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Abstract

Deploying large language models (LLMs) with
low-rank adaptation (LoRA) on mobile devices
is promising due to their capability to com-
plete diverse domain-specific tasks while en-
suring privacy and accessibility. In this pa-
per, we introduce MobiLoRA to accelerate
LoRA-based LLM inference on mobile de-
vices. MobiLoRA focuses on optimizing the
key-value (KV) caches due to the limited com-
puting and memory resources of mobile de-
vices. The key insight of MobiLoRA lies in
the utilization of two contexts for on-device
LoRA serving: semantic-level contexts, such
as prompts with shared prefixes, and system-
level contexts, such as the application status
(e.g., foreground or killed) of LLM requests.
Specifically, for semantic-level contexts, Mo-
biLoRA proposes similarity-aware delta en-
coding, which leverages token-wise similarity
in KV caches across LoRA adapters for ef-
ficient storage and reuse. Furthermore, Mo-
biLoRA advocates context-aware KV cache
management to optimize cache eviction consid-
ering the system-level contexts. We implement
MobiLoRA and compare it with state-of-the-
art LLM serving frameworks using real-world
mobile device traces. Results show that Mo-
biLoRA accelerates LoRA-based LLM infer-
ence by 18.1%~80.5% on mobile devices.

1 Introduction

Deploying pre-trained large language models
(LLMs) directly on mobile devices (e.g., smart-
phones) is crucial considering data privacy and
service accessibility (Yi et al., 2023a; Kong et al.,
2024b). To specialize pre-trained models for di-
verse domain-specific demands on the device, low-
rank adaptation (LoRA) (Hu et al., 2022; Dettmers
et al., 2024) is a widely used parameter-efficient
fine-tuning technique. LoRA retains the base
model parameters and introduces plug-and-play
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adapters to Transformer layers for fine-tuning, typ-
ically with a size of tens of megabytes. Major
mobile device vendors such as Apple and Google
heavily rely on LoRA adapters for their on-device
intelligent services (Gunter et al., 2024; Android
Developers, 2023).

Given the promise of LoRA-based LLMs, serv-
ing a set of adapters with the base model efficiently
attracts much attention. Researchers make efforts
to serve numerous LoRA adapters in the datacen-
ter (Wu et al., 2024a; Sheng et al., 2024; Chen et al.,
2024; Kong et al., 2024a). Focusing on throughput,
these works merge multiple LoRA adapters with
the base model and leverage handcrafted CUDA
kernels to support the batched inference of the
fused model. In contrast, for on-device LLM in-
ference, latency metrics such as time-to-first-token
(i.e., TTFT) are critical since real-time interaction
and handling of individual requests are common
on mobile devices. Other mainstream LLM serv-
ing frameworks (Kwon et al., 2023; Gao et al.,
2024b; Liu et al., 2024; Lin et al., 2024) focus
on storing the intermediate states, i.e., key-value
(KV) cache, to avoid repetitive computation across
requests with shared prefixes. The limited com-
puting and memory resources on mobile devices
underscore the importance of reusing KV cache.
However, existing approaches are not directly ap-
plicable to LoRA-based LLMs because KV cache
for different adapters is not reusable even when
requests are identical. Hence, serving LoRA-based
LLMs efficiently is challenging on mobile devices.

Fortunately, two unique opportunities on mobile
devices are underexploited for accelerating LoRA-
based LLM inference, namely semantic-level and
system-level contexts.

(1) Reusing semantic-level contexts. During
daily usage of mobile devices, requesting differ-
ent LoRA adapters with the same semantic-level
contexts, i.e., prompts and user inputs, is com-
mon (Hong et al., 2023; Wu et al., 2024b). For
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instance, users first use a proofreading adapter to
refine the text when writing an email, and then
condense the same paragraph with a summariza-
tion adapter. Although the KV caches are different
for the same tokens on different adapters, our pre-
liminary experiments show that they exhibit high
token-wise similarity. This similarity facilitates the
efficient encoding and reusing of the KV caches
for LoRA adapters under semantic-level contexts.

(2) Exploiting system-level contexts. Besides the
semantic-level contexts, another unique character-
istic of on-device LLM inference is the easy access
to system-level contexts such as application sta-
tus that queries the LLM, e.g., foreground active
or killed. Utilizing this kind of context brings a
broader optimization space for efficient LLM serv-
ing on mobile devices. For example, when a user
kills an application, KV caches associated with that
application’s queries are probably not reused. It
is prudent to evict the cache and free up space for
other active applications.

