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Abstract

Supervised Fine-Tuning (SFT) with trans-
lated instruction data effectively adapts Large
Language Models (LLMs) from English to
non-English languages. We introduce Cross-
Lingual Continued Instruction Tuning (X-CIT),
which fully leverages translation-based parallel
instruction data to enhance cross-lingual adapt-
ability. X-CIT emulates the human process
of second language acquisition and is guided
by Chomsky’s Principles and Parameters The-
ory. It first fine-tunes the LLM on English in-
struction data to establish foundational capabil-
ities (i.e. Principles), then continues with tar-
get language translation and customized chat-
instruction data to adjust "parameters" specific
to the target language. This chat-instruction
data captures alignment information in trans-
lated parallel data, guiding the model to initially
think and respond in its native language before
transitioning to the target language. To further
mimic human learning progression, we incor-
porate Self-Paced Learning (SPL) during con-
tinued training, allowing the model to advance
from simple to complex tasks. Implemented
on Llama-2-7B across five languages, X-CIT
was evaluated against three objective bench-
marks and an LLM-as-a-judge benchmark, im-
proving the strongest baseline by an average
of 1.97% and 8.2% in these two benchmarks,
respectively.

1 Introduction

Large Language Models (LLMs) acquire strong
language skills through extensive pre-training
and supervised fine-tuning (SFT) on instruction-
response pairs (Brown et al., 2020; Ouyang et al.,
2022; Chowdhery et al., 2023; Touvron et al.,
2023). However, due to the predominantly English
datasets, LLMs often struggle with non-English
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languages. Training from scratch or continuing pre-
training with non-English data (Ji et al., 2024; Ming
et al., 2024) requires substantial data and computa-
tional resources, making it impractical. While SFT
needs much less data than pre-training, finding non-
English instruction data that matches the quality
and diversity of English data is still difficult. Thus,
a promising strategy is to boost LLM performance
in specific non-English languages by transferring
English capabilities during the SFT phase (Zhu
et al., 2023; Ranaldi et al., 2023).

One approach is to use translation pairs during
SFT, which is simple and effective (Zhu et al., 2023;
Li et al., 2023a; She et al., 2024; Zhu et al., 2024).
However, relying too heavily on translation data
can reduce the diversity of SFT data, potentially
limiting the model’s task generalizability. Alterna-
tively, translating English SFT data into the target
language for training (Zhu et al., 2023; Ranaldi
et al., 2023; Muennighoff et al., 2023) offers a
promising solution that preserves task diversity.
Even a small amount of translated SFT data mixed
with English data has shown promising results (Sha-
ham et al., 2024; Chirkova and Nikoulina, 2024).
However, this "mixed translate-train" approach re-
quires careful tuning of hyperparameters, such as
the ratio between English and translated data, to
optimize performance and uses less explicit lan-
guage alignment signals from parallel data. In con-
trast, PLUG uses English as a pivot language to ef-
fectively integrate parallel instruction data, signifi-
cantly improving instruction-following tasks. How-
ever, models trained with PLUG cannot directly
respond in the target language, limiting their ability
to improve directly non-English performance and
posing challenges for end-to-end systems.

LLMs fine-tuned on English data exhibit sig-
nificant cross-lingual capabilities (Chirkova and
Nikoulina, 2024). Inspired by Chomsky’s Prin-
ciples and Parameters Theory (Chomsky, 1981),
which posits that all languages share universal prin-
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ciples with differences managed by specific param-
eters, this suggests that the model has internalized
these universal principles, facilitating parameter
adjustments for other languages. This process of
parameter adjustment is analogous to how humans
learn a second language.

We propose Cross-lingual Continued Instruc-
tion Tuning (X-CIT) to enhance LLM cross-lingual
adaptability by simulating the full process of sec-
ond language acquisition through parallel SFT data.
As shown in Figure 1, we first fine-tune the base
LLM on English instruction data to establish foun-
dational capabilities (i.e., Principles), then continue
fine-tuning on translated samples to adjust param-
eters for the target language. In step 2⃝ of Fig-
ure 1, we employ a two-round dialogue format to
simulate the early stages of second language learn-
ing—where learners first process and respond in
their native language before transitioning to the tar-
get language. To facilitate direct communication
in the target language, we also include translated
target language instruction data. Additionally, to
reflect the natural progression from simple to com-
plex tasks, we apply the SPL (Jiang et al., 2015)
strategy during continued training, resulting in the
X-CIT+spl model.

We used the Llama-2-7B model (Touvron et al.,
2023) with Stanford Alpaca (Peng et al., 2023) and
its translated versions for instruction fine-tuning.
We evaluated our approach on five languages using
objective benchmarks and LLM-as-a-judge evalua-
tion (AlpacaEval (Li et al., 2023c)). Our contribu-
tions can be summarized as follows:

• We introduce X-CIT and X-CIT+spl, a cross-
lingual SFT method that enhances language
adaptation by simulating human learning pat-
terns in second language acquisition.

• We develop cross-lingual chat-instruction
data that mimics human cognitive patterns
in language learning, boosting the model’s
instruction-following performance in specific
languages.

• We explore performance with varying target
language data proportions and experiment on
different LLMs, showing our method achieves
significant gains with minimal data and gener-
alizes well to different model architectures or
sizes.

2 Related Work

2.1 Cross-lingual SFT with Translated
Instruction Data

Models fine-tuned on English SFT data can fol-
low multilingual instructions but often require care-
ful learning rate adjustments for non-English lan-
guages and may not perform well across all lan-
guages (Chirkova and Nikoulina, 2024; Muen-
nighoff et al., 2023; Kew et al., 2023; Lai et al.,
2024). Translation is a widely used and accessible
method for obtaining instruction data for cross-
lingual SFT (Chen et al., 2023a; Weber et al., 2024;
Li et al., 2023b). While it can introduce errors,
especially in low-resource languages, its effective-
ness depends on whether the benefits outweigh
the errors (Liu et al., 2024). Using translated data
for cross-lingual SFT has become popular for the
language adaptation of LLMs. However, directly
mixing English instruction data with translations is
insufficient for effective knowledge transfer (Gao
et al., 2024; Li et al., 2024).

In multilingual settings, Lin et al. (2024) and
Chai et al. (2024) utilized code-switching between
English instruction and translation languages data
for cross-lingual SFT, enhancing multilingual per-
formance. Our focus is on fine-tuning in a specific
target language. Some methods rely solely on tar-
get language data, offering consistent and reliable
results, albeit not always optimal (Ye et al., 2023).
Zhu et al. (2023) combined English and translated
data for SFT, enhancing language alignment with
additional translation tasks. Meanwhile, Ranaldi
et al. (2023) used only specific-language translated
instruction data and translation tasks. However,
both approaches did not fully leverage the align-
ment signals present in parallel SFT data.

2.2 Cross-lingual SFT by Pivot Guidance

PLUG (Zhang et al., 2024) uses parallel SFT data
with English as a pivot language, guiding the model
to understand and respond to queries in English,
while providing answers in both English and the
target language. This approach mainly relies on
English capabilities, rather than directly improv-
ing non-English performance. Consequently, its
inference stage requires English input first, which
is impractical for tasks with consistent input-output
language, especially with long texts due to high
computational costs. In contrast to PLUG’s single-
turn Q&A format, our method employs a two-turn
dialogue format with pivot English. Additionally,
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Please respond to the user's instruction in English.
Instruction:
Categorize the given input as either an animal or a vegetab
le: Mushroom. 

