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Abstract

Cross-Document Coreference Resolution
(CDCR) aims to identify and group together
mentions of a specific event or entity that
occur across multiple documents. In contrast
to the within-document tasks, in which
event and entity mentions are linked by
rich and coherent contexts, cross-document
mentions lack such critical contexts, which
presents a significant challenge in establishing
connections among them. To address this issue,
we introduce a novel task Cross-Document
Discourse Coherence Enhancement (CD-DCE)
to enhance the discourse coherence between
two cross-document event or entity mentions.
Specifically, CD-DCE first selects coherent
texts and then adds them between two
cross-document mentions to form a new
coherent document. Subsequently, the coherent
text is employed to represent the event or
entity mentions and to resolve any coreferent
mentions. Experimental results on the three
popular datasets demonstrate that our proposed
method1 outperforms several state-of-the-art
baselines.

1 Introduction

Coreference resolution (CR) aims to recognize the
same event and entity mentions from various tex-
tual spans and then gather them into the same clus-
ter. This task can benefit many downstream tasks
in natural language processing (NLP), such as in-
formation extraction (Yan et al., 2023), topic detec-
tion (Vahidnia), and question answering (Ramesh
et al., 2023). CR can be further divided into within-
document (WDCR) and cross-document (CDCR)
coreference resolution depending on whether the
event and entity mentions are in the same document.
While most previous work focused on the single
within-document event or entity coreference reso-
lution task, this paper focuses on cross-document

*Corresponding author
1https://github.com/chenxinyu-nlp/CDCR

Document D1:

(T1){Smith}e1, 26, who {played}v1 a young political {researcher}e2 

in the show, will become the biggest {star}e3 of all after {winning}v2 

the role of the 11th Doctor.

(T2)Speaking to The Guardian, Buchan said his old co-star would 

make an excellent Doctor Who.

( T3) ''It's a sublime bit of {casting} v 3 .  He's got that huge hair, a 

twinkle in his eye.''
Document D2:

(T4)26-year-old {Matt Smith}e4 has been cast as the next 

incarnation of the Doctor.''

(T5)The {guy}e5 is relatively unknown and the skeptics wondered if 

the right person was {chosen}v4 .

v1 v2 v3 v4 e1 e3 e4 e5 e2

cluster 1 cluster 2 cluster 3 cluster 4

Event chains Entity chains

Figure 1: Examples of the event (“v”) and entity (“e”)
mentions, and their coreference resolution results.

event and entity coreference resolution, a more
challenging task.

Figure 1 illustrates an example of CDCR, given
two documents D1 and D2 with the mentions
marked in different colors (event mentions are
marked by their triggers, such as “played” and
“winning”), where the same color mentions are
coreferent. CDCR first predicts whether there is a
coreference relation between the same type (entity
or event) mentions, and then clusters the corefer-
ent mentions into the same chains as shown at the
bottom of Figure 1.

Coreference resolution is typically modeled as a
prediction task based on pairwise similarity (Cat-
tan et al., 2021; Yu et al., 2022; Chen et al., 2023),
where the initial step involves using a language
model to encode mention spans. In this manner,
sufficient contextual information is available to
bridge the semantic coherence between two men-
tion spans, as it renders the mention text more
comprehensible to benefit the CR model. The util-
isation of this pivotal element can facilitate the
straightforward implementation of WDCR; how-
ever, CDCR is markedly disparate from it. As
shown in Figure 1, the cross-document pair (v2, v4)
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does not have a sentence that maintains their se-
mantic coherence, unlike the within-document pair
(v2, v3), where there is a sentence T2 that main-
tains their coherence. Hence, the cross-document
mentions like (v2, v4) cannot benefit from coherent
discourse due to the nonexistence of bridging text
between them, which is ignored in previous work.

The discourse coherence theory (Grosz, 1978;
Hobbs, 1979) stated that “Coherent discourse light-
ens the burden of comprehension and enhances
the likelihood of being understood. As a result,
successive sentences should convey a high degree
of overlapping information, including entities and
events”. Moreover, the cross-document mentions
also exhibit gaps in different perspectives of de-
scription from various describers.

To address the above issues and inspired by
the discourse coherence theory, we introduce
a new task called Cross-Document Discourse
Coherence Enhancement (CD-DCE) to enhance
the discourse coherence among cross-document
event/entity mentions, and subsequently extract
global information on the coherent text obtained
through discourse structure. The contributions of
this paper are as follows:

• We propose a new task CD-DCE to enhance
CDCR, which select and insert coherent sen-
tences between two cross-document mentions
to form a new coherent text.

• Experimental results on the three popular
datasets (ECB+, ECB+META, and WEC) in-
dicate that our model outperforms several
SOTA baselines.

2 Related Work

2.1 Entity Coreference Resolution

Most previous work on entity coreference resolu-
tion focused on the within-document tasks (Joshi
et al., 2019; Kirstain et al., 2021; Zhu et al., 2024),
including mention-pair classifier methods (Ng and
Cardie, 2002; Bengtson and Roth, 2008), latent-
tree models(Fernandes et al., 2012; Björkelund and
Kuhn, 2014) and mention-ranking models (Wise-
man et al., 2016; Clark and Manning, 2016). In the
cross-document task, the approach of “encoding
first, then clustering” is widely used in early stage
(Bagga and Baldwin, 1998; Gooi and Allan, 2004).
Singh et al. (2011) focused in improving scalability
and jointly learning to entity linking (Dutta and
Weikum, 2015); Barhom et al. (2019) represented

entity mentions by their lexical span and surround-
ing context; Caciularu et al. (2021) pretrained a
language model via a set of related documents for
cross-document task; Yu et al. (2022) augmented
pairwise mention representation with structured
argument features.

2.2 Event Coreference Resolution
Event coreference resolution is a more challeng-
ing task than entity coreference resolution due to
the more complex structures of event mentions
(Yang et al., 2015). Most previous studies modelled
event coreference resolution as a pairwise similar-
ity problem. In the event-level WDCR task, re-
searchers resolved coreferent events via feature en-
gineering (Chen and Ji, 2009; Bejan and Harabagiu,
2010; Krause et al., 2016), multi-task learning (Lu
and Ng, 2017, 2021), and event representation en-
hancing (Tran et al., 2021; Xu et al., 2022, 2023),
etc. Early event-level CDCR task contains holistic
model on nominal and verbal mentions (Lee et al.,
2012), unsupervised method (Bejan and Harabagiu,
2014), and iteratively unfolding inter-dependencies
method (Choubey and Huang, 2017).