Leveraging the above opportunities, we propose
MobiLoRA to accelerate the inference of LoRA-
based LLMs on mobile devices. Considering the
limited resources on mobile devices, we introduce
a new attention mechanism, CtxAttention, to en-
hance the reusability of the KV cache via on-device
contexts. Based on CtxAttention, for semantic-
level contexts, MobiLoRA proposes similarity-
aware delta encoding for the KV cache of shared
prefixes on different LoRA adapters, facilitating its
efficient storage and reuse. For system-level con-
texts, MobiLoRA leverages a context-aware KV
cache management to optimize the preservation
and eviction of the KV cache. Beyond the widely-
used management based on least recently used
(LRU) (Zheng et al., 2023; Kwon et al., 2023), Mo-
biLoRA involves the application status that queries
the LLM when deciding KV cache eviction. We im-
plement MobiLoRA on top of the state-of-the-art
LLM serving system, SGLang (Zheng et al., 2023),
and extensively evaluate the framework based on
real-world mobile application usage traces. Results
show that MobiLoRA accelerates the on-device
LoRA-based LLM inference by 18.1%~81.3% in
terms of time-to-first-token (TTFT). This paper
makes the following contributions:

• To the best of our knowledge, this is the first
work to optimize the KV cache of LoRA-
based LLM on mobile devices. This opti-
mization is motivated by our observation that
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Figure 1: On-device deployment of LoRA-based LLM,
exemplified using FinGPT adapter.

utilizing semantic and system-level contexts
improves inference efficiency.

• Based on our observations, we propose a
similarity-aware delta KV cache encoding
used by different LoRA adapters and a
context-aware KV cache management strat-
egy for efficient on-device KV cache reuse.

• We implement MobiLoRA and extensively
evaluate its performance. Results show that
our approach enhances the efficiency of on-
device natural language processing tasks.

2 Background and Motivation

In this section, we first introduce the on-device
LoRA-based LLM and the difficulty of reusing
the KV cache with LoRA. We then present the
observations that guide the design of MobiLoRA.

2.1 Basics of On-device LoRA Serving

LoRA-based LLM for mobile devices. LoRA-
based LLM fine-tuning is now widely adopted on
mobile devices. Major mobile device manufactur-
ers leverage LoRA in their on-device intelligent
services, such as Apple Intelligence (Apple, 2024)
and Android AICore (Android Developers, 2023).

To meet diverse daily demands with constrained
resources, on-device LoRA-based services gener-
ally follow a single-model, multiple-adapters ap-
proach, illustrated in Fig. 1. The LoRA adapters
are selectively activated according to the requests.
For example, Apple Intelligence leverages an LLM
with 3B parameters as the base model and offers
various LoRA adapters for different scenarios, such
as writing tools that include text proofreading and
rewriting, notification prioritizing, and smart reply.

Challenging to reuse LoRA-based KV cache.
Due to the autoregressive nature of LLM inference,
the generation of each token uses the hidden state of
all its preceding tokens. Storing these hidden states,
referred to as key-value (KV) cache, for future to-
ken generation helps avoid repeated computation.
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Figure 2: Key (left) and value (right) cache similarity of
base model and the LoRA fine-tuned model.

Therefore, utilizing the KV cache has become a
popular technique for accelerating LLM inference.
Various KV cache frameworks are proposed, such
as vLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2023). Apart from using the KV cache within
a single request, these frameworks also investigate
the potential to reuse the cache in multi-turn conver-
sations or across different requests. The rationale
behind this opportunity is KV cache can be reused
between the prompts that share the same prefix.

However, for LoRA-based LLMs, direct KV
cache reuse across LoRA adapters is impractical.
We exemplify with FinGPT LoRA adapter fine-
tuned on Llama2-7B based model. FinGPT applies
low-rank matrices to the calculation of Q, K, and V
of each Transformer layer. Fig. 1 shows the exam-
ple of the calculation of V. LoRA converts the origi-
nal calculation V = xWv to V ′ = xWv+xW a

v W
b
v ,

where x is the attention input, Wv ∈ Rh×d is the
projection matrix of V. W a

v ∈ Rh×r, W b
v ∈ Rr×d

are low-rank matrices with rank r. Similarly, we
have the attention score with LoRA:

AttnLoRA = softmax(
Q′K ′T
√
dk

V ′), (1)

where Q′ and K ′ are the updated values of Q and K
because of LoRA, dk is the hidden dimension. The
KV cache with LoRA (K ′, V ′) is different from
the ones without LoRA (K, V ), and the non-linear
softmax operation further leads to the reuse of the
KV cache being impractical. To make things worse,
due to the autoregressive generation, the discrep-
ancy between with and without LoRA propagates
through deeper layers and subsequent tokens.

