (3) the attacker leverages the capability
of the generation model decA(·) with the embed-
ding alignment model W to reconstruct the origi-
nal text from eV to eV→A and finally to text.
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3.1 Local Embedding-to-Text Generator
To train the local embedding-to-text generator,
we use a publicly available text corpus, noted
as DL. Given a sentence x ∈ DL, and attack
encoder encA(·), the token embeddings are ob-
tained H = encA(x) ∈ Rs×n where s is the
sequence length and n the embedding dimen-
sion. The sentence embeddings are computed
through mean pooling the last hidden embeddings
eA =

∑s
j=1mjHj/

∑s
j=1mj ∈ Rn, where

m ∈ {0, 1}s is the attention mask for the sequence
x. Furthermore, L2 normalization is implemented
on the sentence embeddings, i.e., eA/∥eA∥ as sen-
tence embedding normalization has proven bene-
ficial in avoiding overfitting and inducing faster
convergence in fine-tuning (Aboagye et al., 2022).
The pre-trained decoder decA(·), parameterized by
θ, processes the embeddings to produce an output
sequence x̂ = (x̂1, x̂2, . . . , x̂s), where x̂i are to-
kens in the predicted output sequence. We train
the embedding-to-text generator by fine-tuning
decA(·), by minimizing the cross-entropy loss:

L(θ) = −
s∑

i=1

logP(x̂i|x̂<i, eA; θ), (1)

where P(x̂i|x̂<i, eA; θ) is the probability of pre-
dicting token x̂i given the previous tokens x̂<i and
the input sentence embeddings eA.

Notably, attackers can easily retrieve a large cor-
pus DL to train this generator model, as it operates
independently of any victim models. The challenge
of aligning victim semantics to target embedding
space is addressed in the next subsection.

3.2 Embedding Space Alignment
Suppose there is a leaked data pair (X,EV ), given
that X ⊆ DV is the victim dataset with b ∈ N
samples, and embedding matrix EV = encV (X),
where encV is the black-box victim encoder. To
align the victim embeddings to the attack space A,
we obtain the embedding matrix EA = encA(X)
given the leaked text dataset, and seek a solution to
solve the system

EV W ≈ EA, (2)

and the best possible W ∈ Rm×n, given EV ∈
Rb×m and EA ∈ Rb×n, where n and m are the
regarding embedding dimensions of victim and at-
tacker embeddings. While there is no exact solution
to the system, our approach is to minimize their de-
viation, e = EA−EV W . Taking the square of the

error by each sample, the objective is to minimize
the following:

min
W

b∑

i=1

∥eiA − eiV ·W ∥2. (3)

The solution to this least squares loss is:

W = (ET
V EV )

−1ET
V EA, (4)

where (ET
V EV )

−1ET
V is the Moore-Penrose In-

verse of EV (see the detailed derivation in Ap-
pendix A).

The aligned embedding from V to A is thus:

EV→A = EV W , (5)

where EV→A ∈ Rb×n. Implementing this align-
ment does not require any training; it is a one-step
linear scaling. Moreover, aligning using DV with
a batch size b varying from 1 to 1,000, we observe
that even with as few as 30 samples the Rouge-L
score exceeds 20, and a reasonably successful at-
tack can be initiated with only a single data point.
The density distribution of the alignment transfor-
mation matrix W ’s weights of encoders remains
consistent across different datasets (see Fig 5).

3.3 Textual Embedding Inversion Attack
Given the attack model, i.e. the local embedding-to-
text generator decA(·) and the eV to eA alignment
model, and a body of eavesdropped embeddings
EV , we launch the inversion attack:

X̂ = decA(EV W ). (6)

4 Experimental Setup

4.1 LLMs
We use pretrained FLANT5 as the backbone to
launch our attack modules, encoder encA(·) and
decoder decA(·). For victim models, a vari-
ety of encoders are experimented on, including
T5, GTR, MT5, MBERT and OpenAI text em-
bedders TEXT-EMBEDDING-ADA-002 (ADA-2)
and TEXT-EMBEDDING-3-LARGE (3-LARGE) (see
the details of LLMs in Tabel 10).

4.2 Attack Experimental Setup
Datasets and Attack Model We train the
embedding-to-text generator decA(·) by fine-
tuning FLANT5-decoder, using the MultiHPLT En-
glish dataset (de Gibert et al., 2024) to explore few-
shot inversion attacks. For multilingual inversion
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attacks, we utilize English, German, French, and
Spanish datasets from mMarco (Bonifacio et al.,
2021). In dataset, we split 150k samples (DL) to
train decA(·); and up to 1k samples (DV ) to derive
the alignment metric W by aligning eV to eA, as
alignment samples; and 200 for evaluation.

Dataset Clasisification #Class #Train #Dev #Test

SNLI NLI 3 540,000 200 200
SST2 Sentiment 2 59,560 200 200
S140 Sentiment 2 1,599,798 200 200

Table 1: Statistics of Utility Task Datasets

Embedding-to-Text Generator Training We
conduct a series of experiments varying the training
set size (from 10k to 1M samples), learning rate
and weight decay, then select the generator config-
uration that achieves the best Rouge-L score on the
evaluation set. Eventually, to strike a balance of
performance and data usage, we train decA(·), an
embedding-to-sequence decoder, with a learning
rate of 1e− 4 and weight decay 1e− 4 on AdamW
optimizer (Loshchilov et al., 2017), batch size 128,
and 150k data samples performs the best. We use
Cross-entropy Loss for training the generator.

Evaluation Metrics Rouge-L (Lin, 2004) is
used to measure the accuracy and overlap be-
tween ground truth text x and reconstructed
text x̂ based on n-grams. In addition, we re-
port Rouge1, BLEU1 and BLEU2. Cosine Sim-
ilarity (COS) between the aligned victim embed-
dings eV→A and the attack embeddings eA is cal-
culated to evaluate the semantic similarity in the
latent embedding space.

