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Abstract

Large Language Models (LLMs) have ad-
vanced rapidly but face significant memory
demands. While quantization could alleviate
the memory-bound issue, current methods typi-
cally require lengthy training to recover accu-
racy under low bit width. In that circumstance,
deployment across scenarios with different re-
source constraints necessitates repeated train-
ing, amplifying the issue of protracted training.
It is beneficial to train a once-for-all (OFA) su-
pernet capable of offering optimal subnets for
downstream applications. To extend the once-
for-all setting to LLMs, we decouple the shared
weights to mitigate the interference and inte-
grate Low-Rank adapters to enhance training ef-
ficiency. Furthermore, it is observed that there
is an imbalance in the allocation of training
resources due to traditional uniform sampling.
A non-parametric scheduler is introduced to
adjust the sampling rate for each quantization
configuration, thereby achieving a more bal-
anced allocation among subnets with varying
demands. We validate the approach on LLaMA
families and Mistral on downstream evaluation,
demonstrating high performance while signif-
icantly reducing deployment time faced with
multiple scenarios. 1

1 Introduction

Large Language Models have shown surprising
performance in recent years. However, they suffer
from huge storage and computational costs; for ex-
ample, inference with a LLaMA (Touvron et al.,
2023) model with 70B parameters needs at least
280 GB of GPU memory. To further boost the
LLMs’ development for fitting diverse scenarios,
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recent studies have adopted quantization to com-
press the model size and reduce the computational
costs.

Previous works have conducted extensive explo-
ration on Post-Training Quantization (Frantar et al.,
2022; Xiao et al., 2023; Lin et al., 2023)). Under
8-bit quantization, PTQ has achieved negligible
accuracy loss. However, compressing models to a
lower bit level, for instance, 3-bit, leads to signifi-
cant degradation in accuracy. Quantization-aware
training (QAT) mitigates performance degradation
by simulating quantization errors during the train-
ing process. However, it is notably more time-
consuming. When deploying low-bit LLMs for
diverse scenarios with varying resource constraints,
repeating quantization-aware training for each sce-
nario is impractical, as shown in Figure 1 (a). From
the above analysis, the training dominates the cost
of deployments; hence, it would be beneficial to
train a once-for-all (OFA) supernet. This supernet
can generate optimal subnets with diverse config-
urations (e.g., quantization bit-width) tailored to
specific applications, as shown in Figure 1 (b, c).

To the best of our knowledge, once-for-all
quantization-aware training for LLMs has not been
investigated, primarily due to the large scale of
current language models and the high cost of tradi-
tional QAT. Previous research on once-for-all strate-
gies primarily employs a weight-sharing approach
to avoid the model size explosion that would result
from allocating separate weights for each configu-
ration (Wang et al., 2020; Chen et al., 2021). How-
ever, the weight-sharing combined with traditional
QAT presents two significant challenges: 1) vari-
ous quantization configurations share the weight
but have different orders of magnitude of quantiza-
tion noise, resulting in the noteworthy interference
problem and optimization challenges (Tang et al.,
2024). 2) Traditional QAT is based on full-fine-
tuning, combined with the time-consuming process
of simulating quantization errors, which is ineffi-
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Figure 1: (a) Compressing Large Language Models (LLMs) for deployment across various platforms while ensuring
performance is a challenging task. Applying Quantization-Aware Training (QAT) for each platform is both time-
consuming and costly. (b) Instead, our objective is to one-shot fine-tune one quantized LLM that can be efficiently
specialized for multiple platforms. The one-shot fine-tuning process significantly reduces the investment. (c) The
LLM-QFA framework excels in swiftly delivering optimal networks under different resource constraints in one shot,
whereas the traditional method requires repeated fine-tuning.

cient even under the weight-sharing scheme.
Furthermore, our observations reveal that the

uniform sampling strategy used by traditional OFA
methods leads to an imbalance in the allocation of
training resources. As illustrated in Figure 3, sub-
nets derived from uniform sampling exhibit a bias
toward their average bit-width, which falls into a
low variance distribution. Consequently, subnets
whose average bit-width deviates from this distri-
bution are prone to under-fitting.

