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Abstract

Autoregressive Large Language Models
(LLMs) demonstrate exceptional performance
in language understanding and generation.
However, their application in text embedding
tasks has been relatively slow, along with the
analysis of their semantic representation in
probing tasks, due to the constraints of the
unidirectional attention mechanism.

This paper aims to explore whether such con-
straints can be overcome by enabling bidirec-
tional attention in LLMs. We tested differ-
ent variants of the Llama architecture through
additional training steps, progressively en-
abling bidirectional attention and unsuper-
vised/supervised contrastive learning.

Our results show that bidirectional attention
improves the LLMs’ ability to represent subse-
quent context but weakens their utilization of
preceding context, while contrastive learning
training can help to maintain both abilities1.

1 Introduction

Decoder-only LLMs using autoregressive pretrain-
ing have achieved superior performance across lan-
guage understanding and generation tasks, causing
a major shift from the previous pretraining-then-
finetuning paradigm dominated by encoder-only
models (Naveed et al., 2023). However, the com-
munity has been relatively slow in adopting them
for word, sentence, and document embedding tasks
because of their apparent limitations as text en-
coders, which have been speculated to be due to the
lack of bidirectional attention (Qorib et al., 2024;
BehnamGhader et al., 2024; Springer et al., 2025).
As illustrated in Figure 1, decoder-only LLMs can
only access preceding contextual information dur-
ing inference, resulting in word representations that
encode information from the previous context, in-
stead of the entire input sequence.

1Our code and data are released at: https://github.
com/Zhaoxin-Feng/semantic-probing-2025.
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Figure 1: Comparison of attention mechanisms in Llama
and BERT models. (a) shows Llama’s unidirectional
attention where prediction (orange arrows) and word
representation (blue arrows) can only access one side
context; (b) shows BERT’s bidirectional attention where
masked language modeling allows word representation
to access both previous and subsequent context.

This architectural constraint is potentially very
limiting in tasks requiring fine-grained modulation
of word meanings: while contextualized embed-
dings from encoder-only models marked significant
progress compared to previous generation distribu-
tional models (Bommasani et al., 2020; Chronis
and Erk, 2020), the availability of the right-hand
context might be important to capture subtle mean-
ing nuances, and disambiguate the senses of poly-
semous words (Zhu et al., 2024; Qorib et al., 2024).

Can this limitation be addressed? After all, the
decoder-only architecture enables more efficient
learning from all input tokens during pre-training,
significantly improving sample efficiency com-
pared to encoder-only counterparts (Clark et al.,
2020), and this would be an important advantage if
LLMs representations could be adapted to perform
better in embedding tasks.

Given the above-mentioned research back-
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ground, we propose the following research ques-
tion: does bidirectional attention in LLMs enhance
the quality of word meaning representations in
LLMs? Could they achieve the same quality of
embeddings extracted from encoder-only models?

In this paper, we propose a probing study of
different types of LLMs architectures on a pool of
lexical semantic tasks. Drawing inspiration from re-
cent work on enabling bidirectional attention in au-
toregressive models (BehnamGhader et al., 2024),
we compare the performance of Llama embeddings
under the following configurations: i) a base Llama
architecture, ii) the architecture in i) after an addi-
tional training step to enable bidirectional attention;
iii) the architecture in ii), after applying unsuper-
vised/supervised contrastive learning.

Perhaps surprisingly, we found that bidirectional
attention in itself does not improve the performance
of Llama embeddings on our tasks: while it im-
proves LLMs’ ability to represent the right-hand
context of a target word, it also seems to weaken
the representation of the left context. Contrastive
learning techniques often help the models to main-
tain both abilities, with Llama architectures get-
ting on par or even outperforming bidirectional,
BERT-based baselines on our tasks. Interestingly,
we also found that adding bidirectional attention
alone exacerbates the anisotropy (Ethayarajh, 2019;
Cai et al., 2021; Godey et al., 2024) (a condition
in which all vectors occupy just a narrow cone in
the vector space) in all layers, resulting on aver-
age in higher similarity scores between the vectors
of randomly sampled words. These findings re-
veal the potential of decoder-only LLMs in word
embedding tasks, offering insights into enhancing
LLMs’ representations with bidirectional attention
and contrastive learning.

2 Related Work

2.1 Representations of Word Semantics

The representations of word semantics in NLP
have undergone a remarkable development in the
last two decades. Early methods like distribu-
tional semantic models (DSMs) derive semantic
representations from statistical patterns of word co-
occurrences in large text corpora, assuming that
words with similar contexts have similar mean-
ings (Harris, 1954; Schütze, 1992; Bullinaria and
Levy, 2012). Later more efficient methods like
Word2Vec and GloVe (Mikolov et al., 2013; Pen-
nington et al., 2014) emerged, using neural net-

works to train word embedding representations
more compactly, without time-consuming high di-
mensional spare data processing and high perplex-
ity algorithms calculation (Pennington et al., 2014;
Mikolov et al., 2013).

However, these static vector models struggled
with polysemy, as they assigned a single vector to
each word regardless of context (Faruqui et al.,
2016; Gladkova and Drozd, 2016; Wang et al.,
2020b). This limitation was addressed by con-
textualized embedding models such as ELMo and
BERT (Peters et al., 2018; Devlin et al., 2019), in
which word vectors are learned as a function of
the internal states of the network, such that a word
in different sentence contexts determines different
activation states and is represented by a distinct
vector (Chersoni et al., 2021).

Despite the advantages of representing context-
specific meanings, contextualized vectors were
shown to have a high level of anisotropy, i.e. they
occupy just a narrow cone in the vector space, with
the consequence that randomly-sampled words
might also get high similarity values (Ethayarajh,
2019) and postprocessing techniques need to
be applied to adjust the similarity metrics for
anisotropy (Timkey and van Schijndel, 2021).

2.2 Probing Linguistic Features in LLMs
Probing-based methods for analyzing linguistic
features have become prevalent for understanding
the internal linguistic knowledge of language mod-
els (Linzen et al., 2016; Hewitt and Liang, 2019;
Liu et al., 2019; Wu et al., 2020; Chersoni et al.,
2021; Kauf et al., 2023; Matthews et al., 2024;
Wang et al., 2024a; Liu et al., 2024). The core
idea involves using a simple diagnostic model (the
“probe”, usually a linear classifier) to predict spe-
cific linguistic properties (e.g. animacy) from lan-
guage model’s output representations. If the model
succeeds, we can infer that the representations of
the language model encode that linguistic knowl-
edge (Chersoni et al., 2021). For instance, Hewitt
and Manning (2019) presents a linear classifier to
predict a target syntactic structure based on con-
textualized word representations to measure the
syntactic information encoded in language models.

