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Abstract

This paper investigates the flow of factual in-
formation in Mamba-based language models.
We rely on theoretical and empirical connec-
tions to Transformer-based architectures and
their attention mechanisms. Exploiting this re-
lationship, we adapt attentional interpretabil-
ity techniques originally developed for Trans-
formers—specifically, the Attention Knockout
methodology—to both Mamba-1 and Mamba-
2. Using them, we trace how information is
transmitted and localized across tokens and
layers, revealing patterns of subject-token in-
formation emergence and layer-wise dynam-
ics. Notably, some phenomena vary between
Mamba models and Transformer-based mod-
els, while others appear universally across all
models inspected—hinting that these may be
inherent to LLMs in general. By further lever-
aging Mamba’s structured factorization, we
disentangle how distinct “features” either en-
able token-to-token information exchange or
enrich individual tokens, thus offering a uni-
fied lens to understand Mamba’s internal op-
erations. Our code can be found at https:
//github.com/nirendy/mamba-knockout.

1 Introduction

Understanding how factual information moves
through different parts of a language model
is an important step toward explaining its out-
puts. While Transformer-based models and
their attention mechanisms have been studied
in depth (Geva et al., 2023), less is known about
how structured state-space models (SSMs) pro-
cess and transfer facts across tokens and lay-
ers. Recent work has introduced Mamba-based
SSM architectures that rival Transformer per-
formance in various settings (Gu and Dao,
2024; Waleffe et al., 2024; Dao and Gu, 2024).
Yet, the internal pathways of factual informa-
tion within these models remain less explored.

* Equal contribution.

Motivated by theoretical connections showing
that selective SSMs can be understood through
an attention-like perspective (Ali et al., 2024;
Dao and Gu, 2024; Zimerman et al., 2025; Ben-
Kish et al., 2025), we draw on methods origi-
nally developed for Transformers. Notably, a
certain class of SSMs has been proven equiva-
lent to a subclass of linear attention Transform-
ers (Katharopoulos et al., 2020; Dao and Gu,
2024), suggesting that interpretability tools de-
signed for attention can also be applied to SSM-
based architectures. By employing the “Atten-
tion Knockout” technique (Geva et al., 2023),
previously used to map how factual information
flows in Transformers, we can similarly isolate
and analyze the flow of information in Mamba-
1 (Gu and Dao, 2024) and Mamba-2 (Dao and
Gu, 2024).

Our results show that Mamba models, despite
their differences from Transformers, display
certain patterns of information emergence and
routing that align with observed attention-based
behaviors. Key facts surface within certain to-
kens and gain prominence at specific layers,
mirroring the step-by-step integration of infor-
mation commonly noted in Transformers (Geva
et al., 2023). In contrast, our results also show
that other patterns are differentiated between
Mamba models and Transformer-based mod-
els, with some phenomena even varying within
each family.

By leveraging Mamba’s factorized structure,
we separate the roles of different “features” in
(i) transmitting information between tokens;
and (ii) enriching individual tokens indepen-
dently. This approach not only clarifies how
Mamba’s internal operations resemble those
of well-studied attention models, but also pro-
vides a clearer framework for future analyses
of SSM-based language models.

Ultimately, our work extends interpretability
beyond the Transformer paradigm, offering a
more unified perspective on how language mod-
els—whether attention-dominated or grounded
in state-space representations—organize fac-
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tual information. By illuminating these internal
processes, we take a step toward a more gener-
alizable understanding of how language mod-
els, and specifically Mamba, form and express
factual knowledge.

The contributions of this paper are twofold:
(i) We extend the Attention Knockout inter-
pretability framework—previously developed
exclusively for Transformers—to structured
state-space models (SSMs), enabling us to un-
cover previously unknown parallels and distinc-
tions between Mamba-based and Transformer-
based architectures’ factual-information dy-
namics. (ii) We propose a novel ‘feature knock-
out’ mechanism that takes advantage of the
unique structure of SSMs, allowing nuanced
interventions and additional insights into how
different feature types contribute to model be-
havior.

2 Related Work

Selective State-Space Modeling (SSM) was re-
cently introduced by Gu and Dao (2024), ri-
valing performance of Transformer-based mod-
els in various settings (Waleffe et al., 2024).
An analytical examination of the core opera-
tion in selective SSMs by Ali et al. (2024);
Zimerman et al. (2025) provided a complemen-
tary view of selective SSMs as attention-driven
models, allowing the application of attention-
based explainability analysis to SSM-based
models. The Structured State-Space Duality
(SSD) framework proposed by Dao and Gu
(2024) bridges SSMs and attention layers even
further, proving that a specific class of SSMs
is equivalent to a subclass of linear attention
Transformers (Katharopoulos et al., 2020). In
this work, we employ these approaches to en-
able the application of attention-based tools and
analyses to SSM-based architectures.

