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Abstract

Modeling latent representations in a hyper-
spherical space has proven effective for captur-
ing directional similarities in high-dimensional
text data, benefiting topic modeling. Varia-
tional autoencoder-based neural topic models
(VAE-NTMs) commonly adopt the von Mises-
Fisher prior to encode hyperspherical structure.
However, VAE-NTMs often suffer from poste-
rior collapse, where the KL divergence term in
the objective function highly diminishes, lead-
ing to ineffective latent representations. To
mitigate this issue while modeling hyperspher-
ical structure in the latent space, we propose
the Spherical Sliced Wasserstein Autoencoder
for Topic Modeling (S2WTM). S2WTM em-
ploys a prior distribution supported on the unit
hypersphere and leverages the Spherical Sliced-
Wasserstein distance to align the aggregated
posterior distribution with the prior. Experi-
mental results demonstrate that S2WTM out-
performs state-of-the-art topic models, gener-
ating more coherent and diverse topics while
improving performance on downstream tasks.

github.com/AdhyaSuman/S2WTM

1 Introduction

Topic modeling aims to uncover latent topics in a
document corpus by representing each document as
a probabilistic mixture of topics. Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) and Probabilis-
tic Latent Semantic Indexing (pLSI) (Hofmann,
1999) typically assume a multinomial distribution
over words. However, this assumption treats words
as independent, ignoring important syntactic and
semantic relationships. Moreover, classical topic
models rely on computationally expensive infer-
ence techniques, such as Gibbs sampling and varia-
tional inference.

To address these limitations, Variational
Autoencoder-based Neural Topic Models (VAE-
NTMs) were introduced by Miao et al. (2016),

offering a more scalable and flexible alternative.
VAE-NTMs typically use a Gaussian prior for the
latent space. However, in high-dimensional set-
tings, Gaussian distributions exhibit the “soap bub-
ble effect" (Davidson et al., 2018), where probabil-
ity mass concentrates near the surface of a hyper-
sphere rather than around the mean. This effect un-
dermines the utility of Euclidean distances, which
tend to become uniform and less informative as di-
mensionality increases—a core aspect of the curse
of dimensionality (Aggarwal et al., 2001). In con-
trast, cosine similarity, which measures the angular
difference between vectors, remains a more robust
metric in such regimes (Dhillon and Sra, 2003).
These observations motivate the use of spherical
latent space modeling, where data is embedded on
the surface of a hypersphere and similarities are
measured via angles rather than distances. This
is particularly effective in large-scale applications
involving directional data, such as text categoriza-
tion and gene expression analysis (Dhillon and Sra,
2003; Banerjee et al., 2005), where the orientation
of data vectors carries meaningful information. The
von Mises-Fisher (vMF) distribution naturally mod-
els such data and has demonstrated superior perfor-
mance over models with Gaussian priors in clus-
tering and topic modeling tasks (Reisinger et al.,
2010; Li et al., 2016; Batmanghelich et al., 2016).
Recent advancements in topic modeling, such as
vONTSS (Xu et al., 2023), have leveraged the S-
VAE framework and integrated supervised signals
via optimal transport to enhance topic coherence
and classification performance.

Despite these advancements, VAE-based models
often suffer from posterior collapse (Bowman et al.,
2016), wherein the latent representations fail to
encode meaningful information. This issue occurs
when the KL divergence term in the loss function
approaches zero, causing the posterior distribution
to converge to the uninformative prior. A detailed
analysis of this phenomenon, including its formal
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definition and decomposition via ELBO surgery, is
provided in Appendix A.

To address these challenges, we propose
S2WTM (Spherical Sliced-Wasserstein Autoen-
coder for Topic Modeling), an autoencoder-based
topic model that models the latent space on the unit
hypersphere. S2WTM introduces a flexible prior
design by treating the choice of prior distribution as
a hyperparameter, supporting three alternatives: the
vMF distribution, a Mixture of vMF (MvMF) distri-
butions, and the uniform distribution on the hyper-
sphere. To align the aggregated posterior with the
chosen prior while preserving spherical geometry,
S2WTM employs the Spherical Sliced-Wasserstein
(SSW) distance, effectively mitigating the posterior
collapse problem.

Contributions: In summary, our work presents
the following key contributions:

• We introduce S2WTM, a neural topic model
leveraging the Spherical Sliced-Wasserstein
autoencoder framework to align the aggre-
gated posterior with a hyperspherical prior,
ensuring effective latent space modeling.

• We explore three distinct choices of prior dis-
tributions defined on the unit hypersphere for
modeling the latent space.

• We evaluate the performance of S2WTM us-
ing quantitative metrics, qualitative analysis,
task-specific performance, and LLM-based
human-comparable evaluations, demonstrat-
ing its advantages over state-of-the-art mod-
els.

• We empirically validate the benefits of mov-
ing beyond the conventional Euclidean la-
tent space, highlighting performance improve-
ments in topic modeling.

2 Preliminaries

This section introduces three selected distributions
defined on a unit hypersphere. We then discuss opti-
mal transport metrics, focusing on the Wasserstein
distance, sliced Wasserstein distance, and spherical
sliced-Wasserstein distance.

2.1 Distributions on the Unit Hypersphere

vMF distribution: The vMF distribution is de-
fined on the unit (K − 1)-sphere SK−1 embed-
ded in RK . The vMF distribution is parameterized

by its mean direction (µ ∈ SK−1), a unit vec-
tor indicating the central direction of the distribu-
tion, and its concentration (κ ∈ R+ ∪ {0}), a non-
negative scalar controlling the dispersion around
µ. A larger κ indicates a higher concentration.
For x ∈ SK−1 with κ ≥ 0 the vMF density func-
tion is: vMF(x;µ, κ) = cp(κ) exp (κµ

⊺x) where
cK(κ) is the normalization constant: cK(κ) =

κ
K
2 −1

(2π)
K
2 IK

2 −1
(κ)

with Iv denotes the modified Bessel

function of the first kind of order v. The detailed
sampling from the vMF distribution (Ulrich, 1984)
is described in Appendix B.

