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Abstract

Knowledge distillation (KD) compresses large
language models (LLMs), known as teacher
models, into lightweight versions called stu-
dent models, enabling efficient inference and
downstream applications. However, prevail-
ing approaches accomplish this by predomi-
nantly focusing on matching the final output
distributions of student/teacher models. Draw-
ing on the perspective that transformers can
be viewed as discretizing ordinary differential
equation (ODEs) on integer time steps (corre-
sponding to layer indices), where intermediate
features evolve across layers, we argue that ef-
fective KD requires aligning the entire feature
dynamics between teacher and student mod-
els, which we call feature dynamics distilla-
tion (FDD). This alignment involves matching
both the feature trajectory and its first-order
derivative, rather than just the final states. Our
approach extends the original KD objective
with two additional loss terms: layer-wise fea-
ture KD, which matches discretized feature
trajectory, and layer feature delta KD, which
matches first-order changes in features across
adjacent layers. Extensive experiments on vari-
ous tasks validate the effectiveness of our dis-
tillation method.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in various natural language
processing tasks (OpenAI, 2022, 2024; Qwen,
2024; DeepSeek-AI-Group, 2024). The success
is, however, largely driven by scaling up the
model parameters. (e.g., 175B parameters for
GPT-3 (Brown et al., 2020), 70B parameters for
Qwen2.5 (Qwen, 2024) and 671B for Deepseek-
V3 (DeepSeek-AI-Group, 2024)). The large model
size requires substantial computation and poses
significant challenges in practical deployment, es-
pecially in resource-constrained environments. By
transferring knowledge from a large teacher model

to a smaller student model, knowledge distillation
(KD) emerges as a promising solution. The rich
information learned by the teacher model helps
optimize the student to achieve performance lev-
els that would be unattainable through training the
student model alone.

The backbone of LLMs, the transformer archi-
tecture (Vaswani et al.), with layer-wise skip con-
nections, can be viewed as discretized ODEs where
integer time steps correspond to layer indices (Chen
et al., 2018; Lu et al., 2019). The ODE states repre-
sent intermediate features that evolve across layers
from initial input embeddings to final layer fea-
tures, which are then projected to logits for next-
token predictions. Through this lens, student mod-
els can be understood as a coarse discretization
of the underlying feature dynamics. The teacher
models’ more accurate representation of feature
dynamics can thus guide student models toward
better discretizations within their representation
capacity. From this perspective, we argue that ef-
fective and comprehensive knowledge distillation
should align the entire feature dynamics between
student and teacher models, extending beyond the
conventional approach of solely matching output
distributions through various divergence losses, in-
cluding Kullback-Leibler divergence (Hinton et al.,
2015; Muralidharan et al., 2024; Liu et al., 2024)
or reverse Kullback-Leibler divergence (Gu et al.,
2024; Ko et al., 2024). To this end, we propose
feature dynamics distillation (FDD), which opti-
mizes student models to match both the discretized
feature trajectory and its first-order derivative (esti-
mated through finite differences) with the teacher
models. This comes down to two additional KD
loss terms: the layer-wise KD loss for trajectory
matching and the layer-delta KD loss for derivative
matching. We demonstrate that these additional
KD loss terms consistently improve distillation ef-
fectiveness, outperforming previous state-of-the-art
approaches, validating the importance of feature
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dynamics distillation.
Our ODE perspective on KD is further supported

by recent empirical observations about LLMs, in-
cluding findings that intermediate layers can en-
code richer representations (Skean et al., 2025;
Geva et al., 2022; Dar et al., 2023; Elhoushi
et al., 2024) and that decoding through layer con-
trasting can better surface factual knowledge in
LLMs (Chuang et al., 2024). The former demon-
strates the necessity of conducting layer-wise KD,
while the latter corroborates the importance of
layer-delta KD. In addition, there is a growing
body of literature exploring layer-wise distillation
schemes (Jiao et al., 2020; Wang et al., 2020) by
matching various aspects of teacher and student
models such as intermediate features and attention
scores. These studies, though heuristically estab-
lished and primarily focus on BERT-based mod-
els (Devlin et al., 2019), show the promise of devel-
oping KD scheme that can more comprehensively
mimic the teacher.

Extensive experiments are conducted on various
tasks. The results show that our proposed FDD en-
sures sufficient exploitation of teacher knowledge,
leading to more effective and nuanced student mod-
els that demonstrate state-of-the-art performance.