Complementary, several studies have analyzed
how factual information is stored and extracted
in Transformer-based models. Geva et al.
(2021) show MLP layers function as key-value
memories, which extract semantic associa-
tions regarding the input in the ultimate lay-
ers. Nichani et al. (2024) prove that shallow
Transformers have optimal factual storage in
their value matrices and MLPs. To assess in
greater accuracy where specific memories are
stored, Meng et al. (2022) suggest Causal Trac-
ing - a method for identifying critical MLPs
by adding noise to intermediate representations
and restoring clean run states at deeper layers.
They also show that in order to edit stored facts,
a rank-one matrix editing in the MLP of a sin-
gle, early, layer is sufficient. The work of Meng

et al. (2023) expands the ROME technique for
mass editing memory by expanding the editing
to multiple consecutive early layers. Hase et al.
(2023) show that early-intermediate layers are
in general good candidates for injecting new
facts to LMs, and empirically validate a partic-
ular type of Causal Tracing that is insightful for
fact editing and fact storage. Our work draws
its inspiration from Geva et al. (2023) which
analyzed how the information from multiple to-
kens is aggregated to correctly query attributes
using Attention Knockout. Their analysis re-
veals that this relies on an initial enrichment
process where the subject token extracts rele-
vant attributes in the early layers’ MLPs.

Our work most closely aligns with that of
Sharma et al. (2024), whose thorough inves-
tigation of factual associations in Mamba-1
featured an analysis using a variant of atten-
tion knockout. However, our approach differs
from them in several key aspects. Sharma et al.
(2024) focus on blocking the propagation of
information from a single token to all future to-
kens, whereas we adopt the technique proposed
in Ali et al. (2024) to remove attention specifi-
cally from one token to a single token—more
in line with previous work such as Geva et al.
(2023). Though Sharma et al. (2024) suggest
that such fine-grained blocking may be chal-
lenging due to convolution and softmax layers,
we demonstrate that a straightforward and nat-
ural implementation successfully replicates the
phenomena observed in Transformer-based at-
tention knockouts. We also investigate Mamba-
2 (where attention knockout has a more direct
interpretation) and find consistent patterns in
both Mamba-1 and Mamba-2, suggesting that
these dynamics may be fundamental across
SSM-based and Transformer-based architec-
tures. Finally, beyond leveraging attention par-
allels, our work introduces a novel “feature
knockout” mechanism that exploits the unique
structure of SSMs, enabling more nuanced in-
terventions and additional insights into how
different feature types contribute to model be-
havior. We inspect additional related works in
Appendix A.

3 Methodology

We now turn to introduce the tools that we
use in our work to analyze Mamba. We start
by describing the attention knockout mech-
anism, which was proposed for Transform-
ers, and the SSMs formulation. Then we ex-
plain our methodology for employing knockout
for SSMs and specifically for Mamba-1 and
Mamba-2.

23458



3.1 Attention Knockout

We adopt the Attention Knockout methodology
introduced by Geva et al. (2023) and apply it
to identify critical points in the flow of infor-
mation essential for factual predictions. For
successful next-token prediction, a model must
process the input tokens so that the next-token
can be inferred from the last position. Geva
et al. (2023) investigate this process internally
by “knocking out” parts of the computation and
measuring the effect on the prediction. To this
end, they propose a fine-grained intervention on
the attention layers, which, they show, serves
as a "crucial" module for communicating infor-
mation between positions. By disrupting crit-
ical information transfer through these layers,
they demonstrate that factual predictions are
constructed in stages, with essential informa-
tion reaching the prediction position at specific
layers during inference. Intuitively, critical at-
tention connections are those whose disruption
results in a marked decline in prediction qual-
ity. To test whether essential information flows
between two hidden representations at a spe-
cific layer, the authors zero out all attention
connections between them. Formally, given an
input sequence of N tokens, a model consist-
ing of L consecutive layers, and two positions
r, c ∈ [1, N ] with r ≤ c, they prevent the cth
token at layer l from attending to rth token at
layer l by zeroing the attention weights for that
layer at index c, r.

3.2 Selective State Space Models

A selective state space model (SSM) of dimen-
sion n is defined as a time-dependent recurrent
relation driven by an input signal u(t) ∈ R. At
each time step t, the model is parameterized
by matrices A(t) ∈ Rn×n, B(t) ∈ Rn×1, and
C(t) ∈ R1×n that can depend on the current
input u(t). Formally, the system evolves ac-
cording to:

x(t+ 1) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t).

These parameterizations differ between
Mamba-1 and Mamba-2. Further details can
be found in Gu and Dao (2024); Dao and
Gu (2024). However, a unifying property of
both models is that the transfer matrix A(t) is
parameterized as

A(t) = Ā∆(t), Ā = exp(diag(α)),

for some learned parameters ∆(t) ∈ R and
α ∈ [0, 1]n, a key detail used in Section 3.5.

