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Abstract

Many positional encodings (PEs) are designed
to exhibit long-term decay, based on an en-
trenched and long-standing inductive opinion:
tokens farther away from the current position
carry less relevant information. We argue that
long-term decay is outdated in the era of LLMs,
as LLMs are now applied to tasks demanding
precise retrieval of in-context information from
arbitrary positions. Firstly, we present empiri-
cal analyses on various PEs, demonstrating that
models inherently learn attention with only a
local-decay pattern while forming a U-shape
pattern globally, contradicting the principle of
long-term decay. Furthermore, we conduct a
detailed analysis of rotary position encoding
(RoPE, a prevalent relative positional encoding
in LLMs), and found that the U-shape atten-
tion is caused by some learned components,
which are also the key factor limiting RoPE’s
expressiveness and extrapolation. Inspired
by these insights, we propose High-frequency
rotary Position Encoding (HoPE). HoPE re-
places the specific components in RoPE with
position-independent ones, retaining only high-
frequency signals, which also breaks the prin-
ciple of long-term decay in theory. HoPE
achieves two major advantages: (1) Without
constraints imposed by long-term decay, contra-
dictory factors that limit attention optimization
are removed. Thus, the model’s context aware-
ness is enhanced. (2) HoPE exhibits greater
robustness to the out-of-distribution behavior
in attention patterns during extrapolation. The
effectiveness of HoPE is validated through ex-
tensive experiments and with a large language
model of up to 3 billion parameters.

1 Introduction

Positional encoding (PE) plays a crucial role in
Transformers (Vaswani et al., 2017) to capture the
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(a) RoPE
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(b) HoPE

Figure 1: Performance comparison in the “Needle-in-
Haystack” task between RoPE and HoPE using a 3B
Llama-based model trained with a sequence length of
8192 over 500 billion tokens. HoPE demonstrates supe-
rior performance in both context awareness (0-8k) and
extrapolation (8k-32k).

order of input sequence, as the attention mecha-
nism is permutation invariant. The original PE
proposed by Vaswani et al. (2017) struggles to gen-
eralize beyond the training sequence length. To
address this limitation, relative positional encoding
(RPE) methods have been introduced, including
RoPE (Su et al., 2021), ALiBi (Press et al., 2021),
and KERPLE (Chi et al., 2022a). These RPEs share
a long-standing and entrenched design (Su et al.,
2021): the long-term decay, i.e., tokens with a long
relative distance should receive less attention.

However, in the era of LLMs, a question arises:
is it still necessary to retain this design? As
LLMs are increasingly used in long-text scenar-
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ios—where they must leverage distant informa-
tion, such as in Retrieval-Augmented Generation
(RAG, Izacard and Grave, 2020)—long-term decay
potentially limits their performance.

In this paper, we demonstrate that the answer to
the above question is no. Through empirical anal-
yses on various PEs, we found that the attention
patterns learned by models tend to contradict the
principle of long-term decay. Specifically, models
only retain a local-decay pattern, while learning
a U-shape attention distribution globally. We fur-
ther delve into an analysis of RoPE (Rotary Posi-
tion Encoding by Su et al., 2021, a widely-used
RPE), which claims to ensure the long-term decay
by combining various frequency components (See
Section 2 for details) while empirically learns the
U-shape pattern. We decomposed these compo-
nents and obtained the following observations:

(1) In RoPE, certain frequency components,
which we refer to as “activated” components, play
a key role in shaping the final U-shaped attention
pattern. Their frequencies can be pre-determined
based on the training context length. Interestingly,
these components exhibit fluctuations similar to the
overall attention pattern. Our observations suggest
that these components initially exert a predominant
influence on attention patterns during early train-
ing stages. However, as training progresses, the
model attempts to counterbalance their effects by
increasing the weight of other components. We
hypothesize that this behavior reflects a form of
shortcut learning (Geirhos et al., 2020; Robinson
et al., 2021; Du et al., 2022), which may impede
effective optimization.

(2) We explored the attention patterns in extrapo-
lation tasks and found that “activated” components
are a key factor limiting RoPE’s extrapolation abil-
ities. These components cause out-of-distribution
(OOD) attention logits in the first layer during ex-
trapolation, triggering a cascade of disrupted atten-
tion patterns through the subsequent layers.

(3) The top low-frequency components (whose
frequency is lower than the “activated” compo-
nents) tend to stabilize as constant patterns, with
a small magnitude. This indicates that these com-
ponents are not being effectively utilized for rep-
resenting positional information and learn more
about semantics information.