4.3 Defense Experimental Setup
We aim to evaluate how embeddings with defense
mechanisms perform in downstream tasks.

Datasets We use SST2 (Socher et al., 2013), sen-
timent140 (S140) (Go et al., 2009) and SNLI (Bow-
man et al., 2015) in our experiments, which are
curated to ensure a balanced distribution of labels.
Table 1 shows the statistics of datasets.

Utility of Embeddings Using the embeddings
from the victim encoders, we train multi-layer per-
ceptron classifiers on the datasets and evaluate the
accuracy (ACC) and F1-score (F1) performance.
We train each classifier 6 epochs, and select the
best model with ACC on the dev dataset to evaluate
the test dataset. There would be minimal difference

Victim BLEU1 BLEU2 Rouge-L Rouge1 COS

encA(·) 62.27 40.68 54.16 62.07 -

Ve
c2

Te
xt

T5 (Base) 21.47 9.07 17.38 19.52 0.4663
Corrector 18.35 7.60 15.81 17.76 0.4835

GTR (Base) 6.70 2.31 4.70 4.82 0.1911
Corrector 13.42 2.79 10.26 12.31 0.2725

MT5 (Base) 22.27 9.86 17.21 19.28 0.7118
Corrector 18.73 7.79 15.98 17.82 0.6891

MBERT (Base) 21.56 9.09 16.97 18.81 0.5335
Corrector 18.45 7.48 15.99 18.10 0.5531

A
L

G
E

N

RANDOM 11.63 0.6 7.09 8.36 -0.0440

T5 52.98 33.86 45.75 51.56 0.9464
GTR 42.59 26.17 38.27 42.32 0.8879

MT5 49.61 31 43.35 48.47 0.9370
MBERT 47.06 28.66 39.9 45.04 0.9217

OPENAI (ADA-2) 46.7 28.67 41.45 47.01 0.9312
OPENAI (3-LARGE) 46.28 28.74 41.31 46.28 0.9066

Table 2: Inversion Attack Performances by victim mod-
els with 1,000 leaked data samples. The best Rouge-L
scores are bolded, and the highest cosine similarities
are underlined.

in the utility performance between the protected
and original embeddings, if a defense is successful.

5 Few-shot Inversion Attacks

Each subsection aims to answer one Research Ques-
tion (RQ).

5.1 How few Leaked Data do Attackers Need?

With only a single leaked data sample, our attack
model manages to invert the victim embeddings,
achieving a Rouge-L score of 10 across the en-
coders, as shown in Fig. 3. We use randomly gen-
erated embeddings as a baseline to verify that the
aligned embeddings from ALGEN capture mean-
ingful information. As shown in Table 2, all victim
embeddings substantially outperform the RANDOM

across metrics, validating our approach. Further-
more, when the number of leaked data samples
increases until 1k, the inversion performance in-
creases sharply, reaching 45.75 in Rouge-L and
0.9464 for cosine similarity for T5 embeddings.
Notably, while GTR and T5 share the same tok-
enizer with the attack model, their inversion per-
formances are not superior to others. Moreover,
the inversion performance on proprietary OPENAI
embeddings also reaches comparable performance,
more than 41 in Rouge-L and 0.9 in cosine simi-
larities for both ADA-2 and 3-LARGE, highlighting
the risks posed by inversion attacks. As shown
in the qualitative analysis in Table 11, some sen-
tences can be inverted with almost an exact match.
Furthermore, we conduct an ablation study with
the size of alignment data samples and find that 1k
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Figure 3: Inversion Performance in Rouge-L (Top)
and Cosine Similarities (Bottom) by Victim Models
and Alignment samples. Dashed lines are results of
Vec2Text and solid lines are results of ALGEN.

alignment samples strike a balance between data
size and performances (see Fig. 6 in Appendix. C).

We compare our method with Vec2Text (Morris
et al., 2023), which trains two-step models (i.e.,
Base and Corrector) with iterative access to the
victim encoder, and it requires training on embed-
dings from each encoder to invert the regarding
embeddings. In comparison, our method only re-
quires training one local attack model, and training
does not involve specific victim encoders. Up to
1k samples, Vec2Text performance is much infe-
rior compared to our method both in Rouge-L and
cosine similarities, lower than 20 and 0.72, respec-
tively, as detailed in Fig. 3 and Table 2.

We generally observe small alignment errors,
with the cosine similarities between victim embed-
dings and attack embeddings consistently higher
than 0.8 and near 1.0 when the number of align-
ment samples increases. The bottleneck of the
performance of ALGEN is likely to lie in the de-
coding, as the trained attack decoder can only reach
54.16 in Rouge-L to invert the attack embeddings,
as shown in Table 2, which is considered to be the
upper bound of inversion attack performance.

Victim λ 1 10 30 100 500 1000

MT5

0 9.27 18.40 20.46 26.43 40.04 43.35

0.001 9.27 18.44 20.49 26.09 39.99 43.00
0.01 9.27 18.45 20.60 25.95 39.77 42.99
0.1 9.27 18.82 19.96 27.48 40.25 43.50
1 9.27 13.99 18.82 20.86 35.30 38.55
10 9.27 10.15 11.10 12.38 21.38 25.84

ADA-2

0 9.27 18.35 19.72 23.82 37.70 41.45

0.001 9.27 18.39 19.81 24.45 37.72 41.23
0.01 9.27 18.37 19.64 24.18 37.86 41.55
0.1 9.27 18.27 19.48 24.80 38.77 41.75
1 9.27 11.66 16.20 19.23 32.99 38.22
10 9.27 8.86 10.50 10.73 20.10 21.55

Table 3: Inversion Performance in Rouge-L of the Vic-
tim models across regularization parameter λ by the
Alignment samples.