2 Preliminary

2.1 Knowledge Distillation of LLMs

A transformer-based large language model (LLM)
typically consists of three components: An em-
bedding layer fembed(·), a stack of L transformer
blocks, and a language modeling (LM) head
fhead(·). Given a tokenized one-hot encoded
input sequence x1:N := [x1, . . . , xN ], the em-
bedding function fembed(·) maps it into dense
feature representations h1:N (0). These features
are then processed sequentially through L trans-
former layers, producing intermediate features
{h1:N (1), . . . ,h1:N (L))}. Finally, the LM head
fhead(·), typically a linear soft-max layer, projects
the final features h1:N (L) to vocabulary distribu-
tion for next-token predictions.

Larger LLMs typically achieve better perfor-
mance but are computationally expensive during
inference. Knowledge distillation (KD) is a model
compression technique where the “knowledge”
learned by a large, complex model (teacher T )
is transferred to a smaller, more efficient model
(student S) (Hinton et al., 2015). This can be
achieved by minimizing the Kullback-Leibler di-

vergence (KLD) between their output distributions:

LKD =
1

N

N∑

i=1

DKL(p
T (xi+1|x≤i) ∥ pSw(xi+1|x≤i))

=
1

N

N∑

i=1

DKL(f
T
head(h

T
i (L))) ∥ fS

head(h
S
i (L)))

(1)
where w denotes parameters of the student model
to be optimized.

2.2 Transformers as ODEs
Neural network with layer-wise residual connec-
tions (He et al., 2016) can be interpreted as dis-
cretizing an ordinary differential equation (ODE)
at integer time steps (Chen et al., 2018), where the
time variable corresponds to layer indices. Trans-
former (Vaswani et al.) also incorporates residual
connections and stacks layers consisting of one
multi-head attention (MHA) module and a multi-
layer perceptron (MLP) module, mapping from
sequences to sequences:

h1:N ← h1:N + MHA(LN(h1:N ))

h1:N ← h1:N + MLP(LN(h1:N )),

where LN denotes layer normalization (Ba et al.,
2016). Therefore, it can be seen as an ODE with
intermediate feature sequences as states:

dh1:N (t)

dt
= fode(h1:N (t); t,w(t))

= MHA(t)(LN(t)(h(t)),wMHA(t))

+ MLP(t)(LN(t)(h(t)),wMLP(t))
(2)

where w(t) = [wMHA(t),wMLP(t)] denotes time
(layer) dependent parameters. To recover the stan-
dard transformer architecture and accommodate
for alternating MHAs and MLPs, one must follow
the Lie-Trotter splitting scheme (Trotter, 1959) for
discretization. This ODE fully characterizes the dy-
namics of feature evolvement in the model forward
pass (Lu et al., 2019).

3 Method

Existing knowledge distillation approaches pre-
dominantly focus on output-layer distillation. Here
we argue that KD can be made more effective by
aligning the entire feature dynamics between the
teacher and student models, incorporating both the
feature trajectory and its first-order derivative. The
approach, derived from the ODE perspective, is

23068



…

…

Teacher Model

Student Model

Figure 1: An illustration of feature dynamics distil-
lation (FDD) from an ODE perspective. The student
model (in red), which represents a coarser discretization
of the underlying feature dynamics ODE, is optimized
to match the teacher model (in green), which is more
accurate. As the feature dimensions are distinct, we map
features to intermediate predictive distributions through
the LM heads (green and red small rectangles) and con-
duct matching directly in this space. Both feature tra-
jectory (dots) and its derivative (arrows) are matched,
which comes down to a layer-wise KD loss term and a
layer-delta KD loss term. The final output distribution
KD loss is also incorporated.

concretized in Section 3.1. It then translates into in-
corporating layer-wise KD (Section 3.2) and layer-
delta KD (Section 3.3) after discretization. The
framework of feature dynamics distillation (FDD)
is illustrated in Figure 1.

3.1 Distillation under the ODE Perspective

Given the underlying corresponding ODEs (Equa-
tion 2) for the teacher T and the student S , our goal
is to align their feature dynamics. Nevertheless,
features in the teacher and student typically reside
in different spaces with different dimensions. To
bridge the gap and thus facilitate the alignment, we
project both teacher and student features into the
shared vocabulary prediction distribution space by
multiplexing the language modeling head fhead(·)
of their own. The overall dynamic is then 1:

1Here we omit the dependence of fode(·) on time variant
parameters w(t) and keep only dependence on time t for
brevity.

dhS or T
1:N (t)

dt
= fS or T

ode (hS or T
1:N (t); t)

yT or S
1:N (t) = log fT or S

head (hT or S
1:N (t))

(3)

The prediction dynamics y(t) effectively capture
knowledge contained in the feature dynamics h(t).
In the following, we abuse "feature dynamics" as
this "prediction dynamics". Actually, discretization
of its exponential ey(t) exactly corresponds to the
Logits Lens (nostalgebraist, 2020), which has been
widely applied to interpret the internals of LLM.