The recent methodologies of event-level CDCR
can be divided into the following three categories.
Feature representation Argument information
was widely introduced into event representations
(Barhom et al., 2019; Yu et al., 2022). Recently,
some researchers leveraged discourse structure in-
formation to enhance event representation. Chen
et al. (2023) constructed cross-document discourse
rhetoric structure and then extract local and global
information from this structure to represent event
mentions. Gao et al. (2024) used within-document
rhetorical structure and cross-document lexical
chains to capture long-distance dependencies.
Encoder enhancement Caciularu et al. (2021) pre-
trained a cross-document language model via sets
of related documents. Held et al. (2021) trained a
fine-grained classifier to deeply extract event men-
tions features from the local perspective.
Data augmentation Ahmed et al. (2023) used a
lemma heuristic method to balance the corefer-
ent and non-coreferent event mention pairs to im-
prove the quantity of dataset. Ding et al. (2024)
developed a rationale-centric counterfactual data
augmentation method to enhance this task. Min
et al. (2024) summarized cross-document event
mentions by LLMs to enhancing the comprehen-
sion capabilities of SLM for event mentions.

Among the above studies, Cattan et al. (2020),
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Figure 2: High level overall framework.

Yu et al. (2022) and Caciularu et al. (2021) con-
ducted event and entity coreference resolution si-
multaneously. Our work is inspired by Chen et al.
(2023). Different from Chen et al. (2023) directly
concatenating the documents of cross-document
event mentions which lacks coherence, we adopt
the CD-DCE task to enhance coherence. This task
includes steps such as document preprocessing,
constructing training instances, and specific train-
ing and inference manner to select inserted texts.
Our research focuses on resolving cross-document
mention problems through discourse coherence en-
hancement to improve the performance of CDCR.

3 Methodology

Formally, CDCR receives a given set of documents
D = {D1, D2, ..., D|D| } as input, the set of men-
tions M = {m1,m2, ...,m|M | } is a set of events
or entities mentions distributed in multiple doc-
uments from D, and is output with the predic-
tion of the correlation relation of the mention pair
(mi,mj), and then gather the coreferent mentions
into the same clusters according to the results.

Following prior research (Chen et al., 2023), we
similarly partition D into distinct subtopics and
focus solely on resolving cross-document coref-
erent mentions within these subtopics to prevent
low recall. Specifically, we employ the document

clustering method2 (Barhom et al., 2019) to assign
subtopics to all documents. Those mention pairs
sharing the same subtopic are considered as candi-
date coreferent pairs.

Figure 2 shows three main steps of our CDCR
model. First, the Cross-Document Discourse Co-
herence Enhancement (CD-DCE) module is uti-
lized to select one or more coherent sentences from
a subtopic containing the specific cross-document
mention pair (mi,mj). These selected sentences
are subsequently inserted into the mention context
sequences. Next, the Mention Feature Represen-
tation (MFR) module processes the coherent text
as input and derives local and global information
representations from the discourse tree generated
by the discourse rhetorical structure (DRS) parser.
Lastly, the Coreference Prediction (CP) module out-
puts the likelihood of two mentions being corefer-
ent. For within-document mention pairs, the entire
document is treated as coherent text and directly
fed into the DRS parser. It should be noted that
the data of event and entity mention are processed
separately in the following stages.

3.1 CD-DCE
Our CD-DCE aims at enhancing the coherence be-
tween cross-document mention pairs by inserting
a text T relevant to the mention pair (mi, mj) be-
tween their sentences Smi and Smj .
Task definition In a specific subtopic C, given two
cross-document mention sentences Smi and Smj

that containing the span of the mentions mi and mj ,
respectively, and a set of candidate insertion sen-
tences Csent

3. CD-DCE first inputs Smi , Smj , and
Csent into a coherence evaluation model M , where
M ’s inference stage is designed to take a given
text order O as input and then assign a coherence
score (denoted as Coh(O)) for O. Next, CD-DCE
search for n sentences T = [sr1, sr2, ..., srn] and
finally outputs the concatenated text X=[Smi , T ,
Smj ], which is regarded as coherent text. X satis-
fies the condition that the overall coherence score∑n+1

i=1 Coh([Xi, Xi+1])
4 is maximized.

2Almost 99% of coreferent mentions are in the same
subtopic using this method.

3We first extract all sentences from the documents within
the same subtopic C. Then, we deduplicate the candidate
sentences, and use RoBERTa to encode the sentences and
calculate their cosine similarity with the mention sentences.
We finally select the top 50% as candidate insertion sentence
set (excluding the mentioned sentences themselves).

4The coherence scores for each pair of (Xi,Xi+1) are
pre-computed and stored in a two-dimensional array for the
search.
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Document preprocessing Motivated by Jia et al.
(2023), we assess text coherence using a graph-
based model. Specifically, we transfer documents
into a graph structure Gdoc, incorporating sequen-
tial edges, skip edges and document-to-sentence
edges (Jia et al., 2023) as depicted by the blue,
green, and purple arrows in Figure 3(a), respec-
tively. The graph nodes correspond to the informa-
tion representations of the sentences within the doc-
ument. Each sentence is independently encoded us-
ing RoBERTa, and the hidden state of the [CLS] to-
ken serves as the node representation. Furthermore,
the entire document is encoded by RoBERTa to
obtain the document-level representation, denoted
as doc-node, enabling the positional embeddings
to inherently capture the ordering information.

For edge construction, unlike Jia et al. (2023),
we specially consider the edge whose arc head or
tail contains the mention spans in the above three
kinds of edges (e.g., the document-to-sentence
edge ⟨doc-node, s1⟩ and the skip edge ⟨s6, s10⟩)
as our objective to improve the coherence between
the documents containing the mentions.
Training instance construction The coherence
evaluation model M is designed as a pairwise rank-
ing manner, with training instances constructed in
the form (t+, t−), where t+ represents a more co-
herent text compared to t−.

