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Abstract

Large Reasoning Models (LRMs) such as Ope-
nAI o1 and DeepSeek-R1 have shown remark-
able reasoning capabilities by scaling test-
time compute and generating long Chain-of-
Thought (CoT). Distillation post-training on
LRMs-generated data is a straightforward yet
effective method to enhance the reasoning
abilities of smaller models, but faces a criti-
cal bottleneck: we found that distilled long
CoT data poses learning difficulty for small
models and leads to the inheritance of bi-
ases (i.e. over-thinking) when using Super-
vised Fine-tuning (SFT) and Reinforcement
Learning (RL) methods. To alleviate this bot-
tleneck, we propose constructing tree-based
CoT data from scratch via Monte Carlo Tree
Search (MCTS). We then exploit a set of CoT-
aware approaches, including Thoughts Length
Balance, Fine-grained DPO, and Joint Post-
training Objective, to enhance SFT and RL on
the construted data. We conduct evaluation on
various benchmarks such as math (GSM8K,
MATH, AIME). instruction-following (Multi-
IF) and planning (Blocksworld), results demon-
strate our approaches substantially improve the
reasoning performance of distilled models com-
pared to standard distilled models via reducing
the hallucinations in long-time thinking. The
project homepage is https://github.com/
AIDC-AI/Marco-o1.

1 Introduction

Recent advancements in large reasoning models
(LRMs), such as OpenAI o1 (OpenAI, 2024), QwQ
(Qwen Team, 2024) and DeepSeek-R1 (Guo et al.,
2025), have led to significant progress in handling
complex tasks spanning mathematics, coding, and
even open-ended queries (Zhong et al., 2024b;
Huang et al., 2024b; Zhao et al., 2024a). The
success is largely attributed to “scaling test-time

*Equal contribution.
†Corresponding author.

compute” by extending the length of the reasoning
process. Given that most state-of-the-art LRMs are
computationally expensive, recent efforts attempt
to distill their reasoning capabilities into smaller
lightweight models, demonstrating competitive per-
formances (Qin et al., 2024). For instance, Guo
et al. (2025) explored direct distillation, where they
fine-tuned smaller dense models (e.g. Qwen2.5 7B)
using reasoning patterns generated by DeepSeek-
R1 671B model, outperforming GPT-4 on math
benchmarks (e.g. AIME: 9.3% vs. 55.5%).

However, we observed that these distilled mod-
els often exhibit hallucinations during long-time
thinking, such as content repetition and over-
reflection, leading to no final answer being pro-
duced (as shown in Table 1). We refer to this
phenomenon as formalistic long-time thinking,
where smaller models mechanically replicate the
reasoning patterns of large models without internal-
izing the reasoning logic. Recent research shows
that LRMs face both over-thinking and under-
thinking issues (Chen et al., 2024; Wang et al.,
2025b), while smaller models struggle to learn gen-
eral reasoning (Fu et al., 2023a). Accordingly, the
root cause may be that distillation methods intro-
duce bias inheritance and learning difficulties in
smaller models. A natural research question arise:
How can long CoT reasoning be effectively trans-
ferred to smaller models through data construction,
SFT and RL methods?

To tackle this challenge, we explore improve-
ments in reasoning distillation from both data and
methodological perspectives. First, we propose a
fundamental framework for constructing tree-based
CoT data, which generates pre-defined thought
nodes using general LLMs (rather than LRMs) and
heuristically expands these nodes into a tree struc-
ture via the Monte Carlo Tree Search (MCTS) al-
gorithm (Browne et al., 2012). The constructed
data is not only more effective compared to di-
rectly distilled data, but also inherently more flex-
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Error Type Thoughts

Content Repetition
(Math)

Five men and nine women stand equally spaced around a circle in random order. The probability that
every man stands diametrically opposite a woman is m

n , where m and n are relatively prime positive
integers. Find m+ n.
So I’ve got this probability problem here. There are five men and nine women standing equally spaced
around a circle in random order. I need to find the probability that . . .
. . .
The total number of circular permutations of 14 distinct people is (14 - 1)! = 13!, because in circular
arrangements, one position is fixed to handle the rotational symmetry.So, total number of possible
arrangements is 13!.
. . .
Wait, but in circular arrangements, positions are considered up to rotation, so fixing one position is
standard. Alternatively, perhaps I need to consider that the positions are considered up to consider that
the positions are considered up to that the positions are considered up to consider that the positions are
considered up to . . . (no answer)

Over-Reflection
(Instruction-

How to tell others that your major is computer science, without saying the word computer or science?
You entire response should not contain the word computer and science.