For LLMs, the most prevalent method to probe
the linguistic knowledge is to use the representation
is the hidden state of the last layer (Neelakantan
et al., 2022; BehnamGhader et al., 2024; Springer
et al., 2025; Lee et al., 2025). We went for the
last layer embedding also for an issue of method-
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ological alignment with these approaches. Also,
considering that the last hidden layer is processed
through all model layers, in theory it contains the
richest and most comprehensive context informa-
tion, and thus our method employs these final layer
hidden states to derive contextual representations
of target words.

2.3 Autoregressive LLMs as Text Encoders

While ELMo and BERT’s bidirectional attention
gives them access to both the left and the right con-
text around the target word, autoregressive LLMs
like the GPTs (Radford et al., 2019; Brown et al.,
2020) only use the context that comes before the
target. Therefore, autoregressive LLMs are often
considered sub-optimal for text embedding tasks.

However, recent studies have shown that even
under the constraints of causal masking, LLMs are
still capable of capturing certain contextual rela-
tionships (Muennighoff, 2022; Wang et al., 2024b;
BehnamGhader et al., 2024; Springer et al., 2025).
Among these studies, both Springer et al. (2025)
and BehnamGhader et al. (2024) specifically hy-
pothesize that the limitation of LLMs lies in uni-
directional attention: the former proposed “echo
embeddings”, a method that feeds a target input
sequence twice to a model to allow for the en-
coding of the context after the target; while the
latter proposes an additional training step, called
masked next token prediction, to enable bidirec-
tional attention in autoregressive models, and intro-
duces further refinements based on unsupervised
and supervised contrastive learning techniques, in
order to improve the performance in sentence-level
tasks. We ground our work in BehnamGhader et al.
(2024)’s LLM2Vec framework, using its publicly
available models to observe how different train-
ing strategies affect the models’ behavior in lexical
semantic tasks.

3 Experimental Setup

3.1 Model Selection

Our experiments focused on Llama architec-
tures (Touvron et al., 2023a), and particularly on
Sheared-Llama (Xia et al., 2023) and Llama 2 (Tou-
vron et al., 2023b). The former was chosen because
it is a structurally-pruned and space-efficient ver-
sion of the original model (we used the 1.3B ver-
sion), and it is the closest in terms of parameter size
to the most commonly-used bidirectional models
(e.g. BERT and RoBERTa). We selected the 7B

version of Llama 2 mainly to check if the trends
identified with Sheared-Llama-1.3B were consis-
tently observed in a bigger model.

Besides the base models (i.e. Sheared-Llama-
1.3B and Llama2-7B), for our experiments we
tested their variants augmented with the addi-
tional training steps of the LLM2Vec framework
(BehnamGhader et al., 2024): 1) the Bi+MNTP
models underwent an additional training via
masked next token prediction, in which part of
the input tokens was masked and the model had
to reconstruct them on the basis of left and right
context. For the prediction of each masked token,
only the logits obtained from the previous token
positions were used for computing the loss; 2) the
architecture in 1), but with the addition of unsu-
pervised (SimCSE) and Supervised contrastive
learning (Gao et al., 2021) on top of the bidirec-
tional training. BehnamGhader et al. (2024) added
this step claiming that an autoregressive LLM with
Bi+MNTP could be adequate for word-level tasks
(they indeed obtain improved performance on stan-
dard benchmarks for POS Tagging and Named En-
tity Recognition), but contrastive learning is helpful
to make their sequence representations a good fit
for sentence-level tasks as well. All the augmented
models are based on the same Sheared-Llama and
Llama 2 architectures, and this gives us the chance
to directly compare the effects of each additional
training step.

We also used the embeddings from BERT Base
and BERT Large (Devlin et al., 2019) as our bidi-
rectional baselines. For more details about our
LLMs and the settings of the probe classifiers, the
reader can refer to Appendix A.2.

3.2 Extracting Word Representations

We leverage the hidden states from the final layer
of LLMs to obtain contextualized representations
of the target word for each lexical semantic task.
Given a word w within a sequence c, we first extract
sequence representations as follows:

H = [h1,h2, ...,hn] ∈ Rn×d (1)

where n denotes the sequence length (number of
tokens) and d represents the no. of hidden dimen-
sions (e.g., 2048 in Sheared-Llama-1.3B).

For a word w tokenized into k subwords
{t1, t2, ..., tk}, let I = {i1, i2, ..., ik} denote their
positional indices in H. The final word representa-
tion vw is obtained through:
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The judgelawyer questioned the

         : Probed word

Task 5: Word-in-context 

Task 2: Lexical aspect binary classification

Run fast away -> Durative 1 

Hit the ball -> Instantaneous 0

Build a house -> Telic 1

Swim in lake -> Atelic 0

Duration Telicity
-> animacy 0/1

Idempotence have traits -> 1 (abstract) 

Car is running fast -> 7 (concrete) 

->

The chef chopped the pork vigorously

vision: 6; hearing: 5; … (11 sensor values)

The bank of river

Have bank account
-> synonymous 0/1

Figure 2: Summary of five semantic probing tasks in our study: Tasks 1, 2, and 5 are classification tasks, with 0 and
1 denoting binary labels; Tasks 3 and 4 are regression tasks, where numbers (eg. 5, 7) indicate continuous values for
the target variables. The “probed word” (highlighted) refers to the word whose contextualized representation is
extracted for the probing task.

vw =
1

|I|
∑

j∈I
hj (2)

When |I| = 1 (a single-token word), Equation 2
simplifies to vw = hi. This formulation ensures
consistent representation for both single- and multi-
token words while preserving contextual informa-
tion from the final layer.

The first four tasks all involve a single target
word in a sentence context, so we directly feed
the target word’s representation to a classifier or
regression model for prediction. The exception
was the Word-in-Context (see Section 3.3), which
required comparing the meaning of a target word in
two different sentences. In this task, we test three
types of embeddings-derived features as input to
a classifier: their cosine similarity, the absolute
values of their element-wise difference, and their
concatenation.