For within-document instances, we directly treat
the sequence of sentences sorted in their orig-
inal order within the document as a coherent
text. Specifically, for a | Di |-sentence document
Di={si1,si2,...,si|Di|}, in order to construct train-
ing instances in the form of (t+,t−) and make it
directly comparable, we first selected a sequence of
k − 1 (k ≥ 2) sentences, denoted as com = [sa+1,
sa+2,...,sa+k−1], as the common subsequence for
both t+ and t− from all possible combinations of
sentence orders. We then concatenate the sentence
sa before com (or sa+k after com) to represent t+

and the sentence s̸=a before com (or s ̸=(a+k) after
com) to represent t−.

The construction of cross-document sentence
order is to select the sentences from different doc-
uments to build t+ and t−. However, for such
instances, we cannot directly determine who is t+

and who is t− by subscript as we do in within-
document instances. Based on the similarity be-
tween the Next Sentence Prediction (NSP) task and
our CD-DCE task, we fine-tune the NSP task on
BERT to assess the coherence of sentence orders in
cross-document instances. Specifically, we first la-
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doc-nodeGdoc1
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s6 s7 s8 s9 s10

doc-nodeGdoc2

sB label
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Figure 3: Framework of CD-DCE, where the red and
blue nodes represent sentences with and without men-
tions, respectively.

bel within-document sentence orders that can serve
as the t+ order as “IsNext”, and the others as “Not-
Next”, for fine-tuning the NSP task. We then input
the cross-document instances into the fine-tuned
BERT, followed by transformation through a Linear
layer and a Sigmoid activation function, treating
the output as the coherence score (as shown in Fig-
ure 3(b)). Finally, The sentence order with a higher
coherence score is considered t+, while the one
with a lower score is t−.

Figure 3(b) and (c) show the process of within
and cross document training instance construction
for the case of k = 3. The within document sen-
tence order o1 is more coherent than o2 due to o1
has consecutive indices, while the cross-document
sentence order o5 is regarded as more coherent than
o6 according to coherence confidence score. It is
worth mentioning that the order pair contains order
without mention sentences, such as ([s7, s8], [s7,
s9]), are excluded in the finally training set.
Training During training, we use graph structure
to represent documents, which allow our model to
understand semantic coherence and capture com-
plex relations between sentences, rather than sim-
ply ranking them based on their position. Specif-
ically, for an input pair (t+, t−), we initially ex-
tract their common sub-graph Gcom from the full
document graph Gdoc based on the longest com-
mon sub-order of t+ and t− (e.g., the common
sub-order [s1, s2] of o1 and o2 in Figure 3(d)). Sub-
sequently, the nodes corresponding to the remain-
ing sentences (e.g., s3 and s4 in Figure 3(d)) are
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connected to their respective positions in the sub-
graph via directed edges according to the positions
in the order. This yields the graph structures Gt+

and Gt− for t+ and t−, respectively. These graphs
are then fed into the relational graph convolutional
networks (RGCN), which accumulate relational ev-
idence from the neighborhood around a given node
vi over multiple inference steps as follows:

h
(l+1)
i = ReLU(

∑

r∈R

∑

j∈Nr
i

W
(l)
r h

(l)
j

| Nr
i | ) +W

(l)
0 h

(l)
i , (1)

where h
(l)
i represents the hidden state of the node

vi in the l-th layer. h(0)i is the embedding of the i-th
sentence node obtained from RoBERTa. r ∈ R =
{sequential, skip , document-to-sentence edges}
is one of the edge types and N r

i represents the
nodes set connected to vi through the edge type
r. Wr is the parameter matrix for r and W0 is the
parameter matrix for the self-connection edge,
which is an extra type in addition to R. We map
final representations of all nodes of Gt+ and Gt−

to a coherence score as follows:

Coh(t) = sigmoid(FFN(
∑

v∈VGt
hv)), (2)

where FFN is a feed-forward neural network. We
update model parameters by the following loss
function where τ = 0.1 is the margin.

Lcoh = max(0, τ − Coh(t+) + Coh(t−)). (3)

Inference During inference, we only compute
coherence scores for given orders. Specifically,
for each cross-document mention pair (mi,mj),
we first select n sentences T = [sr1, sr2, ..., srn]
from their document cluster (subtopic) to con-
catenate their corresponding sentences to obtain
two candidate coherent texts A and B, denoted
as CTA = [Smi , sr1, ..., srn, Smj ] and CTB =
[Smj , sr1, ..., srn, Smi ]. Then, we compute their
overall coherence as follows:

Sum1 =
∑n+1

i=1
Coh([CTAi, CTAi+1]),

Sum2 =
∑n+1

i=1
Coh([CTBi, CTBi+1]).

(4)

The n selected sentences that maximize
max{Sum1, Sum2} are ultimately selected for
bridging the mention sentences Smi and Smj . It
is noteworthy that n is set to 2 in the event-level
task and to 1 in the entity-level, which are tuned
on the development set. The concatenate text
Xinp = CTA (or CTB) is sent to discourse rhetor-
ical structure parser.

3.2 Mention Feature Representation
MFR takes the coherent text Xinp as input and
aims to derive the feature representation of mention
pairs. Following Chen et al. (2023), we capture
the mention features from both local and global
perspectives. Unlike them directly concatenating
the documents, resulting in a lack of coherence,
we provide more coherent text for DRS parser to
construct discourse tree.

Specifically, we employ the DRS parser (Zhang
et al., 2021) to construct discourse trees. The
parser first receives the coherent text Xinp and di-
vides it into a set of Elementary Discourse Units
(EDU) sequences, which are then fed to a encoder
to obtain word embeddings and extract the men-
tion tokens of the event (or entity) mi and mj

for local information representation, denoted as
CoRlocal(i, j) = [vmi , vmj , vmi ◦ vmj ], where vm
represents the trigger/entity span token embedding
of the event or entity mention, and ◦ is element-
wise multiplication.

To derive the global information representation
of the mention pair, the EDU sequences are passed
to the parser to construct a discourse tree. We
extract the representation of the lowest common
parent node RLCP and the shortest dependency
path on the discourse tree RDT−SDP (Chen et al.,
2023) (detailed in Appendix A) and concatenate
them as CoRglobal(i, j) = [RLCP , RDT−SDP ].