With the dynamics established, we align teacher-
student prediction dynamics yT (t) and yS(t) from
t = 0 to T with the trajectory loss:

LTraj
KD =

1

TN

∫ N∑

i=1

DKL(e
yTi (t) ∥ eySi (t))dt (4)

Matching feature trajectories alone can be insuf-
ficient due to discretization and matching errors,
making it advantageous to also align the tempo-
ral evolution of features. We thus propose incor-
porating an additional loss term to align the first
derivative of the feature trajectory:

LDer
KD =

1

TN

∫ N∑

i=1

DCos(
dyTi (t)
dt

∥ dySi (t)
dt

)dt

(5)

where DCos(a,b) = 1 − aT b
∥a∥∥b∥ . The feature dy-

namics become very uncertain at times far from
the discretization sampling points. The trajectory
derivative thus provides necessary supplementary
information characterizing the underline feature
dynamics.

These additional knowledge distillation loss
terms, LTraj

KD and LDer
KD derived from the ODE per-

spective, provide much richer training signals com-
pared to the conventional loss based solely on out-
put distributions.

3.2 Layer-wise Knowledge Distillation
For practical use, we discretize the ODEs Equa-
tion 3, where layer indices correspond to integer
time steps. This turns out to be a layer-wise distil-
lation scheme. As the layer number of teacher LT

and student LS are different, we choose a distilla-
tion schedule. Teacher intermediate layers indexed
by IT =

{
lTI1 , . . . , l

T
ILD

}
are distilled to the stu-

dent layers indexed by IS =
{
lSI1 , . . . , l

S
ILD

}
cor-

respondingly, where LD is the number of interme-
diate layers to be distilled. Typically lTIj = K · lSIj ,
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where K = LT
LS

2. The feature trajectory loss Equa-
tion 4 then becomes:

LTraj
KD =

1

LN

LD∑

j=1

N∑

i=1

DKL(e
yTi (lTIj ) ∥ eySi (l

S
Ij ))

(6)
As intermediate layers encode equal or even richer
representations than those of the final layer (Skean
et al., 2025), such a layer-wise distillation scheme
facilitates capturing rich semantic knowledge con-
tained in the distinct layers so that the teacher
model is better exploited.

Previous layer-wise distillation methods match
the teacher and student features by minimizing
their L2 distance: 1

LDN

∑LD
j=1

∑N
i=1 ∥hT

i (l
T
Ij ) −

PhS
i (l

S
Ij )∥2. Generally the feature dimension dTh

and dSh are different so the projection matrix P
is incorporated to project the teacher and student
features into the same space. In FDD, we utilize
the already trained language model heads fhead(·)
instead. This treatment bears a strong resemblance
to the task-aware filter proposed in (Liang et al.,
2023). Projection matrix trained with L2 loss in-
discriminately matches the features of teacher and
student. While LM head, pretrained for predicting
the next token, is much more relevant to the down-
stream tasks(e.g. instruction tuning). As a result,
it serves as a better filter for selecting knowledge
that is useful for the target tasks from the hidden
representations (features).

3.3 Layer-delta Knowledge Distillation

While matching the feature trajectory (layer-wise
distillation) extracts rich information encoded in
each layer, it does not capture the temporal evo-
lution of features across layers due to discretiza-
tion and matching errors. The feature derivative
loss Equation 5 is thus incorporated. Again, with
proper discretization of the ODEs, the feature
derivative loss turns into a layer-delta knowledge
distillation scheme:

LDer
KD =

1

NL∆

L∆∑

j=1

N∑

i=1

DCos(∆
T
i (l

T
Ij ) ∥ ∆S

i (l
S
Ij ))

(7)

2We can also use other distillation schemes. Different
schemes can be accomplished by adjusting the teacher and
student discretize step.

Where L∆ = LD − 1. The feature changes (∆)
between adjacent selected layers are:

∆T
i (l

T
Ij ) = yTi (l

T
Ij )− yTi (l

T
Ij−1

)

∆S
i (l

S
Ij ) = ySi (l

S
Ij )− ySi (l

S
Ij−1

)

This layer-delta distillation loss measures the simi-
larity of feature transitions between the teacher and
the student, ensuring that the student model learns
not only the knowledge encoded in each layer but
also the pattern of representation refinement across
layers.