Following) So I have this problem: I need to explain what my major is without saying "computer" or "science". Hmm,
my major is in computer science, but I have to find another way to describe it.
. . .
Maybe I can describe it in terms of what I do. I learn how to design and develop software, understand
how information is processed and stored, and how to solve problems using logical methods. I also study
the theory behind it, like algorithms and data structures.
. . .
I should also consider . . . Alternatively, . . . I think another angle is . . . Wait, perhaps . . . I could say
that . . . Or, I might . . . I think another way . . . Alternatively, . . . I should also consider . . . (no answer)

Instruction Failure Translate the following sentence into English: 您好，很高兴为您效劳，请问有什么可以帮您。
(Translation) Translation: Okay, I’m happy to help you. Do you have any questions for me?

Wait, that’s not correct. The original sentence is in Chinese, and the translation should be accurate. Let
me think again.
The original sentence is: 您,很高兴为您效劳,请问有什么可以帮您.
Breaking it down:
"您好" is "Hello" or "Hi". "很高兴为您效劳" translates to "I am very pleased to serve you." . . .
Wait, the original sentence is more like a greeting and offer to help. . . .
Alternatively, "Hello, I’m happy to help you. How can I assist you?" So perhaps the correct translation is:
"Hello, I’m here to help you. How can I assist you?"
Wait, . . .
Alternatively, . . . (no answer)

Table 1: The illustration of formalistic long-time thinking generated by distilled reasoning models across different
tasks. Error tokens in thoughts are highlighted in blue and red colors. Notably, due to excessively long thoughts,
there are no final answers in above cases. The Quantitative Analysis is detailed in Section 2.4.

ible, allowing the extraction of different types of
reasoning paths as training data. Secondly, regard-
ing commonly-used SFT and direct preference op-
timization (DPO) (Rafailov et al., 2023) as post-
training framework, we empirically investigate a
set of CoT-aware methods on the effects of for-
malistic long-time thinking. Specifically, this in-
cludes: 1) Thoughts Length Balance, where we ex-
tract CoT data of varying lengths; 2) Fine-grained
DPO, where we employ conservative DPO (cDPO)
(Mitchell, 2023) and mask-based DPO to better
leverage the fine-grained information in long CoT;
3) Joint Post-training Objective, where we combine
the DPO loss with SFT loss to mitigate the over-
optimization observed in DPO (Fernando et al.,

2024; Wang et al., 2024b).

We validated our approaches on five exam-
oriented and open-ended benchmarks, covering
three different difficulty levels of math (GSM8K,
MATH and AIME) (Cobbe et al., 2021a; Light-
man et al., 2023), instruction-following in eight
languages (Multi-IF) (He et al., 2024), and real-
world planning tasks (Blocksworld) (Valmeekam
et al., 2022). Experimental results show that the
proposed method consistently and orthogonally im-
prove reasoning performance over the standard dis-
tilled models. The improvements come from the
reduced hallucinations during long-time thinking,
particularly content repetition, which leads to fewer
“no answer” phenomena and better overall accuracy.
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The main contributions of this work are:

• Our study reveals the side effect of standard distil-
lation on transferring long CoT reasoning, which
results in sub-optimal training of smaller models
when using the distilled data (in Section 2.4).

• We propose a novel approach to construct CoT
trees from scratch, which not only scales up
the solution space but also more closely mim-
ics human-like reasoning patterns. To the best of
our knowledge, it is the first attempt of its kind
(in Section 2).

• We investigate a set of effective approaches to
widen the distillation bottleneck, demonstrating
that they are orthogonal and complementary to
each other, and robustly applicable to different
reasoning tasks and languages (in Section 3&4).

2 Tree-Based CoT Data Construction

We propose a flexible and customizable tree-based
CoT data construction method that generates high-
quality CoT data from scratch. In this section, we
introduce the overall framework in Section 2.1, fol-
lowed by the thought nodes (Section 2.2), reason-
ing patterns (Section 2.3), and how to extract CoT
data for post-training (Section 2.4).