5.2 Does Regularization further Increase
Few-shot Inversion Vulnerabilities?

To experiment whether adding regularization in our
solution W further improve the inversion attack
performance, we add an L2 regularization term to
Eq. 4, which give us

W = (ET
V EV + λIm)−1ET

V EA, (7)

where m is the dimension of EV . We experimented
with λ ∈ {0.001, 0.01, 0.1, 1, 10}, across a range
of alignment samples [1, 10, 30, 100, 500, 1000],
and λ = 0 refers to no regularization.

As shown in Table 3, the best regularization re-
sults in Rouge-L provide only marginal improve-
ments, which indicates the robustness and general-
ization of ALGEN.

5.3 Are Other Languages (More) Vulnerable?
Building on previous work on multilingual em-
bedding inversion, we also investigate the impact
of ALGEN on languages other than English. To
achieve this, we trained local attack models in En-
glish, French, German, and Spanish. We further
conduct crosslingual embedding inversion attacks,
for example, applying the English-trained attack
model to invert French textual embeddings. Ta-
ble 5 summarizes the results of multilingual and
crosslingual embedding inversion attacks. The first
row shows the results of monolingual inversion
on the attack embeddings, which serve as an up-
per bound of the inversion performances on this
dataset. As expected, the monolingual inversion
attacks perform better than the crosslingual ones.

Consistent with previous findings (Chen et al.,
2024b), crosslingual inversion often reconstructs
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Input This business uses tools provided by TripAdvisor [ORG](or one of its official Review
Collection Partners) to encourage and collect guest reviews, including this one.

Reconstructed This business uses tools provided by TripAdvisor [ORG] (or one of its official Review
Collection Partners) to encourage and collect guest reviews, including this one

Input Book your flights now from Hermosillo (Mexico [GPE]) to the most important cities in the
world. The box below contains flights from Her.

Reconstructed Book your flights now from Las Vegas (Mexico [GPE]) to the most important cities in the

world. The box below contains flights from Las Vegas to

Table 4: Qualitative Analysis of In-Domain Inversion Results from OPENAI (ADA-2) embeddings with 1k alignment
data samples and the attack model trained on MultiPHLT English dataset. The matched entities with their entity types
are colored and bolded in Input and Reconstructed. The mismatched reconstructed texts are in grey colored box .
[GPE]: Countries/cities/states; [ORG]:Organization.

Attack Lang. Victim Languages
English French German Spanish

encA(·) 54.47 52.78 24.77 53.98

T5

English 29.29 12.57 (+2.58) 5.54 (+0.7) 13.31 (+0.33)
French 8.67 (+3.37) 31.01 2.4 (+1.25) 13.72 (+0.84)

German 15.72 (+0.09) 15.56 (+0.06) 13.04 16.63 (+0.09)
Spanish 6.56 (+4.49) 11.33 (+1.05) 2.18 (+0.95) 31.83

GTR

English 19.22 10.45 (+1.34) 4.27 (+0.57) 10.17 (+1.09)
French 4.78 (+2.85) 23.98 1.95 (+1.14) 12.16 (+0.42)

German 11.13 (+0.48) 13.37 (-0.15) 8.48 14.32 (-0.09)
Spanish 4.4 (+3.74) 10.5 (+1.98) 1.9 (+0.95) 20.88

MT5

English 25.48 12.29 (+1.64) 5.31 (+0.03) 12.61 (+0.87)
French 8.66 (+2.79) 24.6 2.27 (+1.43) 13.1 (+0.48)

German 15.54 (+0.06) 15.2 (-0.1) 10.09 15.59 (+0.02)
Spanish 6.84 (+3.98) 11.62 (+1.35) 1.88 (+1.31) 24.05

MBERT

English 21.3 11.72 (+1.42) 4.46 (+0.3) 11.76 (+0.82)
French 5.91 (+3.61) 22.79 1.87 (+1.71) 12.05 (-0.19)

German 14.29 (+0.12) 14.16 (-0.05) 9.17 15.6 (+0.05)
Spanish 5.17 (+4.14) 11.07 (+0.09) 1.75 (+0.57) 21.74

OPENAI
(ADA-2)

English 24.18 11.62 (+1.32) 5 (+0.17) 11.36 (+0.95)
French 6.97 (+3.73) 22.73 1.59 (+1.52) 12.73 (+0.07)

German 14.74 (+0.11) 13.7 (+0.07) 9.63 14.33 (+0.05)
Spanish 7.08 (+3.57) 9.82 (+1.39) 1.63 (+1.05) 21.25

Table 5: Crosslingual Embedding Inversion Perfor-
mance in Rouge-L with |DV | =1k. The results in the
brackets are the performance gain after translation.

text in a language other than the intended, usu-
ally English (the dominant language in most mul-
tilingual LLMs) or trained languages in the attack
model, hindering the performance evaluation with
string-match metrics. For example, a French text
“un composé organique qui ne contient que du car-
bone”, is reconstructed into English “a chemical
compound composed of carbon”. Rouge-L eval-
uation is more accurate when the inverted text is
translated back into the target language (e.g., “un
composé chimique composé de carbone”). To en-
sure fairness, we translate the inverted texts into
their target languages using deep-translator.4 After
translation, Rouge-L scores improve across most
models, with the most notable gains observed in the
French-to-English scenario, as shown in Table 5.
From an attacker’s perspective, splitting words in
English rather than in the victim’s language is ad-

4https://github.com/nidhaloff/deep-translator

vantageous. Attackers can be assumed to be profi-
cient in English, while the victim’s language might
be unintelligible to them. This further exacerbates
the vulnerabilities of non-English languages.

5.4 Is Risk Transferable across Domains?
To evaluate the cross-domain transferability of
ALGEN, we attack the embeddings on the
mMarco English dataset using an attack model
trained on MultiHPLT English data. Although the
cross-domain inversion performance in Rouge-L
is about 25% lower than that of in-domain attacks
on mMarco (see Table 5), the results remain alarm-
ingly high - with Rouge-L near 20 and BLEU1 near
31 across victim encoders.