3.4 Overall Optimization

The final distillation objective combines the feature
trajectory lossLTraj

KD , the feature derivative lossLDer
KD

as well as the conventional KL divergence aligning
the output distribution of teacher and student.

Loverall = LKD + αLTraj
KD + βLDer

KD (8)

where α, β are hyperparameters controlling the
relative contributions of each loss. This compre-
hensive objective ensures the alignment of the
teacher and the student on both semantic represen-
tations and their evolutionary patterns across lay-
ers. Ensuring a more effective student model. Note
that although we utilize the conventional Kullback-
Leibler divergence to establish FDD, it is compat-
ible to other recently developed KD losses like
Jensen-Shannon divergence (Agarwal et al., 2024),
the reverse Kullback-Leibler divergence (Gu et al.,
2024) and the Skew KLD (Ko et al., 2024).

An overall procedure of FDD is given in Algo-
rithm 1.

Algorithm 1 Feature Dynamic Distillation (FDD)
Require:

Teacher model T ; Student model S parameterized by w.
Learning rate η; Hyper-parameters α, β.
Selected teacher layer indexes IT and Student layer
indexes IS for distillation.

Ensure:
Distilled student model.

1: while not done do
2: Forwarding both T and S, compute the KD loss fol-

lowing Equation 1.
3: Apply LM heads on the selected layers. Compute the

feature trajectory loss LTraj
KD following Equation 6.

4: Compute the feature derivative loss LDer
KD following

Equation 7.
5: Update w via stochastic gradient descent:

w← w − η∇w

{
LKD + αLTraj

KD + βLDer
KD

}
.

6: end while
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4 Experiments

In this section, we first compare FDD to state-of-
the-art algorithms in Section 4.2. Then we analyze
the effectiveness of each design ingredient in Sec-
tion 4.3.

4.1 Experimental Setup

Datasets. To evaluate the effectiveness of our
method, we conduct experiments on seven
instruction-following benchmarks:

• Dolly Evaluation is a sampled test set of the
databricks-dolly-15k dataset3, consisting
of 500 samples.

• Self-Instruct (Wang et al., 2023) is a user-
oriented instruction-following dataset contain-
ing 252 samples.

• Vicuna Evaluation (Chiang et al., 2023) com-
prises 80 challenging questions designed to
evaluate the Vicuna model.

• Wizard Evaluation (Xu et al., 2024) contains
218 real-world human instructions of vary-
ing difficulty across different domains from
diverse sources.

• Koala (Geng et al., 2023) consists of 180 real
user queries that span various topics and rep-
resent real-world chat system use cases.

• Super-Natural Instructions (S-NI) (Wang
et al., 2022) includes 1,616 diverse NLP tasks
with expert-written instructions, covering 76
distinct task types. The test set includes 9,000
samples spanning 119 tasks.

• Unnatural Instructions (UnNI) (Honovich
et al., 2023) includes 240K AI-generated in-
structions with minimal human involvement.
Following previous works (Gu et al., 2024;
Ko et al., 2024), we randomly sampled 10,000
samples from the core set for evaluation.

Evaluation Metrics. Following previous meth-
ods (Gu et al., 2024; Ko et al., 2024), we uti-
lize ROUGE-L (Lin, 2004) and GPT-4o feed-
back (Zheng et al., 2023) to assess the quality of
model-generated outputs. ROUGE-L is a widely
used evaluation metric that measures the longest

3https://github.com/databrickslabs/dolly/tree/
master

common subsequence between the generated and
reference texts. For the other metric, GPT-4o is
tasked with comparing the model’s responses to
the reference answers and assigning scores rang-
ing from 1 to 10 for each response. We calculate
and report the ratio of the total scores between the
model’s responses and the reference answers. For
the evaluation, we sample the responses using 5
random seeds and report the average scores.

Base Models. Our FDD is evaluated on three
types of models with various sizes: LLaMA2 (Tou-
vron et al., 2023) (13B teacher, 7B student), Open-
LLaMA2 (Geng and Liu, 2023) (7B teacher, 3B
student) and GPT2 (Radford et al., 2019) (1.5B
teacher, 0.1B student).

Baselines. We compare our FDD against various
state-of-the-art approaches:

• SFT directly fine-tunes the student model on
the fixed datasets.