2.1 Overall Framework

We introduce the tree-based CoT data construc-
tion process as shown in Figure 1. This tree struc-
ture not only constrains the search space to pre-
vent unbounded expansions but also guides the
model to produce reasoning steps (nodes) system-
atically. For instance, we specify that each node in
the search tree corresponds to a particular action
role (e.g., thinking, reflection), and each edge repre-
sents a transition to the next step. By constraining
the transitions among these nodes, we ensure the
search is both tractable and coherent. With the
structure in place, we use MCTS to explore the
search tree. During each step:
• Node Selection. We select a thought node to

expand based on MCTS principles, such as upper
confidence bound (UCB). If Child(n) denotes
the set of child nodes of node n, then UCB bal-
ances exploration and exploitation via a score:

UCB(ni) = v(ni)
nvisits(ni)

+ C

√
ln
(
nvisits(nparent)

)
nvisits(ni)

,

where v(ni) is an estimated value (or reward) of
node ni, nvisits(·) denotes the visit count, and C
is the exploration constant.

Thought Node Prompt

Thinking (continuation generation)
Sub-Task Firstly, I need to break down this task.
Reflection Let’s check the result. Wait! some-

thing is wrong, let’s think again.
Hypothesis I propose the following hypothesis:
Double-Check Now, I need to check whether all the

requirements are met.
Reclarify To ensure clarity, let me restate the

question or issue at hand:
Answer The answer is:

Table 2: The pre-defined Thought Node. For a selected
node, its corresponding prompt is continuously fed to
LLMs for MCTS expansion.

• Expansion. We expand the selected node by
prompting an LLM by adding a thought prompt
(detailed in Table 2) that specifies the required
action role. The LLM then generates the textual
content for that node.

• Rollout. If the expansion reaches an answer
node, we compute a reward based on correct-
ness determined by rules and backpropagate this
reward up the tree.

2.2 Thought Node

Definition A Thought Node corresponds to a dis-
tinct step or action within the CoT reasoning pro-
cess. As outlined in Table 2, each node has a ded-
icated role and prefix prompt that guides the lan-
guage model to generate specific content or revise
previously generated reasoning. This structured de-
sign facilitates modular expansion and systematic
backtracking within the MCTS framework. No-
tably, Thinking is treated as a special node that
does not require any prefix prompt; instead, it ad-
mits unconditioned continuation generation to fos-
ter open-ended exploration of partial solutions. By
combining multiple node types into a coherent tree,
we can more effectively elicit and refine multi-step
reasoning from the model.

Multi-Model Coordination and Reflection We
adopt multi-model coordination to further diver-
sify and correct the generated reasoning paths: 1)
For nodes such as Thinking, we use Qwen2.5-72B-
Instruct to generate logical steps or partial solu-
tions; 2) For Reflection nodes, we switch to a differ-
ent model, e.g., Llama3.1-70B-Instruct, to perform
self-checks and corrections.

This separation enhances the reliability of reflec-
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Figure 1: MCTS-based CoT data generation framework. Starting from an initial prompt (root node), the system
proceeds through predefined nodes (e.g., Sub-Task, Thinking, Reflection) according to a customizable node transfer
matrix. Each node is expanded by prompting either Qwen or Llama, allowing multi-model collaboration. If a wrong
answer is detected, we perform error backtracking (pink arrows) to a prior node and trigger Reflection in another
model, enhancing the overall correctness and diversity of the final reasoning path.

Figure 2: Representative node transition patterns in our search tree. Each sub-figure (a–d) illustrates a distinct
sequence of transitions (e.g., Sub-Task, Thinking, Reflection, Double Check, Hypothesis) toward arriving at an
Answer node. These variations allow the search to adaptively expand or backtrack based on correctness checks,
thereby generating rich and context-specific chain-of-thought data.

tion. When the same model that made a mistake
also attempts to correct itself, it may fall back on
the same erroneous distributional patterns. In our
pipeline, if a Reflection node detects an error, it
can backtrack to a specific earlier node (also con-
figurable in the MCTS design) and request a re-
generation of the Thinking steps. By alternating
between models, we reduce the risk of repeated
mistakes and improve the diversity of exploration.