3.3 Hidden Attention of Mamba-1

For Mamba-1, we follow the hidden-attention
perspective introduced by Ali et al. (2024)
to implement attention knockout in Mamba.
Specifically, the authors utilized the kernel rep-
resentation of Selective-SSMs and observed
that the relationship between any two tokens i
and j (where i ≤ j) is represented as an entry
in the kernel matrix

Mi,j = Qi ·Hi,j ·Kj .

Here, Qi = C(i), Hi,j =
∏j

t=i A(t), and
Kj = B(j) (see Section 3.2). To apply knock-
out between two tokens at a specific layer, we
simply assign Mi,j = 0.

3.4 Implicit Linear Attention of
Mamba-2

In Mamba-2, following Dao and Gu (2024),
the SSM layer can be interpreted as a masked
linear attention mechanism, allowing it to be
expressed as a matrix multiplication. Specifi-
cally, the SSM layer processes an input tensor
X ∈ RL×H , where L represents the sequence
length and H the dimensionality of each in-
put token. The layer transforms X through the
operation L ◦ (XMX⊤)X, where M and L
are fixed matrices determined by the layer’s
weights, L is lower triangular, and ◦ denotes
the Hadamard product. This formulation can
be viewed as an attention mechanism where
L ◦ (XMX⊤) serves as the attention matrix.
In this matrix, the entry at position (i, j) quanti-
fies the degree to which the ith token attends to
the jth token, analogous to the attention scores
in traditional Transformer-based models.

3.5 Individual Feature Knockout in
SSMs

In both Mamba-1 and Mamba-2, each feature
is treated as an independent time-varying sig-
nal modeled by distinct SSMs. Leveraging
this property, we propose a feature knockout
mechanism that targets specific types of fea-
tures at each layer. Specifically, we classify
features as either context-dependent or context-
independent based on their decay character-
istics and perform knockout by zeroing out
their outputs. Formally, if we denote α, Ā
and ∆(t) as in Section 3.2, with α being the
model weights and ∆(t) being individual token-
dependent features, the dynamics of the state
matrix becomes:

A(t) = Ā∆(t),

j∏

t=i

A(t) = Ā
∑j

t=i ∆(t).
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We interpret
∏j

t=i A(t) as a measure of how
past signals influence current representations.
This product exhibits exponential decay, depen-
dent on the matrix Ā so features parameterized
by Ā ≈ 0 quickly lose memory and concentrate
on localized information. In contrast, features
parameterized by Ā ≈ 1 retain more historical
context. We therefore define context-dependent
features as those with the largest one-third of
∥Ā∥1 values, and context-independent features
as those with the lowest one-third of ∥Ā∥1 val-
ues.

4 Experiments

This section presents our main experimental
contributions and is structured as follows: Sec-
tion 4.1 presents the dataset used across our
experiments. Section 4.2 examines the infor-
mation flow to the last token from different
sources, highlighting both shared and distinct
behaviors across SSM-based and Transformer-
based models. Section 4.3 validates our find-
ings qualitatively and shows they are robust
across a variety of model sizes. Section 4.4
investigates the features used to convey infor-
mation between tokens. In-depth case studies
are explored in Section 4.5. Throughout these
subsections, the results are presented with a
knockout window of size 9. An analysis of
the impact of window size is presented in Sec-
tion 4.6, which shows that for smaller mod-
els it is better to use smaller window sizes.
Other additional experiments are provided in
Appendix C. Code for reproducing all experi-
ments can be found at https://github.com/
nirendy/mamba-knockout.

4.1 Datasets

To evaluate the performance of the models
with attention knocked-out, we utilized the
COUNTERFACT dataset (Meng et al., 2022),
which consists of factual triplets in the form
(subject, relation, attribute). The task at hand
requires models to predict a factual attribute
(e.g., “Beats Music is owned by ___”). We
focus on a subset of 672 triplets in which all
models presented correctly predicted the next
token. This choice disentangles the effects of
the datasets and the model and ensures that
any performance changes are solely due to the
models. To ablate this choice, we also evalu-
ated the effect of attention knockout on datasets
composed exclusively of examples correctly
predicted by each model (see Appendix C.1),
yielding qualitatively similar results.

4.2 Information Flow to the Last
Token

We investigate how the final token in Mamba-
1 and Mamba-2 models transforms into the
correct answer using the attention knockout
method from Geva et al. (2023) (see Sec-
tion 3.1), and compare the emerging patterns
with those in the GPT-2 model (Radford et al.,
2019). Specifically, we knockout the infor-
mation flow to the final token from various
sources—subject tokens, relation tokens, the
first token, and the final token itself—with re-
sults shown in Figure 1.

4.2.1 Shared Characteristics

Across all models, inhibiting the final token’s
attention to subject tokens in late-intermediate
layers consistently causes a notable drop in
correct-token probability, mirroring patterns ob-
served in Transformer-based models by Geva
et al. (2023).