• KD (Hinton et al., 2015) applies KLD on fixed
datasets.

• SeqKD (Kim and Rush, 2016) fine-tunes the
student model using teacher-generated out-
puts.

• ImitKD (Lin et al., 2020) employs KLD on
student-generated outputs (SGOs).

• GKD (Agarwal et al., 2024) uses Jensen-
Shannon Divergence (JSD) on a combination
of SGOs and fixed datasets.

• MiniLLM (Gu et al., 2024) utilizes reverse
KLD and a policy gradient method on SGOs.

• DistiLLM (Ko et al., 2024) applies Skew
KLD and an adaptive off-policy approach to
enhance efficiency in utilizing SGOs.

Implementation Details. Our implementation is
based on the experimental setup outlined by (Gu
et al., 2024; Ko et al., 2024). We randomly se-
lect 14,000 samples in databricks-dolly-15k
for training while allocating 500 samples each
for validation and testing. Following previous
works (Gu et al., 2024; Ko et al., 2024), the student
model is first fine-tuned for 3 epochs on the training
set. To ensure a fair comparison with other meth-
ods, such as ImitKD (Lin et al., 2020), GKD (Agar-
wal et al., 2024), MiniLLM (Gu et al., 2024), and
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Methods Dolly Self-Instruct Vicuna Wizard Koala S-NI UnNI Average
R-L GPT-4o R-L GPT-4o R-L GPT-4o GPT-4o GPT-4o R-L R-L

LLAMA2-13B → LLAMA2-7B

Teacher (SFT) 29.27 73.46 21.68 75.73 19.77 57.98 47.87 48.50 34.10 35.49 28.26

SFT 28.38 65.59 20.32 65.68 17.72 51.93 44.56 45.00 34.37 33.25 26.81
KD (Hinton et al., 2015) 28.56 67.93 19.92 63.67 18.20 53.17 43.95 45.82 31.85 31.12 25.93

SeqKD (Kim and Rush, 2016) 28.29 72.30 19.82 64.14 17.70 51.62 44.72 43.67 30.80 31.82 25.69
ImitKD (Lin et al., 2020) 27.03 65.59 21.76 65.99 17.90 43.87 41.90 42.41 31.18 31.07 25.79

GKD (Agarwal et al., 2024) 29.27 75.07 21.25 72.79 18.61 54.10 46.49 47.31 36.94 34.69 28.15
MiniLLM (Gu et al., 2024) 30.75 76.14 23.61 73.65 20.80 60.24 47.10 47.87 36.17 36.82 29.63
DistiLLM (Ko et al., 2024) 31.06 76.67 23.07 70.47 20.60 58.75 47.43 47.94 37.11 37.28 29.82

Ours 32.57 80.17 24.56 75.11 19.88 62.48 48.42 48.85 40.43 43.01 32.09

OpenLLAMA2-7B → OpenLLAMA2-3B

Teacher (SFT) 27.09 59.32 18.24 57.49 17.89 42.01 39.86 40.59 31.44 33.20 25.57

SFT 24.95 54.22 17.38 50.23 14.58 38.75 33.28 35.06 28.65 27.69 22.65
KD (Hinton et al., 2015) 25.10 52.47 17.11 51.15 16.64 38.29 35.60 37.23 28.93 28.32 23.22

SeqKD (Kim and Rush, 2016) 25.22 55.68 17.30 52.39 16.06 42.48 32.84 37.44 29.26 27.90 23.14
ImitKD (Lin et al., 2020) 23.81 53.64 17.55 51.15 16.62 40.77 37.04 37.09 29.83 28.97 23.35

GKD (Agarwal et al., 2024) 26.54 60.34 20.21 57.80 19.14 47.28 39.53 39.75 35.44 31.65 26.60
MiniLLM (Gu et al., 2024) 28.69 64.13 20.42 55.95 18.93 42.01 39.41 40.10 35.46 35.11 27.72
DistiLLM (Ko et al., 2024) 28.99 63.41 19.99 53.94 20.41 47.13 39.75 40.61 36.60 35.27 28.25

Ours 30.15 66.61 20.93 59.96 19.63 48.06 40.85 42.55 39.88 38.51 29.82

GPT-2 XL (1.5B) → GPT-2 (0.1B)

Teacher (SFT) 26.34 47.95 15.27 38.63 16.96 34.88 29.13 32.05 26.71 30.18 23.09

SFT 23.53 35.42 10.49 26.58 14.98 22.79 20.56 22.18 16.78 19.95 17.15
KD (Hinton et al., 2015) 22.31 35.42 10.37 25.96 15.50 23.10 20.07 22.67 16.64 19.18 16.80