3.3 Coreference Prediction
After obtaining the two representations
CoRglobal(i, j) and CoRlocal(i, j) of the mention
pair (mi, mj) on the coherent text, we concatenate
them as the input of multi-layer perceptron (MLP)
and sigmoid activation function is used for scoring
the coreference confidence of (mi, mj) as follows:

θ = MLP (CoRglobal(i, j), CoRlocal(i, j)), (5)

S = Sigmoid(θ). (6)

3.4 Training and Inference
During training, we train our CDCR model on bal-
anced train sets of ECB+ obtained by the lemma
heuristic method (Ahmed et al., 2023) (detailed in
Appendix B). We apply dropout in MLP networks,
and the training objective is to minimize the binary
cross-entropy loss Lcr as follows:

Lcr = − 1

N

∑N
i=1[yilogŷi + (1− yi)log(1− ŷi)], (7)

where N is the size of mention pair samples and
y ∈ {Coref, Non_Coref} is a pairwise label.
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During inference, we first apply the topic pre-
dictor (Barhom et al., 2019) to cluster the test set
documents, and the mention pairs with the same
subtopic are considered as candidate coreferent
pairs. We then send these pairs to our CD-ECR
model to obtain the coreference score. Finally, we
perform best-first clustering (Huang et al., 2019) on
the pairwise predictions to cluster mentions. It is
important to note that the entity and event corefer-
ence resolution tasks do not train on a multitasking
framework simultaneously. On the contrary, they
are carried out separately using the same model.

4 Experimentation

4.1 Experimental Settings

Datasets and metrics We evaluate our model on
three CDCR benchmarks: Event Coreference Bank
Plus (ECB+) (Cybulska and Vossen, 2014), WEC
(Eirew et al., 2021) and ECB+META (Ahmed et al.,
2024). ECB+ is the most widely used CDCR
dataset which annotated different but similar event
and entity mentions as subtopics for each ECB
topic. We use gold mentions for both training and
evaluation following previous work (Chen et al.,
2023; Ahmed et al., 2023). Unlike ECB+, the coref-
erence event mentions in WEC are mostly noun
phrases, while ECB+ predominantly uses verbs.
ECB+META is divided into ECB+META1 and
ECB+METAm, which is the harder variation of
ECB+ with more rich lexicon.

We follow the data split of Cybulska and Vossen
(2014), Eirew et al. (2021), and Ahmed et al.
(2024) for ECB+, WEC, and ECB+META, respec-
tively. It is worth mentioning that we only evaluate
event-level coreference resolution on WEC and
ECB+META due to WEC only annotates event-
level coreference relations and ECB+META only
extended ECB+ from the event level.

Following previous work (Caciularu et al., 2021;
Chen et al., 2023), we use MUC (Vilain et al.,
1995), B3 (Bagga, 1998), and CEAFe (Luo, 2005)
to evaluate the performance of our model and also
report the overall CoNLL score, which is the aver-
age of the above three metrics.
Hyper parameters In the stage of discourse co-
herence enhancement, we adopted the BERT-base
model for fine-tuning, where the batch size, epochs,
dropout and learning rate were set to 8, 3, 0.1
and 10−5, respectively. During training coherence
model, the batch size, epochs, dropout and learning
rate were set to 8, 10, 0.2 and 10−5, respectively.

The RGCN layers was set to 2. During inference,
the number of selected sentences n is set to 2 and 1
in the event-level and entity-level, respectively.

In the stage of coreference resolution, we uti-
lized LongFormer-base to embed the mentions with
768 dimensions. The batch size, epochs, dropout
and learning rate were set to 8, 10, 0.1 and 10−5,
respectively.

Adam optimizer was used for above all stages.
Baselines We conduct experiments on the follow-
ing baselines: Caciularu et al. (2021), Yu et al.
(2022), Chen et al. (2023), Ahmed et al. (2023),
Nath et al. (2024), Eirew et al. (2021) and Gao
et al. (2024) and Ahmed et al. (2024). Besides,
“w/o DCE” represents our model without DCE.
Please refer to C for details.

4.2 Experimental Results
Table 1 shows the performance of all models on
three benchmarks, which shows that our model sig-
nificantly ( P<0.01, t-test) outperforms the SOTA
baselines. These results indicate the effectiveness
of discourse coherence enhancement in resolving
cross-document coreferent mentions.

Compare with the baseline w/o DCE, which rep-
resents our model without discourse coherence en-
hancement (i.e., we directly concatenate Smi and
Smj and then send them to MFR), the results show
that the discourse coherence enhancement leads
to an increase of 1.6 and 1.0 on event-level and
entity-level tasks in CoNLL on ECB+, respectively,
and the significant improvement of 5.7, 3.6 and
5.7 in CoNLL on the WEC, ECB+META1 and
ECB+METAm datasets, respectively, indicating
that it enables the discourse tree to provide more ef-
fective interaction information for cross-document
event and entity mentions, thereby improving the
performance of CDCR.

Chen et al. (2023) introduced discourse structure
to represent event mention pairs from both local
and global perspectives, which is similar to our
paper in terms of feature representation. However,
when they constructed the discourse tree for cross-
document mentions, they ignored the coherence of
input text. Comparing with them, our model im-
proves the CoNLL score on all datasets. This dis-
crepancy in performance indicates that the coherent
text can facilitate the model in more effectively ex-
tracting the representations of event mention pairs
from the discourse tree, especially in scenarios with
weak semantic relationships or large gaps between
documents, such as WEC and ECB+META, high-
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Dataset System CoNLL

ECB+(event)

Caciularu et al. (2021) 85.6
Chen et al. (2023) 86.4
Nath et al. (2024) 86.4
Ours(non-oracle) 87.4
Ahmed et al. (2023)* 87.4
w/o DCE* 86.9
Ours(oracle)* 88.5

ECB+(entity)

Caciularu et al. (2021) 82.9
Chen et al. (2023) 83.2
w/o DCE 83.1
Ours 84.1

WEC(event)

Eirew et al. (2021) 62.3
Chen et al. (2023) 61.3
Gao et al. (2024) 65.0
w/o DCE 60.2
Ours 65.9
Chen et al. (2023)* 69.2