2.3 Reasoning Pattern

As illustrated in Figure 2, we design a set of cus-
tomizable search tree structures to reflect the di-
verse ways in which humans reason about different
tasks. Each tree is configured to capture a variety of
reasoning modes. For instance, in Figure 2(a), we
demonstrate a sequence of nodes to solve a ques-

tion: we first break down the task via a Sub-Task
node, then perform a general Thinking step, and
finally provide an Answer. We evaluate correctness
through rule-based checks: if correct, we output
the result; otherwise, we prompt the model to re-
flect on potential mistakes (entering the Reflection
node). Here, the model revisits or re-checks its
chain of thought, then either formulates new rea-
soning or proposes a revised answer. This feedback
loop repeats until the solution is correct or a pre-
set search limit is reached. Some tasks, however,
also require formulating assumptions or provisional
conclusions, so in Figure 2(b), we incorporate a Hy-
pothesis node immediately after the Sub-Task node
for tasks that benefit from explicitly positing as-
sumptions or preliminary formulas early on. For
example, “Find the sum of all ordered pairs (x, y)
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of positive integers such that x + y = 5.” After
breaking down the task (Sub-Task), the model pro-
poses a hypothesis that x can range from 1 to 4
(with y = 5 − x) and enumerates each pair, ob-
taining a total sum of 20. If the answer is verified
correct, the model outputs 20.

In practice, we randomly sample from these dif-
ferent reasoning-flow templates (e.g., Figure 2(a-
d)) to ensure we capture diverse, human-like modes
of thought. By introducing node transition pat-
terns, our framework produces richer and more
flexible CoT data and fosters more robust reason-
ing in downstream tasks.

2.4 CoT Data Extraction for Post-Training

Once MCTS completes its exploration, we have a
large set of candidate paths. At this point, we must
extract final CoT data for SFT or DPO.
• CoT Data for SFT. We select successful paths

that lead to the correct final answer. Depend-
ing on the data volume requirements, one can: 1)
Pick the highest-reward path according to MCTS;
2) Pick the long or short path that yields the cor-
rect answer, if specific chain lengths are desired.

• CoT Data for DPO. Constructing DPO data re-
quires both positive and negative examples for
each prompt: 1) The positive example is the CoT
path that correctly solves the problem, like the
SFT data; 2) The negative example is a flawed
path (an incorrect final answer) that shares a min-
imal prefix with the positive path to mitigate ex-
cessive overlapping tokens, which can degrade
DPO performance.

We find that many existing QA prompts (especially
those frequently seen during Qwen or Llama train-
ing) are too easy for the models, producing few or
no negative paths. As a result, fewer DPO pairs
are generated. One can overcome this limitation by
using more challenging questions or those that the
models have not encountered extensively.

Quantitative Analysis: Formalistic Long-time
Thinking We explore the impact of the CoT
length distribution on model performance. We
experiment with different sampling strategies for
DPO datasets, where responses to the same ques-
tion are ranked and categorized based on their
length (Their distributions are shown in Figure 3).
As shown in Table 3, the selection of shorter CoT
paths leads to a noticeable reduction in ineffective
outputs. In addition, we note that shorter reason-
ing paths tend to mitigate the issue of "formalistic

Datasets Long Middle Short

GSM8K 5.38% 5.08% 5.08%
MATH 28.40% 20.60% 16.20%
AIME 51.66% 50.00% 60.00%
Plan. 6.40% 6.40% 6.20%
IF (Zh) 32.30% 4.23% 1.9%
IF (En) 22.36% 3.80% 4.00%
IF (Ot.) 18.69% 1.70% 1.59%

Table 3: Effects of thoughts length(long, medium, and
short CoT paths) on model performance across different
datasets.

long-time thinking", thus improving the quality of
the reasoning output.

3 CoT-Aware Post-Training

Section 2.4 identifies that DPO training is prone to
causing the formalistic long-time thinking. In this
section, we propose three methods to address this
problem: Thoughts Length Balance (Section 3.1),
Fine-grained DPO (Section 3.2), Joint Post-training
Objective (Section 3.3).

3.1 Thoughts Length Balance

Section 2.4 illustrates that the length of Chain-of-
Thought (CoT) reasoning significantly influences
the reasoning performance of distilled smaller
models during the Direct Preference Optimization
(DPO) phase. In contrast, our preliminary experi-
ments did not indicate such an effect during SFT.
Therefore, we propose using the longest CoT data
in the SFT phase and the shortest CoT data in the
DPO phase.