Model BLEU1 BLEU2 Rouge-L Rouge1 COS

T5 31.4 5.72 21.76 29.6 0.9278
GTR 22.04 2.26 15.27 20.45 0.8442
MT5 30.08 4.82 19.33 26.94 0.9188
MBERT 26.68 3.57 17.16 23.88 0.9033
OPENAI (ADA-2) 27.62 4.63 19.07 26.40 0.9089

Table 6: Cross-Domain Inversion Attack with |DV |=1k.

5.5 Does Inversion Recover Key Information?

Model Overall Product ORG GPE Date Time Cardinal Ordinal

T5 23.86 50 32.41 21.62 14.55 16.67 28.57 40.00
MT5 20.2 53.33 28.04 17.5 11.11 0 10.53 25.00

GTR 21.17 54.55 32.13 10.67 11.11 22.22 13.79 25.00
MBERT 19.68 49.12 28.03 12.35 15.09 33.33 6.90 33.33
OPENAI 22.45 53.33 34.13 16.47 13.79 0 14.55 37.50

Table 7: Named Entity Recognition in F1 scores for
overall and top 10 entities in specific.

To examine whether ALGEN attacks real key
information, we apply Named Entity Recognition5

on input and reconstructed test data from MultiH-
PLT English dataset to calculate the current ratio

5https://github.com/explosion/spacy-stanza
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of Named Entities in the reconstructed texts. Ta-
ble 7 shows the results in F1 scores for overall
and individual entities. In the qualitative analysis,
as shown in Table 4 and 11, the input and recon-
structed texts in the inversion attacks on OPENAI
(ADA-2) embeddings are compared, with named
entities highlighted. These attacks reveal sensitive
details, such as organization, country, and num-
bers, highlighting the risks of privacy disclosure by
embeddings.

6 Defending Textual Embeddings

To explore defenses against ALGEN, we evaluate
defense mechanisms designed to protect textual
embeddings from adversarial attacks.

6.1 Defense Methods

WET We implement WET on textual embed-
dings, to examine whether it makes embeddings ro-
bust against inversion attacks, since it is effective in
defending paraphrasing attacks (Shetty et al., 2024).
A transformation matrix T is generated to trans-
form the eV into eWET with T · eV /∥T · eV ∥, to
ensure that i) the original elements are discarded
and only the transformed ones are retained; and
ii) T is full-rank and well-conditioned to allow for
accurate recovery of the original embeddings (see
details of generating T in Appendix B.1).

Shuffling We randomly shuffle the embeddings
with eV,π(i), where π is a random permutation func-
tion that reorders the indices i along the hidden
dimension.

Gaussian Noise Insertion We add Gaussian
noises to eV with (eV + λ · ϵ)/∥eV + λ · ϵ∥, ϵ ∼
N (0, 1) (Morris et al., 2023; Chen et al., 2024b)
with λ ∈ [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1].

Differential Privacy Du et al. (2023) adopts
Purkayastha Mechanism (PurMech) and Normal-
ized Planer Laplace (LapMech) on sentence em-
beddings to ensure metric-LDP (see details in Ap-
pendix B.2). We adopt the parameters from Du
et al. (2023) to experiment with defending textual
embeddings from inversion attacks. The privacy
budgets ϵ ∈ [1, 4, 8, 12] are selected.

6.2 Results

As shown in Table 8, 12 and 13, WET and Shuf-
fling have minimal impact on both inversion attack
performance and the utility performance across

Victim Defense Rouge-L↓ COS↓ ACC↑ F1↑
RANDOM - 12.42 0.0052 40.5 40.33

- 42.89 0.9595 63 62.92

WET 39.4 0.9562 63 62.92

Shuffling 35.33 0.9599 63 62.92

T5 0.001 43.3 0.9595 66.5 66.38
0.005 42.88 0.9601 63 62.55
0.01 40.26 0.9537 69 68.57
0.05 22.82 0.8459 59 58.61
0.1 19.32 0.7918 48 47.6
0.5 14.29 0.3853 38 37.92
1 12.97 0.1543 30.5 30.54

- 37.39 0.9284 60.5 60.53

WET 35.58 0.9289 53.5 53.1

Shuffling 31.01 0.9280 60.5 60.58

GTR 0.001 36.52 0.9279 60 60.06
0.005 36.48 0.9299 63 62.91
0.01 34.41 0.9218 60.5 60.59
0.05 22.31 0.8160 46.5 46.42
0.1 19.39 0.7701 50.5 49.98
0.5 14.31 0.2920 30.5 29.97
1 13.48 0.1659 30.5 30.57

- 37.98 0.9518 61 60.95

WET 34.69 0.9479 55.5 55.12

Shuffling 31.83 0.9515 60.5 60.44

MT5 0.001 37.97 0.9519 61.5 61.47
0.005 37.84 0.9493 55.5 55.06
0.01 34.5 0.9438 60 59.96
0.05 21.58 0.8292 54 53.52
0.1 17.65 0.7578 36.5 36.45
0.5 14.8 0.4482 36 35.17
1 13.31 0.1468 35.5 34.85

- 35.47 0.9423 57 57.05

WET 34.35 0.9428 53.5 53.5

Shuffling 30.29 0.9408 52 51.93

MBERT 0.001 35.82 0.9422 51.5 51.37
0.005 36.18 0.9409 51 50.82
0.01 34.18 0.9349 57 57.01
0.05 22.29 0.8265 50.5 50.48
0.1 18.65 0.7741 43 43.03
0.5 13.76 0.3969 35 33.96
1 13.11 0.1824 32.5 32.62

- 38.15 0.9433 74.5 74.78

WET 31.74 0.9405 64.5 64.51

Shuffling 33.91 0.9440 72 72.31

OPENAI 0.001 37.94 0.9437 74.5 74.51
(ADA-2) 0.005 37.63 0.9445 69 69.09

0.01 35.59 0.9409 67 66.85
0.05 20.59 0.8426 49.5 49.39
0.1 18.72 0.8231 44 42.76
0.5 14.75 0.4483 37 36.87
1 11.94 0.1097 30.5 30.49

Table 8: The Inversion and Utility Performance on Clas-
sification Tasks on SNLI dataset with WET, Shuffling,
Guassian Noise Insertion. From a defender’s perspec-
tive, ↑ means higher are better, ↓ means lower are better.

victim models and datasets. The randomly gener-
ated embeddings are also used as a baseline. With
Gaussian noise insertion, the bigger the noise λ,
both performance in inversion and utility decrease.
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Figure 4: The Inversion and Utility Performance in Accuracy on Classification Tasks on SNLI dataset with local DP,
across ϵ. The solid lines represent utility performance for non-private embeddings, while the dashed lines are for
LDP-guaranteed embeddings.