MvMF distribution: The MvMF distribution is
a convex combination of vMF distributions. If
the mixture contains T vMF components, then
the density is defined for all points x ∈ SK−1

as MvMF(x;Ψ) =
∑T

t=1 αtft(x|ψt). Here, each
component ft is a vMF distribution with param-
eters ψt = (µt, κt), and Ψ represents the set
of all such parameters. The mixture proportions
(αt)1≤t≤T satisfy αt ≥ 0 and

∑T
t=1 αt = 1. The

sampling technique from MvMF requires first se-
lecting a component i ∼ Cat(α1, α2, ..., αT ), then
generating a sample from the chosen vMF distribu-
tion.

Uniform distribution on the unit hypersphere:
The uniform distribution on SK−1 assigns equal
probability density to all directions. Sampling is
performed by drawing from a standard Gaussian in
RK and applying ℓ2 normalization.

2.2 Spherical Sliced-Wasserstein Distance:

The Spherical Sliced-Wasserstein (SSW) distance
is a variant of the Sliced-Wasserstein (SW) dis-
tance, a computationally efficient approximation
of the Wasserstein distance. SSW adapts SW for
distributions on the unit hypersphere or other spher-
ical domains. We first review the Wasserstein and
SW distances.

Definition 1 (Wasserstein Distance (Villani et al.,
2009; Figalli and Villani, 2011)). Let p ≥ 1. The
p-Wasserstein distance between µ, ν ∈ Pp(Rd) is

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

∫

Rd×Rd

d(x, y)p dγ(x, y)

(1)
where Pp(Rd) is the set of Borel probability mea-
sures on Rd with finite p-moments, and Γ(µ, ν) are
joint measures with marginals µ and ν.
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Computing Wp is computationally expensive,
scaling as O(n3 log n) for discrete measures with
n samples (Peyré et al., 2019). However, Wp has a
closed form for univariate distributions:

W p
p (µ, ν) =

∫ 1

0
|F−1

µ (t)− F−1
ν (t)|pdt, (2)

where F−1
µ and F−1

ν are the quantile functions.
This leads to the SW, exploiting the efficiency of
one-dimensional optimal transport.

Definition 2 (Sliced Wasserstein Distance (Julien
et al., 2011; Bonneel et al., 2015)). For p ≥ 1, the
p-SW between µ, ν ∈ Pp(Rd) is

SW p
p (µ, ν) =

∫

Sd−1

W p
p

(
(Rµ)θ, (Rν)θ

)
dθ (3)

where (Rη)θ is the Radon transform, projecting η
onto the line spanned by θ ∈ Sd−1.

SW reduces computation to multiple one-
dimensional problems. However, it requires many
projections, especially in high dimensions. Crit-
ically, SW is not well-suited for spherical data.
The SSW distance addresses this by incorporating
spherical geometry.

Definition 3 (Spherical Sliced Wasserstein Dis-
tance (Bonet et al., 2023)). For p ≥ 1, the p-SSW
between µ, ν ∈ Pp(Rd) is

SSWp
p(µ, ν) =

∫

Sd−1

W p
p

(
(R̃µ)θ, (R̃ν)θ

)
dθ

(4)
where (R̃η)θ is the spherical Radon transform,
mapping η to a substructure of the sphere (e.g.,
a great circle).

3 Related Work

Reisinger et al. (2010) pioneered the idea of spher-
ical latent space modeling in topic modeling by in-
troducing the Spherical Admixture Model (SAM).
SAM replaces the multinomial likelihood in LDA
with the vMF distribution, representing documents
as unit vectors on the hypersphere. This approach
captures directional semantic relationships more ef-
fectively than traditional Euclidean representations
and lays the groundwork for subsequent research
in spherical topic models.

Li et al. (2016) advanced this line of work by
proposing the mix-vMF topic model (MvTM) that
integrates word embeddings using MvMF distribu-
tions, enabling the representation of complex topic
structures and improving topic coherence.

Batmanghelich et al. (2016) further extended
spherical topic modeling by introducing a nonpara-
metric model that incorporates word embeddings
via the vMF distribution and employs a Hierarchi-
cal Dirichlet Process (HDP) to automatically infer
the number of topics.

More recently, Ennajari et al. (2022) proposed
the Embedded Spherical Topic Model (ESTM)
for supervised learning, which integrates seman-
tic knowledge from word and knowledge graph
embeddings within a hyperspherical latent space.
ESTM improves both topic interpretability and pre-
dictive performance by modeling documents and
topics on the sphere and leveraging variational in-
ference techniques tailored to the vMF distribution.

In the neural setting, Xu et al. (2023) intro-
duced vONT, an unsupervised topic model based
on the S-VAE framework, and vONTSS, its semi-
supervised extension. While vONT models top-
ics using latent variables constrained to the unit
hypersphere, vONTSS further aligns latent repre-
sentations with supervision signals using an opti-
mal transport loss, thereby enhancing topic rele-
vance and classification accuracy. However, like
any VAE-based model, its reliance on KL diver-
gence to regulate the posterior distribution to the
prior distribution can lead to the posterior collapse
problem (Bahuleyan et al., 2019), which may hin-
der the expressiveness of the latent space if not
carefully mitigated.

In contrast, S2WTM addresses these limita-
tions by replacing KL divergence with the Spheri-
cal Sliced-Wasserstein (SSW) distance, promoting
alignment between the aggregated posterior and hy-
perspherical priors. This approach preserves spher-
ical geometry and mitigates posterior collapse, dis-
tinguishing S2WTM from both classical and neural
spherical topic models.

4 Proposed Methodology

The proposed S2WTM model is based on the
Wasserstein Autoencoder framework (Tolstikhin
et al., 2018), employing an encoder-decoder archi-
tecture. The framework is illustrated in Fig. 1,
and a detailed description of the methodology is
provided below.

4.1 Choice of Prior Distribution

To encourage a hyperspherical structure in the la-
tent space, rather than assuming a standard Eu-
clidean geometry, S2WTM regulates the encoder-
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Figure 1: Proposed framework for S2WTM model.

generated posterior distribution to align with a
prior distribution pθ defined over the unit hyper-
sphere SK−1. We consider three types of priors:
(i) the vMF distribution, pθ ∼ vMF(µ, κ); (ii)
the Mixture of vMF (MvMF) distributions, pθ ∼
MvMF(Ψ); and (iii) the uniform distribution on
the hypersphere, pθ ∼ U(SK−1). These priors of-
fer varying inductive biases, enabling S2WTM to
model diverse latent topic structures while adapt-
ing to the characteristics of different datasets. The
alignment between the aggregated posterior and the
chosen prior is enforced using the SSW distance.