Based on the findings above, we summarize
three key insights: (1) Global long-term decay is
not necessary for the model and may even hinder
optimal learning. (2) To enhance the model’s con-

text awareness and extrapolation, the frequencies of
RoPE’s learned components should be constrained.
(3) There is redundancy in RoPE, and represen-
tation subspaces occupied by certain components
could be better utilized.

In this paper, we propose a novel positional
encoding method called High-frequency rotary
Position Encoding (HoPE). HoPE follows above
insights and is quite intuitive to implement: we
replace the “doomed-to-be-activated” and top low-
frequency components in the original RoPE with
position-independent ones, while retaining the
high-frequency components. As a result, contra-
dictory factors for attention optimization are elim-
inated, extrapolation limitations are reduced, and
position information is still well-represented by
high-frequency signals.

On small language models with 125 million
parameters, we assess the model’s potential both
within and beyond the context length by evaluat-
ing perplexity, in-context copying ability and few-
shot following ability. HoPE demonstrates superior
performance compared to other PEs. We further
trained large language models with 3 billion pa-
rameters from scratch, and found HoPE performs
better than RoPE in complex NLP tasks.

To sum up, we make three major contributions:
(1) We show that long-term decay in PEs is un-

necessary in the era of large models, as supported
by empirical analysis of various PEs.

(2) We explore the relationship between the over-
all attention pattern and RoPE’s decomposed com-
ponents, proposing a new explanation for RoPE’s
limited performance and poor extrapolation.

(3) Based on the above insights, we design
HoPE, a novel relative positional encoding. Ex-
periments empirically validate the effectiveness of
HoPE.

2 Related Work

Positional encoding is a fundamental component of
Transformer models (Vaswani et al., 2017), address-
ing the lack of sequential information inherent in
self-attention mechanisms. While early approaches
primarily relied on absolute positional encoding
(APE), recent research has increasingly focused
on enhancing self-attention with relative positional
encoding (RPE) (Shaw et al., 2018; Raffel et al.,
2019), which provides better generalization and
flexibility. Currently, the popular RPE methods can
be divided into two main types (Zheng et al., 2024):
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rotary position encoding and additive position en-
coding.

Rotary position encoding (RoPE, Su et al.,
2021) encodes positional information by rotating
the query and key vectors. In each Transformer
layer, RoPE applies a d-dimensional rotation ma-
trix (denoted as Rθ,m) to the query or key vector
at position m in the sequence for positional en-
coding. The specific inner product process can be
illustrated as follows:

qm = RΘ,mWqxm = RΘ,mq,

kn = RΘ,nWkxn = RΘ,nk,

qm · kn = (RΘ,mq)⊤(RΘ,nk) = q⊤RΘ,m−nk
(1)

where x is the d-dimensional input of the current
Transformer layer, and the matrix RΘ,m is a block
diagonal matrix consisting of d/2 blocks, each of
which size 2 × 2 and assigned a specific angle θ.
This is defined as:

Rθi,m =

[
cos(mθi) − sin(mθi)
sin(mθi) cos(mθi)

]
,

RΘ,m = Diag(Rθ0,m, ..., Rθd/2−1,m)

(2)

where θi = b−
2i
d , and b is referred to as the base of

the rotary angle.
This encoding method cleverly computes the

inner product of relative positions by encoding ab-
solute positions without altering the attention com-
putation process, making it more compatible with
various efficient inference methods. However, the
original RoPE encoding exhibits poor extrapolation
capability for longer sequences (Press et al., 2021;
Kazemnejad et al., 2023). This raises one popular
research direction for exploring RoPE-based length
extrapolation methods, such as PI (Chen et al.,
2023), LongRoPE (Ding et al., 2024), Random-
ized RoPE (Ruoss et al., 2023) and YaRN (Peng
et al., 2023).

Additive relative positional encoding (ARPE)
is another popular method, which introduces a bias
matrix B to the original (pre-softmax) attention
logits. This approach can be uniformly formula as
follows.

AttnARPE(X) = XWQ(XWK)T +B (3)

Different designs of the bias matrix B result in vari-
ous APE variants, including T5’s Bias (Raffel et al.,
2019), ALiBi (Press et al., 2021), KERPLE (Chi
et al., 2022a), Sandwich (Chi et al., 2022b), and

FIRE (Li et al., 2024). These ARPE methods claim
robust performance in length extrapolation, as mea-
sured by the perplexity (PPL). Nevertheless, some
studies (Press et al., 2021) noted that PPL may not
accurately represent real task performance. Our
study further confirms that some ARPEs fail to
effectively leverage global information, resulting
in only marginal improvements in actual length
extrapolation.

3 Discussion on Position-related Attention
Pattern

In this section, We first present the position-
related attention patterns (within the training con-
text length) learned by three PEs. We observed that,
although the long-term decay of PEs is intuitive,
this decay is not global in the empirical attention
patterns. Instead, the attention patterns tend to re-
semble a U-shape curve.