2.2 Opportunities of Exploiting Contexts
Semantic-level context. During the daily use of
mobile devices, the semantic-level context, i.e.,
similar or even identical prompts, sent to different
LoRA adapters are common. To investigate how to
efficiently reuse the semantic-level context, we con-
duct a preliminary experiment. We feed the same

prompt excerpted from ShareGPT (ShareGPT,
2023) to the base Llama2-7B model and FinGPT
LoRA fine-tuned model. We then compare the simi-
larity of the KV cache of the two models, illustrated
in Fig. 2. We have the following observations.

Obs. #1: KV cache similarity exists among dif-
ferent LoRAs with the same prompt. We observe
a maximum 97% and 95% similarity in key and
value cache, respectively. With this similarity, there
exists an opportunity to store only incremental dif-
ferences of the KV cache among different LoRAs
to reduce the memory consumption, which is espe-
cially limited on mobile devices.

Obs. #2: Token-wise decreasing pattern of sim-
ilarity is observed. Specifically, the similarity is
more pronounced in the shallow Transformer lay-
ers, and it decreases as the layer goes deeper. The
rationale behind this pattern is that as the layer
goes deeper, more LoRA outputs are merged with
the base model’s output, leading to more different
KV tensors. How to exploit this observation to en-
hance the KV cache encoding efficiency requires
substantial design of MobiLoRA.

System-level contexts. KV cache management,
e.g., eviction, is necessary since the limited re-
source on mobile devices prevents the cache from
growing continuously. However, commonly used
LRU-based eviction falls short in certain scenar-
ios. For example, when an application is termi-
nated by users, the KV caches of the LLM requests
sent by the terminated application are typically no
longer needed and should be evicted first. This
system-level context is hardly accessible for serv-
ing frameworks in datacenters since their requests
are initiated by external applications. In terms of
on-device serving, MobiLoRA has easy access to
this context, leading to a new horizon for KV cache
management. Hence, we have the following obser-
vation on system-level contexts:

Obs. #3: Leveraging the system-level contexts is
beneficial to the efficient KV cache management.

3 MobiLoRA Design

Guided by the opportunities mentioned above, we
design MobiLoRA. Fig. 3 shows the overall system
architecture. The core of MobiLoRA is a new atten-
tion mechanism, CtxAttention, which facilitates
the exploitation of contexts to manage LoRA KV
cache. Based on CtxAttention, our system pro-
poses a similarity-aware KV cache delta encoding
mechanism for efficient LoRA KV cache storage
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Figure 3: MobiLoRA architecture overview.

with semantic-level contexts and a context-aware
KV cache management policy with the considera-
tion of system-level contexts.

3.1 CtxAttention for LoRA-based LLM

To leverage the potential of on-device con-
texts, we introduce a new attention mechanism,
CtxAttention, to facilitate the context-aware KV
cache reuse for LoRA-based LLMs. As shown
in Fig. 3, CtxAttention includes a context-aware
radix tree and a LoRA KV pool. Inspired by Radix-
Attention, CtxAttention leverages a radix tree to
map the cached token sequences to their KV cache
tensors and further enhances it with the following
two aspects.

To reuse cross-LoRA semantic-level contexts,
CtxAttention extends the radix tree to store mul-
tiple mapping information (i.e., offset and len to
KV pool) for different LoRA instances (i.e., #LoRA)
at the same edge of the tree. In the LoRA KV pool,
the KV cache tensors of the first recorded LoRA re-
quest are stored in their original form, referred to as
the anchor tensor. Subsequent KV cache tensors of
other adapters are encoded as the difference from
the anchor KV, known as delta tensors, to improve
storage efficiency. This anchor information is also
stored in the context-aware radix tree. With the
above context information, the attention score with
LoRA in Eq. 1 can be transformed as follows with
the reuse of anchor KV cache:

AttnLoRA = softmax[
Q(KA ⋆ K∆)

T

√
dk

(VA ⋆V∆)],

(2)
where KA and VA are the anchor key and value
tensors, i.e., existing KV cache. K∆ and V∆ are
the delta tensors. Operator ⋆ denotes the decoding

of the delta tensor with its anchor tensor.
To exploit on-device system-level contexts,

CtxAttention additionally record the application
id (i.e., app_id) besides LRU information. These
data help MobiLoRA to improve the KV cache
management with the understanding of the applica-
tion state on mobile devices.