Integrating these aspects, we propose the LLM-
QFA (Quantization-Aware Fine-tuning one LLM
for All scenarios) framework that efficiently fine-
tunes a once-for-all supernet to later generate opti-
mal subnets for diverse scenarios. First, we intro-
duce interference-less fine-tuning to decouple the
weights of different configurations, accompanied
by Low-Rank adapters to enable efficient training.
Specifically, we quantize the weights with differ-
ent quantization configurations and freeze them,
then apply Low-Rank adapters to each quantized
weight for later fine-tuning. Second, we propose
a resource-balanced sampling strategy, which uti-
lizes a non-parametric scheduler that dynamically
adjusts the sampling strategy across training steps.

To evaluate our proposed framework, we con-
duct experiments on LLaMA2 models and vali-
date the performance on the MMLU and Com-
mon Sense QA benchmarks. The results show that
our proposed framework can yield diverse optimal
quantized models for various scenarios. It is worth
noting that our framework can be easily scaled up
to even larger models since the training time per
step is the same as the previous LoRA-tuning (Xu

et al., 2023). We summarize our contributions as
follows:

• We first introduce the once-for-all training
paradigm for large language models (LLMs),
which helps to reduce the training cost for
deploying LLMs across diverse scenarios.

• we decouple weights of configurations to mit-
igate interference issues and incorporate Low-
Rank adapters to enhance the training effi-
ciency.

• To address the imbalance training caused by
the uniform sampling strategy, we propose a
resource-balanced sampling strategy that fo-
cuses on providing a fair sampling opportunity
across subnets with various resource demands.

2 Related Work

LLM Quantization. Quantization is a compres-
sion technique that reduces the bit-width of weights
and/or activations to save memory and accelerate
inference. The quantization of LLM can be cate-
gorized into two main lines. The first one is post-
training quantization (PTQ) (Frantar et al., 2022;
Xiao et al., 2023; Lin et al., 2023; Kim et al., 2023),
which focuses on reducing the memory footprint
without retraining. Although lots of designs are de-
signed to mitigate the degradation of performance,
e.g., handling outliers in parameters (Kim et al.,
2023; Li et al., 2023a) and dynamic quantization
(Xiao et al., 2023; Lin et al., 2023), PTQ still has to
drop the ultra-low bit-width (e.g., 2-bit and 3-bit) to
guarantee the performance. Hence, the second line,
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Figure 2: Illustration of the goal of LLM-QFA. Unlike traditional OFA with Quantization-Aware Training, our
method avoids interference issues by decoupling shared weights and incorporating the Low-Rank Adapter to
enhance training efficiency further. Additionally, we employ a resource-balance sampling strategy, accelerating the
convergence of subnets across resource constraints.

Quantization-Aware Training (QAT) can help alle-
viate the performance drop. The first QAT method
applied on LLM (Liu et al., 2023) inherits the idea
of traditional QAT, which is computationally expen-
sive in the fine-tuning stage. To reduce the train-
ing cost, (Dettmers et al., 2024; Xu et al., 2023;
Guo et al., 2023; Li et al., 2023b) utilize LoRA-
tuning on quantized weights and gain a decent per-
formance. Specifically, (Xu et al., 2023) adds con-
straints on LoRA to maintain the quantization prop-
erty after merging between LoRA weight and quan-
tization weight, which firstly brings LoRA-tuning
to actual quantization-aware training. Though
LoRA-tuning can save memory footprint and train-
ing costs, when faced with diverse development sce-
narios with different resource constraints, LoRA-
tuning still falls into the pitfall of repeated training.

Once for All training. Once-for-all training
(OFA) methods (Wang et al., 2020; Chen et al.,
2021; Yu et al., 2020; Tang et al., 2023, 2022)
aim to train a one-shot supernet that can serve di-
verse scenarios with different resource constraints
and save expensive retraining per scenario. On
non-LLMs, the success of one-shot training comes
from the weight-sharing scheme between different
configurations (Chen et al., 2021; Yu et al., 2020),
while weight-sharing also brings interference be-
tween different bit-widths for quantization-aware
training (Tang et al., 2024, 2023). Moreover, tradi-
tional OFA with weight sharing necessitates fine-
tuning the entire parameters, which is impractical
for LLMs due to their extensive size.

3 Methodology

3.1 Problem definition

This paper focuses on the dimension of quantiza-
tion to compress the LLMs for efficient deployment
across diverse scenarios, which involves 1) post-
training quantization to compress LLMs and 2)
constructing the layer-wise mixed-precision super-
net based on quantized LLMs and 3) optimizing
the supernet.

