
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2345–2374
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Inference Compute-Optimal Video Vision Language Models

Peiqi Wang1, ShengYun Peng2, Xuewen Zhang3, Hanchao Yu3, Yibo Yang3,
Lifu Huang4, Fujun Liu3, Qifan Wang3

1MIT, 2Georgia Tech, 3Meta, 4UC Davis
Email: wpq@mit.edu Code: github/vvlm_inference_scaling

Abstract

This work investigates the optimal allocation of
inference compute across three key scaling fac-
tors in video vision language models: language
model size, frame count, and the number of
visual tokens per frame. While prior works typ-
ically focuses on optimizing model efficiency
or improving performance without considering
resource constraints, we instead identify opti-
mal model configuration under fixed inference
compute budgets. We conduct large-scale train-
ing sweeps and careful parametric modeling
of task performance to identify the inference
compute-optimal frontier. Our experiments re-
veal how task performance depends on scaling
factors and finetuning data size, as well as how
changes in data size shift the compute-optimal
frontier. These findings translate to practical
tips for selecting these scaling factors.

1 Introduction

Video vision-language models (VLMs) have be-
come powerful tools for multimodal video under-
standing, achieving strong performance tasks such
as captioning and question answering (Maaz et al.,
2024a; Cheng et al., 2024; Li et al., 2024a). These
models are increasingly used in large-scale industry
applications, such as recommendation systems and
content moderation, where they routinely process
millions of videos each day.

In practice, these models are typically pretrained
once, often by third parties (Grattafiori et al., 2024),
and then finetuned on relatively modest datasets. In
contrast, inference occurs continuously and at scale,
often incurring orders of magnitude more compute
cost than finetuning, as detailed in Appendix A.1.
As a result, optimizing for inference efficiency is
critical for real-world deployment.

Important design decisions x made before fine-
tuning can significantly impact both the model’s
inference compute cost c(x) and downstream task
performance f . For video VLMs, the most impor-

tant parameters include: (1) the language model
(LM) size xN , (2) the number of frames processed
per video xT , and (3) the number of tokens per
frame xV used to represent videos. Once set, these
scaling factors remain fixed during finetuning and
deployment.

Given the substantial computational challenges
of deploying video VLMs at scale, our work ad-
dresses a key question:

Q: Given fixed finetuning data of size n and
per-example inference compute budget c, how
to select scaling factors x for the best model?

We focus on three specific scaling factors x ≜
(xN , xT , xV), although our framework can extend
to any scaling factors that affects inference compute
cost and performance.

Concurrent studies exploring scaling trade-offs
in vision-language models have notable gaps (Li
et al., 2024b; Du et al., 2024). For instance, Du
et al. (2024) examines the trade-off between frame
count xT and tokens per frame xV but overlooks
other important scaling factors like language model
size xN . Moreover, it does not account for the com-
putational cost of processing video frames through
vision encoders, leading to overestimated benefits
of increasing the number of frames xT . Our work
addresses these limitations.

Existing research on scaling inference-time com-
pute (Li et al., 2024b; Wu et al., 2024b; Snell et al.,
2024; Brown et al., 2024) don’t investigate the pos-
sible interaction between scaling factors x and fine-
tuning data size n. Scaling factors influence how
effectively finetuning data is used: (1) larger mod-
els are more sample-efficient, achieving lower er-
ror with the same amount of data (Henighan et al.,
2020), and (2) increasing the number of frames or
tokens per frame enriches the dataset by providing
more detailed visual information. In contrast, we
conduct experiment to explore these interactions
and derive insights into how finetuning data size n

2345

wpq@mit.edu
https://github.com/tt6746690/vvlm_inference_scaling

shifts the compute-optimal frontier.
In this paper, we tackle the inference compute

allocation problem outlined above—determining
the optimal scaling factors under a fixed inference
compute budget—and propose a simple, effective
recipe. Inspired by Hoffmann et al. (2022); Alab-
dulmohsin et al. (2023), we conduct efficient train-
ing sweeps to explore multiple scaling factors (e.g.,
xN , xT , xV , n) while minimizing the number of
training runs. To address the lack of consensus on
appropriate parametric models for downstream task
performance (Owen, 2024; Li et al., 2024b; Gadre
et al., 2024), we perform model selection to iden-
tify suitable formulations and thoroughly validate
the fitted model, accounting for challenges such
as small sample sizes and the difficulty of predict-
ing performance metrics (vs. next-token prediction
loss). Finally, we determine the optimal scaling fac-
tors by solving a constrained discrete optimization
problem numerically, providing a concrete answer
to the posed question.

Our training sweeps reveals that: (1) scaling
factors x and finetuning data size n exhibit dimin-
ishing returns on performance, (2) jointly scaling
(xN , xT , xV) is crucial for optimal performance,
and (3) the utility of x varies significantly across
tasks, indicating that no universal inference com-
pute allocation strategy exists—allocation must be
task-specific. We demonstrate that a power-law
additive functional form with an interaction term
effectively models average task performance. By
solving a constrained optimization problem using
this parametric model, we identify an inference
compute-optimal frontier that provides guidance
on scaling x optimally. Moreover, the finetuning
data size n shapes this frontier; for instance, the
trend suggests increasing xT and xV while decreas-
ing xN as more data becomes available.

In summary, our key contributions are:

• We tackle the important problem of allocating
inference compute across scaling factors in video
VLMs. Our approach combines efficient train-
ing sweeps, parametric modeling of task perfor-
mance, and constrained discrete optimization to
identify optimal trade-offs.

• We conduct large-scale training sweeps (e.g.,
∼100k A100 hours) and derive qualitative ob-
servations of how video task performance varies
with scaling factors and finetuning data size.

• We provide actionable insights into scaling infer-
ence compute for video VLMs, e.g., optimal al-

Aspect Training Inference

Data Abundant Limited
Cost (FLOPs) † 6xNnpt 2xNxTxV
Problem min

xN ,npt
f(xN , npt) min

x
f(x, n)

c(xN , npt) ≤ cpt c(x) ≤ c

Table 1: Comparison of optimizing training compute
for LLMs versus inference compute for video VLMs.
Notations: xN (LM parameters), xT (frames), xV (to-
kens per frame), npt and n (training and finetuning data
sizes), f (error), cpt (training compute budget), and c
(per-example inference compute budget). †denotes com-
pute cost estimates for LMs only.

location of factors such as LM size, frame count,
and tokens per frame, as well as the impact of
data size on the compute-optimal frontier.

2 Relationship to Scaling Law Studies

In contrast to previous studies (Kaplan et al.,
2020; Hoffmann et al., 2022) on training compute-
optimal model that balances model size xN and
pretraining data size npt, we aim to optimize scal-
ing factors for video VLMs such that the model is
inference compute-optimal. While our motivation
aligns with Sardana et al. (2024) in considering
deployment costs, our focus is on finetuning rather
than pretraining LMs. A notable distinction of our
setup is that we finetune with all available data be-
cause finetuning datasets are limited in quantity,
their compute cost is negligible, and more data
always provide better performance without incur-
ring inference compute cost. Table 1 contrasts the
optimization of training compute for LMs and in-
ference compute for video VLMs.

Motivated by existing finetuning scaling studies,
our work investigates how finetuning data size n
affects VLM performance. Unlike Hernandez et al.
(2021), which focuses on pretraining-to-finetuning
knowledge transfer, we explore how finetuning data
size interacts with other scaling factors to influ-
ence inference efficiency and performance. While
Zhang et al. (2023) examines similar interactions
in the context of finetuning LMs for translation and
summarization, we target video benchmarks and
focus on allocating inference compute.

Our work can be viewed as scaling video VLMs’
inference-time compute, e.g., by increasing the size
of video representations. While previous research
has explored scaling retrieval augmented genera-
tion (Yue et al., 2024) or test-time search strate-

2346

gies (e.g., best-of-N or beam search) (Wu et al.,
2024b; Snell et al., 2024; Brown et al., 2024), these
approaches adjust inference compute for a fixed
model. In contrast, we finetune models for any
given scaling factors and use the same setup during
inference.

3 Inference Computational Optimality

Notations Let x ∈ X1 × · · · × XK ≜ X denote
a set of K factors that influence both inference
compute and video VLM performance, where each
Xk ⊂ N is a subset of the natural numbers. In this
work, we specialize x to (xN , xT , xV), where xN
denotes the language model (LM) size, xT the num-
ber of video frames, and xV the number of visual
tokens per frame, with XN restricted to pretrained
LM sizes and XV to perfect squares. Model perfor-
mance is quantified using a metric f : X×N → R,
where f(x, n) represents the downstream task er-
ror (lower is better) from finetuning a model with
scaling factors x on a dataset of size n. While f
represents error, we refer to it interchangeably as
performance throughout this paper.

Video VLM Our analysis of video VLM scaling
is based on LLaVA-like architectures (Liu et al.,
2023), which consist of two main components:

• vision model with xM parameters (e.g., CLIP
Radford et al., 2021) that processes xT video
frames independently. For each frame, it gener-
ates a grid of xW visual features that are then
projected and resampled into xV visual tokens

• language model with xN parameters (e.g., Llama-
3) that consumes the sequence of visual token
representations of length xTxV to perform video
understanding or reasoning tasks.

Inference Compute Cost We measure computa-
tional cost using floating-point operations (FLOPs),
focusing on the inference cost of the vision and
language model components. We assume each ex-
ample consists of a single video, where the length
of visual tokens dominate that of the input instruc-
tions or output generations. Thus, we disregard
the compute cost of the latter. Using the standard
approximation of 2xN FLOPs per token for a trans-
former model with xN parameters (Kaplan et al.,
2020), the per-example inference compute cost is

c(x) = 2xT (xMxW + xNxV) . (1)

For a video VLM using SoViT-400m/14 (Alab-
dulmohsin et al., 2023) as the vision model, this
becomes c(x) = 2xT (0.43e9 · 768 + xNxV).

Prior work often overlooks the vision model’s
compute cost, focusing solely on the language
model (Li et al., 2024b; Du et al., 2024). In Ap-
pendix A.3, we demonstrate that the vision model’s
relative compute cost becomes significant as xN
and xV decrease.

