Inference Compute-Optimal Video Vision Language Models

Peiqi Wang, ShengYun Peng, Xuewen Zhang, Hanchao Yu, Yibo Yang, Lifu Huang, Fujun Liu, Qifan Wang


Abstract
This work investigates the optimal allocation of inference compute across three key scaling factors in video vision language models: language model size, frame count, and the number of visual tokens per frame. While prior works typically focuses on optimizing model efficiency or improving performance without considering resource constraints, we instead identify optimal model configuration under fixed inference compute budgets. We conduct large-scale training sweeps and careful parametric modeling of task performance to identify the inference compute-optimal frontier. Our experiments reveal how task performance depends on scaling factors and finetuning data size, as well as how changes in data size shift the compute-optimal frontier. These findings translate to practical tips for selecting these scaling factors.
Anthology ID:
2025.acl-long.117
Volume:
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2345–2374
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.117/
DOI:
Bibkey:
Cite (ACL):
Peiqi Wang, ShengYun Peng, Xuewen Zhang, Hanchao Yu, Yibo Yang, Lifu Huang, Fujun Liu, and Qifan Wang. 2025. Inference Compute-Optimal Video Vision Language Models. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2345–2374, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Inference Compute-Optimal Video Vision Language Models (Wang et al., ACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.117.pdf