Mushroom is a vegetable. 

English Instruction Data

Target Language Instruction Data

Please respond to the user's instruction in their language.
Instruction:
列举五个富含维生素c的食物。
(Translate: List five foods that contain vitamin C.) 

橙子、草莓、猕猴桃、彩椒和西兰花。
(Translate: Oranges, Strawberries, Kiwi, Bell peppers, and 
Broccoli.)

prompt to Identify the language 

You are a multilingual expert, and your role is to assist users in 
their native language. But your native language is English, so 
you'll need to use English for your initial response first. Each user 
interaction consists of a two-turn conversation.
At first, please interpret the instruction in English, and then 
respond in English .
Instruction: 将给定的输入分类为动物或植物：蘑菇。 
(Translate:Categorize the given input as either an animal or a vegetable: 
Mushroom.)

English instruction:
Categorize the given input as either an animal or a 
vegetable: Mushroom.
English Response:
Mushroom is a vegetable. 

Now, please respond to the user's instruction in their language.

蘑菇是一种植物。(Translate: Mushroom is a vegetable. )

Cross-lingual Chat-Instruction Data

Scenario description

Base LLM

SFT

en_SFT LLM

ABC

SFT / SFT with SPL

X-CIT LLM

ABC
中文

① ②

Figure 1: The pipeline of our Cross-lingual Continued Instruction Tuning (X-CIT) method. Guided by Chomsky’s
Principles: 1⃝ SFT the base LLM with English instruction data to establish foundational capabilities; 2⃝ continue
training with the target language and customized chat-instruction data to adjust language-specific parameters.
Self-paced learning (SPL) is introduced to further mimic the human learning process, moving from simple to
complex tasks. For clarity, the method using SPL is referred to as X-CIT+spl.

our approach comprehensively simulates the pro-
cess of second language acquisition throughout the
continual instruction tuning. By applying PLUG’s
data within our framework, we overcome the limi-
tations of PLUG’s method. However, by using our
own data within this framework (i.e. our method),
we achieve an 8.2% improvement in instruction-
following performance across five languages, com-
pared to using PLUG’s data.

3 Method

Drawing on Chomsky’s principles and parameters
theory, we recognize that while languages share
universal principles, they differ in their parameters.
Universal principles are innate, whereas the lan-
guage environment determines the parameters that
shape one’s native language. In second language
acquisition, learners start with the parameters of
their native language, which are adjusted during the
learning process. The universal principles remain
active, encourage for positive transfer of native
parameters to the second language. To simulate
this process, we propose a two-stage cross-lingual
continued instruction tuning (X-CIT) method.

Firstly, we perform instruction fine-tuning on the
LLM using English data. Post this English SFT, the
LLM demonstrates strong cross-lingual capabilities
(Chirkova and Nikoulina, 2024),which allows the
model to internalize universal principles. Then, we

continue instruction fine-tuning to adapt other lan-
guages. Alongside target language instruction data,
we construct cross-lingual chat-instruction data for
continued learning. This method guides the model
to first understand and answer questions by English,
then respond directly in the target language, mim-
icking the cognitive pattern of individuals learning
a second language. Moreover, to simulate the learn-
ing process from easy to difficult, we employ a
self-paced learning (SPL) approach during contin-
ued training, as detailed in Algorithm 1.

3.1 The Instruction-tuning Paradigm
In monolingual instruction tuning, the LLM back-
bone is fine-tuned on data pairs (X,Y ), where X
is the concatenation of the instruction describing
the task’s requirements and the input, and Y is the
output corresponding to the given task. The loss
function Lmono of monolingual instruction-tuning
is given by:

Lmono = −logPθ(Y |X) (1)

where θ represents the model’s learnable param-
eters. Our method first performs instruction fine-
tuning on English monolingual data, followed by
continued learning in the target language. The sec-
ond stage involves both monolingual fine-tuning in
the target language and cross-lingual chat instruc-
tion fine-tuning.
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3.2 Cross-lingual Chat-Instruction Dataset

The cross-lingual chat-instruction dataset we pro-
posed is a two-turn chat format, as shown in Fig-
ure 1, formalized as:

(X l, [Xen;Y en], Y l), (2)

where l denotes the target language and en denotes
English. In the first dialogue round, the scenario
description with the first-round prompt I1 is con-
catenated with target language instruction to con-
struct X l, and the parallel English instruction in-
stance (Xen, Y en) is provided as the answer. Both
Xen and Y en begin with specific indicator tokens:
English instruction and English Response, respec-
tively, denoted as [Xen;Y en], where ; indicates
concatenation. In the second dialogue round, the
instruction I2 prompts the model to identify the tar-
get language (by "in their language") and respond,
resulting in Y l. The loss function Lchat for cross-
lingual chat instruction tuning is:

Lchat =

− logPθ([X
en;Y en]|I1;Xl)Pθ(Y

l|I1;Xl; [X∗;Y ∗]; I2))
(3)

where the [X∗;Y ∗] is generation result of LLM in
first dialogue round.

So, the total loss of step 2 is:

L = Lmono + Lchat (4)

3.3 Self-Paced Learning for X-ICL

When learning a second language, humans often
start with simple words and sentences and gradu-
ally progress to more complex structures. To sim-
ulate this transition from simplicity to complexity,
we introduce a self-paced learning algorithm in the
second stage of continued training, as illustrated
in Algorithm 1. This algorithm determines which
samples will be used for the next learning step.
Simpler samples are associated with smaller losses,
so we set a loss threshold λ, to select samples for
training. After a certain number of steps, we update
λ to enable the model to select more challenging
samples. In our experiments, we set each epoch to
update the λ. The loss function during the contin-
ued learning stage is defined as follows:

L =
m∑

i=1

viLmono +
m∑

j=1

vjLchat (5)

Algorithm 1 The algorithm of our X-CIT with
Self-Paced Learning
Input: English Instruction-tuning LLM:Men;

Target language l Instruction Dataset: Dl;
Cross-lingual Chat-Instruction Dataset: D;
Batch size: B;
Epoch number: N

Output: Fine-tuned LLM:Ml

1: n← 0
2: while n < N do
3: for Sample Batch B in (Dl,D) do
4: # Automatic initial the Loss Threshold for SPL λ,
5: # and the iteration coefficient k
6: if n == 0 then
7: Linit = L(B) calculated by eq.1 or eq.3
8: Lavg ← mean(Linit)
9: Lstd ← std(Linit)

10: λ← Lavg/N
11: if Lstd < 1.0 then
12: if Lstd > 2× λ then
13: λ← Lavg

N × N+1
N

14: end if
15: k ← ( 1

2
N )1/N

16: else
17: k ← N 1/N

18: end if
19: end if
20: Sample choice list S ← [ ]
21: for b in B do
22: Loss L = L(b) calculated by eq.1 or eq.3
23: if L < λ then
24: Instance b add to S
25: end if
26: end for
27: OptimizeMen with S
28: end for
29: λ← λ× k, n← n+ 1
30: end while
31: returnMl

where vi and vj are either 0 or 1, determining
whether the samples are used for learning. And the
definition of v is:

{
Li < λ, v = 1

other, v = 0.
(6)

Li is the loss of i-th instance.
Automatic Initialization of λ and k The Al-

gorithm 1 includes an automatic parameter setting
component for these two parameters in lines 6 to
19. They are indomianted by the model’s initial
loss Linit and total training steps. The mean initial
batch loss, Lavg, typically represents the highest
point in training, indicating the model’s starting ca-
pability. We aim for the initial threshold λ to reach
Lavg after N epochs, and the fastest way to achieve
this is by linear increase: λ×N = Lavg. Thus, λ
is set to Lavg

N . However, to prevent premature fo-
cus on difficult samples, we opt for an exponential
increase, ensuring a solid foundational learning be-
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fore refinement, with the target threshold still being
Lavg: λ× kN = Lavg. If the initial loss’s standard
deviation is small, indicating low sensitivity to sam-
ple difficulty, we can increase the initial threshold,
allowing more samples to be learned early on and
slowing the threshold rise, as shown in lines 11 to
15 of Algorithm 1.

4 Experiment

4.1 Data Setup

We used Llama-2-7B (Touvron et al., 2023) as our
base model, focusing on five target languages: Chi-
nese, Spanish, Italian, Korean, and Arabic. The
first four languages are included in the language dis-
tribution of Llama-2’s pretraining data, while Ara-
bic is minimally represented. For English instruc-
tions, we employed Stanford Alpaca (Peng et al.,
2023), comprising 52k instruction-output pairs.
Translations for other languages were sourced from
the community: Chinese, Spanish, Italian, and Ko-
rean data from PLUG (Zhang et al., 2024), and
Arabic data from MultilingualSIFT (Chen et al.,
2023b). To mimic low-resource conditions, we
trained using only 10% of the target language data,
conducting three samples for each language with
seeds 64, 32, and 81 to ensure robust results.

4.2 Models Setup

The models were trained in FP16 with a maximum
sequence length of 4096 and a global batch size of
128 for 4 epochs. We used a linear decay learning
rate, peaking at 5e-6, with a 3% warm-up phase.
The first-stage training took about 20 hours on 8 ×
V100 GPUs, utilizing the DeepSpeed library and
ZeRO optimizer stage 3. The first-stage model was
trained once, while each target language model in
the second stage took around 4 hours. For infer-
ence, we utilized greedy decoding to ensure de-
terministic outputs.The training prompt setting is
shown in Appendix A.

For X-CIT+spl, the only difference is that the
warm-up step involves learning from all data in the
batch without sample selection, set to 8% of the
total steps. The training time was similar to X-CIT,
with the only added step being the comparison and
optimization of selected losses.

4.3 Benchmarks and Metrics

We evaluated the performance of X-CIT and X-
CIT+spl both objective and LLM-as-a-judge bench-
marks. Objective Evaluation Benchmarks:

• MRC: Lacking a Machine Reading Comprehen-
sion (MRC) dataset covering all languages, we
selected: Chinese and Spanish data from XQuAD
(Artetxe et al., 2020), Arabic and Korean data
from TyDiQA-GoldP (Clark et al., 2020), the first
1,000 examples from SQuAD-IT (Croce et al.,
2018) for Italian.

• Factual QA Datasets from CLiKA (Jiang et al.,
2020; Gao et al., 2024): We used xGeo (cities
and administrative divisions) and xPeo (notable
individuals and birth/death years) for Chinese,
Italian, and Arabic. For Spanish and Korean, we
translated English questions and answers using
GPT-4o*. For both tasks, we employed a zero-
shot setting for evaluation, using regular expres-
sion matching for answer extraction and exact
match for assessment.

• Flores-200 (Costa-jussà et al., 2022): This bench-
mark features parallel text from Wikipedia across
204 languages. We assessed bidirectional transla-
tion results between our five target languages and
English, using a one-shot setting and reporting
scores with BLEU-4 (Papineni et al., 2002).
The prompt we utilized for these three bench-

marks reported in Appendix B.
For the LLM-as-a-judge benchmark, we used

AlpacaEval (Li et al., 2023c). Since it only sup-
ports English, we used X-AlpacaEval (Zhang et al.,
2024) for the test of Chinese, Spanish, Italian, and
Korean, and Arabic-AlpacaEval† for Arabic. Fol-
lowing Zhang et al. (2024), GPT-4 was used to com-
pare pair-wise responses from two models. More
details of the evaluation process are in Appendix C.

4.4 Baseline

Except for the base model Llama-2-7B, we report
several baselines as below:
• en_SFT. Instruction-Tuned on English

instruction-output pairs D(xen, yen).
• x_SFT. Instruction-tuned on target language l

with the whole translated data D(xl, yl).
• Mix_SFT. Instruction-tuned on the whole En-

glish data and sampled 10% target language data,
i.e., D(xen, yen)

⋃Dsub(x
l, yl).

• CL_SFT. Continue instruction-tuned the
en_SFT on parallel sampled 10% English and
target language instruction-output pairs, i.e.,
Dsub(x

en, yen)
⋃Dsub(x

l, yl).

*https://gpt4o.ai/zh/blog/gpt4o-intro
†https://huggingface.co/datasets/FreedomIntelligence/Arabic-

AlpacaEval
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Model
Language AVG.

AVG. all
Task AVG.

chinese spanish italian korean arabic MRC Flores-200 x -> en Flores-200 en -> x xGeo xPeo

Llama-2-7B 23.53 24.34 29.99 18.24 5.65 20.35 46.06 24.52 15.15 10.80 5.22
en_SFT 21.88 39.83 45.85 22.03 10.60 28.04 28.35 24.01 16.52 13.30 58.00*
x_SFT 29.67 50.78 52.55 28.81 15.00 35.36 65.09 19.32 18.10 27.30 47.00

Training with only 10% target language data

mix_SFT 32.26±0.50 52.82±0.19 53.50±0.18 28.37±0.55 14.46±0.30 36.28±0.05 64.85±0.54 25.67±0.37 16.63±0.32 28.37±0.47 45.89±0.56
CL_SFT 31.06±0.50 51.76±1.09 50.61±0.41 28.36±0.73 15.19±0.12 35.39±0.19 66.08±0.38 20.64±1.40 16.83±0.15 28.57±0.78 44.85±1.48
CrossAlpaca 31.94±0.45 52.40±0.15 51.58±0.48 28.52±0.11 15.48±0.12 35.98±0.14 63.86±0.58 26.19±0.05 16.90±0.06 27.83±0.21 45.14±0.09
X-CIT w/ PLUG 32.76±1.17 51.90±0.49 52.90±0.46 27.94±0.50 14.09±0.49 35.92±0.41 65.05±0.54 24.28±0.57 18.39±0.41 26.53±0.50 45.33±0.51
X-CIT 32.73±0.65 53.41±0.12 53.81±0.46 29.95±0.23 16.22±0.20 37.22±0.22 66.92±0.61 25.55±0.45 19.28±0.16 28.30±0.82 46.07±0.50
X-CIT+spl 33.92±0.37 54.88±0.40 55.57±0.09 30.28±0.29 16.58±0.70 38.25±0.17 67.36±0.03 25.82±0.73 19.75±0.1 30.97±0.49 47.33±0.09

Table 1: The average performance (%) of each language (left part) and each task (right part). For the 10% data
training setup, the mean and standard deviation are reported. The best results are indicated in bold, the second-best
results are underlined. Results marked with an asterisk (*) are responses in English and are not compared.