Post-training Quantization To reduce mem-
ory cost, it is effective to quantize the pre-trained
weight of LLMs in low-bit representation; math-
ematically, given the bit-width N and the target
weight W, the quantization process can be defined
as

Ŵ = ⌊W
α

⌉, α = (max(|W|))/(2N−1 − 1), (1)

where α denotes scaling factors. ⌊·⌉ denotes
the rounding operation. Ŵ is the quantized
weight, and its elements are stored in a set of
{0, 1, . . . , 2N − 1}. Here, only two floating-point
numbers and a series of integers are needed for
storage and computation memory.

Layer-wise Mixed-precision Supernet In con-
trast to uniform bit-width quantization, mixed-
precision quantization, which allows for varying
bit-widths across different layers, can yield supe-
rior performance by capitalizing on the inherent
redundancy in specific layers. In this work, we
build a supernet containing different quantization
bit-width configurations layer-wise. Each single
path of the supernets denotes a mixed-precision
LLM, and we aim to optimize all single paths,
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Avg. Bit-width Avg. Bit-width Avg. Bit-width
Figure 3: (a) Distribution of average bit-width of samples obtained from uniform sampling, approximating a low
variance Gaussian distribution. (b) Mixed Gaussian Distribution can approximate the Uniform Distribution. (c)
Showcase of our Resource-Balance sampling strategy.

which can be formulated as

{s1, s2, . . . , si, ..., sN−1, sN},
where si = [Q1,i1 , Q2,i2 , . . . , QL,iL ],

where si denotes one subnet. L represents the num-
ber of layers in the large model. We quantize the
model into N different quantization bit-widths, de-
noted as B = {b1, b2, . . . , bN}. Ql,i represent the
quantized l-th layer with bit-width bi. We apply
quantization to the pre-trained weight W with 2,
3, 4 bit-width quantization. Hence, the quantity of
subnets in the space is 3L. Our target is to 1) op-
timize all the subnets at once and 2) offer optimal
subnets under given resource constraints.

3.2 One-Shot Optimization
Interference-Less Fine-tuning. We have ob-
served that previous one-shot training methodolo-
gies (Cai et al., 2019; Yu et al., 2020) gained
success from their weight-sharing scheme, which
avoids large model sizes caused by saving the
weight of each configuration. However, the weight-
sharing scheme also brings interference problems,
as shown in Figure 2 (a).

Yl = X · αl · ⌊W
αl

⌉,

∂
∑L

l=1 Lossl

∂W
=

L∑

l=1

(
∂Lossl
∂Yl

·X · αl ·
∂⌊W

αl
⌉

∂W
αl

),

where l denotes different quantization settings, and
Yl varies for different quantization error. Specifi-
cally, high and low bit-widths have different quanti-
zation noise, and significantly superimposed quanti-
zation noise leads to optimization challenges (Tang
et al., 2024).

To alleviate interference between different con-
figurations, the straightforward approach is to de-
couple shared weights and assign weights for each
configuration. Hence, we incorporate low-rank
adapters to represent each quantization configu-
ration, which only brings negligible extra costs
compared with the size of LLMs, as shown in Fig-
ure 2 (b). Specifically, the forward process can be
defined as:

Y = X·αl ·⌊W
αl

⌉+BlAl ·X,
∂Lossl
∂BlAl

= X· ∂Lossl
∂Yl

, (2)

where Al,Bl denotes the weight of Low-Rank
adapters for lth quantization configuration. It is
noteworthy that a low-rank adapter is updated
solely for one quantization setting, which is crucial
for avoiding interference among different configu-
rations.

To avoid heterogeneity between float-point
LoRA weights and quantized weights, which hin-
ders the acceleration for inference, we follow QA-
LoRA (Xu et al., 2023) to add constraints on
adapters’ weights for preserving the quantization
property after merging.

Integrating the above designs, the task of opti-
mizing all subnets can be formulated as

min
WL

∑

ai

Lval

(
f(WL,WQ, ai)

)
, (3)

where f(WL,WQ, ai) denotes the process that
forms a sub-network according to architectural con-
figuration ai and inherits corresponding quantiza-
tion weight WQ and LoRA weight WL.