Secondly, we delve into a detailed analysis of the
relationship between this U-shape pattern and the
various components (assigned with different fre-
quencies) of RoPE. We found that the overall pat-
tern is strongly correlated with some components
with specific frequencies, which are key factors to
limit model’s context awareness and extrapolation.

3.1 Experiments Setups

We train small Llama language models (Touvron
et al., 2023a,b; Dubey et al., 2024) with 125 mil-
lion parameters, using different PEs. The training
dataset contains 200 billion tokens sourced from
RedPajama (Weber et al., 2024). The training con-
text length is 512 tokens and the update steps are
50,000. Detailed configurations and other hyperpa-
rameters are provided in the Appendix A.

To observe the position-related attention patterns
both within and beyond the training context length,
we set two test lengths: 512 and 1024. For each
test length, we generate 5,000 corresponding data
samples, each assigning a random token from the
vocabulary to all positions in the input sequence
(except for the initial [bos]). We then calculate
the pre-softmax attention logits for each position.
To illustrate a common pattern, we average the
results across all layers and heads, as most heads
demonstrate similar behaviors.

3.2 Long-term Decay in Attention Patterns

Our analysis focused on three PEs including learn-
able APE, RoPE, and KERPLE. We don’t take
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ALiBi into account, as its bias matrix B is unlearn-
able and forces the attention pattern to be global
long-term decay.

Results are shown in Figure 2. One important
observation is that the attention patterns do not
exhibit global long-term decay. Instead, the atten-
tion patterns tend to form a U-shape curve, which
ensures the decay of adjacent tokens while increas-
ing the importance of the initial tokens.

3.3 Effects of Different Components of RoPE
in Attention Pattern

Figure 2 also demonstrated that RoPE empirically
learns the U-shape pattern while claiming to em-
ploy multiple components with different frequen-
cies to ensure long-term decay attention. We won-
der which components truly matter in this process
and delve into a detailed analysis.

3.3.1 Preliminaries
Components of RoPE According to Eq.2, we
can see that the dot product in attention can be
broken down into an inner product process of d/2
components, each with a distinct angle θi, followed
by a summation. This can be expressed by the
following formula, which allows us to explore the
individual effect of each positional component Ci.

qm · kn = qTRΘ,m−nk =

d/2−1∑

i=0

qTi Rθi,m−nki︸ ︷︷ ︸
Ci

=

d/2−1∑

i=0

((qi,0ki,0 + qi,1ki,1) · cos((m− n)θi))

+ (qi,0ki,1 − qi,1ki,0) · sin((m− n)θi))
(4)

Variance Accounted For (VAF) VAF (Yoon
et al., 2021; Qiu et al., 2021) is primarily used
to measure the explanatory power of components
for the total variability. It serves as a crucial crite-
rion for identifying effective principal components.
A larger value indicates that the component holds
greater importance. The formula is as follows:

V AF ŷ,y(%) = [1−
∑n

i=1(yi − ŷi)∑n
i=1 yi

]× 100 (5)

where ŷ is a component of y.

3.3.2 Experiments and Results
We decompose RoPE into several components,
each associated with a unique frequency θ, and
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Figure 2: Attention patterns based on different learnable
position encodings: (a) learnable APE, (b) RoPE, (c)
KERPLE.

examine their individual contribution to the overall
attention logits, both within the training length and
during extrapolation. Additionally, under the sce-
narios within training context length, we tracked
the pattern dynamics of components as training
progresses, using VAF metric.

The results are presented in Figure 3.1 From
these results, we can derive three key insights.

(1) The learning of attention patterns is
closely associated with some specific components
in RoPE, while the model tends to counteract
these “activated” components during training.
As seen in Figure 3b, some components (referred
to as “activated” components, highlighted with red
in Figure 3b) exhibit high VAF, indicating that they
dominate the formation of the overall U-shape pat-
tern. The lower subplot in Figure 3a further con-
firms this, as the combined pattern of these com-
ponents mirrors the fluctuations of the overall pat-
tern. However, as indicated in Figure 3b, the VAF
values of the “activated” components decrease as
training progresses, suggesting that the model is
reducing the contribution of these components. We
consider this phenomenon a form of shortcut learn-
ing (Geirhos et al., 2020; Robinson et al., 2021;
Du et al., 2022), which may constrain the model’s
overall learning. We also found that all these “acti-
vated” components exhibit U-shaped fluctuations
across varying training lengths (as seen in the upper
subplot of Figure 3a). Upon further examination of
these components, we found that their frequencies