3.3 Datasets and Tasks

Our study adopts five probing datasets (Figure 2).
First, the context-probes dataset by Klafka and
Ettinger (2020), which is composed of sets of five-
word sentences with a subject-verb-object structure
and a binary property annotated for the verb or
one of the nouns in the sentence, e.g. animate
vs. inanimate for one of the nouns (the subject
or the object); dynamic vs. static, and supporting
causative-inchoative alternation for verbs. This is
an easy task, targeting relatively stable properties
of the target words regardless of context, but it can
be useful to test the attention patterns of a model:
in theory, LLMs with bidirectional attention should
be able to solve it regardless of which token embed-

ding is fed to the classifier (i.e., even if the target
word follows the token embedding, a contextual-
ized embedding from a BERT model should still
contain information from the right-hand context),
while autoregressive LLMs should struggle more
when the input embedding is extracted from a token
preceding the target.

A second task, targeting verbs, is lexical aspect
classification (Metheniti et al., 2022). This dataset
contains annotations about telicity and duration for
verbs in a sentence context: given a verb embed-
ding, a probing model has to determine whether it
is telic/atelic or durative/stative.

Next, we ran two regression tasks using two
datasets targeting the semantics of words in con-
text: CONcreTEXT (Gregori et al., 2020) and con-
textualized sensorimotor norms (Trott and Bergen,
2022). The former contains annotations about the
concreteness of a given word, with mean human
ratings on a Likert scale ranging from 1 (totally
abstract) to 7 (totally concrete); the latter con-
tains mean human ratings for both verbs and nouns
on 11 different sensorimotor domains, such as vi-
sion, hearing, etc. For each word, a sensorimotor
rating indicates to what extent the corresponding
sense is relevant to experiencing the concept re-
ferred by the target word in that specific context.
In both cases, the goal for a probe model is to
predict human ratings using as input the embed-
ding of the target word (Fagarasan et al., 2015;
Utsumi, 2018; Thompson and Lupyan, 2018; Li
and Summers-Stay, 2019; Chersoni et al., 2020,
2021; Flor, 2024).

For the final task, we employ the Word-in-
Context (Pilehvar and Camacho-Collados, 2019)
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Figure 3: Results of predicting subject animacy, verb causative/dynamic, and object animacy using each word in a
sentence as probed words, scores extracted with Sheared-Llama-1.3B and its variants. The horizontal axis represents
word indices in sentences (all with identical five-word syntactic structures).

dataset. In each instance, a target word appear in
two different sentences, and the probe model has
to determine whether the word is being used in the
same sense or not. Dataset details are described in
Appendix A.1.

We selected the probing tasks to address differ-
ent types of semantic features for different parts-
of-speech (e.g. nouns and verbs), and the tasks
demand a different level of contextual sensitivity:
while the features of context-probes or verb aspect
should be stable for a target word across linguis-
tic contexts, the regression tasks and the Word-
in-Context were explicitly designed to require a
deeper understanding of contextual meaning.

As for the probes, we tested both a linear and a
non-linear model on top of the embeddings: the for-
mer was logistic regression for classification tasks
and linear regression for concreteness and norms
predictions; the latter was a multilayer perceptron
(see Appendix B). In the main text, we only re-
port the results of the Multilayer Perceptron, which
achieved higher scores, while the results for the lin-
ear models are in Appendix B.2. All tasks were im-
plemented on a single 40GB NVIDIA A100 GPU.

To ensure that our probing methodology actu-
ally evaluates the quality of contextual information
in embeddings and to assess our selected tasks’
sensitivity to context, we conducted two comple-
mentary experiments documented in the Appendix
2: 1) control tasks with randomly sampled labels
(Appendix C), and 2) out-of-context evaluations
where models processed probed words in isolation
rather than complete sentences (Appendix D).

2The experiments were added upon a reviewer’s request.

4 Results and Analysis

The experimental results yield three main findings
derived from Tasks 1 and 2, Tasks 3 and 4, and the
final task, respectively.

Finding 1: Bidirectional attention improves the
LLMs’ ability to represent subsequent context, but
it weakens the utilization of the previous context.
Contrastive learning techniques mitigate this trade-
off by enhancing the model’s ability to balance
contextual understanding in both directions.
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Figure 4: Results of subject animacy subtask in Task 1
by comparing Sheared-Llama-1.3B to Llama2-7B.

Figure 3 shows the results for the context-probes
dataset, for the base, unidirectional Llama, when
the embedding of the probed word comes before
the target word, the model has severe difficulty
in correctly predicting the properties of the target
word. On the other hand, it can be seen that the
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performance of the bidirectional baselines is con-
sistently high, regardless of the token embedding.
Once bidirectional attention is enabled, however,
the score pattern for Llama Bi + MNTP is more
aligned with the BERT models.

There is, though, an important difference: by
comparing Bi + MNTP and unidirectional Llama
in Figure 3 a), we can find that the pink line shows
relatively stable accuracy in the latter half, while
the blue line exhibits a noticeable decline as the
distance between target word and token of the input
embedding increases. This indicates that enabling
bidirectional attention may also weaken Llama’s
inherent ability to “see” the preceding context.

At the same time, if we look at the models en-
hanced with contrastive learning (purple and green
lines), we can notice that the additional training
helps Llama to maintain representation quality in
all the token positions. The results of the first task
thus suggest that the additional training to refine
sentence-level representations has positive effects
also on the quality of single token embeddings. Fig-
ure 4 shows a comparison between Sheared-Llama
and Llama 2 in terms of the impact of bidirectional
attention, and it can be seen that the larger model
is following a similar pattern, although the accu-
racy scores have a less sharp decrease. Similarly
to Sheared-Llama, the application of contrastive
learning greatly helps model performance (see Ap-
pendix B for more detailed results).

In Figure 5 we can see the scores for the lexical
aspect classification, where we can observe that,
for telicity, the basic versions of Llama are already
performing well and on par with the bidirectional
baselines, while they fall short of BERT Base in
modeling verb duration. As we observed before,
bidirectional training alone with Bi + MNTP actu-
ally makes the models less accurate, whereas con-
trastive learning techniques consistently improve
their performance. At a glance, it can be noticed
that Llama 2 with either contrastive training type is
better than both BERT baselines in both subtasks.

Finding 2: Autoregressive models perform sim-
ilarly to bidirectional ones on regression probing
tasks for norms prediction.

Moving to the regression tasks, e.g. concrete-
ness prediction on CONcreTEXT and modeling
of contextualized sensorimotor norms (Figure 6),
we can immediately see that base Llama models
already achieve high correlations with human mean
ratings, with no significant disadvantage to the bidi-
rectional competitors. This contradicts previous
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Figure 5: Results of verb telicity and duration (Task 2).

findings claiming that autoregressive LLMs are not
optimal when it comes to modeling word semantics
(Qorib et al., 2024).