3.2 Similarity-aware Delta KV Encoding

Based on the aforementioned token-wise similarity
(Obs. #1) among different LoRA adapters, Mo-
biLoRA leverages a delta encoding method to ef-
ficiently store and reuse the KV cache. The en-
coding process includes the following two steps.
First, a LoRA-associated prefix matching deter-
mines which input tokens should be encoded with
delta. Then, a layer-wise delta encoding calculates
the delta considering the KV cache similarity.

LoRA-associated prefix matching. With the
CtxAttention mechanism, when a new request
arrives, MobiLoRA compares the prefix of the
prompt in the radix tree to find a matched prefix.
If the prefix matches and the LoRA adapter is dif-
ferent from the existing KV cache, the similarity-
aware delta encoding is triggered. If there is no
matched prefix, MobiLoRA will store the KV
cache of the input as the anchor tensor and cre-
ate a new edge in the radix tree with the inputs.

Layer-wise delta encoding. Aligned to various
quantization schemes of LLMs, KV caches have
different data types such as 8-bit integer (INT8)
and 16-bit floating-point (FP16). For the integer
KV cache, calculating the delta of tensors with
high similarity decreases the absolute value of the
tensor, making it possible to use fewer bits to rep-
resent it. Therefore, MobiLoRA directly leverages
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arithmetic coding (Liang et al., 2018) for encoding.
However, encoding the floating-point KV cache,

which is more common in real-world deployments,
faces non-trivial challenges. Despite the relatively
small absolute value of the floating-point delta, the
strong randomness of the ending mantissa bits in
its representation makes it difficult to achieve a
high lossless compression ratio. Considering the
limited computation and storage capacity of mo-
bile devices, MobiLoRA encodes the floating-point
delta by an error-bounded quantization for a high
compression ratio.

Take the key cache encoding as an example. We
use KI to denote the input key cache tensor being
encoded with an existing KA. Following the idea
of sz compression, we calculate an error-bounded
delta quantization between KI and KA:

K∆ = ⌊ KI −KA

2 log(1 + ϵ)
+ 0.5⌋, (3)

where K∆ is the resulting error-bounded and quan-
tized representation of the tensor delta. The selec-
tion of error-bound parameter ϵ (e.g., 1E-4, 1E-5)
is the key to balancing the encoding precision and
compression ratio. Driven by the insight of decreas-
ing pattern of similarity (Obs. #2), we apply more
relaxed error bounds for deeper layers. Specifi-
cally, for each token, we continuously monitor its
KV cache similarity against the anchor tensor. We
split the layers into multiple similarity groups, i.e.,
layers with high similarity (>97.5% in our current
implementation), medium similarity, and moder-
ate similarity (<85%). We then apply different ϵ
to each group: 1E-4 for high similarity, 1E-3 for
medium similarity, and 1E-2 for moderate similar-
ity. The encoding of the value cache is similar.

It is worth noting that these error-bound param-
eters are not empirically set. Parameters should
be adjusted for specific base model architectures,
taking into account the number and dimension of
attention heads.

3.3 Context-aware KV Cache Management
We first demonstrate how system-level contexts
are recorded and propose a utility-based KV cache
eviction mechanism instead of LRU for efficient
on-device LoRA inference.

System-level context representation. As
shown in Fig. 4, the state transitions during the
application process lifecycle on different mobile op-
erating systems (OSes) are different (Zheng et al.,
2024; Lee et al., 2016). By design, MobiLoRA is
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Figure 4: Application state classification of major mo-
bile OSes and the three-state model of MobiLoRA.