1To further validate our findings, we also included results
with a longer training context length of 1024 in Appendix B.
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Figure 3: (a) We decomposed RoPE into components (Comps.) for analysis (See Eq.4). The upper subplot
displays the contribution to the overall attention logits from each component. We highlight some components
with outstanding patterns, namely “activated” components, in red and lower frequency components in blue. The
lower subplot presents the overall attention logits, along with the combined effects of “activated” components we
highlighted in the top figure. (b) Variance Accounted For (VAF, See Section 3.3.1) for different components of
RoPE during training. (c) The OOD phenomenon in extrapolation caused by “activated” components. The two
upper subplots show the attention patterns of the first layer, and the lower subplot presents the anomalous patterns
of the subsequent layers. The model training length presented here is 512, results for training length in 1024 can be
found in Appendix B.

(θs) fall within the range
(
π
L ,

2π
L

)
, where L is the

training length.

(2) The “activated” components in RoPE are
also the primary reason for its poor extrapola-
tion ability. As mentioned above, the attention pat-
tern is closely tied to the “activated” components,
which exhibit U-shape (or low half-cycle) patterns
with the training length. Considering the cosine
properties of these components (see Section 3.3.1
for detail), we can clearly observe from the atten-
tion pattern in the first layer (shown in Figure 3c)
that these “activated” components are located in
the upper half-cycle when extrapolation, which is a
significant out-of-distribution (OOD) phenomenon,
and subsequently leads to the disarray of attention
patterns in later layers.

(3) Components with a lower frequency than
the “activated” ones tend to learn a constant
pattern and are not effectively utilized. An-
other observation is that many components exhibit
a constant pattern despite their cosine properties,
as shown in the upper subplot of Figure 3a. Upon
delving deeper into these components, we found
that their frequencies are all lower than the “acti-
vated” components. We speculate that these top
low-frequency components do not represent posi-
tional information, but rather semantic information.
And the properties constraints on them may even
hinder this learning, as the corresponding patterns
exhibit small magnitudes.

4 A Novel PE Enhances Model’s Context
Awareness and Exploration

Inspired by all experimental results and observa-
tions above, we proposed High-frequency rotary
Position Encoding (HoPE). With slight modifica-
tion in RoPE, HoPE greatly improves the model’s
context awareness and extrapolation. We first detail
our approach and then validate its effectiveness on
perplexity, copying task, and few-shot following
tasks. The results demonstrate that HoPE exhibits
superior performance compared to other PEs.

4.1 Method

We propose our method based on the following con-
siderations: (1) Global decay is unnecessary, thus
some components in position encoding could be re-
moved. (2) Components with U-shape fluctuations
within the training length lead to shortcut learning
and poor extrapolation. (3) Components with lower
frequencies tend to learn semantics but are not well
learned. Since both types of components belong
to the low-frequency and are mostly controlled by
the latter part of the RΘ,m matrix in the original
RoPE, we implement our approach by replacing
these components with position-independent ones
while retaining the high-frequency components.
We call our method High-frequency rotary Position
Encoding (HoPE).

We first identify the “doomed-to-be-activated”
components and top low-frequency components in
the original RoPE. As mentioned in Section 3.3,
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the frequencies (Θal) and the minimum index a of
these two components could be calculated based
on the training context length L. The process is as
follows:

Θal = {θ|θ <
2π

L
}, θ ∈ Θ

a = argmax(Θal)
(6)

Next, we divide the query (or key) into two parts
based on the index a, applying positional encoding
only to the first part. For the RΘh,m matrix ap-
plied in positional encoding, we obtain it by setting
Θh = Θ−Θal. The entire process is shown in the
following formula.

RΘh,m = Diag(Rθ0,m, . . . , Rθa−1,m)

qm =

[
qm,h

qm,l

]
, qm,h = RΘh,mqh, qm,l = ql

kn =

[
kn,h
kn,l

]
, kn,h = RΘh,nkh, kn,l = kl

qm · kn = q⊤h RΘh,m−nkh + q⊤l kl
(7)

4.2 Effect Verification of HoPE

4.2.1 Evaluation
Traditional methods for testing extrapolation usu-
ally use perplexity (PPL) as a metric. However, pre-
vious studies (Press et al., 2021) indicate that per-
plexity (PPL) does not effectively reflect a model’s
ability to fully leverage the context. In fact, a model
can achieve lower PPL by primarily focusing on
nearby tokens within the training length. There-
fore, to more comprehensively assess the model’s
extrapolation, along with its contextual awareness
and instruction-following potential, we addition-
ally design two simple tasks: copying and few-shot
learning.

Perplexity Perplexity (PPL) is a commonly used
metric for evaluating a model’s extrapolation capa-
bility. We conduct our evaluation on a subset of the
C4 dataset (Raffel et al., 2019) with 1,000 samples
by comparing the zero-shot perplexity of the last
256 tokens across different input lengths.