Resource-Balance Sampling Strategy. Fine-
tuning all the subnets is a multi-objective problem.
Given the impracticality of enumerating and tuning
every subnet at each training iteration, a simplistic
yet sub-optimal approach is to uniformly sample a
few subnets from the configuration space for fine-
tuning. Specifically, each layer has a uniform prob-
ability of choosing one quantization configuration,
which can be formulated as P(Ql,i) =

1
N .

Though it seems fair, the naive uniform sampling
strategy is biased toward subnets whose average bit-
width is close to its expected value. Assume vari-
able qi as the quantization bit-width for ith layer.
Variables [q1, q2, . . . qL] are independent; hence the
average of bit-width can be formulated as:

Var[Bit(s)] = Var[
∑L

i=1 qi

L
] =

1

L2

L∑

i=1

Var[qi] =
σ2

L
,

(4)

where the Bit(s) denotes the average bit-width of
the sampled and σ2 denotes the variance of qi. As
shown in Figure 3 (a), the distribution of Bit(s) is
close to a normal distribution, where the variance is
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Figure 4: Left: The time required to obtain N specialized networks varies across methods. Our proposed QFA
approach significantly reduces the time cost compared to the QA-LoRA method and achieves a comparable efficiency
level to the pure quantization technique, GPTQ. Right: For each method, we obtain three specialized networks
under (2, 3, 4) bit constraints on the LLaMA2-7b and LLaMA2-13B models. The average accuracy on the 5-shot
MMLU benchmark for networks quantized at (2, 3, 4) bits is reported. Although GPTQ can achieve a lower time
cost, it is accompanied by an unacceptable level of performance degradation. Full results are provided in Table 1.

extremely small when L = 32. Hence, the subnet
with an average bit-width far from the distribution
center would get unbalanced training resources.

Revealed by Figure 3 (b), straightforwardly
stacking normal distributions with different means
can approximate a uniform distribution for Bit(s)
and alleviate the imbalance problem. From the
implementation perspective, a mixed Gaussian dis-
tribution can be achieved by setting different sam-
pling strategies for configurations across training
steps. The process can be formulated as

E[Bit(s, t)] = (bN − b1) · |2 ·
t

SL
− 1|+ b1,

(5)
where SL is the length of one schedule epoch. bN
represents the maximum bit-width and b1 denotes
the minimum bit-width. Within one schedule, the
mean of distribution would move from bN to b1 and
then back to bN , leading to a smooth switchover
between schedule epochs. Compared to the uni-
form sampling strategy, our approach prevents bias
on subnets in median size. Therefore, the subnet
space converges more efficiently, as shown in Fig-
ure 3 (c), which makes the following search process
more effective.

3.3 Search Optimized Subnet
We decouple the fine-tuning process and the search-
ing process. No extra retraining cost is needed
when finding the optimal subnet under the given
resource constraint. The searching process starts
with random searching, where a few subnets are
sampled. Then, correlation analysis between the

subnets’ performance on the validation set and the
quantization bit-width of each layer is conducted.
Learning from the correlation, the sensitivity of
each layer to the quantization bit-width can be ob-
tained, and the search space can be further nar-
rowed down. Finally, we further sample subnets
from the narrowed search space, and the final opti-
mal subnet is selected based on the performance of
the validation set.

4 Experiments

4.1 Settings

Models and Quantization. We conduct experi-
ments on LLMs, LLaMA2-7b, LLaMA2-13b, and
Mistral. The quantization is based on GPTQ (Fran-
tar et al., 2022) with 2, 3, 4 bit-width quantization.
The detailed quantization configuration, e.g., group
size and order, is consistent with QA-LoRA (Xu
et al., 2023).

Datasets and Training Details. We fine-tune
models with Alpaca (Taori et al., 2023), which
contains 52K instruction-following data generated
from GPT 3.5 (Wang et al., 2022). The length of
one schedule epoch is 8k training steps. Following
previous works(Dettmers et al., 2024; Xu et al.,
2023), we use a paged AdamW optimizer with a
batch size 16 and a learning rate of 2× 10−5. The
training process is conducted on one A100 GPU,
and only 8 GPU hours are needed to fine-tune one
LLaMA2-7B-based supernet with 10K steps.

Evaluation. We evaluate the performance of
the models on MMLU (Hendrycks et al., 2021)
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Table 1: 0-shot and 5-shot accuracy (%) on the Massive Multitask Language Understanding (MMLU) dataset. Each
block is based on the same foundation model specified in the first row. For each method, we present the metrics
achieved under the bit-width resource constraints of 2, 3, 4, as well as the corresponding averages.