ECB+META1 Ahmed et al. (2024)* 71.4
(event) w/o DCE* 68.4

Ours(oracle)* 72.0
Chen et al. (2023)* 51.8

ECB+METAm Ahmed et al. (2024)* 55.6
(event) w/o DCE* 50.5

Ours(oracle)* 56.2

Table 1: F1 scores of CoNLL on the ECB+, WEC and
ECB+META datasets, where “*” refers to using the or-
acle setting. The comparisons on WEC is conducted
under RoBERTa, while the ECB+ is based on the Long-
Former encoder. It is worth mentioning that the com-
parison on ECB+META1 (Ahmed et al. (2024) used
RoBERTa) and ECB+METAm (Ahmed et al. (2024)
used GPT-4) is a best-reported comparison regardless of
the underlying model architecture. For the detail scores
of MUC, B3 and CEAFe, please refer to Appendix D.

lighting the importance of text coherence.
The coreference event mentions in WEC are

mostly noun phrases, while ECB+ predominantly
uses verbs. ECB+META, as a variant of the
ECB+ corpus, incorporates more complex anno-
tation structures and richer metadata, which signifi-
cantly increases the task’s difficulty. Hence, there
is a gap in the event context descriptions between
the three corpora. The improvements on all the
three datasets further indicate the effectiveness and
generalization of our model in dealing with differ-
ent forms of texts.

Our model also outperforms the two entity-level
baselines on ECB+, which indicates that coherent
text can also enhance the information interaction
between entity mentions.

Dataset Rand Subopt Coh
ECB+(event) 86.2 86.8 88.5
ECB+(entity) 81.9 83.0 84.1
WEC 62.1 64.1 65.9
ECB+META1 69.5 69.9 72.0
ECB+METAm 52.1 54.2 56.2

Table 2: CoNLL-F1 scores of using different input text,
and the details of the other three metrics are shown in
Appendix E.

4.3 Analysis on Coherence Enhancement

Impact of coherent text To validate the effect of
coherent text on coreference resolution, we inserted
some randomly chosen sentences, which were ran-
domly sampled from the same topic as the related
text, between the two mention sentences. In addi-
tion, we also select suboptimal solutions to perform
insertion according to Eq. 4. Specifically, we rank
the multiple groups of results calculated by Eq. 4,
and regard the results corresponding to the median
as suboptimal insertion. The results are shown
in Table 2, where “Rand”, “Subopt” and “Coh”
represent sentences selected based on randomness,
suboptimality, and coherence, respectively.

The experimental results demonstrate that us-
ing random-selected and suboptimal-selected sen-
tences for insertion between cross-document men-
tions leads to significantly performance drop
compared to using coherence-selected sentences.
Specifically, the insertion of the random-selected
and suboptimal-selected sentences resulted in a
noticeable decline across all evaluation metrics
for the coreference resolution task in Table 9 of
Appendix E. This clearly indicates that the per-
formance improvement is not merely due to the
addition of extra textual features but is instead at-
tributable to the semantic coherence of the inserted
text, which better captures the relationships be-
tween cross-document mentions.
Impact of coherence evaluation methods To ver-
ify the effectiveness of our CD-DCE method, we
compared CD-DCE with the other three coherence
evaluation methods (BERT Score (BS), Sentence-
BERT (Sent-B) and LDA) across all datasets. The
results in Table 3 demonstrate that CD-DCE con-
sistently outperforms all baselines.
Training instances construction For comparison
with our proposed construction strategy, we de-
signed two strategies “-enden” and “-evden” for
event and entity coreference resolution, respec-
tively. “-enden” indicates the removal of the sen-
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Dataset BS Sent-B LDA Ours
ECB+(event) 83.5 83.7 82.9 88.5
ECB+(entity) 82.3 82.7 81.5 84.1
WEC 63.4 63.7 62.4 65.9
ECB+META1 69.3 69.7 68.2 72.0
ECB+METAm 53.4 53.8 52.1 56.2

Table 3: CoNLL-F1 scores of using different coherence
evaluation methods.

Event-level MUC B3 CEAFe CoNLL
Ours 90.3 89.0 86.3 88.5
-enden -2.6 +1.5 -2.7 -1.2
NLI -2.0 -2.8 -1.1 -1.9
Entity-level MUC B3 CEAFe CoNLL
Ours 90.7 83.7 77.9 84.1
-evden -3.8 +5.4 -4.3 -0.9
NLI -2.3 -2.1 -3.9 -2.8

Table 4: Performance comparison of different aspect on
the ECB+ dataset.

tences in the set of the candidate insertion sen-
tences Csent with a high density of entity informa-
tion (fewer than 4 annotated entities, accounting
for 37.20% of the total). “-evden” indicates the
removal of the sentences in Csent with a high den-
sity of event information (fewer than 3 annotated
triggers, accounting for 37.63%). These two strate-
gies are used to verify the benefit of entity to event
and that of event to entity, respectively. The re-
sults of “-enden” and “-evden” in Table 4 suggest
that entities/events have a substantial impact on the
performance of event/entity coreference resolution.
Fine-tuning tasks We incorporated NLI models
to compare with our NSP-finetuned model, which
could more accurately capture logical and thematic
coherence across non-adjacent sentences in a cross-
document setting. Specifically, we fine-tuned the
NLI model5 on three NLI datasets SNLI, MNLI
and RTE. We mapped “entailment” to coherent and
“contradiction/neutral” to incoherent, keeping other
steps unchanged. Results in Table 4 shows that
our NSP-based fine-tuning strategy outperforms
NLI, indicating NSP-enhanced coherence is more
suitable for our task. However, we also believe that
NLI has the potential to enhance cross-document
coherence with the use of more suitable datasets
for fine-tuning.
Substitutability of LLMs We explored the po-
tential of using LLMs for discourse coherence en-

5transformers.BertForSequenceClassification

Training Test
Dataset ECB+ WEC GVC
ECB+ 86.9 | 88.5 50.7 | 55.6 60.3 | 65.9
WEC 58.4 | 63.6 60.2 | 65.9 68.1 | 72.4
GVC 55.8 | 67.6 40.9 | 45.3 85.3 | 87.3

Table 5: Evaluation results on out-of-domain datasets,
where the values before and after “|” refer to the model
w/o DCE and w/ DCE, respectively.