In-Context Copying The copying capability is
one of the most fundamental abilities of language
models and is closely related to token order. Many
previous works (Liu et al., 2023; Golovneva et al.,
2024; Lv et al., 2024) on model structure opti-
mization have designed similar tasks to evaluate

𝑘 sequences

Prefix of 

ⅈ-th sequence

a54e2eede625\n

d1ff29be4e2a\n

.....

8ab9c8751bf1\n

d1ff29be

Figure 4: Specific input example of copying task.

the models’ effectiveness. Based on these stud-
ies, We designed our copying task. Specifically,
we constructed a test set containing 500 samples,
with each sample consisting of multiple sequences.
Each sequence has an average length of 12 tokens,
with a unique 8-gram prefix and 4-gram suffix. Dur-
ing testing, we concatenate a specific number of
sequences with the prefix of a certain i-th sequence
(queried sequence) to serve as the model’s input.
The model’s objective is to output the suffix of the
queried prefix, with the middle sequence selected
as the queried one. Figure 4 illustrates a specific
example input case.

Few-shot Following Few-shot learning is an-
other core ability of the model and serves as the
foundation for instruction following. We created a
test set with 600 samples selected from three tasks
(SST-2, QNLI and RTE) in the GLUE (Wang et al.,
2018) benchmark. For each input, we concatenate
few-shot examples, a set of meaningless sentences,
and the queried input. Specific examples can be
found in Figure 9. As for the evaluation metric,
instead of focusing on actual accuracy, we empha-
size whether the model’s output falls into the label
sets from the few-shot examples. For instance, if
the label set in the contextual examples is 0, 1, the
model’s output, whether 0 or 1, will be counted.
And we define this as a measure of follow ability
(FA). We present the average performance across
the three tasks in the main text, and detailed results
for each task please refer to Appendix C.2.

We set the rotary base b = 10, 000 in HoPE.
Other settings are consistent with those in Sec-
tion 3.1. We evaluate the proposed HoPE against a
range of established baselines, including RoPE (Su
et al., 2021), ALiBi (Press et al., 2021), KER-
PLE (Chi et al., 2022a), and FIRE (Li et al., 2024),
as well as two typical RoPE-based extrapolation
methods: PI (Chen et al., 2023) and YaRN (Peng
et al., 2023).

23049



512 1024 2048 4096 8192 16384
Test length

0

20

40

60

80

100
Pe

rp
le

xi
ty

 (P
PL

)
ALiBi
KERPLE
FIRE

RoPE
RoPE+PI
RoPE+YaRN

HoPE
HoPE+PI
HoPE+YaRN

Figure 5: Perplexity Comparison on C4 dataset.

Method
Sequence Number

30 40 50 60 70 80 Avg.
ALiBi 78.00 64.00 25.90 8.30 2.30 1.20 29.95

KERPLE 80.20 74.00 64.60 56.80 25.60 21.70 53.82
FIRE 70.00 43.20 28.20 6.40 2.80 0.20 25.13
RoPE 77.60 55.80 9.40 0.00 0.00 0.00 23.80
+PI 76.40 61.40 20.20 4.60 0.00 0.00 27.10

+YaRN 65.20 49.80 64.40 50.80 48.60 39.40 54.20
Our HoPE 84.00 77.00 77.00 60.40 32.40 30.60 60.23

+PI 80.20 74.20 73.60 60.60 36.80 39.40 60.80
+YaRN 78.60 73.20 76.00 69.00 68.40 46.60 68.63

Table 1: Results of the copy task. We highlight the
leading results with bold fonts. The input length is
under the training length of 512 when the sequence
number is below 60.

4.2.2 Results

The results for perplexity (PPL), copying task, and
few-shot following task are presented in Figure 5,
Table 1 and Table 2, respectively. From these re-
sults, we can draw the following conclusions:

(1) From all perspectives in the figure and
tables above, it can be confirmed that our ap-
proach significantly enhances the context aware-
ness and extrapolation of the original RoPE. As
shown in Figure 5, our method noticeably smooths
the increase in PPL observed in RoPE, achieving
low PPL even with training lengths 4 times longer
or more. It records a PPL of 8.5241 at 512, and
13.0257 at 4,096. Table 1 and 2 further demonstrate
that our approach not only improves extrapolation
but also enhances context awareness within the
training length. Specifically, compared to RoPE,
the model’s copy ability increased from an aver-
age of 23.80 to 60.23, while its few-shot following
capability improved from an average of 54.10 to
79.20.