Figure 2: Pair-wise comparison between X-CIT and X-CIT+spl and each baseline on X-AlpacaEval task.

Model
MRC

AVG.chinese spanish italian korean arabic

Llama-2-7B 57.39 60.00 54.70 40.94 17.26 46.06
en_SFT 13.95 41.18 49.30 25.72 11.62 28.35
x_SFT 63.53 73.78 72.90 73.55 41.69 65.09

Training with only 10% data

mix_SFT 66.08±1.62 73.95±0.83 74.9±1.07 71.74±2.05 37.6±1.27 64.85±0.54
CL_SFT 68.15±0.79 73.92±1.31 73.93±0.45 73.19±2.63 41.19±0.9 66.08±0.38
CrossAlpaca 64.34±1.34 71.48±1.10 70.95±1.02 71.50±0.17 41.04±1.57 63.86±0.58
X-CIT w/ PLUG 65.94±1.49 73.39±0.84 73.77±0.52 71.26±0.74 40.89±1.26 65.05±0.54
X-CIT 68.29±1.6 73.92±0.56 74.00±0.43 75.24±2.26 43.14±0.31 66.92±0.61
X-CIT+spl 68.26±0.67 74.68±0.46 74.77±0.38 75.48±1.04 43.61±0.05 67.36±0.03

Model
xGeo

AVG.chinese spanish italian korean arabic

Llama-2-7B 11.00 4.50 31.00 7.50 0.00 10.80
en_SFT 3.00* 27.50* 30.50* 5.50* 0.00* 13.30*
x_SFT 21.50 44.00 47.00 9.00 15.00 27.30

Training with only 10% data

mix_SFT 24.5±1.47 48.83±1.25 50±0.41 10±0.71 8.5±1.41 28.37±0.47
CL_SFT 24.83±1.25 47.17±3.47 50.67±0.62 10.83±0.85 9.33±1.43 28.57±0.78
CrossAlpaca 25.17±0.94 46.50±0.41 47.17±0.62 11.50±1.08 8.83±0.24 27.83±0.21
X-CIT w/ PLUG 24.67±1.70 42.83±0.85 47.83±0.24 9.00±0.41 8.33±0.62 26.53±0.50
X-CIT 23.83±1.7 47.33±1.25 49.5±1.78 11.00±0.41 9.83±0.47 28.3±0.82
X-CIT+spl 26.17±0.94 51.83±1.25 54.00±0.41 11.17±0.85 11.67±0.62 30.97±0.49

Model
xPeo

AVG.chinese spanish italian korean arabic

Llama-2-7B 12.22 0.56 5.00 8.33 0.00 5.22
en_SFT 54.44* 75.00* 91.67* 48.89* 20.00* 58.00*
x_SFT 30.56 86.11 85.00 31.67 1.67 47.00

Training with only 10% data

mix_SFT 30.93±0.94 85.74±0.69 83.31±2 26.85±1.84 2.59±0.26 45.89±0.56
CL_SFT 27.04±4.63 85.74±0.26 83.52±1.72 26.66±1.2 1.3±0.52 44.85±1.48
CrossAlpaca 28.89±0.00 86.06±0.57 82.78±1.57 26.30±0.69 1.67±0.79 45.14±0.09
X-CIT w/ PLUG 31.85±2.66 85.56±0.91 82.78±0.78 25.37±0.26 1.11±0.45 45.33±0.51
X-CIT 29.44±0.45 87.59±0.69 83.52±1.38 27.04±1.71 2.78±0.45 46.07±0.50
X-CIT+spl 31.30±0.69 88.33±0.78 85.93±0.69 28.70±0.69 2.41±0.69 47.33±0.09

Table 2: The performance of individual language in
MRC task, and xGeo and xPeo in CLiKA data.

• CrossAlpaca (Ranaldi et al., 2023) utilizes trans-
lated instruction data to align target languages
with English for improved instruction following.
Since CrossAlpaca does not provide open-source
checkpoints, we faithfully reproduced their data
structure while maintaining experimental con-
sistency: using identical target-language Alpaca
data (5.2K instructions) supplemented with 5.2K
bidirectional OPUS translation pairs, with all

other parameters fixed.
• X-CIT w/ PLUG. Conversion of our chat-

instruction data to PLUG (Zhang et al., 2024)
format data while keeping all model and hyper-
parameters settings unchanged.

4.5 Results

The main results on objective evaluation and LLM-
as-a-judge benchmark are shown in Table 1 and
Figure 2, respectively. On the Objective Evalua-
tion, X-CIT and X-CIT+spl, surpass the strongest
baseline by an average of 0.94% and 1.97% across
five languages and tasks, respectively. Notably,
our approaches consistently deliver superior results
across all languages. Even for the under-trained lan-
guage Arabic, X-CIT+spl outperforms the strongest
baseline by an average of 1.39%. X-CIT with-
out SPL fully learns from each instruction sample,
making it better suited for solving open-ended in-
struction tasks. On the LLM-as-a-judge Bench-
mark, X-CIT significantly outperformed the base-
lines CL_SFT and Mix_SFT by an average win-
loss difference of 35.2% and 37.4%, respectively.
Notably, X-CIT had only a 7% loss rate compared
to CL_SFT in Arabic. Compared to the method
that converted chat-instruction data to the PLUG
format, X-CIT improved it by an average of 8.2%
and achieved a 17% win-loss difference in Italian.

The further analysis of results on these two
benchmarks is in the following:

Objective Evaluation Benchmark Our method
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Model
Flores-200(BLEU-4,1-shot)

AVG.
Flores-200(BLEU-4,1-shot)

AVG.zh -> en es -> en it -> en ko -> en ar -> en en -> zh en -> es en -> it en -> ko en -> ar

Llama-2-7B 23.83 31.43 34.61 23.43 9.28 24.52 13.21 25.22 24.66 10.98 1.70 15.15
en_SFT 17.87 23.47 30.84 17.51 6.93 19.32 14.91 26.56 27.03 12.30 9.70 18.10
x_SFT 22.32 29.30 31.41 19.08 17.95 24.01 15.68 26.17 26.37 10.95 3.41 16.52

Training with only 10% data

mix_SFT 24.73±0.3 30.31±0.16 33.16±0.13 22.23±0.52 17.92±0.91 25.67±0.37 15.09±0.53 25.28±0.92 26.12±0.24 11.01±0.61 5.67±0.26 16.63±0.32
CL_SFT 19.87±1.99 26.09±2.31 18.78±3.22 20.06±0.94 18.41±0.77 20.64±1.4 15.43±0.22 25.87±0.2 26.13±0.25 11.04±0.54 5.7±0.1 16.83±0.15
CrossAlpaca 25.80±0.36 31.78±0.21 31.30±0.72 22.72±0.24 19.34±0.11 26.19±0.05 15.50±0.09 26.18±0.27 25.71±0.27 10.57±0.19 6.52±0.11 16.90±0.06
X-CIT w/ PLUG 24.59±0.94 30.46±0.68 32.86±0.84 21.35±1.54 12.11±0.79 24.28±0.57 16.74±0.94 27.27±0.34 27.26±0.83 12.71±0.94 8.00±0.66 18.39±0.41
X-CIT 24.63±0.87 31.15±0.33 33.98±0.72 22.72±0.29 15.27±1.19 25.55±0.45 17.48±0.1 27.04±0.56 28.05±0.24 13.74±0.33 10.08±0.2 19.28±0.16
X-CIT+spl 25.55±0.16 31.77±0.11 34.62±0.33 22.12±0.49 15.06±3.03 25.82±0.73 18.31±0.54 27.78±0.17 28.55±0.55 13.94±0.11 10.15±0.75 19.75±0.1

Table 3: The performance of individual language in Flores.