Parametric Model of Performance We model
task error f(x, n) using add-interact (Alabdul-
mohsin et al., 2023), a parametric function that
defines an additive power-law relationship with in-
teraction terms. This formulation is well-suited
for scenarios where both inference compute c(x)
and data size n are constrained, as is often the case
when deploying video VLMs. Moreover, it enables
an exploration of the interactions between x and n.

For a specific scaling factor xk ∈ Xk (e.g., the
number of frames xT) and finetuning data size n,
we model the error as

fk(xk, n) = αkx
−ak
k +

(
βkx

bk
k + ξk

)
n−d + εk,

(2)

where αk, βk, ξk, εk ≥ 0 are coefficient parame-
ters, and ak, bk, c ∈ R are exponent parameters to
be estimated from empirical training results. The
terms in this formulation are interpreted as follows:

• The coefficients αk, βk, ξk represent error com-
ponents that can be reduced by increasing xk or
n, while εk accounts for irreducible error.

• The exponent ak describes how the error scales
with xk in the data-unbounded regime, where
fk ∝ x−ak

k as n → ∞.
• The data scaling exponent d quantifies how the

error decreases with increasing data size n for
fixed inference compute, i.e., fk ∝ n−d

• The exponent bk determines how xk affects the re-
ducible error βkx

bk
k + ξk and, thereby the impact

of increasing n. For bk > 0, larger xk implies:
(1) requiring more finetuning data to achieve the
same error and (2) faster error reduction per ad-
ditional example. See Section D.2 for details.

For multiple factors x, we model the error as

f(x, n) =
∑

k

αkx
−ak
k +

∑

k

βkx
bk
k n−d + ξn−d + ε

(3)

where αk, βk, ξ, ε ≥ 0 and ak, bk, d ∈ R. Consis-
tent with prior work (Alabdulmohsin et al., 2023;
Bahri et al., 2024), we assume d is independent of
the scaling factors.

2347

While we primarily use add-interact defined
in Equation 2, alternative formulations exist. These
include its simplifications (e.g., add-interacts),
as well as commonly used additive power-law func-
tions (add) and its multiplicative variants (mult).
Section D.1 provides expressions of each paramet-
ric function we study.

Allocating Inference Compute We aim to op-
timize the allocation of inference compute across
scaling factors (xN , xT , xV) to maximize model
performance under a given per-example inference
compute budget c and finetuning data size n. This
can be formulated as follows:

x∗(c;n) = argmin
x∈X: c(x)≤c

f(x, n) (4)

where x∗ represents the optimal scaling factors.
For simplicity, we omit c and n when their con-
text is implicit. x∗(c;n) is also referred to as the
“(inference) compute-optimal frontier”.

Unlike training compute optimization, inference
compute optimization does not treat n as an op-
timization variable, as finetuning data size does
not affect inference compute cost. However, for
certain parametric functions (e.g., add-interact),
n can still influence the solution x∗. For others
(e.g., add), the solution x∗(c) is independent of n.
Table 7 summarizes which parametric functions
exhibit this dependency.

For simple additive power-law parametric forms
(e.g., add in Table 7) and when inference com-
pute is limited to LM compute costs (i.e., c(x) =
xNxTxV), the problem admits an analytic solution
if X is continuous. However, when vision model
compute costs are included (e.g., c(x) as defined
in Equation 1), deriving x∗ analytically as a func-
tion of c and n becomes intractable. This is further
complicated by the discrete nature of X (e.g., pre-
trained LMs are only available in a fixed set of
sizes). To address these challenges, we compute x∗

using a brute-force search over all combinations in
X. In practice, this is computationally feasible in
our setup due to the small size of X : |XN | ≤ 5,
|XT | ≤ 128, and |XV | ≤ 28. Because the opti-
mization problem is discrete, the optimal scaling
factors x∗ often lie within the feasible region rather
than on the boundary.

4 Implementation Details

Video Instruction Dataset We use a compre-
hensive video instruction tuning dataset of ∼ 2.2

million examples to investigate the impact of fine-
tuning data size n on model performance. This
dataset is compiled from a diverse range of video
sources, e.g., LLaVA-Video-178K (Zhang et al.,
2024b), and includes various types of instructions,
e.g., chat, question-answering, and captioning. Ap-
pendix B.1 lists dataset composition and provides
some explanations on how we assemble the dataset.

Model and Training We full-parameter finetune
LLaVA-like architectures (Liu et al., 2023), which
integrate a vision model, a projector, and a lan-
guage model. The SoViT-400m/14 vision model
(Alabdulmohsin et al., 2023) is chosen for its per-
formance. The projector is a two-layer MLP that
converts visual features into tokens, which are
then processed by the Llama-3.2 series of LMs
(xN ∈ {1B, 3B, 8B}) (Grattafiori et al., 2024).

The finetuning process involves two stages: pre-
training the projector on the LCS dataset (Liu et al.,
2023) and subsequently finetuning the entire model
on video instruction datasets. We use the codebase
and default hyperparameters from Li et al. (2024a).
Appendix B.2 provides additional details.

Video frames are uniformly sampled at a min-
imum rate of 1 frame per second (fps), repeating
frames if the video duration is too short to meet
this rate. To downsample a 2D grid of visual fea-
tures xW into a smaller grid xV , we apply bilinear
interpolation (Li et al., 2024a), implying values of
xV is constrained to be perfect squares.

Evaluation Tasks and Metrics To thoroughly
assess the capabilities of video VLMs, we use
a diverse set of eight video tasks, including var-
ious question-answering (QA) types, e.g., caption-
ing, open-ended, and multiple-choice questions.
Evaluations include Video Detailed Caption (VDC
Zhang et al., 2024a) for detailed video descriptions,
ActivityNet-QA (AQA Yu et al., 2019) for action-
related QAs, VCGBench (VCG Maaz et al., 2024a)
for video chat capabilities, LongVideoBench (LVB
Wu et al., 2024a) for long video understanding, and
PerceptionTest (PT Patraucean et al., 2023) for fine-
grained perception. Additionally, MVBench (MV
Li et al., 2024c), Video-MME (VMME Fu et al.,
2024), and Next-QA (NQA Xiao et al., 2021) pro-
vide broad evaluations across diverse video tasks
and domains. We measure performance using accu-
racy (“Acc”) for multiple-choice QA tasks and gpt-
4o-mini’s ratings (“Score”) for open-ended QA and
captioning tasks. All metrics are standardized to
a (0, 100) scale to facilitate a balanced average of

2348

Figure 1: IsoPerformance Contours. Contours show average task performance as a function of a scaling factor
(e.g., xN , xT , or xV) and finetuning data size n, derived from the star sweep. As detailed in Section 5.1, we
construct the star sweep by starting with a inference compute-intensive “center” x⋆ = (7.5B, 32, 196), varying
one factor at a time while keeping the others fixed, and finetuning on different data sizes. For instance, in the left
subfigure, each dot represents a xN -parameter LM finetuned on n examples, with xT = 32 and xV = 196 fixed.
Performance improves as scaling factors x and n increase, albeit at a diminishing rate. Irregularities in the
contour lines, particularly near boundaries, arise from interpolation artifacts (via matplotlib.pyplot.contourf)
and variability in benchmark scores across fine-tuning runs.

Figure 2: IsoFLOP Curves and Compute-Optimal Frontier. IsoFLOP curves (dotted lines) show task performance
(color-coded) for models with fixed inference compute cost c(x) across four TFLOP budgets: 2, 5, 15, and 30. The
compute-optimal frontier (solid line) connects models with the best average task performance. Both are derived
from the isoFLOP sweep described in Section 5.1. The compute-optimal frontier reveals that optimal performance
requires scaling both xT and xV together. Moreover, at 30 TFLOPs, a model with xN = 7.5B outperforms one
with xN = 1B, as smaller LMs cannot effectively make use of higher compute budgets (e.g., increasing from 15 to
30 TFLOPs yields minimal gain), highlighting the bottleneck imposed by LM size. These findings underscore the
importance of jointly scaling xN , xT , and xV to maximize performance.

evaluation metrics (“Metrics/Avg”). Appendix B.3
provides additional details on evaluation.

5 Experiments

5.1 Training Sweeps

To study the behavior of video VLM w.r.t. scaling
factors x and finetuning data size n, we perform
two types of training sweeps:

• Star sweep: We start with an inference compute-
intensive “star center” (7.5B, 32, 196), vary one
factor at a time while keeping the others con-

stant, and finetune the model on three different
data sizes n (in millions): 0.25, 0.5, and 1. The
star sweep avoids an expensive grid search over
(xN , xT , xV , n) and instead focuses on charac-
terizing how each scaling factor scales with n,
leading to a more accurate estimate of scaling ex-
ponents (as shown in Alabdulmohsin et al., 2023).
Appendix C provides more details on how our
implementation differs slightly from the original.

• IsoFLOP sweep: We adjust the scaling factors
x = (xN , xT , xV) to maintain a fixed inference
compute cost c(x) across four target TFLOPs: 2,

2349

Form Expressions for f(x, n) Star+IsoFLOP CV(5-fold) Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

mult α(
∏K

k=1 x
−ak
k)n−d + ϵ 1.21 1.62 0.88 6.73 3.55 0.45

add
∑

k αkx
−ak
k + ξn−d + ϵ 0.56 1.11 0.94 2.04 2.15 0.83

add-interacts
∑

k αkx
−ak
k +

∑
k βkx

bk
k n−d + ϵ 0.24 0.8 0.97 0.94 1.32 0.92

add-interact
∑

k αkx
−ak
k +

∑
k βkx

bk
k n−d + ξn−d + ϵ 0.2 0.77 0.98 0.95 1.33 0.92

Table 2: Comparison of Parametric Models of Task Performance. Evaluation of different parametric functions
for modeling the average task performance under two setups: (1) in-distribution performance using 5-fold cross-
validation (CV) on combined star and isoFLOP data, and (2) extrapolation on isoFLOP data after training on star
data. Metrics include mean squared error (MSE), average relative error (E%), and coefficient of determination
(R2). The add-interact model and its simpler variant add-interacts incorporate additive power laws with
interaction terms and achieve the best performance. These functional forms outperform simpler additive (add)
and multiplicative (mult) power law models, emphasizing the importance of appropriately modeling the interactions
between scaling factors x and finetuning data size n.