SeqKD (Kim and Rush, 2016) 24.11 36.58 11.60 28.90 14.99 21.86 19.79 22.39 19.58 22.12 18.48
ImitKD (Lin et al., 2020) 22.04 33.67 10.19 27.04 14.83 22.17 20.62 22.74 18.11 21.03 17.24

GKD (Agarwal et al., 2024) 24.36 34.83 10.45 27.20 15.73 24.65 21.01 23.23 17.16 19.86 17.51
MiniLLM (Gu et al., 2024) 24.35 36.88 10.38 27.66 16.15 24.96 21.12 23.65 24.76 25.11 20.15
DistiLLM (Ko et al., 2024) 25.20 37.31 12.32 28.59 15.60 24.34 21.39 23.79 23.48 26.38 20.60

Ours 25.70 38.19 12.48 30.75 15.94 26.04 22.06 24.77 27.62 29.04 22.16

Table 1: Comparison of state-of-the-art knowledge distillation methods. ROUGE-L (R-L) metric (Lin, 2004) and
GPT-4o feedback scores are reported. ‘Average’ represents the mean ROUGE-L score across the five benchmarks.
The best performance is highlighted.

DistiLLM (Ko et al., 2024), we initialize the stu-
dent models using the same fine-tuned checkpoint.
The hyperparameters α and β are both set to 1, and
a constant learning rate of 5e-4 is applied across
all experiments. For GPT-2 models, we train all
parameters for 20 epochs. For LLaMA2 and Open-
LLaMA2 models, we adopt the LoRA (Hu et al.,
2022) technique, with training conducted over 10
epochs. Following DistiLLM (Ko et al., 2024),
LoRA is applied to the query and value weights
with a rank of 16. After the knowledge distillation
process, the student models are selected based on
their ROUGE-L scores on the validation set, and
these selected checkpoints are subsequently evalu-
ated on the test set.

For feature trajectory and its first-order deriva-
tive matching, without loss of generality, we select

intermediate layers uniformly from both the stu-
dent and the teacher models. Taking the student
as an example, let LS denote the total number of
intermediate layers and LD the desired number
of sampled layers. The selection interval is then
Q =

⌊
LS/(LD + 1)

⌋
. The indices of the sampled

layers are then I = {l × Q | l ∈ [1, LD]}. FDD
enables direct decoding of intermediate features
into the vocabulary space using the model’s pre-
trained LM head (nostalgebraist, 2020). However,
the LM head may be less effective in processing
the intermediate features because the LM head is
specifically tuned to handle the final layer output
representations during pretraining. Following the
methodology of Tuned Lens (Belrose et al., 2023),
we optionally train lightweight adapters for each
selected layer before feature dynamic distillation.
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Methods Dolly Self-Instruct Vicuna S-NI UnNI Average

LLaMA2-13B→ TinyLLaMA-1B

Teacher (SFT) 29.27 21.68 19.77 34.10 35.49 28.26

SFT 22.60 15.80 16.03 27.37 26.72 21.70
KD 22.99 16.34 16.00 28.31 26.75 22.08

SeqKD 22.43 15.89 15.73 29.17 26.74 21.99
ImitKD 20.65 16.04 15.92 26.46 25.15 20.84
GKD 23.61 18.89 17.03 32.51 29.89 24.38

MiniLLM 26.53 18.94 17.34 34.70 32.74 26.05
DistiLLM 26.72 19.05 18.57 35.08 32.83 26.45

Ours 28.97 19.19 18.18 37.09 36.30 27.95

Table 2: Comparison of state-of-the-art knowledge dis-
tillation methods. ROUGE-L metric is reported. ‘Av-
erage’ represents the mean ROUGE-L score across the
five benchmarks. The best performance is highlighted.

4.2 Comparation with State of the Arts
Table 1 presents the comparison results between
FDD and previous state of the arts. We make the
following observations:

• First, FDD consistently outperforms previous
KD methods, achieving the highest average
ROUGE-L scores and generally the best GPT-
4o scores. For instance, in the LLaMA2-13B
to LLaMA2-7B distillation setting, FDD im-
proves the average ROUGE-L score from the
previous best result (29.82) to 32.09. This
demonstrates FDD’s superior ability to trans-
fer knowledge from the teacher to the student
model. Unlike baseline methods that focus
solely on the final output distribution, FDD
provides a more comprehensive way for the
student model to leverage the rich information
encoded in the teacher.