This result underscores the critical role of sub-
ject tokens in directing factual information
flow within LLMs. More broadly, these com-
pelling findings demonstrate that SSM-based
and Transformer-based models share similar
interpretability characteristics, hinting at uni-
versal properties across all attention-based ar-
chitectures. In Section 4.4 we show a surpris-
ing connection between the behavior of subject
tokens and that of context-dependent features.

4.2.2 Distinct Characteristics

In addition to their shared characteristics,
our analysis reveals that each model exhibits
unique properties not present in all others.

First, we observe that, consistent with Geva
et al. (2023), GPT-2 exhibits a pronounced first-
position bias—a feature not shared by the SSM-
based models. This finding aligns with previ-
ous research suggesting that the first-position
attention sink is more evident in normalization-
based attention methods (Gu et al., 2024).

Second, GPT-2 shows a strong dependence on
information flow from relation tokens in the
very early layers, a reliance that gradually di-
minishes in later layers. In contrast, SSM-
based models only exhibit significant depen-
dence on relation tokens in the later layers.
Notably, both Mamba-1 and Falcon-Mamba
display a pronounced knockout response, char-
acterized by an initial drop in performance fol-
lowed by a sharp increase in correct-token prob-
ability.
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Figure 1: Relative change in correct-token prediction probability when removing information flow to the last
token from various source tokens. The x-axis represents the relative depth of the first layer within the 9-layer
attention knockout window, while the y-axis indicates the resulting performance change. The plots present model
performance when knocking out (a) the subject, (b) the relation, (c) the last token, and (d) the first token. Notice
that subject token knockout yields a consistent performance drop across models and similar layer-specific effects,
highlighting the crucial role of subject tokens in LLMs. In contrast, knockouts of other tokens produce less robust
and more variable outcomes. For ablations on dataset selection see Appendix C.1. See Appendix D for extended
implementation details.

Figure 2: Impact of last token attention knockout on
correct-token probability in Mamba-1. The x-axis dis-
plays the baseline probability for each query, while the
y-axis shows the probability after knockout. Observe
that removing the information flow from the final to-
ken to itself across the last 9 layers yields a significant
increase in correct-token probability. For further imple-
mentation details, see Appendix D.

Surprisingly, we observe that both Mamba-1
and Falcon-Mamba also exhibit a marked in-
crease in the correct-token probability at later
layers when attention from the last input token
is blocked. To investigate this phenomenon, we
compare the correct token probability before
and after the knockout in Figure 2, finding that
it consistently surges to nearly 1, regardless of
the initial likelihood. We find this result sur-
prising and defer a deeper exploration of its
implications to future work.

4.3 Architecture Consistency

To assess whether this pattern of results should
be attributed to architectural differences, we

validate our findings by performing attention
knockout on models of different sizes, pre-
sented in Figures 3 to 5. Our results show
that while the smallest models seem to suf-
fer from knockout much more substantially
than the larger models (which could be ex-
plained due to the fact that our window size
of choice blocks 37.5% of layers - see Sec-
tion 4.6 for a more thorough analysis of this
behavior) the overall patterns are consistent,
with the main phenomenon shared throughout—
all models show a reliance on direct informa-
tion flow from the subject tokens to the last
token in the late-intermediate layers. Con-
versely, as discussed in Section 4.2.2, the mod-
els exhibit distinct, architecture-specific phe-
nomena; Mamba-1 models rely on both the
last token and relation tokens in the later lay-
ers (see Figure 3); Mamba-2 models primarily
depend on relation tokens in the later layers
(see Figure 4); GPT-2 models show a strong de-
pendence on relation tokens in the early layers,
with this reliance gradually diminishing in later
layers (see Figure 5). To reinforce the claim
that the unique information flow patterns in
Mamba variants arise from the SSM layers and
their characteristics, we extended our informa-
tion flow analysis to two additional variants of
transformer-based LLMs, Llama 3 (Grattafiori
et al., 2024) and Mistral (Jiang, 2024). The re-
sults show a consistent pattern shared between
all transformer-based LLMs which is distinct
from the patterns observed in Mamba-based
models. Appendix C.3 presents detailed exper-
iments on this.
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Figure 3: Relative change in correct-token prediction probability when removing information flow to the final
token from various source tokens across Mamba-1 models of varying sizes. This figure is identical to Figure 1, but
presents the performance of Mamba-1 models of sizes 130M, 1.4B, and 2.8B. As observed in other models, subject
token knockout consistently reduces performance. Unique to Mamba-1, knockouts of relation tokens and of the
final token in the ultimate layers initially lower the correct-token probability before a pronounced increase. For
further details see Figure 1 and Appendix D. For ablations on window size see Section 4.6.

Figure 4: Relative change in correct-token prediction probability when removing information flow to the final
token from various source tokens across Mamba-2 models of varying sizes. This figure is identical to Figure 1, but
presents the performance of Mamba-2 models of sizes 130M, 1.3B, and 2.7B. As observed in other models, subject
token knockout consistently reduces performance. Unique to Mamba-2, knockout of relation tokens in the later
layers initially lowers the correct-token probability before a pronounced increase. For further details see Figure 1
and Appendix D. For ablations on window size see Section 4.6.