4.2 Encoder Network

The encoder processes a document representation,
denoted as x ∈ RV (where V represents the vocab-
ulary size), and maps it to a low-dimensional repre-
sentation z ∈ SK−1, with K being the number of
topics to be learned. The transformation sequence
is as follows:

[
Linear(V,H ′) → Dropout(p) →

ReLU → Linear(H ′, H ′′) → Dropout(p) →
ReLU → Linear(H ′′,K) → L2Norm(·)

]
. Here,

Linear(M,N) maps an input vector of size M
to N , Drop(p) applies dropout with probabil-
ity p, ReLU is an activation function defined as
ReLU(x) = max(0, x), and L2Norm normalizes
the output onto the unit hypersphere SK−1.

S2WTM employs a deterministic encoder, which
learns the aggregate posterior distribution: q(θ) =∫
q(θ|x)p(x) dx where p(x) denotes the the em-

pirical data distribution. The encoder generates
z ∼ q(θ) such that z ∈ SK−1.

4.3 Decoder Network

Given the encoder’s generated latent representa-
tion z, it is transformed into the document-topic
distribution vector through a projection network fol-
lowed by Softmax operation. Finally, the decoder
maps it to x̂ ∈ R, representing a probability dis-
tribution over vocabulary words. The transforma-
tion follows:

[
Linear(K,H) → Dropout(p) →

ReLU → Linear(H,V ) → Softmax(·)
]
. Here,

Softmax is applied to the output to generate the
document-word distribution x̂.

The decoder’s weight matrix defines the topic-
word matrix, β ∈ RK×V . Following Srivastava
and Sutton (2017), we relax the simplex constraint
on β, which is an empirically validated approach
that improves the quality of topics.

4.4 Training Objective

S2WTM optimizes an objective comprising a re-
construction loss and a regularization term. Un-
like VAEs, where regularization is applied to the
posterior distribution q(θ|x), S2WTM regularizes
the aggregated posterior q(θ) using the SSW. In
VAEs, “ELBO surgery" (Hoffman and Johnson,
2016) decomposes the regularization term into two
non-negative components: (1) the mutual informa-
tion between the input variable x and its latent rep-
resentation θ, and (2) the KL divergence between
the prior p(θ) and the aggregated posterior q(θ).
Minimizing the KL term reduces mutual informa-
tion, often leading to posterior collapse (uninforma-
tive latent representations) (see Appendix A). To
mitigate this, S2WTM replaces KL regularization
with SSW, ensuring effective alignment between
the aggregated posterior and the prior while pre-
serving hyperspherical geometry. The objective
function for S2WTM is defined as:

L = LRL + λLOT (5)

= inf
q(θ|x)

Ep(x)Eq(θ|x)[c(x, x̂)] + λSSW2
2(qθ, pθ).

Here p(x) is the data distribution. The reconstruc-
tion loss c(x, x̂), is calculated as the cross-entropy
between the input document representation x and
decoder generated document-word distribution x̂:
LRL = −∑V

i=1 xi log x̂i where V is the vocabu-
lary size. The regularization term employs SSW2

2
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defined as:

SSW2
2(qθ, pθ) ≈

1

M

M∑

i=1

W 2
2

(
(R̃iqθ), (R̃ipθ)

)

(6)
where M is the number of random projections, R̃i

denotes the ith spherical radon transform. With
an increasing number of projections, the SSW dis-
tance more accurately captures the structure of the
data distribution. In practice, the reconstruction
loss often significantly outweighs the regulariza-
tion term SSW2

2(qθ, pθ). To balance these terms, a
scaling factor λ is introduced for the regularization
loss. We have treated λ as a hyperparameter.

5 Experimental Settings

We conducted our experiments using OCTIS (Ter-
ragni et al., 2021a), a publicly available framework
to compare and optimize the topic models.

5.1 Datsets

We used seven publicly available datasets. Four
of them, namely 20Newsgroups (20NG) (Mitchell,
1997), BBCNews (BBC) (Greene and Cunning-
ham, 2006), M10, and DBLP (Pan et al., 2016),
were obtained in pre-processed form from OC-
TIS. The remaining three datasets – SearchSnip-
pets (SS), PascalFlickr (Pascal), and Biomedicine
(Bio) – were sourced from (Qiang et al., 2022)
and pre-processed using OCTIS. Further details
about these baselines are provided in Appendix D.
Dataset statistics are shown in Table 1.

Dataset #Docs #Labels #Words

20NG 16309 20 1612
BBC 2225 5 2949
M10 8355 10 1696
SS 12295 8 2000
Pascal 4834 20 2630
Bio 19448 20 2000
DBLP 54595 4 1513

Table 1: Statistics of the datasets used.

5.2 Baselines

We evaluate S2WTM against a range of traditional
and neural topic models. Traditional baselines in-
clude LDA (Blei et al., 2003), LSI (Dumais, 2004),
and NMF (Zhao and Tan, 2017), which are well-
established for topic extraction.

Neural baselines include ETM (Dieng et al.,
2020), which integrates word embeddings; DVAE-
TM and DVAE-RSVI-TM (Burkhardt and Kramer,
2019), based on Dirichlet VAEs; ProdLDA
(Srivastava and Sutton, 2017), which adopts a
product-of-experts approach; CombinedTM and
ZeroshotTM (Bianchi et al., 2021b,a), which lever-
age SBERT embeddings (Reimers and Gurevych,
2019) to incorporate contextualized document rep-
resentations; WTM (Nan et al., 2019), based on
Wasserstein autoencoders; vONT (Xu et al., 2023),
a vMF-VAE-based model; and ECRTM (Wu et al.,
2023), which enhances topic diversity through em-
bedding clustering. See Appendix D for baseline
details.

5.3 Automatic Evaluation of Topics

We assess topic models based on topic quality
and distinctiveness. Topic quality, reflecting inter-
pretability and coherence, is measured using NPMI
(Lau et al., 2014) and CV (Röder et al., 2015), as
they strongly correlate with human judgment. We
exclude UCI (Newman et al., 2010) and UMass
(Mimno et al., 2011) due to their weaker correla-
tion with human assessments (Hoyle et al., 2021).