It should not be underestimated, however, the
specificity of the task at hand: while most probing
tasks presented in the literature focus on discrete
distinctions (e.g. grammatical vs. ungrammatical,
semantically plausible vs. implausible), there is
only limited comparative evidence about LLM per-
formance when it comes to modeling fine-grained,
continuous judgements of semantic properties. In-
terestingly, recent studies reported that LLMs are
able to faithfully reproduce human ratings of con-
creteness and sensory norms via prompting GPT-4
(Xu et al., 2023; Martínez et al., 2025), and thus it
is possible that such semantic features are robustly
encoded also in other autoregressive architectures
(e.g. Llama models).

Once again, Bi + MNTP alone deteriorates em-
bedding quality, and contrastive learning strategies
mitigate its negative effects. However, in the con-
creteness task this does not lead to any consistent
improvement over the base models; in the senso-
rimotor norms task, better correlations can be ob-
served only for the Llama 2 model, and only with
the unsupervised contrastive learning strategy.

In addition, it could be noticed about these tasks
that in none of the model families size seems to
matter too much: Sheared-Llama and BERT Base
are often on par or better than the corresponding
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Figure 6: (a)-(b) show results for predicting noun concreteness (Task 3), while (c)-(d) display average results for
predicting 11 sensorimotor dimensions of words (Task 4). Metrics include Spearman and Pearson correlation
coefficients.

larger models.
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Figure 7: Results of word sense disambiguation task
(Task 5). This task employs three methods of processing
two target words’ representation from pair sentences:
cosine similarity, absolute difference, and concatenation.
The metric is accuracy.

Finding 3: In the sense disambiguation task, con-
trastive learning methods improve the quality of
embeddings from autoregressive models irrespec-

tive of the strategy for extracting probe features.
Given that Word-in-Context requires, compared

to the other datasets, the combination of two contex-
tualized representations, we tested three different
strategies to combine the vectors (Figure 7). No
big differences can be seen between those strate-
gies with the base models, and in this case Bi +
MNTP has a mixed effect, leading to the usual per-
formance deterioration with Sheared-Llama and
to better performance with Llama 2. Interestingly,
contrastive learning leads again to best scores in
the task, and it can be noticed that after its appli-
cation the cosine similarities strategy becomes the
most consistent one (cosine strategy with Sheared-
Llama and either one of contrastive training types
are the only combinations outperforming both the
BERT baselines). As this strategy is simply based
on using vector proximity as the only feature for the
probe, the result suggests that refining representa-
tions for sentence-level tasks with contrastive learn-
ing also leads to more meaningful distances be-
tween token-level embeddings in the vector space.

4.1 Anisotropy in the Embedding Space

Anisotropy, a known issue in pre-trained language
models, has been attributed to the disproportionate
influence of rare tokens in the negative direction of
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Figure 8: (a) represents the experimental results with randomly sampled words to examine the anisotropy; (b)
illustrates the variation in anisotropy of words within the same sentence as the layer depth of the LLMs increases.

hidden states within likelihood-maximizing mod-
els (Wang et al., 2020a; Gao et al., 2019). How-
ever, in the literature, bidirectional attention models
were shown to exhibit lower anisotropy compared
to autoregressive models (Ethayarajh, 2019), possi-
bly due to the impact of the attention mechanisms.
Based on this, we speculate that bidirectional at-
tention may alleviate the issue of anisotropy in the
embeddings of autoregressive models.

Therefore, we extract the embeddings for the
target words in the WIC dataset (Pilehvar and
Camacho-Collados, 2019), randomly sample the
representation of all target words 1000 times, and
then calculate the average cosine similarity. The
result is presented in Figure 8 a): neither BERT
nor Llama produces isotropic word representations.
Additionally, all Llama models have a sudden sharp
increase in the cosine similarities in the second
layer, followed by a decrease.

In terms of broad trends from shallow to deep
layers, Llama models are relatively stable in the
central layers and then the similarities increase
again towards the last layers, with the exception for
unsupervised contrastive learning Llama. The ob-
served impact of the bidirectional attention mecha-
nism contradicts our hypothesis: Sheared-Llama-
1.3B with bidirectional attention exhibits higher
global similarity across all hidden states compared
to its unidirectional counterpart. While the model
combining bidirectional attention and supervised
contrastive learning is the one with the highest de-
gree of anisotropy, the version with unsupervised
contrastive learning is the most successful in re-
ducing average similarities, showing an overall de-
creasing trend in the later layers. As for BERT, the
similarities show a constant upward trend while
moving from the earlier to the later layers, which

align with the previous analysis, and showing a
spike in the degree of anisotropy in the very last
ones (Ethayarajh, 2019).

On the basis of such findings, we would rec-
ommend that for tasks involving an unsupervised
evaluation based on vector-space similarity, re-
searchers adopt LLM with bidirectional training
and unsupervised contrastive learning, since it
seems to be the most robust combination against
the anisotropy issue. On the other hand, our results
also show that highly anisotropic representations
do not necessarily have a negative impact on super-
vised tasks. In Figure 8 a) it can be clearly seen
that, whereas unsupervised contrastive learning re-
duces anisotropy, supervised contrastive learning
increases it. However, our experiments on the prob-
ing datasets showed that Llama models trained with
supervised contrastive learning generally outper-
form all the other models.

To investigate how word representations within
the same sentence evolve from shallow to deep
layers of the model, we also extract words from
individual sentences and perform layer-wise cosine
similarity calculations to quantify intra-sentence
anisotropy. Figure 8 b) shows that supervised
contrastive learning bidirectional and bidirectional-
only Llama models exhibit increasing anisotropy
across layers, indicating that, in the deeper lay-
ers of the model, words from the same sentence
tend to converge towards similar representations.
This exhibits a trend of increasing anisotropy anal-
ogous to what we observed with randomly selected
words. In the case of intra-sentence words, how-
ever, unsupervised contrastive learning does not
significantly decrease the similarities compared to
the base model, and the lowest levels of anisotropy
are generally achieved by BERT in the late layers.
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5 Conclusion

This work investigates how bidirectional attention
contributes to contextual information encoding in
word representations. The main contributions are:
1) providing a fine-grained word-based analysis
of LLMs with enabled bidirectional attention, 2)
unveiling the trade-off brought by bidirectional at-
tention, and 3) contributing valuable insight into
the application of LLM2Vec and the ongoing ex-
ploration of using LLMs as text encoders.