Model MUC B3 CEAFe CoNLL
Held et al. (2021)+ 91.5 83.0 76.7 83.7
Ding et al. (2024)+ 91.3 85.8 76.0 84.4
Ours+ 92.0 85.2 80.3 85.8
Ahmed et al. (2023)# 86.6 85.4 81.3 84.4
Nath et al. (2024)# 92.9 84.3 71.7 83.0
Ours# 93.2 86.5 82.3 87.3

Table 6: Comparison with the baselines on the GVC
dataset, where “+” and “#” refer to using RoBERTa and
LongFormer as encoder, respectively.

hancement to investigate whether LLMs can be
used to replace the auxiliary task CD-DCE. Specifi-
cally, we select ChatGPT-3.5 and LLaMA for com-
parison. The results show that our CD-DCE outper-
forms two LLMs. The prompt, performance and
detailed discussion are all shown in Appendix F.

4.4 Out-of-domain Evaluations

We conducted experiments on the model’s cross-
domain generalization capability to reveal how well
it handles diverse real-world data. We incorporated
the GVC (Vossen et al.) dataset into the experi-
ments due to its marked difference in comparison
with ECB+ and WEC. The training set was ran-
domly selected from ECB+, WEC and GVC, with
the model being tested on the other two datasets.
The CoNLL F1 scores are shown in Table 5.

It is evident that, in all cases, the performance
with DCE (w/ DCE) is superior to that without
DCE (w/o DCE). This tendency remains consis-
tent irrespective of the dataset utilized for training
and the dataset employed for testing. The incorpo-
ration of DCE has been demonstrated to enhance
the model’s capacity to generalize and adapt, even
when dealing with datasets that may possess vary-
ing event types and vocabularies. This finding sug-
gests that DCE assists the model in more effectively
capturing the underlying patterns and relationships
in the data, thereby enabling it to perform more
efficiently across diverse datasets.

In Table 6, we also compare the in-domain exper-
imental results on GVC with existing work using
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RoBERTa and LongFormer, which also shows the
effectiveness of our proposed method.

However, we still need to note the differences
between using out-of-domain and in-domain train-
ing data. Lemma diversity is usually an important
factor contributing to this difference so that we also
attempt to incorporate paraphrased or synthetic ex-
amples to increase lemma diversity during training.
A detailed discussion is provided in Appendix G.

4.5 Case Study
We provide an example to analyze the effectiveness
of discourse coherence. In reference to the example
presented in Figure 1, our model concentrates on
the cross-document event mention pair (v2, v4).
Using our CD-DCE, the following two sentences
si and sj are the selected insertion sentences by the
ECD-CoE task.
si: Matt Smith, 26, will make his debut in 2010,

replacing David Tennant, who leaves at the end of
this year.
sj : When the 26-year-old unknown was unveiled

as the 11th Doctor on Saturday evening, it took
most viewers by surprise.

It can be seen that the concatenated text
[D1,si,sj ,D2] has a high degree of coherence,
which revolve around the topic of “Matt Smith
being chosen as the 11th Doctor”, and are arranged
in temporal order. The phrase “his debut in 2010,
replacing David Tennant” in si describes the de-
velopment of event mention v2 and sj further de-
scribes its impact. D2 provides more information
about the audience’s reaction to event mention v2.
Hence, this text can be easily understood by the en-
coder due to its clear logical relationship between
sentences, and will result in a more enriched rep-
resentation of event mention in the next step of
event feature representation, finally improving the
accuracy of coreference resolution.

If we do not enhance the coherence between
D1 and D2 , the lack of background information,
time clues, and character consistency will cause the
subsequent DRS parser to be unable to accurately
capture the interactive information between “win-
ning” and “chosen”, fail to provide useful clues for
coreference resolution, and the model will mistak-
enly predict them as non-coreferent.

4.6 Error Analysis
Errors of DCE We manually select 100 coherent
and 100 incoherent samples from the test set to
evaluate the effectiveness of DCE. Among these

coherent samples, 52% correct the wrong results
using the model w/o DCE, 38% still maintain the
results, and 10% cause additional errors. Although
DCE may cause additional errors, the proportion
of errors corrected by using DCE is higher (52%
vs 10%). This indicates that these coherent sen-
tences are beneficial for the CR task. Among these
incoherent sentences, almost 87% still maintain
the results because many incoherent sentences just
paraphrase the event sentences. Moreover, 11%
cause additional errors and 2% can correct the
wrong results, which indicates that the harm of
these incoherent sentences is relatively small.
Errors in DRS parser Since the evaluated CD-
ECR dataset does not include annotated discourse
relations, we take the cross-document event corefer-
ence dataset ECB+ as an example and manually se-
lect 20 high-quality discourse tree samples and 20
low-quality samples. Here, high-quality discourse
trees are defined as those instances where the pro-
portion of correctly predicted rhetorical relations
on the shortest path between the EDUs containing
the two mentions is greater than or equal to 60%,
while low-quality discourse trees are those where
this proportion is less than 60%.

In the high-quality samples, 65% of cases result
in the correction of erroneous results, 20% maintain
the status of results as they were, and 15% result
in the occurrence of additional errors. Although
discourse trees may introduce additional errors, the
proportion of errors that are corrected by using
discourse trees is higher (65% vs. 15%). This
finding suggests that the discourse tree is beneficial
for the CR task. Conversely, in the low-quality
samples, 70% maintain the results, 25% introduce
additional errors, and 5% correct incorrect results.
This outcome suggests that the adverse impact of
these low-quality samples is relatively negligible.