5, 15, and 30, and finetune the model on n = 2
million examples. The isoFLOP sweep is de-
signed to identify the optimal scaling factors for
a given inference FLOP budget and to evaluate
the effects of jointly scaling multiple factors. Ad-
ditionally, it serves as a held-out set for model
validation and selection.

Appendix C provides a detailed description of the
experimental setup and execution of these sweeps.

Scaling factors x and finetuning data size n
yields diminishing return on performance.

Figure 1 illustrates that average task performance
improves with increasing scaling factors x and data
size n. However, the rate of improvement (1) di-
minishes as x and n grows larger (2) varies across
x, n. These trends suggest that task performance
can be effectively modeled using power-law rela-
tionships with factor-specific exponents.

Jointly scale (xN , xT , xV) is crucial.

Figure 2 presents the isoFLOP curves, which rep-
resent models with varying x and fixed inference
compute costs, and the compute-optimal frontier
that connects the best-performing models across
different inference FLOPs budget. The compute-
optimal frontier underscore the importance of in-
creasing xN , xT , and xV in tandem to maximize
performance. For instance, doubling the inference
compute from 15 to 30 TFLOPs (by varying xT
and xV) yields marginal performance gains for a
smaller xN = 1B LM, while the same increase
in inference compute provides significant improve-
ment for a larger xN = 7.5B LM, highlighting the
bottleneck imposed by LM size. Similar bottleneck
effects are observed for xT and xV respectively.

The per-task compute-optimal frontier in Figure 9
reaffirms the importance of jointly scaling x for
each task. However, this trend is not perfectly
consistent due to limited robustness of the fine-
tuning and evaluation process, as well as the coarse
granularity of the isoFLOP sweep conducted under
computational constraints.

Utility of (xN , xT , xV) vary by task → so
does optimal allocation of inference compute.

Figure 8 demonstrates that the utility of scaling fac-
tors x differs significantly across downstream tasks.
For example, increasing the number of frames xT
yields greater benefits than scaling n for long video
understanding tasks (e.g., LongVideoBench). In
contrast, xT offers minimal gains compared to n
for fine-grained perception tasks (e.g., Perception-
Test). These variations in utility shape the compute-
optimal frontier, as shown in Figure 8. For exam-
ple, in PerceptionTest, the frontier prioritizes xV
(with higher marginal benefits) over xT (with lower
marginal benefits). This highlights that optimal in-
ference compute allocation strategies should adapt
to the task of interest, focusing on factors that yield
the highest marginal returns on performance.

5.2 Modeling & Fitting of Task Performance
Figure 2 illustrates that the training runs sparsely
cover the space of (x, n), making accurate inter-
polation or extrapolation of the compute-optimal
frontier challenging. To address this, we model task
performance using simple parametric functions and
fit them to the training results from the star and
isoFLOP sweeps. This modeling step is crucial for
solving the optimization problem in Equation 4.

We fit the parametric model by minimizing the
mean squared error loss between the predicted and

2350

Figure 3: Parametric Fitting of Task Performance. (Left) Box plot of bootstrap-resampled parameter estimates
(100 resamples) for the add-interact model (defined in Equation 3) highlights the challenge with fitting a model
with just ∼100 examples. (Center) Scatter plot comparing the predicted average task performance (“Metrics/Avg”)
with the actual performance for each run in the star and isoFLOP sweeps. add-interact achieves a strong fit to
data. (Right) Bar plot illustrating add-interact’s extrapolation performance on isoFLOP data after being trained
on star data across various video tasks. While it achieves good performance for Metrics/Avg (Avg), it struggles
to extrapolate effectively for tasks such as LongVideoBench (LVB) and Next-QA (NQA). Overall, the bagged
add-interact model provides a reasonable fit for predicting downstream task performance.

observed performance metrics in log space. Ap-
pendix D.3 provides a detailed ablation study of
the parameter estimation procedure, demonstrating
the importance of a carefully designed setup for
achieving accurate task performance modeling.

We assess the quality of the fit under two scenar-
ios: (1) in-distribution performance using 5-fold
cross-validation (CV) on the star and isoFLOP data,
and (2) extrapolation performance on the isoFLOP
data after estimating parameters on the star data.
We report: mean squared error or MSE, average
relative error E% = |f̂ − f |/f in percentage, and
the coefficient of determination R2.

Bagged add-interact is a good fit to predict
the performance of (some) downstream tasks.

Table 2 compares several parametric functions
(details in Appendix D.1) for modeling average
task performance. Functions that include an in-
teraction term between each scaling factor (e.g.,
xN , xT , or xV) and finetuning data size n (e.g.,
add-interact and add-interacts) outperforms
those without interaction terms (e.g., add) or with
incorrect interaction model (e.g., mult).

Left subfigure in Figure 3 shows a box plot of
bootstrap-resampled parameter estimates for the
add-interact model. Some parameters exhibit
high variability, reflecting the challenge of robustly
fitting the model with ∼100 examples. To alleviate
this issue, we use bootstrap aggregation (bagging)
to improve stability and accuracy. Ablation studies
in Appendix D.4 demonstrate the effectiveness of
using median aggregation over 100 base models.

Based on these results, we adopt add-interact
with bootstrap aggregation for all subsequent anal-
yses, as it’s more stable and provides the best fit.

The middle subfigure in Figure 3 demonstrates
that add-interact achieves an excellent fit to the
star & isoFLOP data, covering roughly 2 orders
of magnitude in inference compute. In contrast,
the right subfigure in Figure 3 reveals consider-
able variability in the model’s extrapolation per-
formance across tasks. While average task perfor-
mance is easier to model, add-interact struggles
with tasks like LongVideoBench (LVB) and Next-
QA (NQA). For these tasks, E% ≥ 5% corresponds
to an average deviation exceeding 3 points (on a
0-100 scale), representing substantial error.

5.3 Optimal Allocation of Inference Compute
In this section, we address the question posed in
Section 1. Using the add-interact model of task
performance (described in Section 3) that we fit in
Section 5.2, we compute the inference compute-
optimal frontier x∗(c;n) for any fixed c, n by solv-
ing Equation 4. This is done via a brute-force
search over x ∈ X to minimize the error f(x, n).

The frontier x∗(c) scales jointly at varying
rates and is not monotonic non-decreasing.

Figure 4 illustrates the predicted compute-optimal
frontier x∗(c;n) for key scaling factors x of video
VLMs, across different data sizes n. This frontier
reflects the joint scaling of (xN , xT , xV) at differ-
ent rates, consistent with empirical trends observed
from training sweeps in Figure 2. The domain of x

2351

Figure 4: Predicted Compute-Optimal Frontier for Video VLMs. The left three subplots show the predicted
inference compute-optimal frontier x∗(c;n) for key scaling factors x of video VLMs, across varying fine-tuning
data sizes n (shades of blue). The blue text indicates the increase in x∗ as inference compute grows from 2T to
100T FLOPs. Task performance f(x, n) is modeled using the bagged add-interact model, which identifies an
efficiency frontier that requires joint scaling of (xN , xT , xV) at varying rates and is non-monotonic due to
the discrete domain X of x. The rightmost subplot depicts the elasticity (defined in Equation 10) for each factor
k ∈ {N,T, V }, quantifying the sensitivity of x∗

k to changes in n. For instance, as n increases, the frontier x∗
T (c)

shifts upward (in darker blue), corresponding to a positive eT (n) (red curve) in the elasticity plot.

is a discrete set X with coarse increments (e.g., for
xN and xV), which shapes the compute-optimal
frontier in two key ways: (1) it appears staggered,
and (2) it is not monotonically non-decreasing,
even though the predicted performance is.

Figure 10 shows that the predicted optimal allo-
cation of inference compute varies notably across
tasks, consistent with trends observed in Figure 9.

Finetuning data size n influence the shape of
the predicted compute-optimal frontier x∗(c).

We quantify how changes in finetuning data size n
affect the compute-optimal scaling factor x∗k(c;n)
using elasticity, defined as:

ek(c, n) =
∂x∗k(c;n)

∂n
· n

x∗k(c;n)
. (5)

Commonly used in economics, elasticity expresses
sensitivity in percentage terms, enabling intuitive
interpretation and comparison across variables of
different scales. For instance, eT = 0.1 indicates
that a 1% increase in n results in a 0.1% increase
in x∗T . We use forward differences to compute elas-
ticity and aggregate across compute budgets and
data sizes to capture overall trends. Appendix E
provides detailed explanations of its definition, nu-
merical approximations, and ablation studies.

Figure 4 illustrates the effect of n on the pre-
dicted compute-optimal frontier x∗(c;n). As n in-
creases, x∗N shifts downward (negative elasticity),
while x∗T and x∗V shifts upward (positive elastic-
ity). This trend is consistent across video tasks, as
shown in Figure 5, though with task-specific vari-

ations. The average trend suggests decreasing xN
and increasing xT , xV as data size n grows.

Figure 5: Elasticity Across Tasks. Bar plot showing
the elasticity (defined in Equation 11) for scaling factors
k ∈ {N,T, V } across video tasks. This measures the
sensitivity of optimal scaling factors x∗

k to changes in
data size n. While there is significant task-specific
variation, the general trend suggests decreasing xN

and increasing xT , xV as data size n grows.

6 Discussions

Joint Scaling in Video VLMs Efficient use of
compute through joint scaling of factors is a recur-
ring theme in scaling law studies. EfficientNet (Tan
and Le, 2019) demonstrated that scaling a single
factor (e.g., resolution) while keeping others (e.g.,
width and depth) fixed is suboptimal, as bottle-
necked factors limit performance gains. Instead, it
introduced compound scaling, which jointly scales
multiple architectural factors to achieve better re-
sults. This principle has been applied broadly, in-
cluding to ViTs (Alabdulmohsin et al., 2023) and

2352

LM pretraining (Hoffmann et al., 2022). We empir-
ically confirm that this principle extends to video
VLMs. Specifically, jointly scaling LM size, frame
count xT , and visual tokens per frame xV improves
performance, as shown in Figure 2. Table 2 further
supports this, where the best-performing model,
add-interact, identifies a compute-optimal fron-
tier that scales all three factors together. These
findings provide stronger evidence than concurrent
studies, e.g., Du et al. (2024), which assumes a
parametric model without directly observing trends
from training sweeps.