Topic diversity assesses the degree to which top-
ics are distinct from each other. To evaluate this,
we employ IRBO (Bianchi et al., 2021a), as well as
its word embedding-based extension, wI-C (Cen-
troid) (Terragni et al., 2021b). Higher NPMI and
CV scores indicate better topic coherence, while
higher IRBO and wI-C scores denote greater topic
diversity.

Dataset M pθ Nbatch pdrop λ

20NG 4000 vMF 1024 0.5 8.526
BBC 8000 vMF 256 0.05 5.567
M10 2000 U(SK−1) 64 0.5 7.065
SS 1000 MvMF 128 0.5 3.838
Pascal 500 MvMF 64 0.5 0.879
Bio 1000 U(SK−1) 1024 0.5 3.701
DBLP 1000 U(SK−1) 512 0.2 7.018

Table 2: Hyperparameter values of S2WTM.

5.4 Hyperparameter Tuning

In the S2WTM, hyperparameter tuning was carried
out for each dataset using Bayesian Optimization
in OCTIS, maximizing the NPMI score. The tuned
parameters, listed in Table 2, include the number
of projections (M ), prior distribution (pθ), batch
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Model 20NG BBC M10 SS Pascal Bio DBLP

NPMI CV NPMI CV NPMI CV NPMI CV NPMI CV NPMI CV NPMI CV

LDA 0.092 0.599 0.076 0.565 -0.047 0.369 -0.066 0.362 -0.072 0.356 0.019 0.444 0.015 0.348
LSI 0.006 0.457 0.064 0.539 0.001 0.390 -0.062 0.314 -0.045 0.293 -0.026 0.320 0.009 0.334
NMF 0.118 0.648 0.065 0.555 0.050 0.448 0.019 0.462 -0.042 0.378 0.100 0.537 0.016 0.354
ETM 0.066 0.564 0.070 0.581 0.018 0.374 0.000 0.420 -0.020 0.310 -0.062 0.182 -0.059 0.160
DVAE-TM 0.155 0.748 -0.032 0.530 -0.054 0.381 -0.175 0.357 0.000 0.421 0.113 0.540 -0.271 0.373
DVAE-RSVI-TM 0.146 0.750 -0.051, 0.523 -0.052 0.412 -0.192 0.411 -0.019 0.422 0.100 0.537 -0.269 0.356
ProdLDA 0.107 0.660 0.010 0.639 0.027 0.481 -0.009 0.560 -0.023 0.414 0.107 0.594 -0.065 0.472
ZeroshotTM 0.103 0.653 0.038 0.673 0.041 0.481 0.017 0.565 0.005 0.428 0.133 0.604 -0.062 0.474
CombinedTM 0.107 0.655 0.017 0.683 0.059 0.490 0.018 0.531 -0.002 0.421 0.133 0.608 -0.065 0.485
WTM 0.046 0.505 -0.006 0.454 -0.052 0.298 -0.013 0.405 -0.089 0.298 0.052 0.434 -0.044 0.202
vONT 0.045 0.505 -0.001 0.468 -0.053 0.301 -0.015 0.407 -0.090 0.302 0.052 0.442 -0.043 0.204
ECRTM -0.089 0.416 0.170 0.804 -0.445 0.516 -0.333 0.423 -0.414 0.510 -0.421 0.510 -0.248 0.377

S2WTM 0.167 0.723 0.252 0.863 0.101 0.492 0.146 0.683 0.045 0.572 0.191 0.663 0.133 0.558

Table 3: Median coherence scores over five runs per metric, with the highest values in bold and the second-highest
values underlined.

Model 20NG BBC M10 SS Pascal Bio DBLP

IRBO wI-C IRBO wI-C IRBO wI-C IRBO wI-C IRBO wI-C IRBO wI-C IRBO wI-C

LDA 0.970 0.845 0.968 0.844 0.949 0.838 0.960 0.842 0.902 0.824 0.976 0.844 0.856 0.833
LSI 0.911 0.840 0.899 0.841 0.820 0.829 0.789 0.833 0.792 0.820 0.814 0.833 0.510 0.804
NMF 0.970 0.844 0.963 0.845 0.956 0.840 0.944 0.842 0.931 0.828 0.972 0.843 0.892 0.831
ETM 0.828 0.829 0.969 0.844 0.451 0.797 0.957 0.842 0.207 0.750 0.127 0.761 0.021 0.734
DVAE-TM 0.986 0.850 0.979 0.849 1.000 0.840 1.000 0.842 0.976 0.833 0.993 0.845 0.669 0.813
DVAE-RSVI-TM 0.987 0.850 0.994 0.849 1.000 0.840 1.000 0.842 0.978 0.833 0.996 0.845 0.546 0.827
ProdLDA 0.991 0.850 1.000 0.848 0.997 0.842 1.000 0.845 0.987 0.833 0.997 0.846 1.000 0.845
ZeroshotTM 0.991 0.850 1.000 0.849 1.000 0.842 1.000 0.844 0.987 0.834 0.996 0.845 1.000 0.845
CombinedTM 0.992 0.850 1.000 0.848 0.999 0.842 1.000 0.845 0.987 0.833 0.993 0.846 1.000 0.845
WTM 0.787 0.831 0.938 0.843 0.960 0.839 0.995 0.844 0.898 0.824 0.976 0.844 0.891 0.842
vONT 0.887 0.835 0.983 0.844 0.847 0.830 0.933 0.840 0.873 0.819 0.819 0.829 0.313 0.779
ECRTM 0.996 0.843 1.000 0.850 1.000 0.836 1.000 0.840 1.000 0.814 1.000 0.839 1.000 0.845

S2WTM 0.994 0.881 1.000 0.854 0.999 0.857 1.000 0.851 0.994 0.868 0.998 0.859 1.000 0.847

Table 4: Median diversity scores over five runs per metric, with the highest values in bold and the second-highest
values underlined.

size (Nbatch), dropout probability (pdrop), and scal-
ing factor (λ). The number of topics was set to
match the number of class labels in the dataset, and
training was conducted for 100 epochs.

6 Results and Discussions

We categorize our findings into the following sec-
tions: (1) quantitative evaluation (Section 6.1), (2)
extrinsic evaluation (Section 6.3), (3) qualitative
evaluation (Section 6.2), and (4) LLM-based topic
quality evaluations (Section 6.4).

6.1 Quantitative Evaluation

In the quantitative evolution, we have evaluated
the topic models using automatic topic evaluation
scores.