Victim ϵ Rouge-L↓ COS↓ Rouge-L↓ COS↓
LapMech PurMech

1 11.58 0.0184 11.38 -0.0341
T5 4 12.02 -0.0171 11.52 -0.0095

8 11.8 0.0510 11.96 0.0137
12 11.64 0.0438 11.48 -0.0239

1 11.9 0.0327 11.86 0.0183
GTR 4 11.78 -0.0193 11.82 0.0073

8 11.89 -0.0217 11.51 0.0226
12 10.92 -0.0277 11.33 -0.0314

1 12.3 0.0827 11.96 0.0143
MT5 4 13.15 0.0696 13.17 0.0652

8 11.89 -0.0148 12.09 0.0493
12 13.44 0.1179 11.61 -0.0443

1 12.37 -0.0026 11.33 0.0016
MBERT 4 11.84 -0.0431 11.58 -0.0019

8 11.58 -0.0333 12.93 0.1003
12 11 -0.0242 11.48 0.0271

1 12.33 0.0198 11.15 -0.0020
OPENAI 4 12.31 0.0133 11.87 -0.0417
(ADA-2) 8 10.87 -0.0659 13.13 0.1078

12 11.07 -0.0050 12.48 0.0447

Table 9: The Inversion Performance on Classification
Tasks on SNLI dataset with Local DP. From a defender’s
perspective, ↓ means lower are better.

Using local DP, while the utility performance is
preserved almost as the non-private embeddings
with ϵ = 12, as shown in Fig. 4, Tabel 14 and 15.
However, the inversion performance still maintains
more than 25% of the non-private embeddings in
Rouge-L across encoders for both LapMech and
PurMech, as detailed in Table 9, 14 and 15, posing
security and privacy risks for the embeddings.

7 Discussion and Conclusion

In this work, we introduce and validate the effec-
tiveness of a novel few-shot inversion attack, AL-
GEN, which drastically lowers the cost and com-
plexity of such attacks on widely used vector
databases. Our results show that the attack transfers
effectively across domains and languages while re-

vealing critical information. Moreover, its ability to
align embeddings from different LLMs with min-
imal loss highlights its broad NLP applications,
especially in cross-lingual embedding alignment.
Finally, our evaluation of existing defense mech-
anisms reveals that none can adequately protect
textual embeddings from inversion attacks while
maintaining utility, highlighting significant security
and privacy vulnerabilities.

Limitations

Our work does not propose a sufficient defense
mechanism for ALGEN. Although we evaluated a
number of existing defense mechanisms for tex-
tual embeddings, we found them to be ineffec-
tive against the proposed embedding inversion at-
tack. The primary focus of this work is to expose
the security vulnerabilities in embedding services
and to inspire the development of future defense
paradigms.

Computational Resources

We conduct experiments and train each text-to-
embedding generator model on a single Nvidia
A40 GPU, with the training process completing in
three hours. Beyond this, ALGEN requires mini-
mal GPU resources, making it a genuinely few-shot
experimental setting.

Ethics Statement

We comply with the ACL Ethics Policy. The in-
version attacks implemented in this paper can be
misused and potentially harmful to proprietary em-
beddings. We discuss and experiment with poten-
tial mitigation and defense mechanisms, and we
encourage further research in developing effective
defenses in this attack space.
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A Derivation of Normal Equation

To determine the optimal alignment matrix W , we
aim to minimize a cost function J that quantifies
the discrepancy between the attack embedding ma-
trix EA and the transformed victim embeddings
EV→A = EV W :

J(W ) =
1

2
(EA −EV W )T (EA −EV W )

=
1

2
(ET

AEA −ET
AEV W − (EV W )TEA

+ (EV W )TEV W )

=
1

2
(ET

AEA −ET
AEV W −W TET

V EA

+W TET
V EV W ).

(8)
By calculating the derivatives of J(W ), we have

∇W J(W ) =
1

2
∇W (ET

AEA −ET
AEV W

−W TET
V EA +W TET

V EV W )

= 2ET
V EV W − 2ET

V EA.
(9)

The optimized W is achieved when the derivative
is equal to 0,

ET
V EV W = ET

V EA. (10)

Then, the matrix W that minimizes J(W ) is

W = (ET
V EV )

−1ET
V EA. (11)

B Defense Mechanisms

B.1 WET

T is constructed by adopting circulant matri-
ces (Gray et al., 2006) to ensure that the transforma-
tion matrix is both full-rank and well-conditioned
to allow for accurate pseudoinverse computation
for recovering the original embeddings from wa-
termarked embeddings (Shetty et al., 2024), refer
to Shetty et al. (2024) for the complete algorithm
for generating T .

In detail, WET as a defense is applied to aligned
embeddings with the equation 12, where W is the
optimal solution for alignment, and T is invertible.