4.4 Feature Knockout

Expanding on Section 3.5, we selectively per-
form attention knockout on context-dependent
and context-independent features to investi-
gate their distinct roles. We compare feature
knockout from subject tokens to the last to-
ken under three conditions: (1) knocking out
all features (as in Section 4.2), (2) knocking
out only context-dependent features, and (3)
knocking out only context-independent fea-
tures. Figure 6 shows that performing knock-
out on context-dependent features (slower de-
cay) yields behavior similar to performing at-
tention knockout in all features. In contrast,
performing knockout in context-independent
features (faster decay) shows little to no impact.
These observations underscore the pivotal role
of context-dependent features in subject tokens,
effectively mirroring the impact of knocking

out all features. While this analysis remains
correlational and does not yet establish causa-
tion, it opens promising directions for future
interpretability research in SSM-based archi-
tectures: much like how attention maps offer
interpretability insights in Transformer archi-
tectures, evaluating a feature’s degree of con-
text dependence in SSM-based models could
provide a valuable lens into how tokens behave
across layers and influence the model’s deci-
sion making. Furthermore, building on these
insights, future work could potentially investi-
gate whether selectively fine-tuning context-
dependent features alone enables more effi-
cient training in SSM-based architectures. Ap-
pendix B proposes several practical applica-
tions, while a full exploration of their potential
is left to future investigations. We extended our
analysis of context-dependent and independent
features to additional variants of Mamba-1 and
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Figure 5: Relative change in correct-token prediction probability when removing information flow to the final
token from various source tokens across GPT-2 models of varying sizes. This figure is identical to Figure 1, but
presents the performance of GPT-2 models of sizes 355M, 774M, and 1.5B. As observed in other models, subject
token knockout consistently reduces performance. Unique to GPT-2, knockout of relation tokens in earlier layers
profoundly lowers the correct-token probability. Additionally, GPT-2 models exhibit a robust first token bias. For
further details see Figure 1 and Appendix D.

Figure 6: Relative change in correct-token probability when knocking out connections from subject tokens to the
last token across different feature categories for (a) Mamba-1, (b) Mamba-2, and (c) Falcon-Mamba. We compare
three settings: knockout of all features (blue), knockout of context-independent features (red), and knockout of
context-dependent features (green). Notably, knocking out context-dependent features alone closely mirrors the
effect of removing all features. For implementation details see Appendix D

Mamba-2 models in Appendix C.2. The sup-
plementary findings reaffirm our conclusions.

4.5 Specific Case Studies

Our final contribution is a detailed analysis of
specific examples and the impact of attention
knockout from different tokens on model per-
formance. An example is shown in Figure 7.
Our experiments reveal two key findings. First,
Mamba-1 and Mamba-2 models do not exhibit
a profound first-token bias seen in Transformer-
based models (Xiao et al., 2024), as blocking
the first token from attending to the last token
does not significantly affect performance. Sec-
ond, Mamba-1 models heavily rely on the last
token, a behavior not observed in Mamba-2
models as can also be seen in Figure 1. We at-
tribute this difference to architectural variations
between the models and anticipate that future
work will explore its underlying causes. More

examples are available in Appendix C.4.

4.6 Effect of Window Size

The choice of window size for the knockout
analyses can produce varied results. On one
hand, choosing too small a window may show
little to no effect, as information flow could be
distributed across multiple consecutive layers.
On the other hand, choosing too large a window
reduces resolution, and impairs our ability to
reach meaningful conclusions regarding infor-
mation flow in the model.

To empirically examine the effect of window
size, we perform the knockout experiment in
Section 4.2 using several window sizes - 1, 5,
9, 12, 15, on both Mamba-1 (Figure 8, Fig-
ure 9, Figure 10) and Mamba-2 (Figure 14 in
Appendix C) of various sizes. Results corrob-
orate our intuition, with reduced window size
showing lesser effects, and higher window sizes
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Figure 7: Relative change in correct-token probability following the removal of attention from each token to the
final token. Columns indicate the first layer in the knockout window, and rows correspond to the token from which
attention was removed. Results are shown for the query “Where is South by Southwest? It is located in ___”.
Note that in contrast to GPT-2, neither Mamba-1 nor Mamba-2 exhibit a strong reliance on the first token, while
Mamba-1 exhibits marked dependence on the final token. For additional experiments and implementation specifics,
see Appendices C and D.