Contrary to our expectations, we found that in se-
mantic probing tasks simply enabling bidirectional
attention is not sufficient, as it may decrease the
model’s capability to represent the previous con-
text. However, we observed that across tasks, with
the only exception of regression tasks for norms
prediction, adding contrastive learning on top of
bidirectional attention tends to improve the repre-
sentation quality of the embeddings extracted from
autoregressive LLMs. The fact that the sense dis-
ambiguation task of the Word-in-Context dataset,
after contrastive learning, can be better addressed
simply by using the cosine between the vectors
suggests that this technique might lead to more
meaningful distances between token-level vectors.

Moreover, we further analyzed the anisotropy
of embedding representations across various hid-
den states. We found that bidirectional attention
increases representation isotropy across all Llama
layers, showing that this feature is not inherently
related to undirectional attention. Among the con-
trastive learning strategies, the unsupervised one
seems to improve the anisotropy issue in the vec-
tor space, and thus it would be the recommended
choice if the goal was to adapt an autoregressive
LLM to unsupervised word embedding tasks that
are evaluated via vector similarity.

Limitations

This probing study reveals that activating bidirec-
tional attention impacts the semantic encoding of
word representations, though the underlying mech-
anisms remain unclear. Additionally, the corre-
spondence between high-dimensional dense vec-
tors in computational models and semantic infor-
mation warrants further investigation to bridge in-
terpretability gaps in neural representation studies.

Another limitation is that our study is limited to
the English language with the Sheared-Llama-1.3B
and Llama2-7B models, and bigger models were
not tested due to limitation of our computational

resources. Different languages and models may
yield varying effects on the performance our lexical
semantic tasks. We anticipate that future work can
expand to diverse languages and models to validate
and refine our findings. Likewise, Our approach to
extracting contextual word representations, while
designed for broad model compatibility, may not
be necessarily the optimal one for each model.

Lastly, while bidirectional attention mechanisms
have been shown to enhance performance in text
embedding tasks in LLMs, their inherent capabil-
ities were not thoroughly evaluated in our study.
However, since our paper focuses on the problem of
adapting autoregressive LLMs to embedding-based
tasks, we did not evaluate text generation capabili-
ties. To our knowledge, bidirectional attention and
contrastive learning are not commonly adopted for
text-generation tasks. A previous study (Khosla
et al., 2025) demonstrated that enabling bidirec-
tional attention in LLMs may significantly exac-
erbate text repetition. This occurs because such
mechanisms disrupt the LLM’s native autoregres-
sive generation, causing it to resemble BERT-like
models, which are known to struggle with coherent
text production. Future work may include more
in-depth explorations of this problem.
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A Experimental Setup

A.1 Dataset Details
Table 1 details datasets used in experiments. The
hyperlinks are attached to dataset names, which
direct to the download page of each dataset.

A.2 Model Details
Table 3 shows used model details in the experi-
ments. Hyperlinks to each model’s Hugging Face
page are added.
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A.3 Other Setup Details

The hyperparameters of the Multilayer Perceptron
(MLP) classifier used in our experiments are pre-
sented in Table 2. All experiments were imple-
mented in Python 3.10 utilizing PyTorch 2.6.0
(CUDA 12.4), Transformers 4.43.1, and PEFT
0.10.0 libraries. To ensure reproducibility across
experiments, we set the random seed to a fixed
value of 42. To reduce memory usage and compu-
tational cost, we employed half-precision (FP16)
arithmetic for embedding extraction.

B Experimental Results

B.1 Multilayer Perceptron

Tables 4 to 7 shows the experimental results of
five tasks using multilayer perceptron as the probe
model.

B.2 Logistic Regression/Linear Regression

Tables 8 to 11 shows the experimental results of five
tasks using logistic regression or linear regression
as the probe model.

C Effectiveness of Probing Method

As Voita and Titov (2020) pointed out, the probe
accuracy can be similar when probing for genuine
linguistic labels and probing for random synthetic
tasks. To address this concern, we introduced con-
trol tasks to evaluate the selectivity of the probes.
In control tasks, each label is not genuine but ran-
domly sampled. As Hewitt and Liang (2019) sug-
gested, a good probe should achieve higher accu-
racy on linguistic tasks and lower accuracy on con-
trol tasks. We test BERT-base, Sheared-Llama,
and Sheared-Llama (Bi + BNTP) on control tasks
(MLP classifier).

Results are shown in Tables 12 to 14: Across
all five tasks we examined, the control task consis-
tently showed significantly lower accuracy than the
original task, demonstrating that the probes exhib-
ited high selectivity in all five cases.

D Task Sensitivity to Context

To assess the importance of the context in the first
four tasks (i.e., whether performance benefits from
contextual embeddings), we conducted additional
experiments using non-contextual inputs (probed
words without surrounding context) and MLP clas-
sifier. As demonstrated in Tables 15 and 16, the

results confirm that all four tasks indeed show im-
proved performance with contextual information.

In Task 1 (Table 15): for each experiment, we
input only a single word (the probed word) to the
model, rather than an entire sentence. As expected,
we found that accuracy is high only when prob-
ing the target word directly, with the other words
yielding random-guess performance. Notice that
in Task 1 our focus is not on target word probing
accuracy itself, but rather on how much semantic
information about the target word is contained in
the embeddings of the other words. Therefore, task
1 can be solved only by contextualized embeddings
for an input token other than the probed word.

As for Task 2, Task 3, and Task 4, we also added
no-context results (Table 16). We found that results
without context are significantly lower than those
with context, indicating that contextual information
is crucial for prediction in all three tasks.
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Dataset Predictive Method Train Data Test Data

Context-probe Classification

Subject:
4000 sentences
Object:
4000 sentences
Verb:
8000 sentences

Subject:
1000 sentences
Object:
1000 sentences
Verb:
2000 sentences

Lexical aspect binary
Classification (telicity/duration)

Classification

Telicity:
3920 sentences
Duration:
2591 sentences

Telicity:
980 sentences
Duration:
648 sentences

CONcreTEXT Regression 347 sentences 87 sentences
Contextualized Sensorimotor
Norms

Regression 358 sentences 90 sentences

WiC Dataset Classification 1120 sentence pairs 280 sentence pairs

Table 1: Dataset details and train-test data separation of classifier or regressor training in our experiments. The
predictive method applied and data separation between the train and test dataset are demonstrated. Links leading to
the webpage of Github or the related recourse are added to the dataset name.