Experimental Setup: For each dataset, we set
the topic count K equal to the number of ground-
truth labels, which are available for all datasets

used. The values of K for 20NG, BBC, M10, SS,
Pascal, Bio, and DBLP are 20, 5, 10, 8, 20, 20, and
4, respectively. For the robustness of the results,
we have reported the median value over 5 random
runs for a given model, a given dataset, and a given
topic count.

Findings: Table 3 presents the coherence scores
for all models across the evaluated datasets.
S2WTM consistently achieves the highest coher-
ence scores in both NPMI and CV across all
datasets, with two exceptions. On the M10 dataset,
S2WTM ranks second in CV score behind ECRTM.
On the 20NG dataset, it ranks third in CV score,
following DVAE-RSVI-TM and DVAE-TM. How-
ever, S2WTM still achieves the highest NPMI score
on both M10 and 20NG, indicating strong overall
topic coherence. These results highlight the consis-
tent superiority of S2WTM in coherence compared
to existing models.

Table 4 reports the diversity scores for all models.
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Model Topics

LDA
game, team, year, player, play, win, good, hit, season, run
card, drive, disk, system, work, problem, driver, machine, run, memory
key, president, chip, government, make, encryption, security, option, press, phone

LSI
entry, team, game, send, graphic, season, mail, play, year, list
drive, atheist, window, graphic, scsi, bit, administration, program, master, government
key, encryption, bit, chip, call, launch, secret, block, war, widget

NMF
game, team, season, play, year, player, win, good, score, draft
drive, disk, controller, hard, bio, support, card, feature, scsi, rom
internet, privacy, information, secure, computer, security, mail, network, address, service

ETM
game, play, win, team, year, player, good, hit, season, score
drive, disk, card, system, run, bit, window, scsi, problem, monitor
key, chip, encryption, government, bit, clipper, message, system, algorithm, phone

DVAE-TM
game, team, playoff, score, season, shot, player, penalty, make, hockey
scsi, controller, ide, disk, boot, drive, people, mhz, card, connector
encryption, key, clipper, chip, escrow, entry, enforcement, privacy, encrypt, serial

DVAE-RSVI-TM
playoff, game, baseball, team, hockey, fan, pen, dog, score, season
scsi, controller, ide, disk, left, meg, boot, bus, card, mhz
encryption, key, clipper, chip, population, enforcement, secure, serial, encrypt, agency

ProdLDA
game, goal, play, score, wing, ranger, period, tie, playoff, blue
card, drive, driver, board, problem, controller, bus, disk, scsi, port
chip, phone, make, key, bit, clipper, algorithm, block, conversation, secret

ZeroshotTM
year, game, team, good, season, play, hit, player, league, average
drive, scsi, disk, card, boot, problem, bus, board, transfer, ide
chip, agency, law, key, algorithm, clipper, secure, security, encryption, secret

CombinedTM
game, good, year, team, play, season, player, win, hit, league
card, drive, driver, scsi, bus, problem, board, memory, port, cpu
chip, key, phone, law, warrant, illegal, clipper, encryption, cop, police

WTM
game, team, player, play, year, good, win, season, make, time
drive, work, price, good, sell, make, buy, monitor, card, system
key, government, system, encryption, make, program, time, space, chip, number

vONT
game, year, good, time, make, team, car, win, play, player
drive, problem, card, run, system, disk, scsi, driver, bus, window
key, chip, encryption, government, bit, system, make, clipper, time, phone

ECRTM
baseball, fan, pitcher, player, expansion, pitch, league, draft, suck, apple
scsi, card, ide, pin, ranger, modem, port, ram, mouse, disk
illegal, transmit, patient, warrant, taxis, fund, restriction, secret, budget, crack

S2WTM
game, team, win, score, player, playoff, goal, play, stat, season
drive, card, scsi, ide, bus, controller, driver, disk, system, ram
encryption, secure, chip, encrypt, phone, secret, communication, clipper, agency, security

Table 5: Three representative topics from the 20NG dataset (K = 20), with unrelated words highlighted in blue.

S2WTM achieves the highest wI-C diversity score
across all datasets. Although ECRTM generally
performs well in terms of IRBO scores, due to
its embedding clustering regularization approach,
S2WTM performs comparably on the 20NG, M10,
Pascal, and Bio datasets, and outperforms ECRTM
on the remaining ones.

6.2 Qualitative Evaluation

As topic models are unsupervised, their evaluation
should go beyond automated coherence scores and
include manual inspection (Hoyle et al., 2021).

Experimental Setup: We performed a qualita-
tive analysis using the 20NG dataset, training all
models with 20 topics. Three topics were randomly
selected from those generated by S2WTM. To com-
pare these topics across models, we applied the
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Figure 2: Median document classification accuracy of the models for all datasets.

topic alignment algorithm proposed by Adhya et al.
(2023) (see Appendix H), which identifies the best-
matching topics between different models. Table 5
presents the aligned topics, ensuring that each row
represents semantically similar topics across mod-
els. The table also includes NPMI scores for each
topic and a match score indicating its similarity
to the corresponding topic in S2WTM. Unrelated
words in a topic are highlighted manually.

Findings: The three topics in the table broadly
represent sports, hardware, and encryption/secu-
rity. Across all three, S2WTM consistently gener-
ates highly coherent and semantically meaningful
topics. The sports topic includes terms like “game,”
“team,” “win,” “score,” “player,” etc., forming a
well-defined theme without unrelated words. The
hardware topic consists solely of relevant terms
such as “drive,” “card,” “scsi,” “ide,” “bus,” etc.,
avoiding noise present in other models. Similarly,
the encryption/security topic includes “encryption,”
“secure,” “chip,” “encrypt,” “phone,” etc., forming
a clear, interpretable theme.

6.3 Extrinsic Evaluation

To further evaluate the quality of the topic mod-
els, we incorporated an extrinsic task focused on
document classification. This task assesses how
well the learned topic representations can support
downstream applications.

Experimental Setup: We partitioned each of the
seven datasets into 70% train, 15% validation, and

15% test. Each topic model was trained using a
number of topics equal to the number of labels in
the corresponding dataset. The resulting document-
topic representations (i.e., the topic vector for each
document) were then used to train a linear SVM
classifier. Fig. 2 shows the median accuracy over
five runs for all models across all the datasets.