5 Conclusion

In this paper, we first proposed a novel task called
Cross-Document Discourse Coherence Enhance-
ment (CD-DCE) and then introduce it to improve
cross-document event and entity coreference reso-
lution by enhencing the coherence between two
event or entity mentions. Experimental results
on the ECB+, WEC, and ECB+META dataset
show that our proposed method outperforms sev-
eral SOTA baselines. Our future work will focus
on how to introduce LLM-generated coherent text
to improve our tasks.
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6 Limitations

Our method still suffers from several shortcomings,
which will be addressed in our future work. First,
we only perform coreference resolution on golden
mentions. The upstream task span detection is also
important for coreference resolution. Second, the
tasks of CD-DCE and CDCR are performed in a
pipeline, which will lead to the accumulation of
cascading errors. In the future, we will jointly
train the two tasks with entity coreference resolu-
tion. Due to our model only works on monolingual
and single-modal datasets, we also plan to extend
discourse coherence enhancement method to mul-
tilingual and multimodal scenarios of CDCR task,
exploring methods to establish coherence relations
across different languages and modalities (e.g., text
and images).
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A Details of DT-SDP

DT-SDP stands for “Discourse Tree Shortest De-
pendency Path”, which is a representation extracted
from the discourse tree to capture global informa-
tion between mention pairs. The computation of
RDT−SDP is as follows:

1) Using a DRS parser to segment the text into
Elementary Discourse Units (EDUs).

2) Feeding Edus to a DRS parser to Construct a
discourse tree.

3) Searching the tree to find a shortest path be-
tween the EDUs where the two event mentions are
located.

4) Encoding all the nodes on the path using a
Bidirectional LSTM (Bi-LSTM), and the output of
the final hidden layer is RDT−SDP .

In this way, RDT−SDP captures the global de-
pendency relation between the event mention pairs.

B Details of Lemma Heuristic Method

The lemma heuristic method (LH) filters non-
coreferent samples (P−

TN ) through the following
steps:

1) Extracting Lemmas: The spaCy tool is used to
extract the lemmas of event triggers and the words
in the sentences.

2) Synonym Pair Matching: A set of synony-
mous lemma pairs (Synp) is created, which fre-
quently appear in coreferent event pairs in the train-
ing set. For each event pair (A, B) with the trig-
ger pair (tA, tB), their trigger lemmas (lA, lB) are
checked to see if they satisfy any of the following
conditions:

a. (lA, lB) ∈ Synp (the lemma pair is in the
synonym set)

b. lA == lB (the lemmas are identical)
c. tB contains lA (the trigger of B contains the

lemma of A)
d. tA contains lB (the trigger of A contains the

lemma of B)

3) Context Comparison: For event pairs that sat-
isfy the above conditions, their contexts (sentences)
are further compared. Specifically, the stop words
are removed, and the words in the sentences are
converted to their lemma forms. The overlap be-
tween the two sentences is then calculated. If the
overlap exceeds a certain threshold, the event pair
is predicted as coreferent.

4) Filtering Non-Coreferent Samples: Through
the above steps, LH efficiently filters out a large
number of non-coreferent samples (P−

TN ) while
minimizing the loss of coreferent samples (P+

FH).
Specifically, LH only retains event pairs predicted
as coreferent and discards those predicted as non-
coreferent.

By using this method, LH can maintain high ac-
curacy while significantly reducing the number of
event pairs that need further processing, thereby
improving the efficiency of event coreference reso-
lution.

C Details of Baselines

To verify the effectiveness of our model, we select
several strong baselines for comparison. For ECB+,
we select five baselines as follows.

1) Caciularu et al. (2021) pretrained a language
model via a set of related documents, which used a
stronger text encoder LongFormer;

2) Chen et al. (2023) resolved coreference events
by local and global information on discourse tree.

3) Ahmed et al. (2023) proposed a simple heuris-
tic paired with a cross-encoder;

4) Nath et al. (2024) implemented knowledge
distillation methods for event coreference scoring.

5) “w/o DCE” represents our model without dis-
course coherence enhancement.

It should be noted that only the baseline Caciu-
laru et al. (2021) reported the results of entity coref-
erence resolution on ECB+ dataset. Since WEC
has only two baselines, Eirew et al. (2021) and
Gao et al. (2024), we selected them for this dataset
comparison. Because ECB+META is the latest
cross-document coreference resolution dataset, we
can only compare it with Ahmed et al. (2024).

D Experimental Results on All Metrics

Table 7 shows all the results of MUC, B3, CEAFe,
and CoNLL on the ECB+, WEC and ECB+META
datasets, where “*” refers to using the oracle set-
ting. The comparisons on WEC is conducted under
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ECB+
Event-level MUC B3 CEAFe CoNLL
Caciularu et al. (2021) 88.1 86.4 82.2 85.6
Chen et al. (2023) 88.3 87.3 83.6 86.4
Nath et al. (2024) 87.9 86.8 84.5 86.4
Ours(non-oracle) 89.9 87.5 86.3 87.4
Ahmed et al. (2023)* 90.7 86.3 85.0 87.4
w/o DCE* 88.7 87.2 84.9 86.9
Ours(oracle)* 90.3 89.0 86.3 88.5
Entity-level MUC B3 CEAFe CoNLL
Caciularu et al. (2021)* 89.9 82.1 76.8 82.9
Chen et al. (2023)* 90.0 82.2 77.5 83.2
w/o DCE* 89.4 82.7 77.1 83.1
Ours(oracle)* 90.7 83.7 77.9 84.1

WEC
Event-level MUC B3 CEAFe CoNLL
Eirew et al. (2021) 80.7 60.2 45.9 62.3
Chen et al. (2023) 79.3 58.7 45.9 61.3
Gao et al. (2024) 81.8 65.8 47.3 65.0
w/o DCE 79.1 57.9 43.6 60.2
Ours 82.5 67.1 48.2 65.9

ECB+META1
Event-level MUC B3 CEAFe CoNLL
Ahmed et al. (2024)* - - - 71.4
Chen et al. (2023)* 70.1 72.0 65.5 69.2
w/o DCE* 69.2 69.8 66.3 68.4
Ours(oracle)* 74.1 73.2 68.7 72.0

ECB+METAm
Event-level MUC B3 CEAFe CoNLL
Ahmed et al. (2024)* - - - 55.6
Chen et al. (2023)* 54.3 52.8 48.3 51.8
w/o DCE* 47.8 52.6 51.2 50.5
Ours(oracle)* 58.8 57.3 52.4 56.2

Table 7: Coreference resolution results on the three datasets, where “-” refers to the scores that were not reported.

System MUC B3 CEAFe CoNLL
Cattan et al. (2021) 83.5 82.4 77.0 81.0
Held et al. (2021) 87.5 86.6 82.9 85.7
Yu et al. (2022) 86.6 85.4 81.3 84.4
Gao et al. (2024) 87.8 86.3 82.4 85.5
Ours 88.2 87.2 83.5 86.3

Table 8: Results using RoBERTa on the ECB+ dataset.