T1 T2-T T2-D T3 T4 T5-A T5-S T5-C

Structure [20, 10] [20, 10] [20, 10] [40, 20] [40, 20] [20,10] [5,2] [20, 10]
Batch size 16 16 16 8 16 16 8 16

Learning rate 2e-5 2e-5 2e-5 2e-3 2e-3 1e-5 1e-3 1.5e-5

Table 2: Hyperparameters in Multilayer Perceptron classifier in experiments. All language models utilize the same
hyperparameters setting in the same task. The first row indicates Task 1, Task 2 telicity, Task 3 duration, Task 3,
Task 4, Task 5 (absolute difference), Task 5 (cosine similarity), and Task 5 (concatenation).

Family Model Link Parameters Attention Mechanism

BERT
bert-base-uncased 109M

Bidirectional
bert-large-uncased 335M

Llama 1

Sheared-LLaMA-1.3B

1.3B

Unidirectional
LLM2Vec-Sheared-LLaMA-mntp

BidirectionalLLM2Vec-Sheared-LLaMA-mntp-unsup-simcse
LLM2Vec-Sheared-LLaMA-mntp-supervised

Llama 2

Llama-2-7b-hf

7B

Unidirectional
LLM2Vec-Llama-2-7b-chat-hf-mntp

BidirectionalLLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse
LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised

Table 3: Model details of used models, parameters details, and enabled attention mechanism in our experiments.
Links leading to the Hugging Face page of each model are added to the hyperlinks.
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Model Subtask Index 1 Index 2 Index 3 Index 4 Index 5

BERT-base

subject animacy 0.942 1.000 0.966 0.944 0.944
verb causative 0.989 0.976 0.999 0.990 0.989
verb dynamic 0.998 0.979 1.000 0.999 0.984

object animacy 0.942 0.870 0.914 0.948 0.982

BERT-large

subject animacy 0.967 0.998 0.965 0.969 0.939
verb causative 0.989 0.945 0.998 0.990 0.968
verb dynamic 0.992 0.975 1.000 0.991 0.971

object animacy 0.932 0.847 0.889 0.940 0.987

Sheared-Llama-1.3B

subject animacy 0.547† 1.000 0.994 0.996 0.943
verb causative 0.611† 0.534† 1.000 0.995 0.987
verb dynamic 0.515† 0.494† 1.000 0.998 0.973

object animacy 0.539† 0.501† 0.508† 0.507† 1.000

Sheared-Llama-1.3B
(Bi + MNTP)

subject animacy 0.976 0.976⋆ 0.916⋆ 0.826⋆ 0.766⋆
verb causative 0.958 0.968 0.991⋆ 0.960⋆ 0.939⋆
verb dynamic 0.972 0.974 0.983⋆ 0.954⋆ 0.935⋆

object animacy 0.850 0.877 0.960 0.995 0.999⋆

Sheared-Llama-1.3B
(Bi + MNTP + SimCSE)

subject animacy 0.995 1.000 0.949 0.949 0.957
verb causative 0.993 0.999 1.000 0.995 0.997
verb dynamic 0.999 1.000 1.000 0.997 0.997

object animacy 0.944 0.956 0.978 0.996 1.000

Sheared-Llama-1.3B
(Bi + MNTP +Supervised)

subject animacy 0.988 1.000 0.980 0.983 0.993
verb causative 0.998 0.995 1.000 0.999 0.999
verb dynamic 1.000 0.999 1.000 0.999 0.997

object animacy 0.993 0.995 0.989 0.999 1.000

Llama2-7B

subject animacy 0.547† 1.000 0.995 0.996 0.962
verb causative 0.611† 0.526† 1.000 1.000 0.997
verb dynamic 0.515† 0.515† 1.000 1.000 0.997

object animacy 0.544† 0.496† 0.497† 0.510† 1.000

Llama2-7B
(Bi + MNTP)

subject animacy 0.999 0.998⋆ 0.978⋆ 0.908⋆ 0.897⋆
verb causative 0.979 0.990 1.000 0.986⋆ 0.978⋆
verb dynamic 0.985 0.990 0.996⋆ 0.983⋆ 0.978⋆

object animacy 0.901 0.941 0.994 0.999 0.997⋆

Llama2-7B
(Bi + MNTP + SimCSE)

subject animacy 0.993 1.000 0.984 0.982 0.994
verb causative 0.998 1.000 1.000 0.999 0.999
verb dynamic 0.998 1.000 1.000 0.999 1.000

object animacy 0.991 0.996 0.988 0.996 1.000

Llama2-7B
(Bi + MNTP + Supervised)

subject animacy 1.000 1.000 0.991 0.987 0.999
verb causative 1.000 0.999 1.000 0.999 0.999
verb dynamic 1.000 1.000 1.000 1.000 0.997

object animacy 0.983 0.990 0.986 0.999 1.000

Table 4: Results of Task 1 (context probes, Multilayer Perceptron). Numbers with † give evidence that LLMs can
not access the subsequent context, and numbers with ⋆ show that bidirectional attention weakens preceding context
utilization.
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Model T2-T T2-D T5-A T5-S T5-C T5-Avg

BERT-base 0.8286 0.9167 0.6071 0.6179 0.5857 0.6036
BERT-large 0.8235 0.9059 0.6429 0.6786 0.5393 0.6203
Sheared-Llama-1.3B 0.8235 0.9074 0.5679 0.5750 0.5786 0.5738

Sheared-Llama-1.3B-Bi+MNTP 0.7653 0.8750 0.5607 0.5179 0.5464 0.5417
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.8276 0.9120 0.6036 0.6286 0.5750 0.6024
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.8265 0.9198 0.6214 0.6500 0.5714 0.6143

Llama2-7B 0.8388 0.9090 0.5536 0.5357 0.5500 0.5464
Llama2-7B-Bi+MNTP 0.7316 0.8596 0.5893 0.5821 0.5964 0.5893
Llama2-7B-Bi+MNTP+SimCSE 0.8531 0.9306 0.5786 0.6000 0.5786 0.5857
Llama2-7B-Bi+MNTP+Supv. 0.8531 0.9352 0.5964 0.6179 0.6179 0.6107

Table 5: Classification accuracy of Task 2 and Task 5 (Multilayer Perceptron): T2-T (Task 2 telicity subtask), T2-D
(Task 2 duration subtask), T5-A/S/C (Task 5 with the absolute difference/cosine similarity/concatenation.) “Supv.”
is the abbreviation of “Supervised”. The bolded numbers indicate the highest performances among models in the
same column, while numbers with underlines mean the weakest performance.