Practical Implications of Joint Scaling Despite
the benefits of joint scaling, many existing works,
e.g., MM1 (McKinzie et al., 2024), Idefics3 (Lau-
rençon et al., 2024), and LLaVA-OneVision (Li
et al., 2024a), rely on ablation studies that vary
one factor at a time to identify good training se-
tups. While this reduces the number of training
runs, our findings suggest that, after establishing
a reasonable baseline, compute resources should
instead be allocated to exploring how key factors
can be scaled jointly for better performance. Fur-
thermore, many video VLMs, e.g., LLaVA-Video
(Zhang et al., 2024b) and Qwen-VL (Wang et al.,
2024), fix the size of visual representation of videos
while varying LM size. Our results show this ap-
proach is suboptimal for inference compute, high-
lighting significant opportunities for improvement.

Varied Scaling Rates Our experiments reveal
that frame count xT and tokens per frame xV have
distinct effects on task performance. As shown
in Figure 4, scaling xT yields larger performance
gains than scaling xV , suggesting that improving
the vision model’s efficiency is more impactful
than reducing the LM’s cost of processing tokens
for each frame. By enabling more frames to be
processed, xT scaling provides greater overall im-
provements. This observation also has implications
for comparing models. For instance, AuroraCap
(Chai et al., 2024) compares its model to baselines
with an equal number of visual tokens xTxV per
video but varies xV while fixing xT for its method
and does the reverse for baselines. This inconsis-
tency inflates the perceived performance gains of
its approach.

Effect of Finetuning Data Size Our findings pro-
vide evidence on how finetuning data size affects
the compute-optimal frontier. Figure 4 and 5 sug-
gest that as more data becomes available, it is op-

timal to allocate less compute to LM size xN and
more to video visual representations xT and xV .
We hypothesize this is because detailed visual rep-
resentations are more complex to learn and require
more data to achieve comparable performance.
However, as data size grows, the richer information
in each visual example contributes more to overall
performance, outweighing the added learning com-
plexity. This trend mirrors findings in structured
vision tasks such as table recognition (Peng et al.,
2023, 2024). Further research is needed to validate
this hypothesis.

7 Conclusions

In this work, we tackle the problem of optimally
allocating inference compute across scaling factors
that impact both compute cost and downstream
task performance in video VLMs. Our approach
involves: (1) conducting training sweeps to gather
performance data, (2) fitting parametric models
to predict task performance, and (3) solving con-
strained optimization problems to identify optimal
trade-offs. Our work provides deeper insights into
task performance trends for video VLMs, high-
lights effective strategies for investigating and un-
derstanding scaling behaviors, and offers practical
guidance for deploying these models at scale.

2353

Limitations

Inference Compute Estimation To accurately
measure inference compute for video VLMs, we
account for the compute cost of the vision model.
However, theoretical FLOPs alone are insufficient
for real-world deployments due to several over-
looked factors. (1) Hardware utilization during
inference often falls short of theoretical peaks, vary-
ing across implementations and hardwares. (2) In-
ference compute is split into two stages: prefilling,
which is typically compute-bound, and decoding,
which is often constrained by memory bandwidth.
Our current analysis only considers the compute
cost of the prefilling stage. (3) Modern efficient
inference techniques, e.g., quantization (Dettmers
et al., 2022) and speculative decoding (Leviathan
et al., 2023), add further complexity to accurately
estimating inference compute.

Components Not Accounted For While we aim
to include key scaling factors affecting both infer-
ence compute and task performance, some com-
ponents were omitted. For instance, we did not
explore scaling the size of the vision model, as
most experiments were conducted using SoViT,
which lacks a series of models with varying sizes.
Prior work has shown that jointly scaling language
and vision models is important (Chen et al., 2024).
Additionally, we hold video instruction dataset,
the language model family (e.g., Llama-3.2), and
downsampling methods (e.g., bilinear interpola-
tion) fixed. While exploring the impact of these
factors could provide valuable insights, we prior-
itized a simple, broadly applicable setup to make
use the limited computational resources.

Parametric Model Validation The accuracy of
our parametric models of performance is affected
by experimental design choices, which may intro-
duce implicit biases despite careful attention to im-
plementations, training sweep design, and model
fitting. For instance, we selected the Llama-3.2
model family early in the project, which lacks pre-
trained LM sizes between 8B and 70B. As a result,
our experiments include only three LM sizes (1B,
3B, 8B), potentially limiting our ability to fully
capture the relationship between LM size and task
performance. While we validated the models’ ex-
trapolation performance using the isoFLOP sweep
(which includes runs with lower inference compute
than the star sweep), it remains uncertain how well
the predicted compute-optimal frontier generalizes

to significantly higher inference compute, such as
10x the current FLOPs. Addressing these issues
is challenging due to the limited computational re-
sources allocated to this project.

References
Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander

Kolesnikov, and Lucas Beyer. 2023. Getting ViT
in Shape: Scaling Laws for Compute-Optimal Model
Design. In Thirty-Seventh Conference on Neural
Information Processing Systems.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon
Lee, and Utkarsh Sharma. 2024. Explaining neural
scaling laws. Proceedings of the National Academy
of Sciences.

Max Bain, Arsha Nagrani, Gul Varol, and Andrew Zis-
serman. 2021. Frozen in Time: A Joint Video and
Image Encoder for End-to-End Retrieval. In 2021
IEEE/CVF International Conference on Computer
Vision (ICCV).

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V. Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large Language Monkeys: Scaling In-
ference Compute with Repeated Sampling. Preprint,
arXiv:2407.21787.

Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng,
Vashisht Madhavan, Omer Bar-Tal, Jenq-Neng
Hwang, Saining Xie, and Christopher D. Manning.
2024. AuroraCap: Efficient, Performant Video De-
tailed Captioning and a New Benchmark. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil
Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang,
Yi Tay, Siamak Shakeri, Mostafa Dehghani, Daniel
Salz, Mario Lucic, Michael Tschannen, Arsha
Nagrani, Hexiang Hu, Mandar Joshi, Bo Pang,
Ceslee Montgomery, Paulina Pietrzyk, Marvin Ritter,
Aj Piergiovanni, Matthias Minderer, Filip Pavetic,
Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lu-
cas Beyer, Julien Amelot, Kenton Lee, Andreas Peter
Steiner, Yang Li, Daniel Keysers, Anurag Arnab,
Yuanzhong Xu, Keran Rong, Alexander Kolesnikov,
Mojtaba Seyedhosseini, Anelia Angelova, Xiaohua
Zhai, Neil Houlsby, and Radu Soricut. 2024. On Scal-
ing Up a Multilingual Vision and Language Model.
In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin,
Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing.
2024. VideoLLaMA 2: Advancing Spatial-Temporal
Modeling and Audio Understanding in Video-LLMs.
Preprint, arXiv:2406.07476.

2354

https://doi.org/10.1073/pnas.2311878121
https://doi.org/10.1073/pnas.2311878121
https://doi.org/10.1109/ICCV48922.2021.00175
https://doi.org/10.1109/ICCV48922.2021.00175
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.1109/CVPR52733.2024.01368
https://doi.org/10.1109/CVPR52733.2024.01368
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2406.07476

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit Matrix Multi-
plication for Transformers at Scale. In Advances in
Neural Information Processing Systems.

Yifan Du, Yuqi Huo, Kun Zhou, Zijia Zhao, Haoyu Lu,
Han Huang, Xin Zhao, Bingning Wang, Weipeng
Chen, and Ji-Rong Wen. 2024. Exploring the Design
Space of Visual Context Representation in Video
MLLMs. In The Thirteenth International Conference
on Learning Representations.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li,
Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen,
Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu,
Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing
Sun. 2024. Video-MME: The First-Ever Comprehen-
sive Evaluation Benchmark of Multi-modal LLMs in
Video Analysis. Preprint, arXiv:2405.21075.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal
Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li,
Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor
Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G.
Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran
Song, Thomas Kollar, Yair Carmon, Achal Dave,
Reinhard Heckel, Niklas Muennighoff, and Ludwig
Schmidt. 2024. Language models scale reliably with
over-training and on downstream tasks. Preprint,
arXiv:2403.08540.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent
Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter
Yianilos, Moritz Mueller-Freitag, Florian Hoppe,
Christian Thurau, Ingo Bax, and Roland Memisevic.
2017. The “Something Something” Video Database
for Learning and Evaluating Visual Common Sense.
In 2017 IEEE International Conference on Computer
Vision (ICCV).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
and et al. 2024. The Llama 3 Herd of Models.
Preprint, arXiv:2407.21783.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya
Ramesh, Nick Ryder, Daniel M. Ziegler, John Schul-
man, Dario Amodei, and Sam McCandlish. 2020.
Scaling Laws for Autoregressive Generative Model-
ing. Preprint, arXiv:2010.14701.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling Laws for Transfer.
Preprint, arXiv:2102.01293.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan

Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Oriol Vinyals, Jack W. Rae,
and Laurent Sifre. 2022. Training compute-optimal
large language models. In Proceedings of the 36th
International Conference on Neural Information Pro-
cessing Systems.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. Preprint,
arXiv:2001.08361.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa
Suleyman, and Andrew Zisserman. 2017. The
Kinetics Human Action Video Dataset. Preprint,
arXiv:1705.06950.