Specifically, we extract all valid reasoning paths
that lead to correct answers from the CoT trees,
as multiple correct paths often exist. From
these, we select paths categorized by their rela-
tive length(short, medium, and long) based on to-
ken count, correct paths serve as positive exam-
ples, whereas negative examples are generated by
identifying incorrect paths that share the shortest
common prefix with their corresponding positive
paths.

We recognize that "short" and "long" are inher-
ently relative and that CoT lengths vary signifi-
cantly with problem complexity. For instance, a
simple arithmetic problem like "1+1=?" naturally
involves a shorter CoT compared to more complex
integrals such as "

∫ 1
0

ln(x+1)
x2+1

, dx =?". To address
these variations systematically, we employ Monte
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Figure 3: Distribution of data lengths by token count: A comparative analysis of sampling strategies and their
correspondence to short, medium, and long data lengths illustrated with histograms and KDE curves

Figure 4: The illustration of masking-based DPO, by
setting the log probabilities of the common prefix tokens
in preference pairs to zero.

Carlo Tree Search (MCTS) to sample multiple rea-
soning paths per query and select representative
paths by their relative lengths, rather than imposing
rigid token-count thresholds.

3.2 Fine-grained DPO
Recent studies highlight that DPO is sensitive to
the length of responses, which can lead to biased re-
ward assessments (Lu et al., 2024; Liu et al., 2024).
Longer chosen responses increase the model’s ten-
dency to generate longer outputs, while longer re-
jected responses push the model to move away
from such outputs, potentially without reducing
their length. These issues are particularly pro-
nounced in long CoT reasoning tasks, where length
disparities may undermine DPO’s effectiveness in
fine-tuning reasoning models.

Conservative DPO Conservative DPO (cDPO)
(Mitchell, 2023) adapts the standard DPO frame-
work to handle noisy preference labels, typically
encountered when labels may be flipped with a
small probability ϵ. The key innovation of cDPO
is to modify the target distribution to account for
potential label noise, setting the preference prob-
ability to p(yw ≻ yl) = 1 − ϵ. This adjustment
reduces the impact of noisy labels by softening the
gradient updates, making the model less sensitive
to incorrect preferences. Formally, the cDPO loss
is defined as:

Lϵ
DPO(θ, yw, yl) =− (1− ϵ) log p̂θ(yw ≻ yl)

− ϵ log(1− p̂θ(yw ≻ yl)),

where p̂θ(yw ≻ yl) is the predicted preference
probability. The gradient of this loss combines
weighted contributions from both the correct and
incorrect paths, facilitating more stable training un-
der label noise. By upweighting correct preferences
and downweighting incorrect ones, cDPO prevents
overfitting to noisy data, resulting in more reliable
optimization and improved model robustness.

Masking-based DPO To mitigate the adverse ef-
fects of shared prefixes inherent in tree-based data,
we modify the DPO loss computation by masking
out the shared prefix tokens. Specifically, prior
to loss calculation, we identify the number of to-
kens constituting the common prefix between the
positive and negative samples and adjust the loss
mask by setting the corresponding entries for these
shared tokens to zero-analogous to the treatment
of padding tokens in standard loss formulations, as
shown in Figure 4. This ensures that the shared
prefix tokens do not contribute to the gradient com-
putation, allowing the model to focus on the dif-
ferentiating segments of the outputs and better dis-
tinguish between valid and invalid reasoning paths.
This strategy provides a fine-grained adjustment
to the DPO objective, enhancing optimization in
settings with substantial prefix overlap.