Model T3-MSE T3-R2 T3-Pearson T3-Spearman

BERT-base 0.6758 0.6612 0.8215 0.7971
BERT-large 0.6639 0.6671 0.8219 0.7946

Sheared-Llama-1.3B 0.7336 0.6322 0.8219 0.7946
Sheared-Llama-1.3B-Bi+MNTP 0.9808 0.5082 0.7157 0.7079
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.7383 0.6298 0.7983 0.7768
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.6926 0.6527 0.7958 0.7795

Llama2-7B 0.8213 0.5882 0.7751 0.7635
Llama2-7B-Bi+MNTP 1.5857 0.2049 0.4616 0.4503
Llama2-7B-Bi+MNTP+SimCSE 0.8872 0.5552 0.7477 0.7628
Llama2-7B-Bi+MNTP+Supv. 0.7241 0.6370 0.8012 0.7879

Table 6: Regression results of Task 3 (concreteness prediction, Multilayer Perceptron). “Supv.” is the abbreviation
of “Supervised”.

Model T4-MSE T4-R2 T4-Pearson T4-Spearman

BERT-base 0.3738 0.4065 0.6706 0.5916
BERT-large 0.3905 0.3483 0.6300 0.5567

Sheared-Llama-1.3B 0.3884 0.3664 0.6408 0.5785
Sheared-Llama-1.3B-Bi+MNTP 0.4626 -0.4610 0.5788 0.4976
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.3766 0.4215 0.6484 0.5730
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.3835 0.3798 0.6572 0.5798

Llama2-7B 0.3854 0.4154 0.6626 0.6040
Llama2-7B-Bi+MNTP 0.5505 0.1782 0.4659 0.5179
Llama2-7B-Bi+MNTP+SimCSE 0.3616 0.4240 0.6806 0.6317
Llama2-7B-Bi+MNTP+Supv. 0.3903 0.3841 0.6486 0.5927

Table 7: Average regression results of Task 4 (sensorimotor prediction, Multilayer Perceptron) “Supv.” is the
abbreviation of “Supervised”.
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Model Subtask Index 1 Index 2 Index 3 Index 4 Index 5

BERT-base

subject animacy 0.925 0.999 0.958 0.925 0.936
verb causative 0.975 0.959 0.994 0.975 0.980
verb dynamic 0.989 0.984 1.000 0.989 0.982

object animacy 0.931 0.835 0.913 0.931 0.984

BERT-large

subject animacy 0.944 0.997 0.961 0.944 0.929
verb causative 0.988 0.931 0.998 0.988 0.970
verb dynamic 0.988 0.974 0.998 0.988 0.969

object animacy 0.925 0.810 0.871 0.925 0.988

Sheared-Llama-1.3B

subject animacy 0.547 † 1.000 0.999 0.998 0.959
verb causative 0.611 † 0.527 † 1.000 0.997 0.996
verb dynamic 0.515 † 0.500 † 1.000 1.000 0.991

object animacy 0.539 † 0.492 † 0.534 † 0.479 † 1.000

Sheared-Llama-1.3B
(Bi + MNTP)

subject animacy 0.979 0.983 ⋆ 0.912 ⋆ 0.823 ⋆ 0.765 ⋆
verb causative 0.962 0.969 0.994 ⋆ 0.966 ⋆ 0.943 ⋆
verb dynamic 0.971 0.972 0.987 ⋆ 0.972 ⋆ 0.945 ⋆

object animacy 0.882 0.887 0.956 0.988 0.995 ⋆

Sheared-Llama-1.3B
(Bi + MNTP + SimCSE)

subject animacy 0.995 1.000 0.961 0.947 0.962
verb causative 0.996 0.999 1.000 0.999 0.998
verb dynamic 1.000 1.000 1.000 0.998 0.999

object animacy 0.952 0.970 0.986 0.996 1.000

Sheared-Llama-1.3B
(Bi + MNTP +Supervised)

subject animacy 0.970 1.000 0.990 0.991 0.994
verb causative 0.986 0.998 1.000 1.000 0.998
verb dynamic 0.996 1.000 1.000 1.000 0.999

object animacy 0.994 0.997 0.992 0.999 1.000

Llama2-7B

subject animacy 0.547† 1.000 0.998 0.998 0.977
verb causative 0.611† 0.528† 1.000 1.000 0.994
verb dynamic 0.512 † 0.490† 1.000 1.000 0.996

object animacy 0.544† 0.496† 0.507† 0.505† 0.999

Llama2-7B
(Bi + MNTP)

subject animacy 0.997 0.993⋆ 0.986⋆ 0.949⋆ 0.936⋆
verb causative 0.979 0.990 0.997⋆ 0.994⋆ 0.983⋆
verb dynamic 0.988 0.992 0.997⋆ 0.990⋆ 0.985⋆

object animacy 0.932 0.958 0.989 0.993 0.994⋆

Llama2-7B
(Bi + MNTP + SimCSE)

subject animacy 0.998 1.000 0.993 0.984 0.993
verb causative 1.000 1.000 1.000 1.000 1.000
verb dynamic 1.000 1.000 1.000 1.000 1.000

object animacy 0.989 0.992 0.990 0.997 1.000

Llama2-7B
(Bi + MNTP + Supervised)

subject animacy 1.000 1.000 0.993 0.988 0.999
verb causative 1.000 0.999 1.000 1.000 0.998
verb dynamic 1.000 1.000 1.000 0.999 0.999

object animacy 0.982 0.991 0.989 0.999 1.000

Table 8: Results of Task 1 (context probes, Logistic Regression). Numbers with † give evidence that LLMs can not
access the subsequent context, and numbers with ⋆ show that bidirectional attention weakens preceding context
utilization.
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Model T2-T T2-D T5-A T5-S T5-C T5-Avg

BERT-base 0.7765 0.8904 0.5929 0.6179 0.5607 0.5905
BERT-large 0.7837 0.8796 0.5357 0.6643 0.5000 0.5666

Sheared-Llama-1.3B 0.7571 0.9059 0.4964 0.5357 0.5107 0.5142
Sheared-Llama-1.3B-Bi+MNTP 0.7010 0.8611 0.5321 0.5500 0.5071 0.5297
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.7745 0.9090 0.5500 0.6321 0.5357 0.5726
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.7918 0.9136 0.5821 0.6429 0.5500 0.5917

Llama2-7B 0.8061 0.9151 0.4679 0.5107 0.5000 0.4929
Llama2-7B-Bi+MNTP 0.6704 0.8596 0.5179 0.5500 0.5250 0.5310
Llama2-7B-Bi+MNTP+SimCSE 0.8194 0.9244 0.5571 0.6000 0.5429 0.5667
Llama2-7B-Bi+MNTP+Supv. 0.8357 0.9198 0.5500 0.6393 0.5321 0.5738

Table 9: Classification accuracy of Task 2 and Task 5 (Logistic Regression): T2-T (Task 2 telicity subtask), T2-D
(Task 2 duration subtask), T5-A/S/C (Task 5 with the absolute difference/cosine similarity/concatenation.) “Supv.”
is the abbreviation of “Supervised”.