Li Kunchang, He Yinan, Wang Yi, Li Yizhuo, Wang
Wenhai, Luo Ping, Wang Yali, Wang Limin, and Qiao
Yu. 2025. VideoChat: Chat-Centric Video Under-
standing. SCIENCE CHINA Information Sciences.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and
Victor Sanh. 2024. What matters when building
vision-language models? Advances in Neural In-
formation Processing Systems.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast Inference from Transformers via Specu-
lative Decoding. In Proceedings of the 40th Interna-
tional Conference on Machine Learning.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yan-
wei Li, Ziwei Liu, and Chunyuan Li. 2024a. LLaVA-
OneVision: Easy Visual Task Transfer. Transactions
on Machine Learning Research.

Kevin Li, Sachin Goyal, João D. Semedo, and J. Zico
Kolter. 2024b. Inference Optimal VLMs Need Fewer
Visual Tokens and More Parameters. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
Chen, Ping Luo, Limin Wang, and Yu Qiao. 2024c.
MVBench: A Comprehensive Multi-modal Video
Understanding Benchmark. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual Instruction Tuning. Advances in
Neural Information Processing Systems.

Muhammad Maaz, Hanoona Rasheed, Salman Khan,
and Fahad Khan. 2024a. Video-ChatGPT: Towards
Detailed Video Understanding via Large Vision and
Language Models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

2355

https://doi.org/10.48550/arXiv.2405.21075
https://doi.org/10.48550/arXiv.2405.21075
https://doi.org/10.48550/arXiv.2405.21075
https://doi.org/10.48550/arXiv.2403.08540
https://doi.org/10.48550/arXiv.2403.08540
https://doi.org/10.1109/ICCV.2017.622
https://doi.org/10.1109/ICCV.2017.622
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2010.14701
https://doi.org/10.48550/arXiv.2010.14701
https://doi.org/10.48550/arXiv.2102.01293
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.1705.06950
https://doi.org/10.48550/arXiv.1705.06950
https://doi.org/10.1007/s11432-024-4321-9
https://doi.org/10.1007/s11432-024-4321-9
https://doi.org/10.18653/v1/2024.acl-long.679
https://doi.org/10.18653/v1/2024.acl-long.679
https://doi.org/10.18653/v1/2024.acl-long.679

Muhammad Maaz, Hanoona Rasheed, Salman Khan,
and Fahad Khan. 2024b. VideoGPT+: Integrating
Image and Video Encoders for Enhanced Video Un-
derstanding. Preprint, arXiv:2406.09418.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier,
Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti
Shah, Xianzhi Du, Futang Peng, Anton Belyi, Hao-
tian Zhang, Karanjeet Singh, Doug Kang, Hongyu
Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Ao-
nan Zhang, Jianyu Wang, Chong Wang, Nan Du, Tao
Lei, Sam Wiseman, Mark Lee, Zirui Wang, Ruoming
Pang, Peter Grasch, Alexander Toshev, and Yinfei
Yang. 2024. MM1: Methods, Analysis and Insights
from Multimodal LLM Pre-training. In European
Conference on Computer Vision.

David Owen. 2024. How predictable is language
model benchmark performance? Preprint,
arXiv:2401.04757.

Viorica Patraucean, Lucas Smaira, Ankush Gupta,
Adria Recasens Continente, Larisa Markeeva, Dy-
lan Sunil Banarse, Skanda Koppula, Joseph Heyward,
Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana
Matejovicova, Yury Sulsky, Antoine Miech, Alexan-
dre Fréchette, Hanna Klimczak, Raphael Koster, Jun-
lin Zhang, Stephanie Winkler, Yusuf Aytar, Simon
Osindero, Dima Damen, Andrew Zisserman, and
Joao Carreira. 2023. Perception Test: A Diagnos-
tic Benchmark for Multimodal Video Models. In
Thirty-Seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

ShengYun Peng, Seongmin Lee, Xiaojing Wang, Rajara-
jeswari Balasubramaniyan, and Duen Horng Chau.
2023. High-performance transformers for table struc-
ture recognition need early convolutions. In NeurIPS
2023 Second Table Representation Learning Work-
shop.

ShengYun Peng, Seongmin Lee, Xiaojing Wang, Rajara-
jeswari Balasubramaniyan, and Duen Horng Chau.
2024. Unitable: Towards a unified framework for
table structure recognition via self-supervised pre-
training. Preprint, arXiv:2403.04822.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. In Proceedings of the 38th Inter-
national Conference on Machine Learning.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and
Jonathan Frankle. 2024. Beyond Chinchilla-optimal:
Accounting for inference in language model scaling
laws. In Proceedings of the 41st International Con-
ference on Machine Learning.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2024. Scaling LLM Test-Time Compute
Optimally Can be More Effective than Scaling Param-
eters for Reasoning. In The Thirteenth International
Conference on Learning Representations.

Mingxing Tan and Quoc Le. 2019. EfficientNet: Re-
thinking Model Scaling for Convolutional Neural
Networks. In Proceedings of the 36th International
Conference on Machine Learning.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-
VL: Enhancing Vision-Language Model’s Percep-
tion of the World at Any Resolution. Preprint,
arXiv:2409.12191.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2022. Finetuned Language
Models are Zero-Shot Learners. In International
Conference on Learning Representations.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li.
2024a. LongVideoBench: A Benchmark for Long-
context Interleaved Video-Language Understanding.
In 38th Conference on Neural Information Process-
ing Systems (NeurIPS 2024) Track on Datasets and
Benchmarks.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024b. Inference Scaling Laws:
An Empirical Analysis of Compute-Optimal Infer-
ence for LLM Problem-Solving. In The Thirteenth
International Conference on Learning Representa-
tions.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng
Chua. 2021. NExT-QA: Next Phase of Question-
Answering to Explaining Temporal Actions. In 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Kexin Yi*, Chuang Gan*, Yunzhu Li, Pushmeet Kohli,
Jiajun Wu, Antonio Torralba, and Joshua B. Tenen-
baum. 2019. CLEVRER: Collision Events for Video
Representation and Reasoning. In International Con-
ference on Learning Representations.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. 2019. ActivityNet-
QA: A Dataset for Understanding Complex Web
Videos via Question Answering. Proceedings of the
AAAI Conference on Artificial Intelligence.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf
Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuan-
hui Wang, and Michael Bendersky. 2024. Inference
Scaling for Long-Context Retrieval Augmented Gen-
eration. In The Thirteenth International Conference
on Learning Representations.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan
Firat. 2023. When Scaling Meets LLM Finetuning:
The Effect of Data, Model and Finetuning Method.
In The Twelfth International Conference on Learning
Representations.

2356

https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://doi.org/10.1007/978-3-031-73397-0_18
https://doi.org/10.1007/978-3-031-73397-0_18
https://doi.org/10.48550/arXiv.2401.04757
https://doi.org/10.48550/arXiv.2401.04757
https://arxiv.org/abs/2403.04822
https://arxiv.org/abs/2403.04822
https://arxiv.org/abs/2403.04822
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.48550/arXiv.2409.12191
https://doi.org/10.1109/CVPR46437.2021.00965
https://doi.org/10.1109/CVPR46437.2021.00965
https://doi.org/10.1609/aaai.v33i01.33019127
https://doi.org/10.1609/aaai.v33i01.33019127
https://doi.org/10.1609/aaai.v33i01.33019127

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu,
Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuan-
han Zhang, Jingkang Yang, Chunyuan Li, and Zi-
wei Liu. 2024a. LMMs-Eval: Reality Check on the
Evaluation of Large Multimodal Models. Preprint,
arXiv:2407.12772.

Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao
Feng, Keyang Xu, Yuanhan Zhang, Di Fu, Chun-
yuan Li, Alexander G Hauptmann, Yonatan Bisk, and
Yiming Yang. 2025. Direct Preference Optimization
of Video Large Multimodal Models from Language
Model Reward. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers).

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun
Ma, Ziwei Liu, and Chunyuan Li. 2024b. Video
Instruction Tuning With Synthetic Data. Preprint,
arXiv:2410.02713.

2357

https://doi.org/10.48550/arXiv.2407.12772
https://doi.org/10.48550/arXiv.2407.12772
https://arxiv.org/abs/2410.02713
https://arxiv.org/abs/2410.02713

A Frequently Asked Questions (FAQs)

We address common questions with additional detail that may be missing from the main text’s flow.

A.1 Why finetuning compute cost is negligible compared to inference compute under heavy
demand?

To compare the costs of finetuning a video vision-language model (VLM) and running inference, consider
the following. The cost of finetuning scales as 6xNn, where xN is the model size (number of parameters)
and n is the number of training tokens. In contrast, the cost of inference scales as 2xNninf, where ninf
is the total number of tokens processed during inference. The ratio of inference cost to training cost is
therefore given by:

Cost ratio =
2xNninf

6xNn
=

ninf

3n
.

Next, assume that both training and inference costs are dominated by the tokens used to represent a video
data. If each video contributes roughly the same number of tokens during training and inference, n and
ninf can be treated as the number of videos instead of the number of tokens.

As an example, suppose finetuning is performed on n = 1 million videos. During deployment, the
model processes ninf = 34 million videos per day (daily upload to TikTok in 2024). Over the course of
a month (30 days), the total number of videos processed for inference becomes ninf = 34× 30 = 1020
million videos. Substituting these values into the cost ratio gives:

Cost ratio =
ninf

3n
=

1020

3× 1
= 340.

Thus, in this scenario, the inference cost is approximately 340 times higher than the finetuning cost over
a one-month deployment period. This illustrates the significant computational demands of large-scale
inference compared to finetuning, especially for applications involving high volumes of video data.

Although one might consider increasing the finetuning data size n to make its compute cost comparable
to inference, this is rarely practical nor necessary. Collecting high-quality annotations for large-scale video
data is costly and labor-intensive. Moreover, as shown in Figure 10, scaling data alone yields diminishing
returns, e.g., doubling the number of training videos leads to only marginal performance gains. Therefore,
it is typically more effective to improve other factors, such as parameter count or number of tokens to
represent a video, rather than dramatically increasing n. This supports our assumption that the finetuning
compute cost is negligible compared to inference compute in real-world deployments.

2358

A.2 Why “inference-compute optimal” in the paper title if we perform many finetuning runs?
Our focus is on optimizing inference compute costs—the dominant cost in real-world video VLM
deployments—not finetuning. As shown in Equation 4, our optimization constrains inference compute
while treating finetuning costs as negligible. Section 2 further contrasts our work with training or finetuning
compute-optimal scaling studies.