Algorithm 1 Context-aware KV Management

1: Input: Prefix tree nodes n ∈ Nt; Input KV
cache nin; KV cache size function size(); Util-
ity function U(); Memory budget M;

2: Output: Nt for every time step t
3: Initialize: N0 = ∅, U(N0) = 0, Nevict = ∅
4: for each time step t do
5: Update U(n) for each n ∈ Nt−1

6: if size(Nt−1) + size(nin) ≤M then
7: Nt ← Nt−1 ∪ {nin}
8: else
9: while size(Nevict) < size(nin) do

10: N′
t ← Nt−1 ∪ {nin}

11: nevict ← argminni∈N′
t
U(ni | N′

t \ ni)
12: Nt ← N′

t \ {nevict}
13: if nevict ̸= nin then
14: Nevict ← Nevict + nevict
15: end if
16: end while
17: end if
18: end for

supposed to serve as an OS-agnostic middleware
for LLM serving. Hence, we map both lifecycle
models to a general three-state model, i.e., fore-
ground, background, and killed. We implement a
lightweight state monitor as a plug-in to various
mobile systems that tracks the state transitions of
all applications associated with KV caches.

Utility-based KV cache eviction. Evicting stale
KV caches when the cache pool is full is a criti-
cal management consideration in MobiLoRA. Tak-
ing advantage of the system-level contexts, Mo-
biLoRA ranks the KV caches by their utility for
future reusing. We define the utility of a KV cache
node n in the CtxAttention radix tree with three
parts: the application state score S(a) of applica-
tion a associated with n, the LRU score T(n), and
the length of the KV cache L(n). Specifically, we
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have the following formulation:

U(n) = λsϕs

(∑

a∈An

S(a)

)
+λtϕt (T(n))+λlϕl (L(n)) .

(4)

Here, An denotes the application set associated
with node n. λs, λt, and λl are hyperparameters
that controls the focus of the three scores. ϕs,
ϕt, and ϕl are monotone, non-negative functions,
which ensures the U(n) to be submodular (Kumari
et al., 2024; Bilmes, 2022).

During cache eviction, nodes with the lowest
U(n) are purged first, ensuring foreground app
caches persist under memory pressure while obso-
lete entries are reclaimed proactively. This mecha-
nism bridges system-level contexts with KV cache
management, leading to optimized user-perceived
responsiveness and memory efficiency. Since U(n)
is a submodular function, according to the prop-
erties of submodular functions (Bilmes and Bai,
2017), we leverage a greedy algorithm to obtain
a suboptimal solution within a factor of (1− 1/e)
in a finite number of steps. Hence, we have the
context-aware KV management algorithm in Alg. 1.
For each time step, MobiLoRA updates the util-
ity of each node in the prefix tree (line 5). Then,
MobiLoRA determines if it needs to evict the KV
cache according to the memory budget (line 6). If
the memory budget is not reached, the input KV
cache is directly stored in the KV pool (line 7). Oth-
erwise, MobiLoRA leverages a greedy algorithm to
select the stale cache nodes with low utility scores
with Eq. 4 and evict them (lines 8-16).

4 Evaluation

In this section, we first introduce the implementa-
tion details and the experiment setup of MobiLoRA.
Then, we show the performance of MobiLoRA in
the following aspects: the end-to-end performance
to reduce the time-to-first-token latency, the gen-
eration quality with our delta encoding, and the
ablation study.

4.1 Experiment Setup
We implement MobiLoRA on the state-of-the-art
LLM serving framework, SGLang (Zheng et al.,
2023). The similarity-aware delta KV encoding
is implemented using the open-source data com-
pression library, sz. We conduct evaluations on
the widely used mobile development platform,
NVIDIA AGX Orin, under the experiment setups
specified below.

Table 1: Evaluation scenario configurations.
Scenarios S1 S2 S3 S4 S5

# LoRA adapter 5 5 5 10 10
Memory budget (GB) 2.0 4.0 4.0 2.0 4.0
Max input len. (token) 1024 1024 2048 1024 2048

Scenarios. We use Llama2-7B and Llama3.2-
3B (Touvron et al., 2023) as the base model.
We then obtain ten real-world open-source
LoRA adapters in our evaluation. To evaluate
the MobiLoRA’s performance in various config-
urations, we select five evaluation scenarios with
different numbers of LoRA adapters, memory bud-
gets for the KV cache pool, and the max input
length of each request. The detailed configurations
are depicted in Tab. 1. All the models and adapters
are collected from HuggingFace.

Tasks and workloads. We mainly consider
two natural language processing (NLP) tasks that
are popular on mobile devices. (1) Conversation
task represents the LLM-empowered chatbots on
mobile devices similar to Apple Siri and Sam-
sung Bixby. We use ShareGPT (ShareGPT, 2023)
dataset for this task. (2) Writing task is another pop-
ular LLM-based tasks that heavily rely on LoRA
adapters, such as the writing tools of Apple Intelli-
gence. We use Xsum (Narayan et al., 2018) dataset
for this task.