Model T3-MSE T3-R2 T3-Pearson T3-Spearman

BERT-base 1.2702 0.3631 0.6967 0.6774
BERT-large 0.9944 0.5014 0.7457 0.7319

Sheared-Llama-1.3B 0.8761 0.5607 0.7778 0.7588
Sheared-Llama-1.3B-Bi+MNTP 1.1636 0.4166 0.6866 0.6792
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.7638 0.6171 0.7914 0.7668
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.7269 0.6356 0.8107 0.7905

Llama2-7B 0.8379 0.5799 0.7804 0.7638
Llama2-7B-Bi+MNTP 1.5123 0.2418 0.5370 0.5435
Llama2-7B-Bi+MNTP+SimCSE 0.8108 0.5935 0.7895 0.7724
Llama2-7B-Bi+MNTP+Supv. 0.6597 0.6692 0.8375 0.8190

Table 10: Regression results of Task 3 (concreteness prediction, Linear Regression). “Supv.” is the abbreviation of
“Supervised”.

Model T4-MSE T4-R2 T4-Pearson T4-Spearman

BERT-base 0.6625 0.0215 0.5680 0.4917
BERT-large 0.5907 0.0862 0.5695 0.5100

Sheared-Llama-1.3B 0.4152 0.3446 0.6484 0.5859
Sheared-Llama-1.3B-Bi+MNTP 0.6371 0.0201 0.5185 0.4603
Sheared-Llama-1.3B-Bi+MNTP+SimCSE 0.4029 0.3829 0.6662 0.6085
Sheared-Llama-1.3B-Bi+MNTP+Supv. 0.4554 0.2950 0.6304 0.5622

Llama2-7B 0.3827 0.3994 0.6636 0.5944
Llama2-7B-Bi+MNTP 0.6598 0.0121 0.4925 0.4301
Llama2-7B-Bi+MNTP+SimCSE 0.3560 0.4508 0.6952 0.6327
Llama2-7B-Bi+MNTP+Supv. 0.3547 0.4577 0.6965 0.6271

Table 11: Average regression results of Task 4 (sensorimotor prediction, Linear Regression). “Supv.” is the
abbreviation of “Supervised”.
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Model Task Index1 Index2 Index3 Index4 Index5

BERT-base control 0.518 0.494 0.529 0.519 0.520
original 0.942 1.000 0.966 0.944 0.944

Sheared-Llama control 0.497 0.520 0.490 0.530 0.510
original 0.547 1.000 0.994 0.996 0.943

Sheared-Llama (Bi+BNTP) control 0.510 0.527 0.485 0.503 0.493
original 0.976 0.976 0.916 0.826 0.766

Table 12: This table presents a comparison of accuracy between the control task and the original task in Task 1
(subject animacy).

Model Task Task3-P Task3-S Task4-P Task4-S

BERT-base control 0.0649 0.0810 0.0421 0.0417
original 0.8215 0.7971 0.6706 0.5916

Sheared-Llama control -0.0798 -0.0739 -0.0097 -0.0091
original 0.8219 0.7946 0.6408 0.5785

Sheared-Llama (Bi + BNTP) control 0.1214 0.1228 0.0437 0.0337
original 0.7157 0.7079 0.5788 0.4976

Table 13: This table presents a comparison of Pearson and Spearman correlation coefficient between the control
task and the original task in Task 3 and 4. P and S represent Pearson and Spearman, respectively.

Model Task T2-T T2-D T5-A T5-S T5-C T5-Avg

BERT-base control 0.5173 0.5015 0.5357 0.5036 0.5179 0.5191
original 0.8286 0.9167 0.6071 0.6179 0.5857 0.6036

Sheared-llama control 0.5133 0.5448 0.5607 0.4750 0.5321 0.5226
original 0.8235 0.9074 0.5679 0.5750 0.5786 0.5738

Sheared-llama (Bi + BNTP) control 0.5163 0.5509 0.5143 0.5000 0.5179 0.5107
original 0.7653 0.8750 0.5607 0.5179 0.5464 0.5417

Table 14: This table presents a comparison of accuracy between the control task and the original task in Task 2 and 5.
T2-T (Task 2 telicity subtask), T2-D (Task 2 duration subtask), T5-A/S/C (Task 5 with the absolute difference/cosine
similarity/concatenation).

Model Subtask Index1 Index2 Index3 Index4 Index5

BERT-base subject animacy 0.507 1.000 0.519 0.507 0.527
verb causative 0.511 0.527 1.000 0.508 0.510
verb dynamic 0.516 0.511 1.000 0.516 0.530
object animacy 0.515 0.533 0.501 0.482 1.000

Sheared-Llama subject animacy 0.482 1.000 0.491 0.482 0.499
verb causative 0.511 0.532 1.000 0.511 0.518
verb dynamic 0.515 0.494 1.000 0.515 0.509
object animacy 0.507 0.498 0.501 0.507 1.000

Sheared-Llama (Bi + MNTP) subject animacy 0.518 1.000 0.493 0.518 0.494
verb causative 0.511 0.535 1.000 0.511 0.522
verb dynamic 0.515 0.497 1.000 0.485 0.513
object animacy 0.507 0.514 0.498 0.507 1.000

Table 15: This table presents the accuracy of three semantic features in Task 1 without giving context.
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Model Context Task2-T Task2-D Task3- P T3- S Task4- P T4- S

BERT-base with 0.8286 0.9167 0.8215 0.7971 0.6706 0.5916
without 0.7480 0.8302 0.7105 0.6874 0.5405 0.5015

Sheared-Llama with 0.8235 0.9074 0.8219 0.7946 0.6408 0.5785
without 0.7531 0.8364 0.7270 0.7075 0.5880 0.5403

Sheared-Llama (Bi + MNTP) with 0.7653 0.8750 0.7157 0.7079 0.5788 0.4976
without 0.7367 0.8318 0.7034 0.6830 0.5714 0.5278

Table 16: This table presents a comparison of accuracy in Task 2, 3, 4 and 5 with and without giving context. T and
D in Task 2 denote Telicity and Duration, and P and S in Task 3 and 4 represent the Pearson and Spearman.
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