Norm(TEV→A) = Norm(T (EV W ))

= Norm((TEV )W )
(12)
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Model Huggingface Architecture #Languages Dimension

FLAN-T5 (Chung et al., 2022) google/flan-t5-small Encoder-Decoder 60 512
GTR (Ni et al., 2021) sentence-transformers/gtr-t5-base Encoder 1 768
T5 (Raffel et al., 2023) google-t5/t5-base Encoder-Decoder 4 768
MT5 (Xue et al., 2021) google/mt5-base Encoder-Decoder 102 768
MBERT (Devlin et al., 2019) google-bert/bert-base-multilingual-cased Encoder 104 768
TEXT-EMBEDDING-ADA-002 OpenAI API Encoder 100+ 1536
TEXT-EMBEDDING-3-LARGE OpenAI API Encoder 100+ 3072

Table 10: Details of LLMs and Embeddings.

B.2 (Local) Differential Privacy (DP)

As illustrated in Du et al. (2023), DP ensures
that a randomized mechanism M behaves simi-
larly on any two neighboring datasets X ≃ X ′

differing in only one individual’s contribution (e.g.,
a sequence). It is formally defined as follows:

Definition B.1. Let ϵ ≥ 0, 0 ≤ δ ≤ 1 be
two privacy parameters. M fulfills (ϵ, δ)−DP, if
∀X ≃ X ′ and any output set O ⊆ Range(M),
Pr[M(X ) ∈ O] ≤ eϵ · Pr[M(X ′) ∈ O] + δ.

If δ = 0, then we say that M is ϵ−DP or pure
DP.

There are two popular DP settings, central and
local. In central DP, a trusted curator can access the
raw data of all individuals, apply a Mechanism M
with random noise to ensure DP, and then release
the perturbed outputs. Local DP (LDP) is ensured
without the curator by letting individuals perturb
their data locally before being shared. The local
DP (Kasiviswanathan et al., 2011) is defined as
follows:

Definition B.2. Let ϵ ≥ 0 be a privacy parameter.
M is ϵ−LDP, if for any two private inputs X , X ′

and any output set O ⊆ Range(M), Pr[M(X) ∈
O] ≤ eϵ · Pr[M(X ′) ∈ O].

However, ϵ− LDP offers homogenous protec-
tion for all input pairs, which can be too stringent
in certain scenarios. When ϵ is too small, the noisy
outputs are useless for utility tasks.

Thus, Du et al. (2023) customizes heterogeneous
privacy guarantees for different pairs of inputs, so
called metric-based LDP, formally defined as fol-
lows:

Definition B.3. Let ϵ ≥ 0 be the privacy param-
eter, and d be a suitable distance metric for the
input space. M satisfies ϵd-LDP, if for any two
inputs X , X ′ and any output set O ⊆ Range(M),
Pr[M(X) ∈ O] ≤ eϵd(X,X′) · Pr[M(X ′) ∈ O].

Purkayastha Mechanism with Purkayastha dis-
tribution and Planar Lapalace Mechanism with
Euclidean metric, are thus proposed to ensure ϵd-
LDP on embeddings. Refer to Du et al. (2023)
for details in transforming embeddings with these
mechanisms.

C Ablation Study of Leakage Data Size

The more data for alignment, the better the per-
formance for ALGEN. However, after a certain
amount of data, i.e., 3K, the increase in data sam-
ples does not boost the inversion performance. We
conduct an ablation study of the sizes of leakage
data for alignment in terms of inversion perfor-
mances. Fig. 6 shows the inversion performance
in Cosine Similarity (Top) and Rouge-L (Bottom)
with the leakage data sizes from 1 to 8k. As shown
in Fig. 6 (Top), embeddings for alignment are the
perfect match for cosine similarities from 1 to 100
samples, then they decrease until they converge
with the cosine similarities for aligned test embed-
dings for the corresponding encoder. In Fig. 6
(Top), while the inversion performances in Rouge-
L increase with more data points for alignment
until 8k across the encoders, the performance in-
creases sharply from 1 to 1k. It becomes relatively
stagnant from 2k to 8k. Considering the trade-off
between inversion performance and the size of data
samples, we choose 1k as the upper bound of the
number of data samples for alignment to conduct
thorough experimentation in this work.
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Input KOffice Project Reviews Starts: 1, 2, 3, 4, 5 [CARDINAL] with comment only In chrono-
logical order from new to old - KOffice - OSDN Download.

Reconstructed DevOps Project Reviews Starts: 1, 2, 3, 4, 5 [CARDINAL] with comment only In chrono-

logical order from new to old - DevOp

Input TripAdvisor [ORG] is proud to partner with Travelocity, Expedia, Hotels.com, Agoda,
Booking.com, Price [ORG].

Reconstructed TripAdvisor [ORG] is proud to partner with Booking.com, Expedia, Hotels.com, Trave-
locity, Agoda, Price [ORG]

Input Step 5 [CARDINAL]: Utilize Windows System Restore to """"Undo"""" Recent System
Changes Windows System Restore allows you to """"go back in.

Reconstructed Step 5 [CARDINAL]: Utilize Windows System Restore to """"Undo"""" Recent System
Changes Windows System Restore allows you to """"go back in

Input If you want to ensure you grab a bargain, try to book more than 90 days [DATE] before
your stay to get the best price for a Paris [GPE].

Reconstructed If you want to ensure you grab a bargain, try to book more than 90 days [DATE] before
your stay to get the best price for a Paris [GPE]

Input The Fund’s total amount for the Fund is limited to a maximum of $4,000,000 [MONEY],
and the Fund’s total amount for each transaction is

Reconstructed means an amount up to USD 4,000,000 [MONEY], for the Winners, the exact amount

is subject to the sole and final discretion of the Fund;

Input Microsoft [ORG] is constantly updating and improving Windows [PRODUCT] system
files that could be associated with 100street_bkg_bikini_bottom.swf.

Reconstructed Microsoft [ORG] is constantly updating and improving Windows [PRODUCT] system
files that could be associated with jabber-shp-src.jar. Sometimes

Table 11: Qualitative Analysis of In-Domain Inversion Results from OPENAI (ADA-2) embeddings with 1k
alignment data samples and the attack model trained on MultiPHLT English dataset. The matched entities with
their entity types are colored and bolded in Input and Reconstructed. The mismatched reconstructed texts are in
grey colored box . [GPE]: Countries/cities/states; [ORG]:Organization.