Figure 8: Relative change in correct-token probability after removing the information flow to the final token
from various source tokens for Mamba-1 130M across different window sizes. This figure, which parallels
Figure 1, displays performance for window sizes of 1, 3, 5, 9, 12, and 15. The qualitative patterns observed for
Mamba-1 remain consistent, with larger window sizes amplifying these effects. For additional details, see Figure 1
and Appendix D.

showing greater effects. Larger window sizes
display smoother, more diffuse patterns, while
smaller window sizes are characterized by short
surges, indicating specific layers are more criti-
cal in the flow of information. While the overall
pattern of information flow remains the same,
with the critical point of subject-to-last token
information flow in the late-intermediate layers
remaining the same, we can see that it is better
to use smaller window sizes with smaller mod-
els. While in Figures 3 to 5 we see a different
behavior for the small models, if we look at
their behavior with smaller window sizes, it is
more similar to the larger models. The reason
for that is that the smaller model has less pa-
rameters and, therefore, larger window sizes
blocks a large portion of the information, e.g.,
blocking 37.5% of blocks for window size 9.
Therefore, it might be better to use a smaller
window size with knockout to get a better reso-
lution with small models and in this way better
analyze their behavior.

5 Conclusion

We observe some similarities between SSM-
based and Transformer-based models in extract-
ing factual attributes and transferring informa-
tion from the subject to the last token. We
show that the models rely on different parts of
the sentence to extract the correct answer, de-
pending on their architecture. Using a unique
property of SSM-based models, we identify the
functionality of specific features based on their
weights.

This work serves as both an initial exploration
of the unique properties of SSM-based lan-
guage models and a deeper investigation of the
shared foundations of language understanding
across neural network models. The explainabil-
ity approach presented here may lead to more
unified methods for explaining the internal com-
putations of diverse neural architectures.

Our findings offer several key contributions.
They can guide training decisions for lan-
guage models by enabling targeted pruning
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Figure 9: Relative change in correct-token probability after removing the information flow to the final token from
various source tokens for Mamba-1 1.4B across different window sizes. This figure is identical to Figure 8 but
instead presents the results for Mamba-1 1.4B. For additional details see Figures 1 and 8 and Appendix D.

Figure 10: Relative change in correct-token probability after removing the information flow to the final token from
various source tokens for Mamba-1 2.8B across different window sizes. This figure is identical to Figure 8 but
instead presents the results for Mamba-1 2.8B. For additional details, see Figures 1 and 8 and Appendix D.

that eliminates redundant information flows
and reduces computational overhead. More-
over, our work lays the groundwork for fine-
tuning strategies—such as adjusting Mamba’s
final layer—to modify language distribution
without sacrificing factual accuracy. Finally,
distinguishing between shared and unique pat-
terns across architectures can deepen our under-
standing of language modelling as a whole, and
inform the design of more robust AI models.

6 Limitations

In this work we primarily use attention-
knockout to examine how information flows
between tokens in Mamba-1 and Mamba-2.
While this approach shows causality, when sev-
ering token connections changes the correct
attribute probability, it is far from exhausting
the complete pattern of information flow in the
model. First, our use of this approach is limited
by its application in continuous layer windows,
with all SSMs in a layer affected simultane-
ously. A much more diffuse and intricate pat-
tern could occur in reality, while this approach
would fail to recognize it. For a more holistic

analysis, fine-tuning-based approaches should
be used. While we identify critical connections
between tokens, our method does not elaborate
on what information actually passes through
these connections. Future works should attempt
to decipher the content of these internal repre-
sentations. As the attention knockout effect is
not ecological, any change in probability could
be attributed to it, however the localized pattern
suggests that changes are due to specific miss-
ing information. Attention-knockout focuses
only on the flow of information between tokens,
thus it cannot be used in order to explain the
role of token-independent operations (e.g. gat-
ing, convolution, etc.). As stated in Section 2,
we focus on between-token information flow as
it is the key difference between selective-SSMs
and attention. Our methods recognize how in-
formation flows between tokens and the critical
points in this contextualization, however, they
do not shed light on why both Transformers and
Mamba models converge to these similar pat-
terns. Future works should attempt to explain
the inductive-biases of the different architec-
tures that drive these differences in information
flow.
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A Extended Related Work

Our work contributes to the growing field of
mechanistic interpretability, which seeks to ex-
plain neural network behaviors by analyzing
internal circuits. The circuit analysis paradigm
was introduced by Olah et al. (2020), who
proposed that groups of neurons form inter-
pretable sub-networks (circuits). Elhage et al.
(2021) extended this approach to Transformers
by reverse-engineering a small GPT-2 model,
identifying induction-head circuits that facili-
tate in-context copying. Similarly, Olsson et al.
(2022) explored how certain attention heads
enable in-context learning.

Beyond attention mechanisms, other research
examined MLP pathways and feature represen-
tations. Geva et al. (2021) demonstrated that
Transformer MLP layers can act as key-value
memories for factual associations (Meng et al.,
2022). Complementary studies by Finlayson
et al. (2021) used causal interventions to trace
linguistic features through Transformer layers,
revealing assemblies of neurons mediating spe-
cific features. Recent work on polysemantic
versus monosemantic neurons (Elhage et al.,
2022; Bricken et al., 2023) further highlights
the importance of disentangling neuron func-
tions to improve interpretability.