(2) When combined with extrapolation meth-

Method
Input Lengths

256 512 768 1024 1280 Avg.
ALiBi 99.67 85.67 68.67 6.33 1.00 52.27

KERPLE 77.17 70.17 22.33 14.67 16.33 40.13
FIRE 87.17 86.33 32.17 19.50 19.33 48.90
RoPE 98.17 97.00 51.33 17.00 7.00 54.10
+PI 98.17 98.83 66.67 38.50 8.00 62.03

+YaRN 99.83 85.67 91.00 81.67 20.33 75.70
Our HoPE 99.67 98.33 74.50 67.83 55.67 79.20

+PI 99.17 98.50 83.67 78.67 51.67 82.33
+YaRN 97.33 92.17 91.67 88.67 99.00 93.77

Table 2: The results of the few-shot following experi-
ment. We measure the model’s following ability (FA),
which counts the instances when the output includes
one of the label sets from the examples. The leading
results are highlighted with bold fonts.

ods like PI and YaRN, our method achieves even
better extrapolation results. As shown in Table 1
and 2, our method, when integrated with YaRN,
achieves the best overall performance across all
PEs, with an average score of 68.63 in the copy task
and 93.77 in the few-shot following task. However,
as also noted in the tables, while both PI and YaRN
enhance extrapolation, they appear to negatively
impact the model’s context awareness within the
training length.

(3) Relying solely on perplexity (PPL) to mea-
sure extrapolation is not reliable. In some cases,
the PPL measurements (shown in Figure 5) con-
tradict the performance in other tasks (shown in
Table 1 and 2), indicating that PPL may not prove
a method’s ability to effectively utilize global in-
formation. It might reflect “pseudo” extrapolation,
as seen in the result of ALiBi and KERPLE. From
Table 1 and 2, it is evident that ALiBi’s actual
extrapolation is poor, and while KERPLE shows
some extrapolation, it is not as strong as the PPL
suggests and performs slightly worse in few-shot
following performance.

4.3 Attention Patterns in HoPE

To better understand how HoPE functions, we
present its learned position-related attention pat-
tern, as depicted in Figure 6. As shown in the upper
subplot, HoPE demonstrates a U-shaped fluctua-
tion similar to RoPE within the training length. The
positional fluctuation in HoPE is milder, suggest-
ing better adaptation to long-context tasks where
semantic information is more critical. In terms
of extrapolation patterns (as shown in the lower
subplot of Figure 6), HoPE appears not to exhibit
the out-of-distribution (OOD) behavior observed
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Figure 6: Attention patterns in HoPE and RoPE, both
within (top) and beyond (bottom) training length.

in RoPE, which could explain its superior extrapo-
lation capabilities.

5 Ablation Study of HoPE

In this section, we conducted an ablation study of
our method and validated its effectiveness through
measurements on the copy task.

Settings We mainly performed three ablation set-
tings: (1) AB1, replacing only the “activated” com-
ponents with positional-independent components.
(2) AB2, replacing only the top low-frequency
components with positional-independent compo-
nents. (3) AB3, removing both components with-
out adding positional-independent ones. We do this
by replacing these components with high-frequency
components.

Results As shown in Table 3, removing the “ac-
tivated” components (AB1) results in a significant
improvement in both context awareness and extrap-
olation, with an average increase of 14.5 points
over RoPE. This outcome suggests that these com-
ponents indeed contribute to the model’s shortcut
learning, hindering optimal learning.

Removing the top low-frequency components
(AB2) helps improve the model’s context aware-
ness but contributes less to extrapolation. This
confirms that the “activated” components are the
key factor behind poor extrapolation performance.

Additionally, we can observe that AB3 shows a
significant decline in both context awareness and
extrapolation, highlighting the importance of the
position-independent components. This indicates
that the model indeed requires certain components

Method
Sequence Number

30 40 50 60 70 80 Avg.
RoPE 77.60 55.80 9.40 0.00 0.00 0.00 23.80
AB1 83.80 68.80 17.80 21.80 12.00 25.60 38.30
AB2 81.40 59.60 16.80 1.00 0.00 0.00 24.47
AB3 65.60 30.6 6.20 2.00 0.80 0.00 17.53

HoPE 84.00 77.00 77.00 60.40 32.40 30.60 60.23

Table 3: The results of the ablation study. AB1 means
only removing the “activated” components, AB2 means
removing the top low-frequency components, and AB3
refers to removing both types of components but without
the position-independent components.

to learn semantic information. The slight improve-
ment (an average increase of 0.67 points) from AB2
further suggests that the original low-frequency
components in RoPE effectively fulfill this role,
while they have not been fully learned.

Based on the results above, we have demon-
strated the rationale behind our HoPE’s design and
identified the source of its performance improve-
ments.