Method Bit MMLU (0-shot) MMLU (5-shot)
Const. Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA2-7B 16 48.3 35.2 48.8 45.8 43.6 51.6 37.3 52.2 49.9 46.8
GPTQ 4 40.4 33.7 45.9 42.2 39.9 50.5 36.9 50.5 47.5 45.1
GPTQ 3 28.8 25.8 25.6 28.0 27.0 31.6 28.2 25.6 32.9 30.7
GPTQ 2 23.8 23.7 22.5 23.8 23.5 24.3 23.0 23.9 26.1 24.2
GPTQ Avg. 30.1 33.3
QA-LoRA 4 49.7 37.5 51.4 47.8 45.7 49.8 36.8 49.8 47.8 45.1
QA-LoRA 3 43.3 33.7 44.8 42.9 40.5 40.2 34.8 44.1 40.8 39.5
QA-LoRA 2 32.6 27.2 35.6 33.2 31.7 27.2 26.9 29.0 30.5 28.3
QA-LoRA Avg. 39.3 37.6
LLM-QFA 4 50.3 37.4 49.8 46.8 45.2 48.4 35.6 48.1 46.9 44.0
LLM-QFA 3 42.3 34.4 48.1 42.9 41.2 41.4 33.3 46.2 41.2 39.8
LLM-QFA 2 33.7 28.7 36.3 32.9 32.5 28.8 28.2 32.5 30.5 29.8
LLM-QFA Avg. 39.6 37.9

LLaMA2-13B 16 56.9 42.4 61.0 55.6 52.8 62.9 44.4 63.9 56.7 55.7
GPTQ 4 55.3 41.6 58.1 53.3 51.1 61.3 43.3 62.5 57.2 54.9
GPTQ 3 42.0 31.8 43.6 41.3 39.0 41.4 36.5 46.7 43.7 41.5
GPTQ 2 25.0 22.4 22.3 24.4 23.5 23.8 23.4 22.6 24.9 23.7
GPTQ Avg. 37.9 40.0
QA-LoRA 4 56.9 41.5 60.4 54.9 52.3 59.6 42.7 62.2 57.4 54.2
QA-LoRA 3 54.0 40.0 57.1 52.5 49.9 56.8 41.9 59.0 53.5 51.7
QA-LoRA 2 32.6 28.9 31.4 35.3 31.8 30.3 28.2 34.4 36.5 32.0
QA-LoRA Avg. 44.7 46.0
LLM-QFA 4 57.4 41.3 60.4 55.8 52.5 59.1 42.1 61.1 56.2 53.4
LLM-QFA 3 56.3 40.3 58.8 54.6 51.3 56.7 40.6 59.9 54.5 51.8
LLM-QFA 2 34.5 30.3 33.0 37.3 33.5 32.2 28.5 36.0 37.2 33.1
LLM-QFA Avg. 45.8 46.1

and Common Sense QA benchmarks. The MMLU
dataset contains four categories: Humanities,
STEM, Social, and Other. The Common Sense
QA benchmarks include HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2021), ARC-e, ARC-c (Clark et al.,
2018), BoolQ (Clark et al., 2019), and OBQA (Mi-
haylov et al., 2018). For the MMLU Benchmark,
we search for the optimal subnets on the MMLU
evaluation dataset. Initially, we sampled the first
100 subnets randomly and subsequently employed
a shrinkage strategy to sample an additional 50
subnets, denoted as [100, 50]. For the Common
Sense QA datasets, we similarly searched for opti-
mal subnets on the ARC-C dataset with [100, 50]
setting. We report the 0-shot and 5-shot accuracy
on MMLU and 5-shot accuracy on Common Sense
QA benchmarks.