Our Mamba-based approach for intervening in
information flow aligns with prior methods of
causal tracing and circuit testing. Meng et al.
(2022, 2023) introduced causal tracing to iden-
tify critical layers for factual storage, using tar-
geted edits (ROME and MEMIT) for knowl-
edge modification. Hase et al. (2023) similarly
probed Transformer layers to localize factual
information. Our attention-knockout method
builds upon these studies, adapting fine-grained
intervention techniques to the state-space archi-
tecture of Mamba.

We also connect to automated circuit discovery
techniques such as path patching (Wang et al.,
2022; Conmy et al., 2023), where researchers
systematically test causal paths within mod-
els. Our knockout method similarly isolates
token-to-token information channels, provid-
ing insight into causal computation pathways.

B Practical Applications

The interpretability methods presented in this
work provide practical directions for targeted
model interventions. We propose a few of them
below.

Pruning. Our distinction between context-
dependent features—those critical for
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inter-token information flow—and context-
independent features—focused primarily on
single-token processing—enables smarter prun-
ing strategies. Context-independent features
often contribute minimally to between-token
information-flow and therefore can be safely
pruned, reducing model complexity without
significant performance loss. This targeted
approach mirrors prior work in Transformers
where redundant attention heads were pruned
effectively (Michel et al., 2019).

Fine-Tuning and Adaptation. Context-
dependent features identified via knockout anal-
ysis represent targeted fine-tuning opportuni-
ties. Adjusting only these crucial features could
efficiently adapt the model to new tasks or fac-
tual domains without global retraining. This
focused fine-tuning strategy aligns with prior
findings in Transformers (Hase et al., 2023)
where precise adjustments to identified causal
pathways effectively updated model knowledge.
Our methods similarly offer practical leverage
points for precise and efficient model adapta-
tion.

Model Editing. Token-level knockout identi-
fies key token interactions critical for factual
recall, highlighting optimal sites for targeted
model edits. While similar causal tracing in
Transformer models has informed successful
editing strategies (Meng et al., 2022, 2023),
our approach extends these methods to SSM-
based models such as Mamba-1 and Mamba-
2. In summary, the interpretability techniques
introduced here serve as diagnostic tools to in-
form strategic model modifications, pruning,
and fine-tuning.

C Further Experiments

C.1 Dataset Ablations

We analyzed a subset of factual associations
where all models correctly predicted the next
token to disentangle the effects of the datasets
and the model and ensure that any performance
changes are solely due to the models. A po-
tential drawback of this approach is that the se-
lected subset could introduce bias, potentially
leading to misleading conclusions. To assess
whether this is the case, we performed the same
knockout analysis on the set of sentences for
which each model made a correct prediction,
allowing for a broader comparison. The results
of these evaluations are shown in Figure 11. In
addition, we present results on the subset of
inputs for which all models correctly predicted
the next token. The figure shows that the same

patterns emerge across these subsets with mini-
mal differences, confirming that our approach
robustly identifies consistent phenomena across
the different models.

C.2 Further Comparisons with
Transformer-Based Models

To confirm that the difference in information
flow patterns between Mamba models (Gu and
Dao, 2023; Dao and Gu, 2024) and GPT-2 mod-
els (Radford et al., 2019) can be attributed to
architectural differences, we report auxiliary
information flow experiments performed on
additional Transformer-based LLMs. Specifi-
cally, we analyzed three variants of the Llama
3 model (Grattafiori et al., 2024) and two vari-
ants of the Mistral model (Jiang, 2024). The re-
sults are reported in Figure 13. All transformer-
based variants show shared characteristics, im-
plying they should be attributed to the shared
architecture: (i) all models show a similar pat-
tern of a critical flow of information passing
from the subject tokens to the last token in the
late intermediate layers; (ii) all models give lit-
tle importance to information flow from the last
token to itself; and; (iii) nearly all models show
strong evidence for first-position bias, similar
to previous findings (Xiao et al., 2024), with the
most substantial impact observed in the final
layers.

C.3 Feature Knockout on Additional
Models

To further examine the role of context-
dependent features in Mamba models, we
performed the same feature-knockout analy-
sis on smaller variants of the Mamba-1 and
Mamba-2 models. Results are reported in Fig-
ure 12. All models show consistent roles for
context-dependent and independent features,
with knockout of context-dependent features
from subject tokens having a much greater
impact than that of context-independent fea-
tures. On the other hand, knockout of context-
dependent features from either the relation to-
kens, the last token or the first token shows simi-
lar patterns to knockout of context-independent
features.

C.4 Specific Case Studies

We extend the analysis of Section 4.5 to addi-
tional examples, architectures, and knockout-
window sizes.