RoBERTa, while the ECB+ is based on the Long-
Former encoder. It is worth mentioning that the
comparison on ECB+META1 (Ahmed et al. (2024)
used RoBERTa) and ECB+METAm (Ahmed et al.
(2024) used GPT-4) is a best-reported comparison
regardless of the underlying model architecture.

In addition, we also include the comparison with
existing baselines using RoBERTa on the ECB+
dataset in Table 8.

E Ablation on Different Input Text

Table 9 shows the results of all metrics of using
random selected sentences and coherent sentences
selected by our CD-DCE for mention feature rep-
resentation. The results show that our CD-DCE
outperforms the random strategy on all four met-
rics on all datasets.

F LLMs Prompts and Performance

The prompt used in ChatGPT and LLaMA for dis-
course coherence enhancement is as follows. Ta-
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Event-level ECB+
System MUC B3 CEAFe CoNLL
Random 89.3 81.8 74.6 81.9
Ours 90.7 83.7 77.9 84.1
Entity-level ECB+
System MUC B3 CEAFe CoNLL
Random 89.3 81.8 74.6 81.9
Ours 90.7 83.7 77.9 84.1
Event-level WEC
System MUC B3 CEAFe CoNLL
Random 78.5 63.0 44.9 62.1
Ours 82.5 67.1 48.2 65.9
Event-level ECB+META1
System MUC B3 CEAFe CoNLL
Random 71.1 70.9 66.6 69.5
Ours 74.1 73.2 68.7 72.0
Event-level ECB+METAm
System MUC B3 CEAFe CoNLL
Random 53.9 54.2 48.1 52.1
Ours 58.8 57.3 52.4 56.2

Table 9: All scores of using different input text for
mention feature representation.

ble 10 shows the comparison results.
Instruction: Here are two sentences S1 and S2 from
difference documents, and CIT is a set of candidate
insertion sentences. Please select 1-3 sentences
to form a sentence group G from CIT and insert
them between S1 and S2, to make the whole text
Xinp=[S1, G, S2] more coherent, please output
with Xinp.
Input:
S1: It’s a sublime bit of casting. He’s got that huge
hair, a twinkle in his eye.
S2: The guy is relatively unknown and the skeptics
wondered if the right person was chosen.
CIT: [“Smith, 26, who played a young political re-
searcher in the show, will become the biggest star
of all after winning the role of the 11th Doctor.”,

“Speaking to The Guardian, Buchan said his old co-
star would make an excellent Doctor Who”,

“The guy is relatively unknown and the skeptics won-
dered if the right person was",....]

Table 10 shows that ChatGPT-3.5 and LLaMA
do not achieve comparable performance to our
DCE. DCE has been designed to enhance coher-
ence between cross-document mentions and to fa-
cilitate understanding of event and entity corefer-
ence relations, while ChatGPT-3.5 and LLaMA
was not optimized for our task. It is worth men-

Event-level MUC B3 CEAFe CoNLL
Ours 90.3 89.0 86.3 88.5
ChatGPT-3.5 -2.4 -5.6 -3.7 -3.9
LLaMA -1.0 -2.9 -5.1 -3.3
Entity-level MUC B3 CEAFe CoNLL
Ours 90.7 83.7 77.9 84.1
ChatGPT-3.5 -6.1 -2.3 -3.4 -3.9
LLaMA -7.6 -2.9 -3.0 -4.5

Table 10: Performance comparison of LLMs and our
model.

Training Test
Dataset ECB+ WEC GVC
ECB+ | ECB+para 88.5 | 88.2 55.6 | 55.7 65.9 | 66.1
WEC | WECpara 63.6 | 64.1 65.9 | 65.6 72.4 | 72.2
GVC | GVCpara 67.6 | 67.1 45.3 | 44.9 87.3 | 87.0

Table 11: Evaluation results on lemma diversity incre-
ment.

tioning that it is quite challenging for LLMs to
truly comprehend this task, and we acknowledge
that there are differences in the level of understand-
ing of coherence models between our model and
LLMs.

G Impact of Lemma Diversity

We use BART to generate paraphrased versions of
the origin sentence in our datasets. The number
of paraphrased are set to 5. We conduct both in-
domain and out-of-domain evaluation on the ECB+,
WEC and GVC datasets, and the results are shown
in Table 11.

From the perspective of out-of-domain, compar-
ing the results before and after paraphrasing, there
is no significant improvement in the performance of
out-of-domain training for coreference resolution.
Although paraphrasing increases lemma diversity,
it fails to address the deep-seated semantic distribu-
tion differences in out-of-domain data. It is difficult
for the model to learn effective coreference resolu-
tion patterns, thus unable to significantly improve
the out-of-domain training performance. From the
perspective of in-domain , comparing the results
before and after paraphrasing, the performance of
the three datasets after paraphrasing has decreased.
This is because the coreference resolution task re-
lies heavily on context. Increasing lemma diver-
sity may change the coherence and semantic re-
lationships of the context. The new lemma may
locally change the semantic associations between
sentences, causing the model to lose the originally
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Dataset ROUGE-L BERTScore
ECB+(event) 0.57 | 0.71 0.52 | 0.65
ECB+(entity) 0.51 | 0.66 0.50 | 0.61
WEC 0.45 | 0.56 0.40 | 0.52
ECB+META1 0.55 | 0.70 0.49 | 0.63
ECB+METAm 0.56 | 0.68 0.49 | 0.61

Table 12: Coherence scores before and after en-
hancement on the ECB+, WEC, ECB+META1 and
ECB+METAm datasets.

clear clues when predicting coreference relations.

H Coherence Metrics Study

We used ROUGE and BERTScore metrics to mea-
sure coherence scores before and after enhance-
ment. Specifically, we calculated the average co-
herence scores of CD mention pair of all data sets
before and after using the above two coherence met-
rics, and the results are shown in Table 12 where
the values before and after “|” refer to the model
w/o and w/ enhancement mechanism, respectively.
This shows that through our coherence enhance-
ment mechanism, the coherence between mention
sentence has been effectively strengthened.
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