4.2 Main Results

Comparisons with on MMLU. Figure 4 re-
ports the comparison between LLM-QFA and
Quantization-Aware training methods (QA-LoRA)
and the Post-Training Quantization method
(GPTQ) under (2, 3, 4) bit-widths. LLM-QFA
demonstrates significantly higher efficiency than
QA-LoRA faced with multiple deployment scenar-
ios. This advantage stems from the training cost
associated with LLM-QFA remaining constant, in
contrast to the methods that scale linearly with the
number of deployment scenarios N. Although our
approach incurs a modestly higher time cost than
GPTQ, the substantial performance degradation ob-
served in GPTQ is unacceptable. Table 1 illustrates
that, despite delivering only comparable perfor-
mance under the 4-bit constraint, the average met-
rics of our method across (2, 3, 4) bit constraints
consistently surpass those of QA-LoRA and GPTQ,
without the need for costly repeated training.
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Table 2: 5-shot accuracy (%) on the Common Sense QA tasks. Each block is based on the same foundation model specified in
the first row. We organize all results under different quantization bit widths. Mixed precision configurations are searched on
ARC-C, and the best configurations are tested on the rest of the Common Sense QA tasks.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

LLaMA2-7B 16 52.0 78.2 80.1 74.1 81.1 79.3 45.2 73.0
GPTQ 4 50.8 77.0 79.5 73.8 80.2 74.1 43.4 71.3
QA-LoRA 4 55.5 79.0 80.0 73.3 79.6 75.9 46.4 72.4
LLM-QFA 4 53.8 76.8 79.3 73.5 78.1 77.4 49.0 72.4
GPTQ 3 30.1 49.9 68.3 59.3 55.5 44.3 35.0 52.1
QA-LoRA 3 47.8 72.4 75.0 68.4 73.6 72.0 44.8 67.7
LLM-QFA 3 49.1 72.3 76.7 69.0 73.8 72.8 43.4 68.0
GPTQ 2 25.8 26.2 51.1 50.6 26.0 41.7 25.0 36.8
QA-LoRA 2 40.4 65.6 73.6 62.0 66.0 65.9 37.2 61.7
LLM-QFA 2 43.1 64.8 73.2 62.2 67.0 64.3 38.8 61.7

LLaMA2-13B 16 57.5 81.7 81.7 76.0 84.4 83.2 48.2 75.9
GPTQ 4 56.5 81.1 80.9 75.6 83.3 81.7 47.4 75.0
QA-LoRA 4 58.0 79.2 81.3 74.0 83.3 83.8 49.4 75.2
LLM-QFA 4 56.0 79.6 82.0 73.2 83.5 83.2 51.0 75.4
GPTQ 3 47.8 68.6 77.7 67.9 77.1 71.9 42.8 67.7
QA-LoRA 3 53.5 67.0 79.4 66.7 80.1 76.3 41.8 68.5
LLM-QFA 3 53.7 75.1 79.7 70.3 80.5 78.4 48.0 72.0
GPTQ 2 27.8 25.8 50.2 50.2 26.6 37.8 23.4 35.7
QA-LoRA 2 49.1 70.8 76.6 66.4 76.1 74.1 44.8 68.1
LLM-QFA 2 49.2 70.9 77.0 67.2 76.3 74.3 44.6 68.4

Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
GPTQ 4 62.3 78.2 80.3 78.8 83.9 85.1 49.6 76.0
QA-LoRA 4 57.8 79.7 83.1 76.3 83.3 85.2 48.6 76.0
LLM-QFA 4 58.3 78.7 83.3 76.1 83.2 86.0 49.2 76.1
GPTQ 3 56.7 74.5 78.5 73.0 81.5 84.7 48.4 73.4
QA-LoRA 3 57.1 77.0 80.6 74.0 80.7 84.5 47.8 74.1
LLM-QFA 3 58.1 76.1 81.2 74.4 82.2 84.6 49.0 74.6
GPTQ 2 24.4 40.5 64.2 49.7 38.8 61.1 24.8 46.5
QA-LoRA 2 30.0 47.5 66.3 53.1 52.5 63.4 30.0 52.1
LLM-QFA 2 37.3 52.5 69.4 60.0 63.8 66.2 30.2 57.0

QA-LoRAOurs

Figure 5: LLM-QFA can deliver multiple optimal sub-
nets under different constraints. Left: Comparison of
the ARC-C dataset; Right: Comparison of the rest of
the Common Sense QA tasks.

Comparisons on Common Sense QA We con-
duct the experiment on Common Sense QA with
LLaMA families and Mistral as shown in Table
2. Consistent with the findings from the MMLU
benchmark, LLM-QFA demonstrates comparable
performance with baselines at extreme bit-width (2,

4) and outperforms at median bit-width (3). The
advantage is significant with LLaMA2-13B under
3-bit constraints, where LLM-QFA gains 3.5% ac-
curacy improvement over QA-LoRA.