Epoch=1; 100%

Epoch=1; 11.2%

Epoch=2; 48.3%

Epoch=3; 71.9%

Epoch=4; 89.5%

Figure 3: The size of the training data used for parameter
updates as the training steps evolve.

consistently surpasses the baseline across all tasks,
with detailed results in Tables 2 and 3. In read-
ing comprehension, X-CIT+spl excels in four lan-
guages, particularly improving performance by
2.29% for Korean and 2.42% for Arabic, both
lower-resource languages. For factual QA tasks
(xGeo and xPeo), where facts are sourced from
Wikidata and heavily trained in English, the
en_SFT model performs strongly. The model fre-
quently responds in English. However, xGeo’s
performance is lower due to language-specific an-
swers, while xPeo’s consistent year-based answers
across languages result in higher scores. Outside
of en_SFT, our method achieves the best average
performance using only 10% of the target data.
CrossAlpaca achieves best x-en translation due to
its explicit translation task design. Ours X-CIT su-
periors en-x translation (+2.85 over CrossAlpaca)
- aligning with our English-enhanced second lan-
guage learning objective. For en-x translation tasks,
it achieves an average improvement of 2.92% over
the robust CL_SFT baseline, highlighting its effec-
tiveness in transferring knowledge from English
to other languages. X-CIT also outperforms the
PLUG format data by 0.89%, demonstrating the
superiority of chat-instruction data for language
alignment.

LLM-as-a-judge Evaluation Benchmark The
X-CIT+spl did not show significant superiority in
these evaluations. This might be because, with

73%

57% 54%

21%

36%

21%

6% 7%

25%

X-CIT+spl(epoch8) VS. mix_IT X-CIT+spl(epoch8) VS. CL_IT X-CIT+spl(epoch8) VS. X-CIT w/ PLUG

win tie loss

Figure 4: Results of LLM-as-a-judge evaluation be-
tween X-CIT+spl trained on Arabic for 8 epochs and
baselines.

the same epoch settings, SPL gradually increases
the number of instructions learned, whereas X-CIT
learns all instructions in each epoch, as illustrated
in Figure 3. As a result, X-CIT+spl may not ade-
quately learn more challenging samples to enhance
instruction-following ability. We conducted a vali-
dation experiment to further support our findings.
We trained X-CIT+spl on Arabic for 4 more epochs,
totaling 8 epochs. During the last 4 epochs, the
loss threshold was not updated, allowing us to as-
sess whether performance on the LLM-as-a-judge
evaluation improves after extended training. The
results are shown in Figure 4. It indicates that, with
adequate training, X-CIT+SPL can significantly en-
hance the model’s performance in LLM-as-a-judge
evaluations, achieving a 29% win-loss difference
compared to the PLUG data format.

5 Analysis

5.1 Ablation Experiments

In this section, we will discuss the effectiveness of
other components in our method: (1) the role of
continued instruction tuning; (2) the necessity of
both cross-lingual chat instruction data and mono-
lingual instruction data. More ablation about our
SPL training strategy can be seen in Appendix D.
CL method VS. Mix method. Our cross-lingual
Chat-Instruction tuning method is based on con-
tinued learning (CL) from an English SFT model,
using target language and chat-instruction data. For
mixed training, we combined the entire English
dataset with a sampled 10% (seed 64) of the tar-
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Model MRC Flores-200
x-en

Flores-200
en-x

xGeo xPeo AVG.

X-CIT 66.60 25.64 19.48 29.30 46.67 37.54
X-CIT_Mix 64.63 23.64 15.28 29.10 46.22 35.77

Table 4: The performance of our method under mixed
training.

Model chinese spanish italian korean arabic AVG

X-CIT 33.56 53.51 54.35 29.98 16.28 37.54
w/ PLUG 33.83 51.23 52.41 27.48 13.43 35.68
w/o mono 26.70 52.06 48.40 25.63 13.44 33.25

w/o chat 30.14 49.15 48.87 26.43 12.33 33.38

Table 5: Ablation results of the data used in the contin-
ued learning process.

get language and chat-instruction data, creating the
X-CIT_Mix model. The results (Table 4) show
that CL outperforms mixed training across all tasks.
While performances in xGeo and xPeo are simi-
lar, mixed training takes significantly longer (about
120 hours for 5 languages) compared to CL (about
40 hours for 5 languages).
The necessity of cross-lingual chat instruction &
monolingual instruction. The cross-lingual chat
instruction data (chat) is designed to mimic human
cognitive and learning patterns in second language
acquisition. Since the ultimate goal is to understand
and develop the habit of expressing oneself in the
target language, we included target language data
(mono) in the training. Ablation results in Table 5
show that both data types are essential. Mono data
is crucial for all languages, while chat data is partic-
ularly important for Arabic, which has limited train-
ing data in Llama 2. The PLUG format consists of
one-turn instruction data similar to our chat data,
but it only slightly outperforms ours in Chinese.
Our model’s superior performance over PLUG in
four languages on objective evaluation tasks, along
with alpacaEval results in Figure 2, underscores
the necessity of two-round chat instruction data for
enhancing cross-lingual transfer.

5.2 Different scales of Cross-lingual
Instruction Data

To simulate the challenges of obtaining high-
quality translation data in low-resource language
environments, we sampled only 10% of the tar-
get language data for the experiment. We also
explored additional settings—1%, 30%, 50%, and
100%—using a uniform sampling seed of 64 to
examine the impact of varying data proportions on
performance. Figure 5 shows the average perfor-
mance in objective evaluation tasks as data propor-

Figure 5: Performance trend graph of model average
performance in objective-evaluation tasks with varying
data volumes.

tions change. CL_SFT achieved the best average
performance with just 1% of the data, highlight-
ing that the continued learning approach can yield
significant benefits with limited data.

Our method performs well with just 1% of the
data and continues to improve as the data volume
increases to 100%. Ablation studies show that the
gains mainly come from monolingual data, while
the continuous improvement over CL_SFT is due
to our chat-instruction data. The Mix_SFT method
shows no further improvement with more data. The
PLUG format benefits from increased data quantity.
Thus, in scenarios with limited target language data,
our X-CIT method achieves greater gains.

28
30
32
34
36
38
40
42
44
46
48

Llama3-8B Llama3.2-3B qwen2.5-7b

base CL_IT X-CIT w/ PLUG X-CIT X-CIT_spl

Figure 6: Performance Comparison of Different Models
in Arabic. The lines above each bar indicate the standard
deviation.