3.3 Joint Post-training Objective

In model training, the typical approach follows a
sequential training paradigm, first conducting SFT
followed by RLHF or DPO. However, this sequen-
tial training process is suboptimal due to the inher-
ent trade-off between SFT and RLHF/DPO, where
the model tends to forget the content learned in the
first stage as it progresses to the second. Even regu-
larization methods like KL divergence cannot fully
mitigate the forgetting caused by the distribution
shift from the SFT dataset to the preference-based
dataset, as highlighted by (Fernando et al., 2025).
A similar phenomenon is observed in our work,
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Model Math Planning Instruction-Following

GSM8K MATH AIME Blocksworld Zh En Other

Llama-3.1-8B-Instruct 85.5 47.0 11.7 10.0 61.5 76.2 67.1
+ Sky-T1 84.8 44.0 6.7 2.0 25.4 31.6 29.7
+ Our Data 87.4 51.4 15.0 12.4 69.2 76.6 79.1

Llama-3.2-1B-Instruct 43.4 33.0 0.0 0.2 31.9 47.8 33.1
+ Sky-T1 37.2 19.0 0.0 0.0 8.1 10.0 7.5
+ Our Data 50.0 38.6 0.0 5.6 41.1 50.6 47.1

Qwen2.5-7B-Instruct 90.4 62.0 15.0 10.6 69.6 72.8 74.4
+ Sky-T1 89.6 61.6 9.4 0.4 26.2 24.5 30.6
+ Our Data 90.7 64.0 15.0 12.0 73.1 73.4 78.8

Qwen2.5-1.5B-Instruct 67.5 38.4 0.0 1.0 49.6 43.8 41.0
+ Sky-T1 66.7 34.4 0.0 0.0 9.2 11.8 14.8
+ Our Data 74.6 46.8 0.0 5.4 51.5 51.6 54.8

Table 4: Comparison of SFT results across various models on multiple different tasks, including math, planning and
instruction-following Benchmarks.

where such forgetting contributes to the emergence
of formalistic long-time thinking in distilled mod-
els. To address this, we introduce SFT loss during
the DPO training phase to alleviate the performance
degradation resulting from the switch in training
methodologies. The final loss function is thus mod-
ified as: L = LDPO + αLSFT, where the hyperpa-
rameter α enables a better trade-off between SFT
and preference learning, helping to maintain consis-
tency in the model’s reasoning patterns throughout
the training process. This adjustment ensures more
robust and stable performance across stages.

4 Experiments

4.1 Experimental Setup

Models We start with the baseline model, "Our
LRM (SFT)," which is Llama-3.1-8B fine-tuned
on our CoT data. Direct Preference Optimization
(DPO) is applied next, followed by Data Length
Balance. Conservative DPO (cDPO) is then added,
and a Joint Loss function combining DPO and Su-
pervised Fine-Tuning (SFT) loss is incorporated.
Finally, masking-based DPO is applied. Each of
these methods is sequentially added to the baseline,
as shown in Table 5.

Benchmark We evaluate our approach on five
benchmarks, each capturing different reasoning
challenges. AIME focuses on higher-level math
with 60 questions from 2023 and 2024, while
GSM8K (Cobbe et al., 2021a) features elementary-
to-intermediate arithmetic tasks. MATH500 (Light-
man et al., 2023) presents a wide range of advanced

mathematical problems, testing deeper analytical
thinking. For sequential decision making, we adopt
the classical Blocksworld (Valmeekam et al., 2022)
planning domain from the International Planning
Competitions (IPC). Lastly, Multi-IF (He et al.,
2024) assesses multi-turn instruction following in
eight languages, encompassing 4,501 multilingual,
three-turn conversations.

4.2 Experimental Results

Constructed Data Validation We apply our con-
structed CoT data to smaller-scale models from the
Llama and Qwen families, comparing the results
against the Sky-T1 dataset, which employs a QwQ-
based distillation pipeline effective on larger mod-
els (32B). While Sky-T1 demonstrates competitive
performance on large models, it faces challenges
when scaled down to 8B models due to the inher-
ent limitations in context processing and reasoning
capabilities. In contrast, our CoT data, specifi-
cally designed to address these limitations, leads to
substantial improvements in smaller models, par-
ticularly in tasks involving arithmetic reasoning
such as GSM8K and MATH, as well as more com-
plex open-ended tasks like AIME and Blocksworld,
as shown in Table 4. This validates the effective-
ness of our constructed data in advancing the per-
formance of small models across a wide range of
reasoning tasks.