6 Scalability of HoPE

Based on our understanding of HoPE’s advantages,
derived from a series of empirical experiments
with small models and toy tasks, we conducted fur-
ther comparative experiments on real-world tasks.
These experiments involved training large language
models from scratch, comparing RoPE with HoPE.

Settings We trained a Llama-based model with 3
billion parameters. The training was conducted
over 120,000 steps with a sequence length of
8192, using approximately 500 billion tokens in
total. Appendix A provides the model configu-
rations and training details. For evaluation, we
selected eight general-purpose benchmarks to as-
sess context awareness, including MMLU (5-
shot) (Hendrycks et al., 2020), MMLU-PRO (5-
shot) (Wang et al., 2024), GPQA (0-shot) (Rein
et al., 2023), BBH (3-shot) (Srivastava et al., 2023),
WinoGrande (5-shot) (Sakaguchi et al., 2019),
GSM8k (8-shot) (Cobbe et al., 2021), MATH
(4-shot) (Lightman et al., 2023), and DROP (3-
shot) (Dua et al., 2019). The shot count settings
follow the standard configurations used in prior
works (Dubey et al., 2024; Bai et al., 2023a). For
extrapolation, we employ the LongBench (Bai
et al., 2023b), which comprises six task categories:
single-document QA, multi-document QA, sum-
marization, few-shot reasoning, code completion,
and synthetic tasks. We also conduct Needle-in-a-

23051



Benchmark MMLU MMLU-PRO GPQA BBH WinoGrande GSM8k MATH DROP AVG.
RoPE 34.27 12.60 23.23 29.00 51.70 10.61 1.16 31.29 24.23
HoPE (Ours) 38.38 12.74 28.28 29.15 50.43 12.05 1.84 38.46 26.42

Table 4: Performance comparison between RoPE and HoPE across eight benchmarks using the 3B Llama-based
model. Better results are highlighted in bold fonts. HoPE demonstrates superior performance in most tasks.

Task RoPE HoPE
Single-doc QA 14.74 17.87
Multi-doc QA 5.22 9.74
Summarization 12.98 17.63
Few shot 23.47 47.50
Code 35.40 49.47
Synthetic 2.66 2.05

Table 5: Performance comparison between RoPE and
HoPE across 6 major tasks of LongBench using the 3B
Llama-based model. Better results are highlighted in
bold fonts. HoPE demonstrates clear advantages in
most tasks.

Haystack tests (gkamradt, 2023) to provide a com-
prehensive evaluation of both context awareness
and extrapolation. We use OpenCompass (Fu et al.,
2024) to compute the results.

Results As shown in Table 4, our HoPE achieves
an average score of 26.42, outperforming RoPE’s
score of 24.23. Notable improvements are observed
on various benchmarks, such as MMLU (+4.11),
GPQA (+5.05), and DROP (+7.17). The valida-
tion loss curves presented in Appendix D further
support these results, indicating consistently lower
training loss for HoPE.

In terms of extrapolation, Table 5 shows that
HoPE achieves notable gains on LongBench, in-
cluding Single-doc QA (+3.13), Multi-doc QA
(+4.51), Summarization (+4.66), Few-shot learn-
ing (+24.03), and Code (+14.07), demonstrating its
clear advantages in long-context settings.

In addition, results on the “Needle-in-Haystack”
task (depicted in Figure 1) further illustrate its sig-
nificant extrapolation potential, even at a sequence
length of 32k. These findings highlight HoPE’s po-
tential as a strong alternative to RoPE in advancing
the next generation of state-of-the-art LLMs.

7 Conclusion

In this paper, we explore the empirical attention
patterns of various positional encodings and ob-
serve that position-related attention tend to form a

U-shape pattern, benefiting more from local decay
rather than global. Our further analysis of RoPE
reveals a strong correlation between the U-shape
pattern and its learned components. We identify
that certain “activated” components and top low-
frequency components in RoPE hinder the model’s
optimal learning process, limiting its context aware-
ness and extrapolation. Consequently, we propose
our method, HoPE, which breaks the principle of
long-term decay in theory, allowing for optimal uti-
lization of components for positional encoding. Ex-
tensive experiments demonstrate its effectiveness
in enhancing both context awareness and extrapo-
lation.

8 Limitations

In this paper, we introduce a novel and effective
positional encoding method to improve the model’s
context awareness and extrapolation capabilities.
However, due to limited resources, we have only
implemented our method using the vanilla attention
mechanism. We recognize that there are various
variants of attention mechanisms and see great po-
tential in exploring our method on them in future
studies.