5.3 Exploration of Method Generalization

As the capabilities of LLMs continue to improve,
recent models have developed strong proficiency in
English, allowing us to apply our method to these
models without the 1⃝ step in Figure 1. We con-
ducted experiments in Arabic using the more pow-
erful Llama3-8B and Qwen2.5-7B models, which
have the similar parameter scale, as well as the
smaller Llama3.2-3B model. The results, shown in
Figure 6, demonstrate that our approach is adapt-
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able to models of varying capabilities and sizes.
Notably, on the 3B model with fewer parame-
ters, our method outperforms the PLUG data for-
mat, likely because it relies heavily on the base
model’s capabilities. Additionally, on the multilin-
gual Qwen2.5, our method still shows significant
improvement. This result highlights the strong gen-
eralization ability of our method.

6 Conclusion

In this work, we propose Cross-Lingual Continued
Instruction Tuning (X-CIT and X-CIT+spl), which
continues the instruction tuning of an English SFT
model using specially designed chat-instruction
data and an SPL training strategy. This process
is guided by Chomsky’s Principles and Parame-
ters Theory to mimic the human second language
learning process. Extensive experiments across five
target languages, evaluated through three objective
tasks and the AlpacaEval task, demonstrate our
method’s effectiveness. X-CIT+spl improves the
average performance on three objective tasks in
five languages by 17.9% compared to Llama2-7B
and surpasses the strongest baseline by 1.97%. No-
tably, using only 10% of the target language data
compared to English data, our method achieves
excellent results, especially in Arabic, a language
with limited training data in Llama2. This approach
shows significant promise for low-resource lan-
guages. Furthermore, our method can easily gener-
alize to various LLM constructions and scales.

Limitations

To our knowledge, this work has the following
limitations:

• Due to limited resources, we conducted ex-
periments using only one multilingual open-
source parallel instruction dataset. If new data
is introduced to replicate our method, slight
adjustments may be needed in the way pa-
rameters are automatically initialized in SPL.
Based on experience, the main adjustment
involves determining the model’s sensitivity
to assessing the difficulty of a batch of data
through standard deviation as shown in line
11 to 15 in Algorithm 1.

• When simulating low-resource scenarios by
using different seed numbers for data sam-
pling, we observed considerable standard vari-
ance in some tasks or language items. Since

the instruction data encompasses multiple
types of tasks, it is challenging to ensure an
even distribution of these tasks during ran-
dom sampling, leading to substantial result
variance. We believe this presents a future re-
search direction: how to select more suitable
data or tasks to improve cross-lingual instruc-
tion fine-tuning.
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A Training Prompts

During instruction tuning, the prompts for monolingual and chat-instruction data are shown in Figure 1 of
main body. The prompts for monolingual instruction differ between the first and second stages: in the first
stage, the model is explicitly instructed to respond in English, while the second stage does not specify a
target language, allowing the model to self-identify during training and avoid label bias.

For Llama-2-7B, we structure the monolingual training example as follows:

<|system|>System Prompt <|user|>Instruction
<|assistant|>Response

Following standard approaches Touvron et al. (2023) and PLUG (Zhang et al., 2024), we only compute
the loss on tokens after <|assistant|>.

The training example of chat-instruction data is:

<|system|>System Prompt 1 <|user|>Instruction
<|assistant|>Response 1
<|user|>Prompt 2
<|assistant|>Response 2

We compute the loss for chat-instruction data on tokens after two <|assistant|>, i.e. "Response 1" in
English and "Response 2" in target languages.

The PLUG (Zhang et al., 2024) dataset uses English as a pivot language, requiring the model to
understand target language instructions in English and generate bilingual responses. Specifically, the
dataset consists of the following:

<|system|>Please interpret the instruction in [pivot] and respond both in
[pivot] and in [target]. <|user|>Instruction
<|assistant|>[pivot] Instruction: ...
[pivot] Response: ...
[target] Response: ...

B Prompt of Objective Evaluation Task

We list the prompts for the objective evaluation tasks in Table 6, where the prompts for xGeo and xPeo are
provided ’in their language’ to align with the settings of our training prompts. In the baseline, the target
language labels are explicitly stated in these two contexts. For the MRC task, we translate the English
prompts into the target language.

C Evaluation for AlpacaEval

Using GPT-4‡ to evaluate open-ended model generations is increasingly viewed as cost-efficient, in-
terpretable, and generally consistent with human judgments (Zheng et al., 2023; Zhang et al., 2024).
Following this paradigm, we employed the pair-wise comparison setting and evaluation prompts from
(Zhang et al., 2024). We used OpenAI’s gpt-4-0613 model for all evaluations. The full evaluation prompt
is shown in Table 7.

The results are presented in Table 1 of the main body, showing that our model (X-CIT) performs
exceptionally well in Arabic. To further assess its advantages, we applied six evaluation criteria from
Chirkova and Nikoulina (2024) (see Table 14) and conducted a model-based evaluation using GPT-4.
The criteria include: Language Correctness, Fluency, Helpfulness, Accuracy, Logical Coherence, and
Harmlessness. Since "Language Correctness" and "Harmlessness" consistently received the highest scores
across all tests, we only report the other four criteria.

To illustrate the relationship between data volume and evaluation scores, we provided trend charts for
five different data volumes across five languages (Figure 7). For Arabic, our model scores the highest
across various metrics at both the 10% data volume and with the full dataset, particularly excelling with

‡https://openai.com/index/gpt-4/
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Task Prompt

System: Please response to the instruction as a reading comprehension expert.
MRC Prompt: Answer the question from the given passage. Your answer should be directly

extracted from the passage, and it should be a single entity, name, or number, not a
sentence.
Passage: {passage} \n\nQuestion:\n {question} \n\n Answer: Based on the passage, the
answer to the question is\"

xGeo System: Please answer the following question in their language with a clear and concise
response with common knowledge of geography.
Prompt:Question: {question} \nAnswer:

xPeo System: Please answer the following question in their language with a clear and concise
response with common knowledge of celebrity.
Prompt:Question:{question} \nAnswer:

Prompt: Please Translate the given sentence from [source] to [target].
Flores-200 [source]: </X>\n[target]:\n\n</Y>

[source]: </X>\n[target]:

Table 6: The prompt utilized in objective evaluation tasks.

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. You should choose the assistant that follows the user’s instructions and answers
the user’s questions better. Your evaluation should consider factors such as the languages correct, helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their responses. If the response language is inconsistent
with the user’s question, it is an incorrect answer. Pay special attention to whether the assistant’s response contains
any unnatural language use, sentences that are not fluent, or grammatical problems, especially when answering
in languages other than English. Begin your evaluation by comparing the two responses and provide a short
explanation. Avoid any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by
strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.

[User Question]
{instruction}

[The Start of Assistant A’s Answer]
{response_from_model_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response_from_model_b}
[The End of Assistant B’s Answer]

Table 7: Prompt of LLM-as-a-judge benchmark.

the full data. In addition, for non-Latin languages like Chinese and Korean, our method consistently
shows significant advantages across all metrics. For Spanish and Italian, the differences in these metrics
are less pronounced. Overall, our model tends to improve as the data volume increases, while Mix_SFT
and CL_SFT do not show a consistent trend.

model chinese spanish italian korean arabic AVG.