Due to the absence of a real-world LoRA re-
quest trace dataset for mobile devices, we syn-
thesize workload traces using the China-telecom
dataset (Yu et al., 2018) for application usage traces
for the above two NLP tasks. We tokenize each
request to simulate arrival patterns with different
adapter distributions. The adapters in the dataset
follow the Pareto distribution, representing concen-
trated usage of frequently used apps. All datasets
are downloaded from their public websites and con-
form to their intended usage.

Baselines. We use various state-of-the-art LLM
serving engines as comparison baselines. (1) Hug-
gingface PEFT (Mangrulkar et al., 2022), which
is the default inference engine for HuggingFace.
(2) vLLM (Kwon et al., 2023), which introduces
PagedAttention for efficient KV cache memory al-
location. (3) S-LoRA (Wang et al., 2020; Zheng
et al., 2023), which is built on SGLang and en-
hances the LoRA serving ability.

For vLLM, we control the GPU memory
preallocated for the KV cache by setting the
gpu_memory_utilization parameter in the en-
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gine, ensuring it aligns with the specified memory
budget. Similarly, we achieve the same objective
by configuring an analogous past_key_values,
which regulates the length of key-value pairs trans-
mitted to the forward computation. As for S-LoRA,
we set the size of TokenToKVPool to align with the
memory budget.

4.2 End-to-End Performance
In this section, we mainly evaluate MobiLoRA in
terms of inference efficiency, generation quality,
and memory footprint.

Time-to-first-token performance. We compare
MobiLoRA with the three aforementioned base-
lines. We choose time-to-first-token (TTFT) as the
main performance metric, as it is crucial for assess-
ing the quality of service in LLM deployment (Xu
et al., 2025). Each row in Tab. 2 presents the TTFT
measurements obtained by different serving sys-
tems under the corresponding simulated scenarios.
Remarkably, MobiLoRA reduces the TTFT by at
most 81.3% over the state-of-the-art baselines. The
best-performed baseline is S-LoRA since it is a
dedicated serving system for LoRA-based LLMs.
S-LoRA efficiently serves multiple adapters simul-
taneously by loading them into memory, demon-
strating superior performance compared to PEFT
and vLLM. We adopted S-LoRA’s adapter loading
strategy. MobiLoRA surpasses S-LoRA in perfor-
mance due to our ability to reuse the KV cache
for each LoRA adapter. MobiLoRA only prefills
the new input of the new conversation. Moreover,
MobiLoRA can load and reuse the KV cache of
different LoRA adapters at the cost of minimal
memory usage.

We then analyze the performance of Mo-
biLoRA under different scenarios. We observe
from Tab. 2 that MobiLoRA performs better in
harsh scenarios such as S1, whose memory budget
is only 2GB, in both conversation and writing tasks.
Furthermore, we conduct additional experiments
on the Llama3.2-3B model with Grouped Query
Attention (Ainslie et al., 2023) (GQA), a widely
adopted mechanism distinct from Llama2-7B’s
multi-head attention (MHA). Results demonstrate
that MobiLoRA consistently maintains strong per-
formance across both model scales (3B and 7B) and
attention variants (GQA and MHA), reinforcing its
generalizability. This demonstrates the effective-
ness of MobiLoRA in achieving efficient LoRA-
based LLM inference on resource-constrained de-
vices, opening up new possibilities for NLP tasks
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Figure 5: Memory trace of MobiLoRA under different
scenarios and LLM tasks.
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Figure 6: BERTScore performance comparison w/ and
w/o similarity-aware delta encoding.

on these devices. The quantity of LoRA adapters
also impacts end-to-end performance. Comparing
the performance of S1 against S4 in both tasks, we
observe a significant TTFT degradation from S1
to S4. This is because having more adapters can
potentially reduce the KV cache hit ratio, which
in turn may limit the opportunity to reuse the KV
cache, resulting in slower performance.

Generation quality. We then evaluate the
generation quality performance with and without
similarity-aware delta encoding we proposed in
§3.2. We use BERTScore as the main metric and
compare it for writing tasks and conversation tasks
in Fig. 6. We see from the figure that on both tasks,
our similarity-aware delta encoding has little influ-
ence on the generation accuracy. We owe this merit
to our layer-wise delta encoding, which selects an
optimized compression error bound for different
layers of the KV cache, balancing the tradeoff be-
tween generation quality and efficiency.