Findings: As shown in Fig. 2, S2WTM consis-
tently achieved the highest classification accuracy
across all datasets, indicating that it learns more dis-
criminative document-topic representations com-
pared to other models. The superior performance of
S2WTM is further supported by its higher NMI and
Purity scores (detailed in Table 8 in the Appendix),
suggesting that the learned topic distributions align
well with ground truth labels and form coherent
clusters. These results collectively demonstrate the
effectiveness of S2WTM for both predictive and
clustering-based downstream tasks.

6.4 LLM-based Topic Quality Assessment

LLM-based Topic Quality Assessment serves as
a proxy for human interpretability, addressing the
limitations of automated topic quality evaluations.

Experimental Setup: Following Stammbach
et al. (2023), we employ two LLM-based evalu-
ation tasks: rating and intrusion detection. In the
rating task, an LLM scores topic coherence from
1 to 3 (“1" = not very related, “2" = moderately
related, “3" = very related).

In the intrusion detection task, an unrelated word
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Figure 3: LLM-assigned topic ratings for all models on
20NG.

is inserted among the top topic words, and the LLM
must identify it. This assumes that intruders are
easier to detect in well-defined topics but harder in
incoherent ones (Chang et al., 2009). While LLM-
based evaluations have limitations (Li et al., 2024),
they provide valuable insights into topic quality.
We used GPT-4 for these evaluations. All models
were trained on the 20NG dataset with 20 topics.

Findings in rating task: Fig. 3 shows the
LLM’s scores for the rating task, demonstrating
that S2WTM generates the highest-quality topics
among the evaluated models. S2WTM achieves
the highest mean score of 2.7 and a median score
of 3.0, indicating consistently high ratings for its
topics.

Findings in intrusion detection task: We per-
formed three test series for each of the 20 topics
generated by each model. For each series, we com-
puted the accuracy of correctly detecting the in-
truder word. The statistics of these accuracy scores
across the three tests are shown in Fig. 4, which
again demonstrates the high quality of S2WTM-
generated topics compared to existing models.

7 Beyond Euclidean Assumptions:
Empirical Insights

We aim to evaluate the impact of modeling the la-
tent space on a hypersphere instead of in Euclidean
space and its effect on topic quality.

Experimental Setup: To assess this, we modi-
fied the objective function and prior distribution
of S2WTM. Specifically, we replaced the Spheri-
cal Sliced-Wasserstein distance with the standard
Sliced-Wasserstein distance for distribution match-
ing and substituted the hyperspherical prior with
a Dirichlet distribution. All other parameters re-
mained unchanged. Table 6 reports median topic
quality scores over five random runs.
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Figure 4: Intruder word detection accuracy over three
test runs per model on 20NG.

Findings: Comparing the results of S2WTM in
Tables 3 and 4, NPMI improves by 54.6% on 20NG
and over 100% on other datasets. CV gains range
from 15.9% to 51.2%, except for M10, where it
remains similar. IRBO and wI-C scores improve
by 1.0% to 52% and 2.3% to 5.9%, respectively,
highlighting the benefits of modeling the latent
space on a hypersphere.

Dataset Coherence Diversity

NPMI CV IRBO wI-C

20NG 0.108 (0.167) 0.623 (0.723) 0.984 (0.994) 0.821 (0.881)
BBC 0.081 (0.252) 0.592 (0.863) 0.941 (1.000) 0.835 (0.854)
M10 0.038 (0.101) 0.494 (0.492) 0.964 (0.999) 0.826 (0.857)
SS 0.024 (0.146) 0.549 (0.683) 0.940 (1.000) 0.809 (0.851)
Pascal 0.007 (0.045) 0.425 (0.572) 0.887 (0.994) 0.826 (0.868)
Bio 0.094 (0.191) 0.572 (0.663) 0.972 (0.998) 0.818 (0.859)
DBLP 0.004 (0.133) 0.369 (0.558) 0.658 (1.000) 0.838 (0.847)

Table 6: Median scores over five runs without the spher-
ical latent space assumption. Corresponding S2WTM
scores are shown in parentheses.

8 Conclusion

S2WTM is a Spherical Sliced-Wasserstein
Autoencoder-based topic model that models
the latent space as hyperspherical instead of
Euclidean while avoiding posterior collapse seen
in VAE-based models. We evaluated S2WTM on
seven publicly available datasets for topic model-
ing assessment. In most experiments, S2WTM
consistently achieved superior topic coherence and
diversity compared to competitive topic models
from the literature. Manual evaluation of selected
topics further confirmed that S2WTM produces
more coherent topics than alternative models.
Additionally, in extrinsic evaluations, S2WTM
outperformed existing models across all datasets.
Finally, our LLM-based evaluation, serving as a
proxy for human judgment, further demonstrated
that S2WTM generates higher-quality topics.
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Limitations

While S2WTM performs well, computing SSW
requires multiple spherical Radon transforms, lead-
ing to increased computational cost as the number
of projections grows.

Additionally, in Section 6.4, we employ LLMs
for topic quality evaluation. However, LLMs are
known to exhibit biases (Li et al., 2024; Guo et al.,
2024; Kotek et al., 2023). To mitigate this as much
as possible, we conducted a manual evaluation of
randomly selected topics (see Section 6.2).

Ethics Statement

The topic words presented in Table 5 are gener-
ated by topic models trained on the 20NG dataset.
These models learn patterns from data without ex-
plicit supervision, and their outputs may reflect
biases present in the dataset. The authors have no
intention to cause harm or offense to any commu-
nity, religion, country, or individual. Efforts have
been made to ensure that the generated topics are
analyzed objectively, and any unintended biases in
the model outputs are acknowledged as part of the
limitations of automated topic modeling.
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A ELBO Surgery and Posterior Collapse

In VAEs, posterior collapse refers to the phe-
nomenon where the approximate posterior q(z|x)
becomes indistinguishable from the prior p(z), re-
sulting in latent variables that carry little to no in-
formation about the input x. This can be formally
characterized as follows:

Definition 4 (ϵ-Posterior Collapse (Kinoshita et al.,
2023)). For a given parameter θ ∈ RK , a dataset
x ∈ Rm×n, and a closeness criterion d(·, ·), the
ϵ-posterior collapse is defined for a given ϵ ≥ 0, as

d (qϕ(zi|xi), p(zi)) < ϵ, ∀i = 1, ..., n.