Across Architectures and Model Sizes.
Figure 16 displays ablation heatmaps for
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Figure 11: Relative change in correct-token probability after knocking out the connection from each token to the last
token in (a) Mamba-1 2.8B, (b) Mamba-2 2.7B, (c) GPT-2 1.5B, (d) Mamba-1 7B Falcon. The top row shows results
on the subset of samples each model was correct on. The bottom row shows results on the subset of samples where
all models were correct. The X-axis indicates the relative depth of the layer on which we perform the knockout. The
y-axis indicates the relative change in correct-token probability. Different colors indicate the source token.

Mamba-1 and Mamba-2. The patterns high-
lighted persist: Mamba-1 shows a pronounced
reliance on the final token with little first-
token bias, whereas Mamba-2 distributes in-
fluence more evenly across the sequence. In
both Mamba variants, we also observe a con-
centrated band of sensitivity around the sub-
ject tokens - the same band that emerged in
the information-flow graphs at roughly the 70
depth layer—underscoring the models’ focus
on the entity whose attribute is being predicted.
The same analysis for Transformer baselines
is presented in Figure 17, where a strong first-
token dependence is evident at every size.

Effect of Knockout-Window Size. To
isolate how window size modulates these ef-
fects, we vary WS ∈ 1, 5, 9, 15 in the selected
model architectures and sizes (Figures 18 to 20).
Smaller WS values produce sparser heatmaps,
but pinpoint the layers that drive the largest
probability shifts. For example, the surge
in final-token probability for Mamba-1 can
be traced to ablation in the single last layer
(WS = 1). Similar layer-specific contribu-
tions are visible for individual phrases in both
Mamba-2 and GPT-2. In contrast, some effects
only emerge when the ablation window is suf-
ficiently deep: in GPT-2, the characteristic de-
pendence of the first token is barely detectable
at WS = 1 but becomes more pronounced as
the window expands

D Implementation Details

Code for reproducing all experiments can
be found at https://github.com/nirendy/
mamba-knockout. All experiments were con-
ducted on a single NVIDIA A100 GPU and im-
plemented using PyTorch (Paszke et al., 2019).
The attention-based Mamba-2 model was eval-
uated within the same environment across all
experiments to ensure consistency. For the
Mamba-1 analyses, we used pretrained weights
from Gu and Dao (2024) published in the Hug-
ging Face framework (Wolf et al., 2020). For
the Mamba-2 analyses, we modified the imple-
mentation of Ip (2023). As the original Mamba-
2 implementation doesn’t compute the atten-
tion matrix, relying instead on a more efficient
computation strategy, we re-implemented the
selective SSM layer to explicitly construct the
attention matrix while maintaining the func-
tionality. The weights of the model and the
tokenizer, gpt-neox-20b (Black et al., 2022),
were both imported from Hugging Face (Wolf
et al., 2020). To obtain the effect of knock-
out on the Transformer-based GPT-2, we used
the implementation published by Geva et al.
(2023).
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Figure 12: A full comparison of the effect of feature-knockout on all size variants of Mamba models. Each column
shows the effect when knocking out information flow from (a) the subject, (b) the relation, (c) the last, and (d) the
first tokens to the last token. Each row shows the results for a different model.
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Figure 13: A full comparison of the effect of attention knockout on all model variants. Each column indicates
the knockout target. Each row indicates the model family (Mamba-1, Mamba-2, Falcon Mamba, GPT-2, Llama,
Mistral). Different coloring indicates the specific model variant.
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Figure 14: Relative change in correct-token probability after removing the information flow to the final token from
various source tokens (columns) on Mamba-2 with various model sizes (rows) across different window sizes (lines).
This figure, which parallels Figure 1, displays performance for window sizes ∈ {1, 3, 5, 9, 12, 15}. The qualitative
patterns observed for Mamba-2 remain consistent, with larger window sizes amplifying these effects. For additional
details, see Figure 1 and Appendix D.
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Figure 15: Identical analysis and layout to Figure 14, but applied to Transformer baselines
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Figure 16: Relative change in correct-token probability after ablating the connection from each token to the final
token, shown across different Mamba architectures with a fixed window size of 9. While Mamba-1 shows strong
reliance on the final token and minimal dependence on early tokens, Mamba-2 distributes influence more evenly,
suggesting improved integration of contextual information.
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Figure 17: Same analysis as above (Figure 16), but applied to Transformer architectures at comparable parameter
scales, using a fixed window size of 9.
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Figure 18: Relative change in correct-token probability after ablating the connection from each source token to the
last token in Mamba-1 2.8 B. Columns correspond to ablation window sizes ∈ {1, 5, 9, 15}, and rows index the
source token. Enlarging W amplifies the impact of mid-sequence tokens.
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Figure 19: Identical analysis for Mamba-2 2.7 B. Columns again denote ablation window sizes ∈ {1, 5, 9, 15}.
Relative influence is more evenly distributed than in Mamba-1, with larger W revealing a cumulative contribution
from earlier context.

Figure 20: Same analysis applied to GPT-2 1.5 B. Columns show ablation window sizes ∈ {1, 5, 9, 15}.

23477