Memory footprint analysis. Finally, we track
the memory usage behaviors of MobiLoRA utiliz-
ing varying scenarios and LLM tasks. The effi-
ciency of memory usage is demonstrated by the
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Table 2: Time-to-first-token performance comparison of MobiLoRA under different scenarios (unit: second).

Models Llama2-7B Llama3.2-3B

Systems PEFT vLLM S-LoRA MobiLoRA PEFT vLLM S-LoRA MobiLoRA

C
on

ve
rs

at
io

n S1 0.554 0.533 0.282 0.183 (↓35.1%~67.0%) 0.238 0.224 0.124 0.092(↓26.2%~61.6%)
S2 0.561 0.486 0.241 0.158 (↓34.4%~71.8%) 0.292 0.253 0.133 0.095 (↓28.5%~67.5%)
S3 0.678 0.959 0.399 0.197 (↓50.6%~79.5%) 0.441 0.652 0.255 0.136 (↓46.8%~79.2%)
S4 0.685 0.543 0.586 0.397 (↓26.9%~42.0%) 0.288 0.239 0.281 0.163 (↓31.9%~43.4%)
S5 0.586 0.959 0.648 0.480 (↓18.1%~49.9%) 0.381 0.547 0.395 0.243 (↓36.2%~55.5%)

W
ri

tin
g

S1 0.520 0.767 0.281 0.174 (↓38.1%~77.3%) 0.208 0.360 0.135 0.085 (↓36.8%~76.4%)
S2 0.517 0.863 0.255 0.168 (↓34.1%~80.5%) 0.269 0.457 0.138 0.086 (↓37.8%~81.3%)
S3 0.563 0.764 0.327 0.207 (↓36.7%~72.9%) 0.349 0.489 0.203 0.104 (↓48.6%~78.7%)
S4 0.542 0.902 0.627 0.342 (↓36.9%~62.1%) 0.282 0.460 0.282 0.137 (↓51.5%~70.3%)
S5 0.586 1.147 0.745 0.392 (↓33.1%~65.8%) 0.357 0.688 0.440 0.255 (↓28.7%~63.0%)
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Figure 7: TTFT comparison of MobiLoRA and its abla-
tion variants.

trends presented in Fig. 5. We observe that Mo-
biLoRA indeed satisfies the memory bound. Specif-
ically, we take Fig. 5(a) as an example for a de-
tailed analysis. MobiLoRA achieves a stable mem-
ory usage, peaking at 2 GB after 40 iterations and
maintaining >1.5 GB usage for 92% of the time
across 300 iterations. The memory utilization curve
remained with only minor fluctuations and con-
sistently maintained a high utilization level when
memory usage approached its upper limit. We at-
tribute this to the design of the context-aware KV
management mechanism. MobiLoRA applies Al-
gorithm 1 to identify KV cache nodes whose evic-
tion would have minimal impact when the memory
budget reaches its limit. Typical candidates include
nodes linked to recently killed or background appli-
cations that have not been accessed for a period of
time. These evaluation results align with our mo-
tivation insights that leveraging the system-level
contexts is beneficial for efficient on-device KV
cache management.

4.3 Ablation Study

To evaluate the contribution of two key designs of
MobiLoRA, we conduct ablation experiments as

shown in Fig. 7. We first implement two ablation
variants. We use MobiLoRA w/o delta and Mo-
biLoRA w/o ctx to denote the ablation variants of
MobiLoRA without the similarity-aware delta KV
encoding (§3.2) and context-aware KV cache man-
agement (§3.3). Moreover, we also implement a
Vanilla MobiLoRA that only implements the prefix
KV cache reuse with LoRA support on SGLang for
comparison. We use Llama2-7B and the conversa-
tion task under scenario S1 as an example. Fig. 7
shows the average TTFT of different variants.

We observe from the figure that each of the
components of MobiLoRA shows a performance
gain, indicating the effectiveness of our designs.
In particular, under resource-limited scenarios like
S1, removing the delta encoding mechanism of
MobiLoRA results in a performance decrease of
24.5%. We attribute this phenomenon to the iden-
tification of similarities in the KV cache and its
efficient compression, which enables the storage
of more LoRA-specific KV caches under severe
memory constraints.

5 Related Work

In this section, we introduce several related works
that MobiLoRA builds upon.