Main Results As shown in Figure 5, we pro-
gressively adding various techniques described in
Section 3 to address the challenges identified dur-
ing DPO. Initially, we observe that DPO causes a
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Model Math Planning Instruction-Following

GSM8K MATH AIME Blocksworld Zh En Other

Baseline
Our LRM (SFT) 87.4 51.4 15.0 12.4 69.2 76.6 79.1

(0.23%) (5.40%) (30.00%) (1.80%) (0.77%) (1.69%) (1.08%)

+ DPO
86.2 41.8 8.3 2.0 5.7 6.3 6.7

(6.37%) (31.80%) (55.00%) (93.60%) (91.54%) (90.93%) (92.22%)

Our Methods

+ Data Balance
86.8 28.0 6.6 6.8 43.4 44.7 42.4

(5.08%) (46.40%) (65.00%) (44.60%) (30.77%) (44.73%) (45.28%)

+ cDPO
87.5 48.6 15.0 4.4 61.9 66.4 67.7

(3.71%) (15.00%) (45.00%) (47.40%) (11.15%) (15.61%) (15.40%)

+ Joint Loss
86.8 48.6 10.0 8.6 72.3 78.9 78.1

(0.38%) (8.60%) (31.67%) (9.00%) (1.15%) (1.90%) (2.22%)

+ Masking
87.2 51.0 8.0 12.6 72.0 77.2 79.1

(0.15%) (5.80%) (38.33%) (10.20%) (1.15%) (1.90%) (1.36%)

Table 5: Performance comparison among different methods. The best performance is boldfaced, while the second
best is underlined. The numbers in parentheses indicates the ratio of instances where no answer is obtained in the
specified format.

significant increase in output length, which results
in a marked drop in model performance due to the
high proportion of samples without answers. To
mitigate this issue, we explore several strategies,
including the data balance, applying cDPO to re-
duce the impact of noisy labels, SFT Loss for multi-
objective training to prevent catastrophic forgetting,
and masking shared prefixes during loss calculation
to reduce overemphasis on redundant tokens. Our
results show that these adjustments achieves a no-
table improvement in reasoning tasks, particularly
in planning and instruction-following, while main-
taining competitive performance on mathematical
benchmarks. The performance improvements can
be primarily attributed to the reduction of formalis-
tic long-time thinking, which is a major source of
inefficiency in reasoning. By addressing this issue,
our model exhibits a stronger ability to generate
meaningful and correct answers instead of produc-
ing excessive, irrelevant reasoning steps. This leads
to a substantial enhancement in overall model ef-
fectiveness, with improvements of coherent reason-
ing and accurate outputs. The integration of these
methods ensures that our model achieves robust
and efficient performance across a wide range of
reasoning tasks, Contributing to the application of
DPO technology in LRMs.

4.3 Effects of Joint DPO Loss

In this study, we explore the effects of combining
DPO loss with SFT loss within a joint post-training

Datasets CDPO +0.5 +1.0 +1.5 +2.0

GSM8K
87.5 86.5 86.8 85.5 85.6

(3.71%) (0.53%) (0.38%) (0.08%) (0.08%)

MATH
48.6 50.0 48.6 48.4 48.0

(15.00%) (10.20%) (8.60%) (0.08%) (9.00%)

AIME
15.0 11.6 10.0 6.6 11.6

(45.00%) (35.00%) (31.67%) (36.67%) (31.67%)

Plan.
4.4 7.8 8.6 7.6 8.4

(47.40%) (12.80%) (9.00%) (6.40%) (7.40%)

IF (Zh)
61.9 68.8 72.3 68.4 70.7

(11.15%) (2.31%) (1.15%) (3.46%) (0.77%)

IF (En)
66.4 76.1 78.9 77.2 78.2

(15.61%) (4.22%) (1.90%) (2.74%) (2.32%)

IF (Ot.)
67.7 78.0 78.1 79.2 78.9

(15.40%) (1.99%) (2.22%) (1.82%) (1.93%)

Table 6: Effects of joint loss (combining DPO loss and
SFT loss with a weight factor α in L = LDPO + αLSFT)
on model performance across different datasets with
varying hyperparameter settings.

objective, as outlined in Section 3.4. Our goal is
to stabilize the training process and mitigate is-
sues like over-optimization observed in pure DPO.
To this end, we experiment with varying values
of the hyperparameter alpha, which controls the
weight balance between the DPO and SFT losses.
As shown in Table 6, our results indicate that al-
pha=1 provides the best trade-off, as smaller values
still lead to some degree of catastrophic forget-
ting, while larger values reduce the effectiveness of
preference alignment, thereby diminishing the effi-
ciency of the valuable preference dataset. Conse-
quently, we adopt the combined L = LDPO +LSFT
as the configuration for subsequent experiments.
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4.4 MCTS Inference Exploration