The potential risks associated with our research
align with those of other endeavors involving large
language models, including misuse for generating
harmful content, perpetuation of biases, data pri-
vacy concerns, and environmental costs linked to
computational resource consumption.
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A Model Configuration

Detail settings across model sizes are depicted in
Table 6. All experiments use Llama tokenizer with
a vocabulary of 32,000 tokens. Other hyperparam-
eters are as follows: the AdamW optimizer is used
with (β1, β2) = (0.9, 0.999), a learning rate of
3e−4, 2, 000 warm-up steps, and a gradient clip-
ping value of 1. Experiments for the 125M models
are conducted on 8 A100 GPUs, while those for
the 3B models use 256 A100 GPUs.

Hyperparameters 125M 3B
Training sequence length 512 8192
Batch size 64× 8 2× 256
Number of Iterations 50k 120K
Dropout Prob. 0.0 0.0
Number of Layers 12 34
Attention Head 12 16
Feature Dimension 768 2048
Intermediate Dimension 2688 8704
Precision BFloat16 BFloat16

Table 6: Model configurations.

B Supplementary Results on the
Exploration of Component Effects in
RoPE Attention Patterns
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Figure 7: VAF results of each component at training
length 1024.

We present supplementary experiments with
training lengths of 1024, depicted in Figure 7 and 8.
We reached the same conclusion as in the main text.
It can be seen that “activated” and lower frequency
components shift further back as the training length
increases. These “activated” components still ex-
hibit a U-shaped curve, similar to the final pattern.

The lower frequency components continue to learn
a constant pattern.
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Figure 8: The attention pattern of RoPE at training
length 1024.

C Supplementary for Few-shot Following
Tasks

Review:are more deeply thought through than in most 

` right-thinking ' films 

Answer:1

Review:contains no wit , only labored gags 

Answer:0

This is a meaningless sentence, used only to fill the 

prompt length.

This is a meaningless sentence, used only to fill the 

prompt length.

Review:or doing last year 's taxes with your ex-wife. 

Answer:

Train Examples

Pad Sentences

Query

Figure 9: Input examples of few-shot following tasks.
We take SST-2 as an instance.

C.1 Input Examples of Few-shot Following
Tasks

Specific examples of few-shot following tasks can
be found in Figure 9. In practice, we provide 5-shot
training examples as context. For each instance,
we dynamically pad it with a different number of
meaningless sentences to ensure the various input
lengths.
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Method
SST-2 QNLI RTE

256 512 768 1024 1280 Avg. 256 512 768 1024 1280 Avg. 256 512 768 1024 1280 Avg.
ALiBi 99.00 58.00 29.00 4.00 0.00 38.00 100.00 99.00 79.00 0.00 0.00 55.60 100.00 100.00 98.00 15.00 3.00 63.20

KERPLE 50.50 37.50 18.00 9.00 6.00 24.20 100.00 95.00 32.00 7.00 4.00 47.60 81.00 78.00 17.00 28.00 39.00 48.60
FIRE 99.50 99.00 76.50 31.50 3.00 61.90 99.00 99.00 18.00 19.00 12.00 49.40 63.00 61.00 2.00 8.00 43.00 35.40
RoPE 99.50 96.00 20.00 0.00 0.00 43.10 95.00 95.00 85.00 22.00 9.00 61.20 100.00 100.00 49.00 29.00 12.00 58.00
+ PI 99.50 96.50 33.00 4.50 0.00 46.70 100.00 100.00 94.00 75.00 11.00 76.00 95.00 100.00 73.00 36.00 13.00 63.40

+ YaRN 99.50 57.00 73.00 73.00 0.00 60.50 100.00 100.00 100.00 95.00 9.00 80.80 100.00 100.00 100.00 77.00 52.00 85.80
Our HoPE 99.00 95.00 45.50 52.50 32.00 64.80 100.00 100.00 100.00 88.00 37.00 85.00 100.00 100.00 78.00 63.00 98.00 87.80

+ PI 97.50 97.50 97.00 37.00 89.00 83.60 100.00 100.00 100.00 100.00 55.00 91.00 100.00 98.00 54.00 99.00 11.00 72.40
+ YaRN 100.00 97.50 76.00 69.00 98.00 88.10 92.00 80.00 99.00 99.00 100.00 94.00 100.00 99.00 100.00 98.00 99.00 99.20

Table 7: Detail results on three few-shot following tasks.

C.2 Detail Results on Few-shot Following
Task

We present the average results in Table 2 of the
main text. Detailed results in three tasks are de-
picted in Table 7.

D Supplementary Results of the 3B
Llama-based Model
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Figure 10: Comparison of validation loss between RoPE
and HoPEusing a 3B Llama-based model.

The comparison of validation loss between
RoPE and HoPEusing the 3B Llama-based Model
is depicted in Figure 10.
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