Typically, the closeness criterion d(·, ·) is chosen
as the Kullback–Leibler divergence KL(·∥·), con-
sistent with its use in the Evidence Lower Bound
(ELBO) objective:
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LELBO = Eq(z|x)[log p(x|z)]− KL(q(z|x)∥p(z))

To understand the effect of the KL divergence
term, Hoffman and Johnson (2016) introduced a
decomposition known as ELBO surgery, which
analyzes the expected KL term under the data dis-
tribution p(x):

Ep(x) [KL(q(z|x)∥p(z))]

= Ep(x)

[∫
q(z|x) log q(z|x)

p(z)
dz

]

= Ep(x)

[∫
q(z|x)

(
log

q(z|x)
q(z)

+ log
q(z)

p(z)

)
dz

]

= Ep(x) [KL(q(z|x)∥q(z))]
︸ ︷︷ ︸

Iq(x;z)

+KL(q(z)∥p(z))︸ ︷︷ ︸
Marginal KL

Thus, we obtain the decomposition:

Ep(x) [KL(q(z|x)∥p(z))] = Iq(x; z)+KL(q(z)∥p(z))

This decomposition reveals that the KL term im-
plicitly includes a mutual information component
Iq(x; z), which measures how much information
about x is encoded in the latent variable z. Mini-
mizing the KL term too aggressively can therefore
inadvertently reduce mutual information, leading
to posterior collapse, where the encoder learns to
ignore x and produces non-informative latent rep-
resentations.

B Sampling from the vMF Distribution

Sampling from the vMF distribution (Ulrich, 1984)
involves generating two components:

• A tangential component v ∼ Sd−2.

• A radial component t sampled from
fradial(t|κ, p).

An intermediate sample z′ ∈ Rp is then com-
puted as:

z′ = te1 +
√

1− t2v (7)

where e1 = (1, 0, . . . , 0) is a unit vector. The final
sample is obtained via the Householder transforma-
tion:

z = Hz′ (8)

where H reflects vectors to align e1 with the de-
sired mean direction µ.

C Datasets Description

We used seven publicly available datasets from di-
verse domains, including news, academia, biomed-
ical literature, and web search, to evaluate topic
modeling approaches.

1. 20NewsGroups (20NG) is a popularly used
text dataset for topic modeling, consisting of
documents collected from 20 different online
newsgroups. It contains a total of 16,309 pre-
processed documents. Each document is as-
signed a label corresponding to its respective
newsgroup.

2. BBCNews (BBC) (Greene and Cunningham,
2006) is a collection of 2,225 news articles
published by the British Broadcasting Corpo-
ration (BBC). Each article is assigned to one
of five predefined categories: tech, business,
entertainment, sports, or politics.

3. M10 (Greene and Cunningham, 2006) is a
subset of the CiteSeerX digital library, consist-
ing of 8,355 academic documents spanning
10 different research topics.

4. SearchSnippets (SS) (Qiang et al., 2022) is
a dataset constructed from web search trans-
actions, consisting of 12,295 short text doc-
uments after pre-processing. These docu-
ments are derived from predefined search
phrases and are categorized into eight the-
matic domains: business, computers, culture-
arts, education-science, engineering, health,
politics-society, and sports.

5. PascalFlickr (Pascal) (Qiang et al., 2022) is
a dataset consisting of 4,834 image captions
(after pre-processing) sourced from Pascal and
Flickr image collections. These captions are
categorized into 20 different thematic classes.

6. Biomedicine (Bio)1 (Qiang et al., 2022) is
derived from biomedical literature made avail-
able through the BioASQ challenge. It con-
tains 19,448 documents after pre-processing,
each assigned to one of 20 biomedical cate-
gories.

7. DBLP (Pan et al., 2016) is a bibliographic
dataset in computer science, curated by select-
ing conferences from four research domains:

1The SS, Pascal, and Bio datasets, along with their cor-
responding labels, are available at: https://github.com/
qiang2100/STTM/tree/master/dataset
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Dataset M=250 M=500 M=1000 M=2000 M=4000 M=8000

20NG (0.1456, 5.903) (0.1453, 6.869) (0.1519, 7.467) (0.1518, 10.489) (0.1670, 13.515) (0.1649, 22.128)
BBC (0.2139, 3.440) (0.2219, 5.474) (0.2501, 7.649) (0.2371, 9.102) (0.2437, 11.175) (0.2523, 20.239)
M10 (0.0642, 5.800) (0.0772, 6.185) (0.0976, 9.764) (0.1010, 11.665) (0.0990, 17.658) (0.1007, 32.467)
SS (0.1142, 7.322) (0.1165, 8.132) (0.1456, 9.065) (0.1455, 11.765) (0.1450, 18.792) (0.1445, 33.772)
Pascal (0.0140, 4.922) (0.0446, 6.641) (0.0406, 7.601) (0.0427, 9.326) (0.0420, 12.755) (0.0435, 21.093)
Bio (0.1767, 4.856) (0.1872, 5.465) (0.1905, 7.346) (0.1904, 10.642) (0.1884, 17.374) (0.1897, 31.194)
DBLP (0.1257, 10.629) (0.1261, 11.361) (0.1333, 12.074) (0.1303, 16.006) (0.1300, 21.938) (0.1329, 37.242)

Table 7: NPMI and Per-Epoch Training Time (in seconds) for Different Numbers of Projections M . The best NPMI
values are highlighted.

databases, data mining, artificial intelligence,
and computer vision. The dataset comprises
54,595 documents after pre-processing.

The datasets – 20NG, BBC, DBLP and M10
are available in the OCTIS framework. For the
remaining three datasets – SS, Pascal, and Bio –
we performed additional pre-processing to ensure
consistency with the OCTIS format and maintain
comparability across all datasets. The details of
our pre-processing steps are described in Section
C.1.

C.1 Preprocessing

Using OCTIS, we convert all text to lowercase,
remove punctuation, apply lemmatization, filter out
words with fewer than three characters, and discard
documents containing fewer than three words.

D Baseline Configurations

We reproduced all baseline models based on their
original papers, using either official implementa-
tions or OCTIS. For LDA (Blei et al., 2003), LSI
(Dumais, 2004), NMF (Zhao and Tan, 2017), ETM
(Dieng et al., 2020), ProdLDA (Srivastava and Sut-
ton, 2017), ZeroShotTM (Bianchi et al., 2021b),
and CombinedTM (Bianchi et al., 2021a), we used
the default parameter settings available in OCTIS.