As an additional experiment, we explored the im-
pact of applying MCTS at the inference stage. As
shown in Table 7, we use Test@N to denote the
percentage of problems solved correctly at least
once when allowing the model to make N separate
guesses for each problem (Cobbe et al., 2021b).
We evaluated solve rates at Test@1, Test@8, and
Test@32 on the MATH dataset. Specifically, at
Test@8 and Test@32, the MCTS-based approach
outperforms the model without MCTS inference,
demonstrating its ability to expand the solution
space and leverage test-time scaling effectively.

5 Related Work

Reasoning Models Recent advancements in rea-
soning models, like OpenAI o1 (OpenAI, 2024),
DeepSeek-R1 (DeepSeek-AI et al., 2025), and
Qwen QwQ (Qwen Team, 2024), make signifi-
cant strides in complex reasoning tasks through
CoT generation and increased test-time compute.
These models scale reasoning depth by expanding
their thinking processes, generating step-by-step
solutions to problems, which significantly boosts
performance in domains such as mathematics and
coding (Zhong et al., 2024a; DeepSeek-AI et al.,
2025). However, the challenge remains that these
advancements largely depend on large model sizes,
and smaller models struggle to replicate this rea-
soning behavior (Fu et al., 2023b).

Knowledge Distillation Researchers focus on
transferring the reasoning capabilities of LRMs
into smaller models, through distillation techniques.
Distillation methods, such as fine-tuning smaller
models on CoT data generated by larger models
(Huang et al., 2024a), show that small models can
benefit from reasoning data generated by large mod-
els. However, recent findings reveal that small mod-
els often fail to capture intricate reasoning patterns
due to their limited capacity, leading to subopti-
mal performance when directly distilled from large
models (Li et al., 2025a; Wang et al., 2025a).

Monte Carlo Tree Search MCTS has been pro-
posed as a solution to improve reasoning by ex-
ploring multiple reasoning paths during inference
(Zhao et al., 2024b; Tian et al., 2024). Moreover,
MCTS provides a powerful mechanism for gen-
erating high-quality, diverse reasoning data that
can subsequently be harnessed to fine-tune rea-
soning models. For instance, (Tian et al., 2024)

Model Test@1 Test@8 Test@32

Llama-3.1-8B-Instruct 47.0 67.6 75.8
Our Best Model 51.0 70.2 79.2

+ MCTS Decode 51.0 70.8 82.8

Table 7: Performance on MATH Dataset: Test@1,
Test@8, and Test@32 Results. Test@N denotes the
percentage of problems solved correctly at least once
when the model is allowed to make N separate guesses
for each problem.

employs MCTS to synthesize candidate reasoning
paths that capture varied solution strategies. Simi-
larly, the RStar introduced in (Qi et al., 2024) uti-
lizes MCTS to construct structured data, ensuring
that generated reasoning chains are both compre-
hensive and coherent. In parallel, Math-Shepherd
(Wang et al., 2024a) and OmegaPRM (Luo et al.,
2024) employ MCTS to collect high-quality rea-
soning data, which is subsequently used to train
PRM. Extending these ideas, (Zhang et al., 2024)
combines the strengths of MCTS and PRM to guide
policy updates.

6 Conclusion

We explore strategies to transfer long CoT reason-
ing to smaller models, addressing learning diffi-
culty and bias inheritance in distillation. We pro-
pose a MCTS framework that independently gen-
erates flexible, tree-based reasoning data, reducing
reliance on large teacher models. Enhanced by
CoT-aware post-training, our approach effectively
mitigates overly formalistic long-time thinking. Ex-
periments across diverse tasks (math, planning and
instruction-following) demonstrate robust perfor-
mance improvements. These findings highlight the
importance of well-designed data and post-training
strategies in improving the efficiency and reliabil-
ity of smaller-scale reasoning models. In the fu-
ture, we will continue to explore how reasoning
techniques can improve a broader range of non-
mathematical tasks, including machine translation
(Liu et al., 2025), multilingual and multimodal rea-
soning (Zeng et al., 2025; Li et al., 2025b).
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