This emphasis reflects practical deployment patterns: a VLM is finetuned once or infrequently, but
serves inference requests continuously at scale. As detailed in Section A.1, monthly inference costs can
far exceed the one-time finetuning cost—often by orders of magnitude.

Why, then, do we run multiple finetuning experiments? Because inference-time scaling factors (e.g.,
number of frames, tokens per frame) must match those used during finetuning for optimal performance.
A model finetuned on 2-frame inputs performs poorly if asked to handle 64 frames at inference—it was
simply never trained to process that much context. Our study jointly identifies optimal finetuning and
serving configurations under a fixed inference compute budget. We believe that concurrent inference
time scaling studies could also benefit from taking into account the post-training stage, e.g., if we scale
inference compute by increasing the length of chain-of-thought reasoning traces, it’s beneficial to adapt
the pretrained model to generate longer answers in the first place.

2359

A.3 Does vision model’s compute cost matter for video VLM?

Figure 6: % FLOPs Increase From Adding Vision Model Compute. Contours illustrates the percentage increase
in inference FLOPs, when accounting for the compute cost of the vision model, as a function of language model
size xN and the number of tokens per frame xV . The vision encoder’s compute cost significantly impacts the
inference FLOPs of video VLMs. For example, for a 7B video VLM with xV ≈ 50, the vision model accounts for
approximately half of the inference compute cost. This contribution becomes more significant for smaller xN , xV .

Previous research often considers only the compute cost of the language model, neglecting the vision
encoder’s compute cost (Li et al., 2024b; Du et al., 2024). Here, we emphasize the importance of
accounting for the vision model’s compute cost in video VLMs.

Using the standard approximation of 2xN FLOPs per token for a transformer model with xN param-
eters (Kaplan et al., 2020), the per-example inference compute costs for both the vision and language
components of the video VLM are:

cViT = 2xMxTxW , cLM = 2xNxTxV ,

where xM is the number of vision model parameters, xT the number of video frames, xW the visual
features output by the vision model, xN the number of language model parameters, and xV the visual
tokens per frame after projection and resampling.

Including the vision model’s compute cost, the percentage increase in total FLOPs is:

% Increase in FLOPs =
cViT + cLM

cLM
= 1 +

xMxW
xNxV

.

For a 430M-parameter SoViT-400m/14 (Alabdulmohsin et al., 2023) outputting xW = 768 visual features,
this becomes:

% Increase in FLOPs = 1 +
0.43 · 109 · 768

xNxV
.

The increase in compute is independent of xT , as both vision and language model costs scale linearly
with the number of frames. Instead, it depends on xN and xV , with smaller values amplifying the vision
model’s relative contribution. Omitting the vision model’s compute in such cases underestimates the total
inference cost for video vision-language models.

Figure 6 illustrates the percentage increase in inference FLOPs as a function of language model size
xN and the number of tokens per frame xV . The contours highlight the substantial impact of the vision
encoder’s compute cost on the overall inference FLOPs of video VLMs. Notably, for a 7B video VLM
with xV ≈ 50, the vision model contributes to approximately half of the total inference compute cost.
This influence is even more pronounced in smaller video VLMs, i.e., smaller xN , where the vision model’s
compute cost becomes a larger fraction of the total.

2360

B Implementation Details

B.1 Video Instruction Tuning Dataset

Citation Data Subset Size Fraction (%)

(Zhang et al., 2025) LLaVA-Hound 255,000 11.6
(Zhang et al., 2024b) LLaVA-Video-178K 1,335,500 60.9
(Yu et al., 2019) ActivityNet-QA 23,530 1.1
(Xiao et al., 2021) Next-QA 34,114 1.6
(Patraucean et al., 2023) PerceptionTest 2,403 0.1
(Maaz et al., 2024a) VideoInstruct100K 100,010 4.6
(Maaz et al., 2024b) VCG+112K 112,716 5.1
(Maaz et al., 2024a) VideoChatGPT Human Anno. 25,803 1.2
(Kunchang et al., 2025) VideoChat 40,807 1.9
(Kay et al., 2017) Kinetics-710 39,949 1.8
(Goyal et al., 2017) Something-Something-v2 40,000 1.8
(Yi* et al., 2019) CLEVRER 82,620 3.8
(Bain et al., 2021) WebVid 99,922 4.6

Total 2,192,374 100.0

Table 3: Video Instruction Tuning Dataset Composition

We compile a comprehensive video instruction-tuning dataset designed to explore the scaling behavior
of finetuning data size and to achieve a performance level that remains relevant to both researchers and
practitioners. This dataset, consisting of approximately 2.2 million examples, integrates data mixture used
from two prior works: VideoGPT+ (Maaz et al., 2024b) and LLaVA-Video (Zhang et al., 2024b).

The dataset is sourced from a diverse array of video sources, e.g., LLaVA-Video-178K, and includes
various types of instructions. For example, VideoInstruct100K, VCG+112K, and VideoChat datasets
contain conversational data, while other subsets primarily focus on question-answering (QA). A smaller
portion is dedicated to captioning tasks. Table 3 provides additional details.

To assess the dataset’s effectiveness, we conduct a coarse ablation study by removing subsets such
as LLaVA-Hound, the VideoChatGPT suite, and the QA datasets. Although some tasks show improved
performance in these ablated setups, the complete dataset demonstrates the best average performance
across downstream tasks, underscoring its overall efficacy.

2361

B.2 Model & Training

Hyperparameter Pretraining Finetuning

Trainable components Projector Vision model, projector, and language model
Batch size 512 256
Learning rate 1e-3 (projector) 1e-5 (LM & projector), 2e-6 (vision tower)
Learning rate schedule Cosine (3% warmup) Cosine (3% warmup)
Weight decay 0 0
Optimizer AdamW AdamW
Epochs 1 1

Table 4: Training hyperparameters for pretraining (the projector) and video instruction tuning.

In this paper, we explore LLaVA-like architectures (Liu et al., 2023), which comprise three key
components: a vision model, a projector, and a language model. The vision model, SoViT-400m/14
(Alabdulmohsin et al., 2023), is chosen for its high performance with minimal inference FLOPs and
encodes each frame independently. The projector is a two-layer MLP that transforms visual features into
tokens. For the language model, we use the Llama-3.2 series, available in sizes of 1B, 2.8B, and 7.5B
parameters, to process these visual token representations for video-related tasks.

The finetuning process consists of two stages: pretraining the projector and video instruction tuning.
Initially, we pretrain the MLP projector using the 558k LCS dataset (Liu et al., 2023), and this pretrained
weight is employed in all subsequent finetuning experiments. We then finetune the entire model on video
instruction tuning datasets.

To isolate the effects of video instruction tuning, we deliberately avoid using checkpoints that have
been further fine-tuned on datasets specifically designed to enhance knowledge understanding or improve
instruction following for images or multi-image inputs. In contrast, models like LLaVA-OneVision (Li
et al., 2024a) and LLaVA-Video (Zhang et al., 2024b) incorporate such additional fine-tuning stages to
boost performance. While this allows us to focus solely on evaluating the impact of video instruction
tuning, it likely limit our model’s performance compared to these approaches.

We adopt the codebase and default hyperparameters from Li et al. (2024a). Table 4 details the specific
hyperparameters used during both pretraining and video instruction tuning.

2362

B.3 Evaluation

Evaluation Abbr. QA Type Long Vid. LLM Judge LLMs-Eval Task Name Metrics

VideoDetailedDescription VDC caption gpt-4o-mini video_dc499 score
ActivityNet-QA AQA open-ended gpt-4o-mini activitynetqa accuracy
VCGBench VCG open-ended gpt-4o-mini videochatgpt score
LongVideoBench LVB MC ✓ longvideobench_val_v accuracy
PerceptionTest PT MC perceptiontest_val_mc accuracy
MVBench MV MC mvbench accuracy
Video-MME VMME MC ✓ videomme accuracy
Next-QA NQA MC nextqa_mc_test accuracy

Table 5: Video Evaluation Benchmarks. This table summarizes the evaluation benchmarks used to assess the
capabilities of video VLMs. The benchmarks cover various question-answering (QA) types, including captioning,
open-ended questions, and multiple-choice (MC) questions. Some benchmarks are designed for specific capabilities,
e.g., long video understanding (under “Long Vid.”), while others evaluate a whole suite of capabilities, e.g., Next-QA
and Video-MME. The table also specifies whether a language model judge (e.g., gpt-4o-mini) is involved, the
corresponding task name in LMMs-Eval (Zhang et al., 2024a), and the metrics used for assessment.

In this paper, we evaluate the video VLM on a diverse set of 8 downstream video tasks to ensure
comprehensive assessment across various tasks and domains. For reproducibility, we use LMMs-Eval
(Zhang et al., 2024a). The evaluation includes: (1) VideoDetailedCaption (VDC Zhang et al., 2024a)
for detailed video descriptions, (2) ActivityNet-QA (AQA Yu et al., 2019) for action-related QA, (3)
VCGBench (VCG Maaz et al., 2024a) for assessing video chat capabilities, (4) LongVideoBench (LVB
Wu et al., 2024a) for long video understanding, (5) PerceptionTest (PT Patraucean et al., 2023) for
fine-grained perception evaluation, and (6) MVBench (MV Li et al., 2024c), Video-MME (VMME Fu
et al., 2024), and Next-QA (NQA Xiao et al., 2021) for broad evaluation across diverse video tasks and
domains. This combination of benchmarks enables a thorough and reproducible analysis of the model’s
performance.