24344



0.15 0.10 0.05 0.00 0.05 0.10 0.15
Value (W)

0
5

10
15
20
25
30
35

D
en

si
ty

mBERT
GTR
OpenAI (ada-2)
mT5
T5

(a) SNLI

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Value (W)

0

5

10

15

20

25

D
en

si
ty

mBERT
GTR
OpenAI (ada-2)
mT5
T5

(b) SST2

0.2 0.1 0.0 0.1 0.2
Value (W)

0

5

10

15

20

25

30

D
en

si
ty

(C) S140

Figure 5: The Analysis of Alignment Transformation
Weight (W ) on Victim Encoders on different datasets.

Victim Defense Rouge-L↓ COS↓ ACC↑ F1↑
RANDOM - 6.57 -0.0108 56.50 56.02

- 25.06 0.9359 89.5 89.5

WET 24.52 0.9344 87 87

Shuffling 20.34 0.9358 89 89

T5 0.001 25.15 0.9355 89.5 89.5
0.005 24.59 0.9308 88.5 88.5
0.01 22.06 0.9172 88 88
0.05 12.11 0.7637 87.5 87.5
0.1 9.57 0.7092 79 79
0.5 7.03 0.3169 59 59
1 7.05 0.1878 56.5 56.41

- 18.14 0.8823 85.5 85.5

WET 15.69 0.9178 84 83.97

Shuffling 14.69 0.8835 85.5 85.5

GTR 0.001 17.22 0.8804 85 84.99
0.005 17.01 0.8748 85 84.99
0.01 15.09 0.8489 85 84.99
0.05 9.91 0.7136 83.5 83.5
0.1 9.18 0.6505 76 75.91
0.5 7.53 0.2297 55 54.93
1 6.62 0.0293 49 48.87

- 21.83 0.9320 79.5 79.47

WET 21.04 0.9307 80 79.93

Shuffling 18.19 0.9321 78.5 78.47

MT5 0.001 22.13 0.9327 77.5 77.43
0.005 21.71 0.9277 80 79.99
0.01 18.97 0.9119 79.5 79.41
0.05 9.72 0.7410 77.5 77.34
0.1 8.83 0.6924 64 62.79
0.5 7.55 0.2407 51 50.98
1 6.55 0.1930 49 48.95

- 20.44 0.9211 76.5 76.06

WET 20.19 0.9261 77 76.66

Shuffling 17.07 0.9209 76 75.59

MBERT 0.001 20.32 0.9209 76.5 76.06
0.005 20.01 0.9156 77 76.6
0.01 18.22 0.9018 76 75.59
0.05 10.97 0.7320 69.5 68.54
0.1 8.6 0.6851 64.5 64.02
0.5 7.06 0.3407 59.5 59.5
1 6.12 0.0838 46 45.86

- 20.15 0.9309 92 92

WET 15.83 0.9258 91 91

Shuffling 17.74 0.9311 91.5 91.5

OPENAI
(ADA-2) 0.001 20.11 0.9308 91 91

0.005 20.01 0.9300 91 91
0.01 17.57 0.9179 90 90
0.05 9.39 0.7787 82.5 82.5
0.1 8.07 0.7502 71 70.9
0.5 7.81 0.4743 51.5 51.4
1 5.92 0.1324 53.5 52.2

Table 12: The Inversion and Utility Performance on
Classification Tasks on SST2 dataset with WET, Shuf-
fling, Guassian Noise Insertion. From a defender’s per-
spective, ↑ means higher are better, ↓ means lower are
better.
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Figure 6: Inversion Performance vs. Leakage Data (Alignment) Sizes. (Top) shows the cosine similarities for
embeddings of alignment data (dashed) and for embeddings of test data by the size of alignment data. (Bottom)
shows the Rouge-L scores for the reconstructed texts compared to the original texts.
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Victim Defense Rouge-L↓ COS↓ ACC↑ F1↑
RANDOM - 5.01 0.0275 48.5 48.13

- 23.04 0.9219 71.5 70.37

WET 19.86 0.9186 69 67.42

Shuffling 17.56 0.9245 71 70.03

T5 0.001 22.05 0.9230 71.5 70.37
0.005 21.11 0.9188 70.5 69.45
0.01 18.29 0.9078 69 67.84
0.05 8.85 0.7561 68 66.8
0.1 7.6 0.6901 59.5 58.86
0.5 4.97 0.2678 46 45.95
1 4.85 0.1101 50.5 50.47

- 13.22 0.8585 70.5 68.45

WET 12.15 0.8861 71.5 69.35

Shuffling 11.69 0.8599 70 68

GTR 0.001 13.59 0.8594 69.5 67.38
0.005 12.86 0.8515 70 68.17
0.01 12.11 0.8260 71 69.23
0.05 7.92 0.7055 70.5 69.21
0.1 5.8 0.6137 64 63.28
0.5 4.6 0.3075 56.5 56.47
1 4.23 0.0582 53 52.83

- 19.82 0.9212 68 66.8

WET 18.4 0.9219 63 61.61

Shuffling 16.51 0.9215 66.5 65.44

MT5 0.001 20.4 0.9217 67.5 66.47
0.005 18.82 0.9173 67 65.89
0.01 16.48 0.9037 65.5 64.28
0.05 8.09 0.7625 58.5 57.03
0.1 7.02 0.6952 60 59.6
0.5 5.13 0.3770 55.5 55.31
1 4.21 0.1505 42 41.99

- 17.88 0.9070 64.5 64.18

WET 16.83 0.9151 63 62.63

Shuffling 13.8 0.9062 63.5 63.29

mBERT 0.001 17.83 0.9077 64 63.77
0.005 17.01 0.9020 64.5 64.24
0.01 15.44 0.8901 63.5 63.17
0.05 8.47 0.7498 60.5 60.21
0.1 7.26 0.6876 52 50.39
0.5 5.25 0.2904 50 49.68
1 4.34 0.1619 55.5 55.31