X-CIT+spl 33.92±0.37 54.88±0.40 55.57±0.09 30.28±0.29 16.58±0.70 38.25±0.17
w/o heuristic design 33.56±0.36 54.52±0.54 55.45±0.24 29.54±0.66 15.27±0.18 37.67±0.19

Table 8: Ablation results about Heuristic designs for Algorithm 1

D Ablation of the SPL Training Strategy

Ablation experiment about Heuristic designs for Algorithm 1 The heuristic design about automatic
initialization of λ and k address the challenge of difficult parameter adjustment of SPL. The parameters of
the method without heuristic design are λ = 0.4 and k = 1.3. The results of X-CIT+spl with or without
heuristic design are shown in Table 8. This indicates that heuristic design is important, especially for the
low-resource Korean and Arabic.
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Figure 7: Performance trend graph of model score in five languages AlpacaEval task with varying data volumes.

Languages Methods MRC xGeo xPeo Flores-200 x -> en Flores-200 en -> x AVG.

Korean
X-CIT+spl 75.48±1.04 11.17±0.85 28.70±0.69 22.12±0.49 13.94±0.11 30.28±0.29

w/o 76.81±1.18 9.83±0.62 27.59±2.24 21.0±0.6 13.97±0.15 29.84±0.72

Arabic
X-CIT+spl 43.61±0.05 11.67±0.62 2.41±0.69 15.06±3.03 10.15±0.75 16.58±0.70

w/o 43.95±0.43 11.67±0.62 2.41±0.26 10.4±0.53 9.82±0.42 15.65±0.33

Table 9: Ablation results of setting for low loss standard deviation θ in Korean and Arabic.

The setting for low loss standard deviation θ is designed primarily for low-resource languages like
Korean and Arabic, as they are quite challenging for Llama2-7B, generally resulting in higher losses
and thus smaller loss variance. In such cases, we increase the initial threshold of SPL and slow down
its iterative increase. This ablation results of setting for low loss standard deviation θ, in Korean and
Arabic, are shown in Table 9. The results show that the setting may lead to some degradation in MRC,
but it shows improvements in other tasks, especially in translation. The overall improvement in average
performance also indicates that our heuristic design of the SPL algorithm is necessary.

Directly integrating continued fine-tuning with SPL does not improve performance. We also have
an ablation experiment to show that simple continuous fine-tuning with SPL (i.e. CL_SFT+SPL) does not
achieve better results. The results in Arabic are shown in Table 10. Moreover, using cross-lingual data,
such as PLUG or our chat-instruction data, SPL enhances performance. Our chat-instruction data, which
simulates a second-language acquisition through two-turn chats, achieves better results.

Arabic MRC Flores-200 x -> en Flores-200 en -> x xGeo xPeo AVG.

CL_SFT 41.19±0.9 18.41±0.77 5.7±0.1 9.33±1.43 1.3±0.52 15.19±0.12
CL_SFT+SPL 40.22±0.51 14.56±0.43 7.8±0.46 8.83±0.47 0.93±0.26 14.72±0.66
X-CIT w/ PLUG 40.89±1.26 12.11±0.79 8.00±0.66 8.33±0.62 1.11±0.45 14.09±0.49
X-CIT+SPL w/ PLUG 38.94±0.41 14.62±1.14 7.48±0.47 9±0.41 1.11±0.45 14.63±0.48
X-CIT 43.14±0.31 15.27±1.19 10.08±0.2 9.83±0.47 2.78±0.45 16.22±0.20
X-CIT+SPL 43.61±0.05 15.06±3.03 10.15±0.75 11.67±0.62 2.41±0.69 16.58±0.70

Table 10: The results of simple continuous fine-tuning with SPL and the PLUG data-form with SPL.
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E Detailed results of Generalization Experiments

The detailed results of Generalization experiments are shown in Table 11. On the Llama3 series models,
our method X-CIT+spl achieved improvement by 5.15%, and 8.21% in Arabic compared with 8B and 3B
base models, respectively. On Qwen2.5, which has undergone multilingual fine-tuning, our method still
yielded a slight performance improvement, although the gain decreased as the model size increased.

Methods Llama-3.1-8B Llama-3.2-3B Qwen2.5-7B Qwen2.5-1.5B Qwen2.5-14B

ar ko ar ko ar ko ar ar

base 40.95 38.68 29.13 29.65 39.38 38.67 24.75 45.94
CL_IT 39.86±2.33 40.69±0.07 35.38±0.22 30.51±0.25 38.31±0.98 37.10±0.39 24.89±0.54 44.10±0.25

X-CIT w/ PLUG 44.03±0.65 42.17±0.71 31.94±2.19 33.93±0.66 38.20±1.30 37.60±0.48 24.87±0.24 43.60±0.95
X-CIT 45.64±0.83 43.52±0.69 36.63±0.35 35.07±0.29 40.36±0.59 38.86±0.35 26.29±0.13 45.71±0.87
X-CIT+spl 46.10±0.32 44.31±0.28 37.34±0.50 36.10±0.29 40.52±0.32 39.69±0.41 26.60±0.44 46.20±0.33

Table 11: The results in vary scaling LLMs for Arabic and Korean.

F The Setting of Low-resource Scenarios

In this work, we define low-resource languages as those with minimal or no exposure to the model. For
instance, Korean (approximately 0.06%) and Arabic (<0.05% or unseen) are considered low-resource
languages for LLaMA2-7B. We also experimented with Hindi, which is not explicitly included in the
pre-training data of LLaMA2-7B. The Hindi Alpaca-translated data was sourced from the community§,
and the evaluation benchmark was obtained using the same method as for Arabic. For training, only 10%
of the target language data was used, with a seed value of 32. The results, shown in Table 12, demonstrate
that our method outperforms the baselines for low-resource language Hindi in Llama2-7B.

model MRC Flores-200 x-en Flores-200 en-x xGeo xPeo AVG.

Mix_IT 11.76 6.3 18.08 0.5 3.89 8.11
CL_IT 22.61 6.07 18.48 1.5 2.22 10.18
X-CIT w/ PLUG 17.98 9.5 17.47 2 1.67 9.72
X-CIT 23.11 10.14 19.01 2 3.33 11.52
X-CIT+SPL 23.36 10.03 20.93 2.5 2.78 11.92

Table 12: The average performance of objective evaluation benchmarks in Hindi.

To further strengthen the generalizability of our approach, we have now added experiments with
Japanese (results shown in Table13), demonstrating a +2.6% improvement with X-CITspl over Mix_SFT.

model MRC Flores-200 x-en Flores-200 en-x xGeo xPeo AVG.

mix_SFT 71.72 21.61 15.91 56.5 44.44 42.04
CL_SFT 72.21 19.55 20.41 46.5 46.11 40.96
X-CIT w/PLUG 74.53 15.05 21.06 60 44.44 43.02
X-CIT 74.64 12.4 21.78 60.5 48.33 43.53
X-CITSPL 77.94 14.15 22.43 62 46.67 44.64

Table 13: The average performance of objective evaluation benchmarks in Japanese.