Table 5 offers a detailed summary of the video evaluation tasks employed to evaluate the capabilities of
video VLMs. These tasks are categorized by the type of question-answering (QA) they address, including
captioning, open-ended, and multiple-choice (MC) questions. The table highlights key features of each
task, such as their emphasis on long video understanding (under “Long Vid.”). It also specifies whether a
language model judge, like gpt-4o-mini, is involved in the evaluation process. Prior work rely on gpt-3.5-
turbo-0613 as the LLM judge that has since been deprecated, we transition to use gpt-4o-mini-2024-07-18
instead. Each task is linked to a specific task name within the LMMs-Eval framework (Zhang et al., 2024a),
and the metrics used for assessment, such as scores generated by the LLM judge or multiple-choice
accuracy, are also provided. To ensure consistency, we convert both accuracy and the LLM judge’s scores
to (0, 100), allowing for a balanced average across evaluation metrics. We use “Metrics/Avg” to denote
the average task performance.

2363

C Training Sweeps

Sweep n xN xT xV Comment
(in million) (in billion)

Star {0.25, 0.5, 1} {1, 2.8, 7.5} 32 196 Vary xN

{0.25, 0.5, 1} 7.5 {4, 8, 12, 16, 32} 196 Vary xT

{0.25, 0.5, 1} 7.5 32 {4, 16, 25, 36, 49, 100, 196} Vary xV

IsoFLOP 2 1 {(2, 196), (3, 9), (3, 16)} c(x) ≈ 2 TFLOPs
2.8 {(2, 64), (3, 4)}
7.5 {(2, 25), (3, 1)}

1 {(4, 289), (5, 169), (6, 81), (7, 25)} c(x) ≈ 5 TFLOPs
2.8 {(3, 169), (4, 100), (5, 64), (6, 25), (7, 9)}
7.5 {(2, 121), (3, 64), (6, 9), (7, 4)}

1 {(8, 625), (11, 361), (16, 144), (20, 49), (22, 16)} c(x) ≈ 15 TFLOPs
2.8 {(6, 324), (11, 121), (16, 49), (19, 25), (20, 16)}
7.5 {(7, 100), (8, 81), (15, 25), (19, 9), (21, 4)}

1 {(16, 625), (26, 256), (32, 144), (37, 81), (40, 49)} c(x) ≈ 30 TFLOPs
2.8 {(9, 484), (17, 196), (22, 121), (27, 81), (35, 36)}
7.5 {(16, 81), (25, 36), (29, 25), (38, 9)}

Table 6: Star and IsoFLOP Sweep Setup. Scaling factors x and finetuning data sizes n used in the experiments.

Figure 7: Empirical Data from Star and IsoFLOP Sweeps. We show the average task performance across different
runs of the star and isoFLOP sweeps. The data gathered from sweeps is used for visualization and parametric fitting
of scaling curves.

In this paper, we conduct two types of sweeps on scaling factors x and finetuning data size n: (1) the star
sweep, proposed in SoViT (Alabdulmohsin et al., 2023), and (2) the isoFLOP sweep, used by Chinchilla
(Hoffmann et al., 2022). We finetune a video VLM using scaling factor x on datasets of size n, and
evaluate the model to obtain data points ((x, n), f(x, n)). These data points are used for visualization and
parametric fitting. Table 6 lists the scaling factors x and finetuning data sizes n used in our experiments.
Figure 7 illustrates the average task performance for each run of the star and isoFLOP sweeps.

Star Sweep We start with an inference compute-intensive set of scaling factors, the “star center”
x⋆ = (7.5B, 32, 196). We vary one factor at a time while keeping the others fixed, and finetune the video
VLM on three data sizes: {0.25M, 0.5M, 1M}. This approach allows for more accurate estimation of the
scaling exponent for each factor as the finetuning data size increases. Additionally, it enables exploration
on how individual scaling factor interact with finetuning data size.

2364

The star sweep approach avoids a brute-force grid search over (xN , xT , xV , n) to estimate scaling
parameters across all dimensions. In Alabdulmohsin et al. (2023), the star center x⋆ is set larger than
the scaling factors used in the sweep to prevent bottlenecks. For example, with a star center having MLP
dim of 6144, the sweep explores values for MLP dim in a grid (1088, 1360, 1728, 2160, 2592, 3072), all
much smaller than 6144. In contrast, our sweep matches the largest scaling factor to the star center, with
the next largest about half its value, followed by more densely sampled smaller values. For instance,
with x⋆T = 32, we use the grid (4, 8, 12, 16, 32) for the sweep. This provides more data points where
scaling factors are smaller than the star center, and fitting a parametric function with equal weighting will
prioritize these smaller values. Due to computational constraints, we set a smaller star center than the
ideal, e.g., (70B, 64, 512), resulting in a minor deviation from the prescribed strategy, which we consider
reasonable given the trade-offs.

IsoFLOP Sweep We vary scaling factors x = (xN , xT , xV) to maintain a constant inference compute
cost c(x) (defined in Equation 1) across four target FLOPs: 2, 5, 15, 30. Each model is finetuned on
approximately 2 million examples. For each target FLOP, we exhaustively search for scaling factor
combinations within ϵ = 0.03 of the target and select a well-spaced subset to ensure sufficient coverage
while minimizing the number of runs. Additional points are added post-sweep to ensure the empirical
compute-optimal frontier for average downstream task performance lies within each isoFLOP curve, as
shown in Figure 7. The isoFLOP sweep addresses key questions, such as identifying the optimal set of
scaling factors for a given inference FLOP budget and assessing the impact of jointly scaling multiple
factors. It also serves as a held-out validation set for model evaluation and selection.

2365

D Modeling and Fitting of Task Performance

D.1 Parametric Functions

Form Expressions for f(x, n) x∗(c) ind. n

Multiple Factors (K > 1) Single Factor (K = 1)

mult α(
∏

k x
−ak
k)n−d + ε αx−an−d + ε ✓

add
∑

k αkx
−ak
k + ξn−d + ε αx−a + ξn−d + ε ✓

add-interacts
∑

k αkx
−ak
k +

∑
k βkx

bk
k n−d + ε αx−a + βxbn−d + ε ×

add-interact
∑

k αkx
−ak
k +

∑
k βkx

bk
k n−d + ξn−d + ε αx−a + βxbn−d + ξn−d + ε ×

Table 7: Parametric Models of Task Performance. This table summarizes the parametric functional forms used
to model task performance, distinguishing between cases where all scaling factors x are modeled jointly with the
finetuning data size n (K > 1) and cases where each scaling factor is modeled individually with n (K = 1). The
add-interact form combines additive power laws with interaction terms between xk and n. add-interacts
simplifies this by removing the standalone term dependent on n. add represents a standard additive power law,
while mult corresponds to a multiplicative power law. Coefficients (e.g., α, β, ξ, ε) and scaling exponents (e.g.,
a, b, d) are denoted by Greek and English letters, respectively. The final column indicates whether varying n affects
the optimal scaling factors that is the solution to the optimization problem defined in Equation 4.

We investigate several parametric functions to model task error in video VLMs as a function of scaling
factors x and finetuning data size n. These functions capture the diminishing returns observed in scaling
laws, where increasing x or n yields progressively smaller performance gains. For example, adding more
frames or increasing the finetuning data size improves performance initially, but the benefit diminishes as
the model saturates in available information or data. This behavior parallels the concept of diminishing
marginal utility in economics.

The primary function we use is the add-interact form, which combines additive power-law terms
with interaction terms between each scaling factor xk and n. This formulation is particularly effective
for analyzing the joint influence of scaling factors and data size on performance under constraints on
inference compute c(x) and data size n. This approach was first proposed to study the relationship between
architecture factors (e.g., width, depth) and pretraining data size when scaling ViT models (Alabdulmohsin
et al., 2023). A simplified variant, add-interacts, removes the standalone term dependent on n. We
also evaluate the add model, a special case of add-interact that assumes independent contributions
from x and n. This additive power-law model is widely used in pretraining scaling law studies (Kaplan
et al., 2020; Hoffmann et al., 2022) and has been adapted for finetuning scenarios (Du et al., 2024).
Additionally, we consider the mult model, a multiplicative power-law formulation that is sometimes
preferred in finetuning scaling law studies (Wei et al., 2022; Li et al., 2024b).

Table 7 provides the expressions for each parametric function. By comparing these formulations, we
aim to identify the most effective model for capturing the scaling behavior of video VLMs.

2366

D.2 What is the effect of exponent parameter b in add-interact parametric function?
We analyze the role of the exponent parameter b ∈ R in the add-interact parametric form. For simplicity,
we redefine the function for a scalar x as

f(x, n) = αx−a + (βxb + ξ)n−d + ε. (6)

The parameter b controls how the scaling factor x influences the coefficient (βxb + ξ), which represents
the reducible error associated with scaling the finetuning data size n. A positive b > 0 has two key effects:

1. Larger x Requires More Data to Match the Same Error: When b > 0, the coefficient (βxb + ξ)
increases with x. For two values xS < xL, we have (βxbS + ξ) < (βxbL + ξ). To achieve the same
error f(x, n), a larger xL requires a larger finetuning data size nL compared to nS. Specifically, the
equality (βxbS + ξ)n−d

S = (βxbL + ξ)n−d
L holds only if nS < nL. Thus, b > 0 increases the data

required for larger x to match the performance of smaller x.

2. Larger x Reduces Error Faster Per Example: A positive b also increases the marginal benefit
of finetuning data for larger x. The derivative of the reducible error term with respect to n is
∂
∂n(βx

b + ξ)n−d = −d(βxb + ξ)n−d−1. For larger x, the term (βxb + ξ) is larger, making the
derivative more negative. This implies that the absolute rate of error reduction (i.e., the decrease
in error per additional finetuning example) is greater for larger x when b > 0. As a result, b > 0
improves the efficiency of finetuning for larger x.

In contrast, when b < 0, the effects are reversed: larger x requires less data to achieve the same error,
but the marginal benefit of each additional finetuning example decreases.