- 17.13 0.9224 71.5 70.12

WET 14.19 0.9237 69.5 67.55

Shuffling 15.97 0.9229 71 69.53

OPENAI
(ADA-2) 0.001 17.12 0.9225 71 69.53

0.005 17.19 0.9208 72.5 71.17
0.01 14.8 0.9100 71.5 70.12
0.05 7.4 0.7974 74 73.13
0.1 6.42 0.7691 67.5 67.4
0.5 5.36 0.4271 53.5 53.16
1 5.27 0.1753 55.5 54.09

Table 13: The Inversion and Utility Performance on
Classification Tasks on S140 dataset with WET, Shuf-
fling, Guassian Noise Insertion. From a defender’s per-
spective, ↑ means higher are better, ↓ means lower are
better.
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Victim Model ϵ Rouge-L COS ACC F1 Rouge-L COS ACC F1

LapMech PurMech

- 25.06 0.9359 89.5 89.5 23.04 0.9219 71.5 70.37

1 6.84 0.0103 54.5 54.5 4.19 -0.0235 55 54.93
T5 4 5.94 -0.0660 76 75.96 4.48 0.0322 63.5 63.39

8 6.53 0.0526 84.5 84.5 4.29 -0.1135 71 70.03
12 6.78 0.0551 89.5 89.49 4.29 -0.0210 71 70.03

- 18.14 0.8823 85.5 85.5 13.22 0.8585 70.5 68.45

1 5.86 -0.0213 55.5 55.5 4.29 -0.0079 50 49.82
GTR 4 6.64 0.0232 73 72.98 4.55 -0.0066 61 58.4

8 6.75 0.0172 83 82.99 4.82 -0.0179 67 65.16
12 7.05 0.0157 84 84 4.85 0.0439 70 68.75

- 21.83 0.9320 79.5 79.47 17.13 0.9224 71.5 70.12

MT5 1 7.18 -0.0850 54 53.98 3.89 -0.0560 55 54.93
4 6.78 0.0471 69.5 69.49 4.09 -0.0255 66.5 65.03
8 6.75 -0.0008 78 78 4.9 -0.0166 68.5 66.66
12 6.71 0.0638 81 80.95 5.3 0.1235 69.5 67.72

- 20.44 0.9211 76.5 76.06 17.88 0.9070 64.5 64.18

MBERT 1 6.59 0.0182 50.5 50.5 4.23 0.0215 49.5 49.5
4 6.11 -0.1486 70 69.97 4.6 -0.0190 63.5 63.46
8 6.76 -0.0680 76 75.8 4.26 0.0942 63 62.91
12 6.55 0.0431 78 77.68 4.66 -0.0340 62 61.69

- 20.15 0.9309 92 92 19.82 0.9212 68 66.8

1 6.06 -0.0289 50.5 50.47 4.52 0.0507 53 52.98
OPENAI
(ADA-2) 4 6.56 0.0336 79 79 4.14 -0.0377 63.5 62.6

8 6.65 0.1389 90.5 90.5 4.31 0.0997 67 65.76
12 6.01 -0.0267 94.5 94.5 4.24 0.0022 66 64.99

Table 14: The Inversion and Utility Performance on Classification Tasks on SST2 dataset with local DP. From a
defender’s perspective, ↑ means higher are better, ↓ means lower are better.

Victim Model ϵ Rouge-L COS ACC F1 Rouge-L COS ACC F1

LapMech PurMech

- 23.04 0.9219 71.5 70.37 23.04 0.9219 71.5 70.37

T5 1 4.23 0.0109 52.5 52.49 4.19 -0.0235 55 54.93
4 4.23 -0.0526 61.5 60.67 4.48 0.0322 63.5 63.39
8 4.19 0.0457 68.5 67.5 4.29 -0.1135 71 70.03
12 4.33 0.0082 72 71.06 4.29 -0.0210 71 70.03

- 13.22 0.8585 70.5 68.45 13.22 0.8585 70.5 68.45

GTR 1 4.54 -0.0107 51 50.82 4.29 -0.0079 50 49.82
4 4.89 0.0635 61.5 59.81 4.55 -0.0066 61 58.4
8 4.55 0.0415 67 65.48 4.82 -0.0179 67 65.16
12 4.64 0.0673 70.5 68.93 4.85 0.0439 70 68.75

- 19.82 0.9212 68 66.8 19.82 0.9212 68 66.8

MT5 1 4.54 -0.0650 47 46.99 4.52 0.0507 53 52.98
4 4.31 0.0432 61.5 60.67 4.14 -0.0377 63.5 62.6
8 4.85 0.0386 65.5 64.86 4.31 0.0997 67 65.76
12 4.62 0.1038 66 64.99 4.24 0.0022 66 64.99

- 17.88 0.9070 64.5 64.18 4.66 -0.0340 62 61.69

MBERT 1 4.6 0.0153 54 54 17.88 0.9070 64.5 64.18
4 5 0.1196 59 58.9 4.23 0.0215 49.5 49.5
8 4.4 0.0156 60.5 60.28 4.6 -0.0190 63.5 63.46
12 4.76 0.0117 61.5 61.45 4.26 0.0942 63 62.91

0 17.13 0.9224 71.5 70.12 17.13 0.9224 71.5 70.12

OPENAI
(ADA-2) 1 4.45 0.0041 53 52.83 3.89 -0.0560 55 54.93

4 4.84 0.0572 63 62.46 4.09 -0.0255 66.5 65.03
8 4.66 -0.0191 68.5 66.97 4.9 -0.0166 68.5 66.66
12 4.84 0.0728 71.5 69.83 5.3 0.1235 69.5 67.72

Table 15: The Inversion and Utility Performance on Classification Tasks on S140 dataset with local DP. From a
defender’s perspective, ↑ means higher are better, ↓ means lower are better.
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