• Second, the results validate the scalabil-
ity of FDD across different model architec-
tures and parameter scales. When teacher
model sizes range from 1.5B to 13B, FDD
consistently achieves the best or near-best
performance, demonstrating its adaptability
to varying model sizes. For example, in
the GPT-2 XL to GPT-2 distillation setting,
FDD achieves an average ROUGE-L score of
22.16, outperforming DistiLLM (20.60) and
MiniLLM (20.15). Notably, in some cases,
the distilled student model even surpasses the
performance of the teacher model, consistent
with findings from prior studies (Gu et al.,
2024; Ko et al., 2024).

Table 2 presents the results when there is a large

LKD LTraj
KD LDer

KD Average
✓ - - 19.28
✓ ✓ - 21.35
✓ - ✓ 20.52
✓ ✓ ✓ 22.16

Table 3: The impact of different loss functions. ‘Aver-
age’ denotes the average ROUGE-L score on the five
test datasets.

gap between models, with LLaMA2-13B (Tou-
vron et al., 2023) serving as the teacher model
and TinyLLaMA-1B (Zhang et al., 2024a) as the
student model. From Table 2, we see that in this
large model size gap setting, FDD still consistently
outperforms baselines in most cases, showing the
effectiveness of matching the whole trajectory in
mitigating the distribution mismatch problem.

4.3 Ablation Studies
To evaluate the effectiveness of each design com-
ponent, we conduct ablation experiments under the
GPT-2 (1.5B→ 0.1B) setting and assess the results
with the ROUGE-L metric.

Effect of the Number of Distilled Layers The
results in Figure 2 demonstrate how incorporat-
ing intermediate-layer information affects the
performance of the student model. When no
intermediate-layer information is used (Number of
Distilled Layers = 0), the average ROUGE-L score
is 19.28, serving as the baseline. Performance
improves as we increase the number of distilled
intermediate layers, reaching a peak ROUGE-L
score of 22.16 with four sampled layers. However,
further increasing the number of layers leads to
slight decline in performance. We conjecture this
is due to over-constraining the student model,
while the student struggles to mimic the teacher
behavior due to their capacity gap. Additionally,
our current approach uses evenly spaced integer
step sizes (layer indices) to match student and
teacher models, rather than employing adaptive
step sizes as suggested by ODE theory.

Effect of LTraj
KD and LDer

KD The experimental re-
sults in Table 3 demonstrate the effectiveness of
LTraj

KD and LDer
KD in enhancing the performance of

the student model. Specifically, incorporating LTraj
KD

with LKD improves the average performance from
19.28 to 21.35, highlighting the importance of
aligning semantic representations between corre-
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Figure 2: Effect of selecting different number of inter-
mediate layers. Averaged ROUGE-L score on the five
benchmarks are reported.

Figure 3: Ablation results of employing the LM head on
the Dolly Evaluation (Dolly), Super-Natural Instructions
(S-NI), and Unnatural Instructions (UnNI) datasets.

sponding intermediate layers of the teacher and
student models. Similarly, adding LDer

KD to LKD
achieves an average performance of 20.52, demon-
strating the value of capturing the evolution of rep-
resentations across layers. Notably, the combina-
tion of LTraj

KD and LDer
KD with LKD achieves the high-

est performance of 22.16, underscoring the com-
plementary nature of these two objectives. LTraj

KD
ensures layer-wise alignment of semantic distri-
butions, LDer

KD models the evolution of representa-
tions.The integration of these complementary ob-
jectives facilitates comprehensive knowledge trans-
fer from the teacher to the student.

Effect of Multiplexing the LM Head We eval-
uated the effectiveness of using the LM head for
intermediate layer dimension alignment between
teacher and student models. As illustrated in Fig-
ure 3, we compared three alignment strategies: (1)
Projection: This strategy randomly initializes a
projection matrix as proposed in (Jiao et al., 2020).
The projection matrix and student model are then
jointly optimized. (2) Projection-PT: This ap-
proach consists of two steps. First, we freeze

both teacher and student models, only the pro-
jection matrix is trained. Then, we jointly opti-
mize the projection matrix and student model. (3)
LM Head: This strategy directly maps intermedi-
ate layer features to the vocabulary space through
the Language Model head. While Projection-PT
demonstrates modest improvements over the basic
Projection approach, the LM Head strategy con-
sistently outperforms both alternative approaches
across all evaluation metrics. This superior perfor-
mance can be attributed to the LM Head’s ability
to provide stronger task-relevant signals through
direct mapping of intermediate features to the vo-
cabulary space.