On-device LLM serving. Mllm (Yi et al.,
2023b) proposes to utilize on-device NPU for re-
ducing prefill latency and energy consumption first.
EdgeMoE (Yi et al., 2023a), an on-device MoE en-
gine with treats memory as a cache for experts that
are held in external storage. LLM in a flash (Al-
izadeh et al., 2024) leverages the model sparsity to
accelerate the on-device LLM inference. PowerIn-
fer (Song et al., 2023) exploits the cold-hot neurons’
distribution to design a GPU-CPU hybrid inference

23407



engine. LLMCad (Xu et al., 2023) delivers LLM’s
scaling ability to mobile devices by redesigning
speculative generation pipeline. Parrot (Lin et al.,
2024) treats LLM applications as first-class citi-
zens and exposes dependency information. This
motivated MobiLoRA to consider system-level con-
text to optimize end-to-end performance on de-
vices. Compared with these works, MobiLoRA fo-
cuses on the inference optimization of LoRA-based
LLMs, which is a promising fine-tuning approach
that is popular for on-device LLMs.

Optimizing LoRA-based LLM. There have
been many efforts to accelerate the multi-tenant
LoRA serving system. dLoRA (Wu et al., 2024a)
uses advanced dynamical batching mechanisms for
efficient serving merged and unmerged inference.
Punica (Chen et al., 2024) presents a new CUDA
kernel design that allows batching of GPU opera-
tions for different LoRA models in a GPU cluster.
S-LoRA (Sheng et al., 2024) proposes a new tensor
parallelism strategy to decouple the base model and
LoRA adapters, and also includes a unified paging
strategy to manage KV caches and adapter weights
uniformly. CaraServe (Li et al., 2024) employs a
CPU-assisted approach and a rank-aware schedul-
ing algorithm to mitigate the cold-start overhead
and meet SLOs, respectively. These works mainly
target on-cloud inference with high throughput,
while on-device serving requires different goals,
such as low latency in small batch scenarios.

Optimizing KV cache. KV cache is widely used
for accelerating the autoregressive decoding of
LLMs. Existing work explores various approaches
to reduce the storage requirements of KV caches
from multiple perspectives. SGLang (Zheng et al.,
2023) and vLLM (Kwon et al., 2023) exploit pre-
fix sharing to reduce the generation of KV caches.
CacheGen (Liu et al., 2024) reduces the bandwidth
needed to transmit KV caches by compressing them
into compact bitstreams. CacheAttention (Gao
et al., 2024a) manages KV caches through hier-
archical KV cache placement and an overlapping
mechanism designed to reduce the overhead asso-
ciated with this process. In this paper, we explore a
novel approach to reduce the footprint of KV cache
using the delta compression mechanism, facilitat-
ing a new dimension of KV cache optimization.

6 Conclusion

In this paper, we present MobiLoRA, an efficient
inference framework for LoRA-based LLMs on

mobile devices. MobiLoRA takes advantage of the
semantic- and system-level contexts to accelerate
the inference. The core of MobiLoRA is a new
attention mechanism referred to as CtxAttention,
which stores the semantic- and system-level con-
texts for KV cache management optimization.

With CtxAttention, MobiLoRA proposes a
similarity-aware delta KV encoding to facilitate
the efficient storage and reuse of the KV cache for
LoRA-based LLMs. Moreover, MobiLoRA lever-
ages the system-level contexts, i.e., the application
state of who sends the LLM request, to optimize the
KV cache management. Evaluation with real-world
mobile usage traces shows the effectiveness of our
design. Compared with existing LoRA serving
frameworks, MobiLoRA achieves 18.1%~81.3%
latency improvement.

7 Limitations

This paper presents an initial trial towards the opti-
mization of the KV cache for LoRA-based LLMs,
aiming to facilitate more natural language process-
ing tasks on mobile devices. We recognize that this
initial trial has its limitations and risks.

First, although the design of MobiLoRA is not
bound to specific foundation models and adapters,
our current implementation does not involve differ-
ent architectures of foundation models and other
distributions of LoRA adapters. Second, our proof-
of-concept implementation focuses on a specific
mobile device platform with only GPU acceler-
ation. Instead, commercial-off-the-shelf mobile
devices have variant hardware configurations, such
as some mobile platforms relying on a domain-
specific accelerator, such as a neural processing
unit (NPU). We identify that the cooperative in-
ference between multiple accelerators is able to
further accelerate the LoRA inference as a promis-
ing problem for future exploration.
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