2367

D.3 Fitting the Parametric Model

loss Star+IsoFLOP CV(5-fold) Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

Huber 0.44 0.97 0.95 1.11 1.38 0.91
MSE 0.2 0.77 0.98 0.95 1.33 0.92

init Star+IsoFLOP CV(5-fold) Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

zero 0.43 0.99 0.95 1.36 1.63 0.89
r(100) 0.34 0.88 0.96 0.96 1.36 0.92
r(500) 0.2 0.77 0.98 0.95 1.33 0.92

bound Star+IsoFLOP CV(5-fold) Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

✓ 0.57 1.11 0.94 2.45 2.42 0.8
× 0.2 0.77 0.98 0.95 1.33 0.92

log space Star+IsoFLOP CV(5-fold) Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

× 0.29 0.88 0.97 19.72 2.93 -0.62
✓ 0.2 0.77 0.98 0.95 1.33 0.92

Table 8: Ablation Study on Fitting Procedures. We analyze the impact of key design choices for fitting
add-interact to predict average task performance across two setups: (1) in-distribution evaluation using 5-fold
cross-validation (CV) on combined star and isoFLOP data, and (2) extrapolation on isoFLOP data after training on
star data. Metrics include mean squared error (MSE), average relative error (E%), and coefficient of determination
(R2). The ablations include: (1) loss function (top left): MSE provides better fit than Huber loss, (2) parameter
initialization (top right): e.g., r(500) initializes parameters randomly within a range and selects the best model from
500 runs, while zero sets all parameters to zero, (3) positivity constraint (bottom left): enforcing positivity for the
exponents degrades performance, and (4) log-space computation (bottom right): transforming the scaling function
into log space improves numerical stability. Results highlight the importance of careful parameter initialization and
log-space computation, while positivity constraints are detrimental, and both loss functions perform comparably.

To estimate the parameters θ of the parametric model of task performance f(x, n), we minimize the
relative error between predicted and observed performance in log space:

min
θ

∑

Run i

(
log f(x(i), n(i); θ)− log f (i)

)2
. (7)

We solve the above optimization problem using scipy’s implementation of the L-BFGS algorithm. Table 8
presents an ablation study on key design choices for fitting the parametric model. Below, we summarize
the findings:

• Loss Function: We compare mean squared error (MSE) and Huber loss. MSE consistently outper-
forms Huber loss and is therefore used as the objective.

• Parameter Initialization: The optimization problem is nonconvex and nonlinear, so we mitigate
the risk of poor local minima by running 500 trials with random initializations and selecting the
best fit. Coefficient parameters (e.g., α, β, ξ, ε) are sampled uniformly from (0, 30), while exponent
parameters (e.g., a, b, d) are sampled from (−1, 1).

• Positivity Constraints: Unlike Alabdulmohsin et al. (2023), we do not enforce positivity constraints
on exponent parameters. Ablation results show that such constraints degrade performance.

• Log-Space Computation: Following Hoffmann et al. (2022), we compute f(x, n) in log space. This
improves numerical stability and yields better performance across all metrics.

In summary, we fit the parametric models by minimizing relative error in log space using MSE loss.
Parameters are initialized randomly, and the best fit is selected from 500 runs. We avoid positivity
constraints on exponents and leverage log-space computation for improved stability and accuracy.

2368

D.4 Bootstrap Aggregation

Resamples Aggregation Train Star → IsoFLOP
MSE ↓ E% ↓ R2 ↑ MSE ↓ E% ↓ R2 ↑

100 mean 0.15 0.58 0.99 4418 28 -362
1 median 0.17 0.62 0.98 1.24 1.55 0.9
50 median 0.14 0.57 0.99 0.96 1.35 0.92
100 median 0.14 0.56 0.99 0.95 1.33 0.92

Table 9: Impact of Bootstrap Aggregation Design Choices. This table evaluates the effect of bootstrap aggregation
strategies when using add-interact to predict average task performance on training results from the isoFLOP
sweep when trained on that is the star sweep. Metrics include mean squared error (MSE), average relative error
(E%), and coefficient of determination (R2). Results show that median aggregation consistently outperforms mean
aggregation. Performance improves with more bootstrap resamples (or fitted base models), with the best results
achieved using median aggregation with 100 resamples that we adopt.

Figure 3 (left) highlights the high variance in parameter estimates for the parametric model of task
performance when trained on approximately 100 examples. This variance poses a significant challenge
due to the limited data. To mitigate this, we apply bootstrap aggregation (bagging), where multiple base
models are trained on bootstrap-resampled datasets, and their predictions are aggregated.

Table 9 summarizes the ablation study on the bagging setup, analyzing the effects of the number of
resamples and the aggregation method on model performance. The results demonstrate that median
aggregation consistently outperforms mean aggregation across all metrics. Furthermore, increasing the
number of resamples improves performance, with the best results obtained using 100 resamples and
median aggregation. This setup significantly improves goodness-of-fit, and it is adopted in our work.

2369

E Measuring Sensitivity of Compute-Optimal Frontier x∗(c, n) to Data Size n

|C| eN eT eV

1 0.0 0.0 0.0
10 -0.19 0.17 0.58
50 -0.23 0.16 0.89
100 -0.23 0.16 0.88
200 -0.22 0.17 0.78
300 -0.22 0.17 0.79

|N| eN eT eV

1 -0.04 0.05 0.12
10 -0.22 0.17 0.77
20 -0.22 0.17 0.78
50 -0.22 0.17 0.79
100 -0.22 0.17 0.79

max(N) eN eT eV

1 -0.04 0.05 0.12
2 -0.06 0.08 0.19
4 -0.12 0.12 0.42
6 -0.16 0.13 0.58
8 -0.19 0.15 0.7
10 -0.22 0.17 0.79

△n eN eT eV

0.1 0.32 0.2 1.13
0.5 -0.08 0.2 0.99
1.0 -0.15 0.2 0.96
2.0 -0.2 0.19 0.89
3.0 -0.23 0.18 0.83
4.0 -0.23 0.17 0.8
5.0 -0.22 0.17 0.79
6.0 -0.22 0.17 0.78
7.0 -0.22 0.16 0.75
8.0 -0.21 0.16 0.72
9.0 -0.2 0.15 0.68
10.0 -0.19 0.15 0.64

Table 10: Ablation Study on Elasticity Computation.This table evaluates the impact of key parameters on the
computation of elasticity, including: (1) the number of inference compute budgets |C| (measured in TFLOPs)
used for averaging, (2) the number of finetuning data sizes |N| (measured in millions) used for averaging, (3) the
maximum finetuning data size max(N) (upper bound of data sizes in N), and (4) the step size △n (in millions) used
for the forward difference approximation of the derivative. Results show that elasticity values stabilize with larger
|C| and |N|, so we set |C| = 300 and |N| = 100 to minimize variability. While max(N) affects the magnitude of
elasticity, it preserves consistent trends across k ∈ {N,T, V }. We set max(N) = 10M to ensure broad coverage of
data sizes. The step size △n affects the stability and precision of the derivative approximation; we select △n = 5
to balance this trade-off. These choices ensure reliable and interpretable elasticity estimates.

Figure 4 shows that the inference compute-optimal frontier x∗k(c), shifts up or down depending on the
finetuning data size n. To quantify both the direction and magnitude of this shift, we define “elasticity”

ek(c, n) =
∂x∗k(c;n)

∂n
· n

x∗k(c;n)
(8)

to measure the relative sensitivity of x∗k to variations in n for a given inference compute budget c.
We use elasticity instead of simple partial derivatives, e.g., ∂x∗k(c;n)/∂n, because partial derivatives

are highly sensitive to the scale of the variables involved. In our case, the scaling factors x and the data
size n differ significantly in magnitude: for example, LM size xN is on the order of billions, xT & xV are
in the tens or hundreds, and n is in the millions. Elasticity allows us to express relationships in percentage
terms, making comparisons more intuitive. For instance, an elasticity value of eT = 0.1 means that a 1%
increase in n results in a 0.1% increase in x∗T . This approach simplifies the interpretation of results and
enables easier comparison of the sensitivity of x∗ to changes in n.

Elasticity is commonly used in economics to measure how changes in one variable affect another, e.g.,
price elasticity of demand quantifies how price changes influence the quantity of goods demanded. This
quantity is derived by solving a utility maximization problem under (monetary) budget constraints, often
yielding closed-form solutions that allow direct computation of elasticity. In contrast, our approach solves
the inference compute allocation problem in Equation 4 using discrete search, which does not yield a
closed-form expression for elasticity. Instead, we approximate elasticity using forward differences:

ek(c, n) ≈
x∗k(c;n+△n)

△n
· n

x∗k(c;n)
(9)

where △n is the step size. To evaluate the overall impact of n on x∗k, we calculate the average elasticity
across compute budgets as

ek(n) =
1

|C|
∑

c∈C
ek(c, n), (10)

where C represents the set of inference budgets of interest. We aggregate elasticity over both compute
budgets and data sizes as

ek =
1

|C||N|
∑

c∈C

∑

n∈N
ek(c, n), (11)

2370

with N denoting the set of finetuning data sizes of interest. These aggregated metrics provide a concise
summary of how data size influences optimal scaling factors.

Table 10 presents an ablation study analyzing key design choices for computing elasticity. The findings
are summarized as follows:

• Size of C: We vary |C| (evenly spaced between 1 TFLOP and 100 TFLOPs) and observe that
elasticity values stabilize as |C| increases. To minimize sensitivity to |C|, we set |C| = 300.

• Size of N: We vary |N| (evenly spaced between 1M and 10M) and find that elasticity values stabilize
with larger |N|. To reduce variability, we set |N| = 100.

• Maximum Data Size max(N): Ablating max(N) (with N sampled evenly starting from 1M exam-
ples) reveals that elasticity magnitudes increase consistently with scaling. We set max(N) = 10M to
ensure a broad range of data sizes is covered.

• Step Size △n: The step size △n significantly affects elasticity. Small △n (e.g., adding one example)
leads to near-zero elasticity except at points of sudden jumps, making numerical approximations un-
stable and sensitive to C and N. Larger △n reduces accuracy of the forward difference approximation
of the derivative. We select △n = 5 to balance stability and precision.

The resulting setup ensure reliable elasticity estimates.

2371

F Additional Results

F.1 Task-Specific Interpretation of Training Run Results

Figure 8: Task-Specific IsoPerformance Contours.

2372

Figure 9: Task-Specific isoFLOPs Curves and Compute-Optimal Frontier.

2373

Figure 10: Task-Specific Predicted Compute-Optimal Frontier.

2374