G Data Ratio in Each Experiments

All data ratios (10% or 1%) refer to the proportion of data randomly sampled from the full translation
dataset (i.e., 5.2k or 520 samples). The remaining data is not used in the experiments, rather than being
replaced with alternative datasets. The comparison table outlining the composition of the training data
(using 10% as an example) in Table 15.

§https://huggingface.co/datasets/FreedomIntelligence/alpaca-gpt4-hindi
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You are evaluating a response that has been submitted for a particular task, using a specific set of standards. Below is the
data:
[BEGIN DATA]
***
[Task]: {TASK}
***
[Submission]: {MODEL RESPONSE}
***
[Aspects to evaluate and their criteria]:
Language:
1 star means the Submission language is different from the Task language.
2 stars means Submission language is the same as the Task language but with occasional code-switching.
3 starts means Submission language is the same as the Task language.
Fluency:
1 star means Many grammar errors.
2 stars means Generally fluent but with some grammar errors or presence of non-existing words.
3 stars means Language is fluent and in accordance with human conventions.
Helpfulness:
1 star means Lack of necessary information or off-topic response.
2 stars means Insufficient information to provide a complete answer.
3 stars means Information is correct and sufficient. Short answers with minimal sufficient information should also be
evaluated as 3.
Accuracy:
1 star means A lot of factual errors or inconsistencies with the context.
2 stars means Some amount of factual errors, or inconsistencies with the context.
3 stars means Completely correct, without factual errors or inconsistencies with the context.
Logical coherence:
1 star means Confused and full of logical flaws. 2 stars means Some logical issues present.
3 stars means Logically sound.
Harmlessness:
1 star means Violates ethics or is objectionable.
2 stars means Mostly compliant but with a few flaws.
3 stars means Fully compliant with public morality. ***
[END DATA]
Output a json dictionary with scores for 6 specified criteria.

Table 14: Evaluation prompt when using GPT-4 as the evaluator on AlpacaEval from Chirkova and Nikoulina
(2024).

H Case Study

To qualitatively analyze the impact of the LLM-as-a-judge benchmark, we report two cases (in Figure 8).
A comparison between X-CIT and X-CIT w/ PLUG on a Chinese example (partial response content
omitted) demonstrates that X-CIT generates more practical and detailed responses. We also include a
comparison case of SPL after full learning (i.e., training for 8 epochs) and after only 4 epochs, in order to
illustrate the impact of SPL on the LLM-as-a-judge benchmark. Such as the Arabic example, after full
training, the responses generated by the SPL method are notably more fluent and creative.
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Model English Monolingual Data Target Language Data Chat-Instruction Data PLUG Format Data

en_SFT 100% - - -
x_SFT - 100% - -
mix_SFT 100% 10% - -
CL_SFT* 10% 10% - -
X-CIT w/PLUG* - 10% - 10%
X-CIT* - 10% 10% -
X-CITSPL* - 10% 10% -

Table 15: The data ratio in Each Experiments. All models with signal "*" are based on en_SFT.

Question  我如何在切丁的时候避免我的手指受伤？(translation: How do I dice without slicing my finger)

X-CIT (A)  以下是一些避免切丁时受伤手指的建议：1. 戴保护手套：...。2. 将手指保持远离切割物体：.... 7. 注意周围环境：... (translation: Here are some tips to 
avoid injuring your fingers when dicing

X-CIT w/ PLUG (B)
 当你在切丁时，保持手指紧握切割器，并将其平滑地沿着切割线移动...。此外，...。如果你感觉手指受到压力或受伤，请停下来休息一下，然后继续
切割。(translation:  As you dice, keep your fingers firmly gripping the cutter and move it smoothly along the cut line.... Also,... If you feel any stress or injury to 
your fingers, stop and take a break before continuing to cut.)

GPT-4 Response

 Assistant A provided a detailed and comprehensive answer, offering specific suggestions to avoid injuring fingers while chopping, such as wearing protective 
gloves, using appropriate tools, maintaining a stable grip, avoiding overreaching, taking regular breaks to prevent fatigue, and keeping the work area tidy to 
reduce the risk of accidents. On the other hand, Assistant B's response was shorter, only mentioning a few methods to prevent injury, such as keeping the hands 
stable, avoiding unnecessary shaking, and taking a break when feeling uncomfortable. Although these are also practical suggestions, compared to Assistant A's 
answer, it was more detailed and thorough. Therefore, I would choose Assistant A's response as the superior answer. [[A]]

 Question  .ةأرملا مويل ةمهلم ،مامتهالل ةريثم ،ةكحضم ةديصق بتكا 
(translation: Write a funny, interesting, inspiring poem for Women's Day.)

X-CIT_spl (A)

 ةرتف لك يف ةفلتخم ةوق لمحن ،ةيرغم انحورو نيمحم ءارس يف نحن .ةأرمك هشيعن يذلا انموي هذهف ،ةعئارلا تازاجنإلاو ةردقملا فادهألا انققح دقل ،ةأرملا موي ،كل اًمامت  
 translation: Exactly for you, Women's Day, we have achieved the desired goals and wonderful) ةقرشملا حورلاو ةيوقلا تاقادصلا نم ةوق لمحن ،انتايح يف

accomplishments, this is our day that we live as women. We are in protected prosperity and our spirit is seductive, we carry a different strength in every period of 
our lives, we carry the strength of strong friendships and a bright spirit)

X-CIT_spl w/ 8 epoch (B)

لابحتيتلاةأرملانمn\n\.اهماهمواهتماودنمعفترمملاعيفعفترتيتلاةأرملاوn\ ،تقويأيفاهنعبتكأدقانأيتلاةعئارلاةأرملابًابحرم"n\n\ةأرملامويلةمهلموةكحضمةديصقيهاه 
هيدلدعتورييغتللةدئارنوكتيتلاةأرملابًابحرمn\ ،لوحتلاوومنلاولمألالثمتيتلاةأرملابًابحرمn\n\...،اهمالحأقيقحتيفأدبتيتلاةأرملاىلإ،عامتسالاوحتفتلاوفقوت

 "".مويلالبقتسميفكلذلثملكىلعقوفتتيتلاةأرملابًابحرمn\ ،تقويأيفاهنعبتكأدقانأيتلاةعئارلاةأرملابًابحرمn\n\.اهلبقتسمعمسا
(translation: Here's a funny and inspiring poem for Women's Day: "Hello to the amazing woman I could write about at any time, the woman who rises in a world 
soaring above her whirlpool and to-do list. From the woman who likes to stop and open up and listen, to the woman who begins to realize her dreams... Hello to 
the woman who represents hope, growth and transformation, Hello to the woman who is a pioneer of change and has the ear of her future. Hello to the amazing 

woman I could write about at any time, Hello to the woman who surpasses all such in today's future."

GPT-4 Response

 Assistant B's response is better. It provides a lighthearted and inspiring poem for International Women's Day, celebrating the strength, resilience, and 
achievements of women. The poem is creative, relevant, and captures the essence of the occasion, making it an excellent response to the user's request. Assistant 
A's response, on the other hand, lacks the humor and inspiration requested and does not effectively address the user's question. Additionally, the language used in 
Assistant A's response is not as fluent or natural as that of Assistant B, which affects its overall quality. Therefore, Assistant B's response is superior. [[B]]

Figure 8: The case study of the LLM-as-a-judge benchmark.
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