For DVAE-TM, DVAE-RSVI-TM (Burkhardt
and Kramer, 2019) 2, WTM (Nan et al., 2019) 3,
vONT (Xu et al., 2023) 4, and ECRTM (Wu et al.,
2023) 5. These models were integrated into the
OCTIS framework to facilitate a standardized eval-
uation, ensuring fair and reproducible comparisons
with other baseline models.

2DVAE-TM and DVAE-RSVI-TM: https://github.
com/mayanknagda/neural-topic-models

3WTM: https://github.com/zll17/Neural_Topic_
Models/blob/master/models/WTM.py

4vONT: https://github.com/xuweijieshuai/vONTSS
5ECRTM: https://github.com/BobXWu/ECRTM

E Computing Infrastructure

Our experiments were conducted on a system with
an Intel® Core® i7-10700K processor, 32 GB of
RAM, an NVIDIA GeForce GTX 1660 SUPER
GPU with 6 GB of VRAM, CUDA 12.2, and the
Ubuntu 22.04 operating system.

F Trade-off Between Performance and
Computational Cost in Terms of
Number of Projections

The computational complexity of SSW grows lin-
early with the number of projections M , as noted
by Bonet et al. (2023). Their empirical analy-
sis confirms that increasing M proportionally in-
creases runtime. Following this, we investigate the
trade-off between performance and computational
cost for S2WTM by varying M and measuring its
impact on model quality.

Table 7 reports the median NPMI scores across
five random runs, paired with the corresponding
per-epoch training times, for different values of M .
We highlight the best NPMI scores for each dataset.

The results suggest that while increasing M gen-
erally improves performance, the gains plateau be-
yond a certain point. Across most datasets, per-
formance stabilizes around M = 1000, offering
a strong balance between topic quality and com-
putational efficiency. Although theoretically deter-
mining the optimal M remains an open research
question, our empirical findings suggest that set-
ting M ≈ 1000 yields favorable results without
incurring excessive computational costs. These
observations are consistent with the linear scaling
behavior reported by Bonet et al. (2023).

G Clustering Alignment Metrics: NMI
and Purity

To complement the document classification results
reported in Section 6.3, we evaluate how well the
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Model 20NG BBC M10 SS Pascal Bio DBLP

NMI Purity NMI Purity NMI Purity NMI Purity NMI Purity NMI Purity NMI Purity
LDA 0.425 0.461 0.617 0.757 0.157 0.376 0.219 0.469 0.303 0.313 0.255 0.371 0.099 0.533
LSI 0.282 0.326 0.250 0.231 0.259 0.395 0.111 0.342 0.295 0.274 0.364 0.410 0.044 0.449
NMF 0.298 0.360 0.602 0.808 0.240 0.449 0.152 0.423 0.326 0.343 0.338 0.421 0.090 0.505
ETM 0.026 0.091 0.022 0.270 0.017 0.157 0.007 0.228 0.059 0.106 0.015 0.064 0.231 0.383
DVAE-TM 0.227 0.230 0.414 0.431 0.192 0.269 0.251 0.225 0.263 0.258 0.260 0.267 0.182 0.383
DVAE-RSVI-TM 0.238 0.237 0.308 0.374 0.164 0.254 0.269 0.225 0.270 0.264 0.267 0.262 0.107 0.383
CombinedTM 0.406 0.418 0.650 0.838 0.437 0.614 0.503 0.725 0.463 0.459 0.407 0.496 0.240 0.647
ZeroshotTM 0.383 0.421 0.637 0.844 0.460 0.671 0.509 0.737 0.465 0.459 0.406 0.511 0.168 0.569
ProdLDA 0.369 0.414 0.685 0.859 0.420 0.617 0.418 0.660 0.407 0.397 0.398 0.508 0.230 0.641
WTM 0.370 0.366 0.718 0.853 0.340 0.543 0.431 0.678 0.401 0.375 0.347 0.473 0.188 0.598
vONT 0.328 0.351 0.721 0.851 0.351 0.529 0.402 0.629 0.420 0.363 0.342 0.440 0.179 0.572
ECRTM 0.336 0.345 0.716 0.861 0.142 0.355 0.084 0.322 0.315 0.317 0.167 0.281 0.059 0.465

S2WTM 0.437 0.469 0.729 0.874 0.464 0.680 0.547 0.749 0.471 0.521 0.557 0.644 0.254 0.686

Table 8: Clustering performance (NMI and Purity) of the models across all the datasets.

learned topic distributions align with ground-truth
class labels using two clustering metrics: Normal-
ized Mutual Information (NMI) and Purity. While
classification accuracy reflects predictive utility,
these unsupervised metrics assess the structure and
separability of the learned representations.

As shown in Table 8, S2WTM consistently
achieves the highest scores across all datasets. This
indicates that the learned topic distributions align
well with the true labels and form coherent, well-
separated clusters, further confirming the strength
of S2WTM for clustering-based downstream tasks.

H Topic Alignment Algorithm

We align topics between two given models using
the following two-step strategy as prescribed by
(Adhya et al., 2023):

1. Construct Similarity Matrix:

(a) Let P = {P [1], P [2], . . . , P [K]} and
Q = {Q[1], Q[2], . . . , Q[K]} be the
topic lists from the two models.

(b) Compute the Rank-biased Overlap
(RBO) similarity (Webber et al., 2010)
for each topic pair:

ai,j = RBO
(
P [i], Q[j]

)
,

∀i, j ∈ {1, . . . ,K}.

(c) Construct the similarity matrix A =
(aij)1≤i,j≤K , where each entry aij ∈
[0, 1], with 0 indicating no overlap and 1
indicating exact overlap.

2. Iterative Topic Pairing:

(a) While there are unaligned topics in P
and Q:

i. Identify the pair (i∗, j∗) with the
highest similarity score:

(i∗, j∗) = argmax
i,j

aij

ii. Align the topics P [i∗] and Q[j∗].
iii. Exclude the selected topics from fur-

ther consideration:

P ← P\{P [i∗]}, Q← Q\{Q[j∗]}

ensuring that each topic is aligned
only once.
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