5 Related Work

Knowledge Distillation of LLMs Knowledge dis-
tillation (KD) has long been an effective way to
compress neural networks (Hinton et al., 2015).
Standard KD minimizes the Kullback-Leibler di-
vergence (KLD) between the student’s and the
teacher’s output distributions (Sanh et al., 2019;
Wen et al., 2023; Liu et al., 2024; Muralidharan
et al., 2024; Zhong et al., 2024; Zhang et al.,
2024b; Wu et al., 2025) on a fixed dataset. Re-
cently, (Lin et al., 2020; Agarwal et al., 2024; Gu
et al., 2024) argues that applying KLD incurs train-
inference mismatch, thus turn to reverse Kullback-
Leibler divergence (RKLD) and student-generated
outputs, casting KD into a reinforcement learning
problem. Orthogonal to the above works, builds
upon an ODE perspective, our FDD focuses mainly
on matching different quantities to fully exploit
the teacher. Along this line of research, hidden
states (features) (Jiao et al., 2020) and attention
scores (Wang et al., 2020) have been considered.
However, these approaches are only successful on
BERT (Devlin et al., 2019) models. TED (Liang
et al., 2023) employs task-aware filters to align hid-
den representations between student and teacher
models at each layer. While task-aware filters
function similarly to LM head, they differ in that
the LM head utilizes pre-trained parameters. Be-
sides, our FDD goes further beyond layerwise dis-
tillation. From an ODE perspective, FDD aligns
the entire feature dynamics between student and
teacher models, including the discretized feature
trajectories (layer-wise features) as well as its first-
order derivative. The effectiveness of the proposed
method is validated on modern GPT-like LLMs.

Another line of research is black-box KD, also
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known as data KD. In practice, cases are that
teacher output distribution is not accessible e.g.
ChatGPT (OpenAI, 2022) APIs so the teacher
is utilized as data generators (Taori et al., 2023;
Peng et al., 2023; Hsieh et al., 2023; Xu et al.,
2024), the resulting generated data are used for
supervised fine-tuning smaller LMs. Black-box
KD compromises the effectiveness of the student
for teacher utility. In this paper, we consider only
the white-box distillation where the teacher model
is fully exploitable.

Neural ODEs Neural networks with layer-wise
residual connections (He et al., 2016) have
been found corresponding to Euler discretiza-
tion of solutions to ordinary differential equa-
tions (ODEs) (Chen et al., 2018), with layer indices
being integer time steps. Specifically, following the
Lie-Trotter splitting scheme (Trotter, 1959) to ac-
commodate for alternating MHA and MLP blocks,
(Lu et al., 2019) cast the transformer (Vaswani
et al.) into a convection-diffusion equation. Various
novel deep architectures are proposed then from
an ODE perspective, including Macaron Net (Lu
et al., 2018), TransEvolve (Dutta et al., 2021),
ODETransformer (Li et al., 2022) etc. Different
from the above works aiming at improving the
model architecture, we develop a new knowledge
distillation approach from an ODE perspective to
fully exploit the knowledge encoded in the teacher.

6 Conclusion
In this paper, we proposed feature dynamics dis-
tillation, a general knowledge distillation (KD)
method for LLMs, inspired by viewing transform-
ers through an ODE perspective. FDD extends be-
yond traditional KD methods that only match out-
put logits by considering the entire feature dynam-
ics, including both the discretized feature trajectory
and its first-order derivative estimated through fi-
nite differences. This approach enables student
models to leverage the rich information encoded in
intermediate layers while mimicking the pattern of
representation refinement across layers. Through
extensive experiments and analysis, we demon-
strated the effectiveness of this strategy.

7 Limitations

The limitations of this paper are as follows: (1)
Our proposed FDD method utilizes the LM head to
project intermediate layer representations of both
the teacher and student models into a shared vocab-

ulary space. Consequently, its applicability may be
restricted when applied across different model ar-
chitectures or vocabulary configurations. (2) Due to
limited computational resources, our experiments
were conducted with a teacher model of up to 13
billion parameters and a student model of up to 7
billion parameters. While the experimental results
demonstrate that our method significantly outper-
forms existing methods at these model scales, the
limitation in model size prevents us from verifying
the generalizability of our findings to extremely
large models, such as those with 405 billion param-
eters.
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