LLM-QFA under Different Resource Con-
straints. Figure 5 summarizes the results of LLM-
QFA under different bit-width constraints. LLM-
QFA achieves 45.0% ARC-C accuracy with 2.1
average bit-width, being 5% more accurate than
QA-LoRA with similar resource demands. Com-
pared with QA-LoRA at 3-bit, our approach can
achieve the same level of performance with fewer
resources, a 1.2x reduction on ARC-C, and a 1.1x
reduction on the rest of Common Sense QA.

Impact of Mixed Precision and Quality of Op-
timization. Previous results have shown signif-
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GPTQOurs QA-LoRA

Figure 6: Subnets sampled from LLM-QFA show significant
robustness over baselines with simple mixed-precision.

Shared LoRAOurs Uniform Sampling

Figure 7: Verification of the effectiveness of
Interference-Less Fine-Tuning and Resource-Balance
Sampling Strategy.

Long ScheduleOurs Short ScheduleOurs Hard to EasyOurs

Figure 8: Common Sense QA accuracy (%) of LLM-
QFA with different scheduler settings.

icant performance improvement in the median re-
source constraints. To ensure the gains are not
solely due to mixed precision, we sampled 100
mixed-precision configurations for both GPTQ
and QA-LoRA and evaluated them on the ARC-
C dataset. To be noticed, we evaluate mixed-
precision QA-LoRA based on the fine-tuned QA-
LoRA weight at (2, 3, 4) bits. Figure 6 demon-
strates that it performs more robustly across vary-
ing resource demands, further validating that our
method can help optimize all the subnets, not just
benefiting from mixed precision. Although the
mixed-precision version of QA-LoRA exhibits a
modest improvement in performance at higher bit-
widths, it incurs a threefold increase in training
time to achieve these results. Moreover, the ob-
served performance instability suggests a potential

loss of optimal subnet configurations under certain
constraints.

4.3 Ablation Study
Ablation on Interference-Less Fine-tuning. To
assess the effectiveness of decoupling shared
weights, we introduce a variant called shared-
LoRA, wherein different quantization settings
share the same Low-Rank adapter. Figure 7 re-
ports that shared-LoRA underperforms the original
version across all resource demands, validating the
interference problem in one-shot LLM training.

Ablation on Resource-Balance Sampling. Sim-
ilarly, we implement a uniform sampling version
of our method. Figure 7 also shows a consistently
under-performing uniform sampling strategy; even
the resource-concentrated area (3 bit) falls short in
the comparison. This has motivated the develop-
ment of a resource-balanced sampling strategy for
training, which is designed to counteract the chal-
lenges of under-fitting and over-fitting encountered
in one-shot training.

Ablation for Scheduler. Lastly, we investigate
two aspects of configuration for the scheduler,
which are the length of epochs (SL) and sched-
ule orders. In our main experiments, the epoch
length is set to 8k training steps. For the short-term
schedule, it is reduced to 1k steps, while for the
long-term schedule, it is extended to 16k steps. Fig-
ure 8 demonstrates that the short-term diminishes
robustness and hinders convergence, particularly at
lower bit configurations. Regarding the scheduled
orders, we initiate our training with 4-bit config-
urations, employing an easy-to-hard strategy. In
this part, we assess the hard-to-easy setting. Fig-
ure 8 demonstrates that the order has a negligible
impact.

5 Conclusion

This work introduces the LLM-QFA framework, a
once-for-all Quantization-Aware training approach
to reduce the training cost of deploying large lan-
guage models (LLMs) across diverse scenarios. By
decoupling the weights of different configurations
and incorporating Low-Rank adapters, we enhance
training efficiency and mitigate interference issues.
A resource-balanced sampling strategy ensures fair
training across subnets with various resource de-
mands. Our experiments show that LLM-QFA
delivers optimal quantized models, demonstrating
its effectiveness.
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7 Limitations

For bit-width exceeding 4 bits, the quantization
method becomes lossless. For bit-width less than
2 bits, there is a significant loss in accuracy. Con-
sequently, the mixed-precision setting is not flex-
ible and can only be selected from 2, 3, and 4
bits. Moreover, the current 2-bit quantization still
suffers from remarkable accuracy loss even when
equipped with LoRA tuning. The quantization er-
ror causes troubles in employment and training,
and an orthogonal approach is needed to alleviate
the quantization error.
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