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Abstract

Nonverbal communication is integral to human
interaction, with gestures, facial expressions,
and body language conveying critical aspects
of intent and emotion. However, existing large
language models (LLMs) fail to effectively in-
corporate these nonverbal elements, limiting
their capacity to create fully immersive con-
versational experiences. We introduce MARS,
a multimodal language model designed to un-
derstand and generate nonverbal cues alongside
text, bridging this gap in conversational AI. Our
key innovation is VENUS, a large-scale dataset
comprising annotated videos with time-aligned
text, facial expressions, and body language.
Leveraging VENUS, we train MARS with a next-
token prediction objective, combining text with
vector-quantized nonverbal representations to
achieve multimodal understanding and genera-
tion within a unified framework. Based on vari-
ous analyses of the VENUS datasets, we validate
its substantial scale and high effectiveness. Our
quantitative and qualitative results demonstrate
that MARS successfully generates text and non-
verbal languages, corresponding to conversa-
tional input. Our dataset and code are available
at https://github.com/winston1214/nonverbal-
conversation.

1 Introduction

Human conversations are a complex interplay of
verbal and nonverbal-cues. Beyond spoken words,
facial expressions, gestures, and body language
play an integral role in conveying emotions, inten-
tions, and subtle meanings (Phutela, 2015). For
instance, “Do you know what time it is?” with a
neutral expression seeks information, while a frown
and crossed arms imply a rebuke. These nonverbal
elements are essential for creating rich and nuanced
interactions.

Recent advancements in large language mod-
els (LLMs) have resulted in conversational agents

*Equal contribution.

that closely resemble human interactions in written
form. However, these models are still predomi-
nantly limited to text-based communication, over-
looking the crucial role of nonverbal expressions.
Although recent works (Ng et al., 2022; Park et al.,
2024) have made strides in addressing this gap, they
have primarily concentrated on facial expressions,
neglecting the broader spectrum of body language,
which is essential for more realistic and immersive
communication.

A major challenge in developing multimodal
conversational agents lies in the lack of large-
scale training datasets. Existing video conversation
datasets are either limited in scale or lack anno-
tated nonverbal cues, as summarized in table 1.
To address this, we introduce VENUS (VidEo with
Nonverbal cues and Utterance Set), a novel corpus
designed for multimodal conversations with nonver-
bal annotations. VENUS consists of 10-minute clips
from dialogue-rich podcasts featuring two-person
interactions, carefully curated to ensure accurate
speaker diarization and motion tracking. Transcrip-
tions were generated using Speech-to-Text (STT)
models, while pseudo-3D motion parameters were
extracted and annotated separately for facial ex-
pressions and body gestures, providing a detailed
resource for aligning verbal and nonverbal cues.

Using VENUS, we develop MARS, Multimodal
lAnguage Model with nonveRbal-cueS, a multi-
modal conversational agent capable of understand-
ing and generating nonverbal cues alongside textual
context in dialogues. Nonverbal cues, such as facial
expressions and body movements, are represented
as discrete latent tokens, compressed using VQ-
VAE (Van Den Oord et al., 2017). Both textual and
nonverbal tokens are trained jointly with a unified
next-token prediction objective, enabling natural
modeling of multimodal dialogues within a single
framework.

We conduct extensive quantitative and qualita-
tive analyses to evaluate the contributions of VENUS
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and MARS to multimodal dialogue modeling. First,
we examine the distributional diversity of nonver-
bal elements in VENUS (section 4). Next, we assess
the trade-off between compression efficiency and
reconstruction quality of nonverbal token discretiz-
ers in section 5.2. Finally, we evaluate the multi-
modal conversational modeling capabilities of the
MARS LLM in section 5.3.

Our key contributions are as follows:

• Introduction of VENUS, the first large-scale
multimodal conversational dataset designed
for modeling nonverbal expressions.

• Development of MARS, a multimodal conversa-
tional agent leveraging VENUS to enable both
the understanding and generation of nonverbal
expressions within dialogue contexts.

• Comprehensive experimental validation,
demonstrating the effectiveness of multimodal
tokens in MARS for producing natural and
contextually aligned nonverbal expressions
alongside text, supported by user studies,
quantitative evaluations, and qualitative
analyses.

2 Related Works

Multimodal Large Language Models. Recent
studies have introduced models that combine vari-
ous modalities with large language models (LLMs),
extending their capabilities beyond text to in-
clude visual, auditory, and multimodal reason-
ing. Specifically, to enhance visual comprehen-
sion capabilities of LLMs, LLaVA (Liu et al.,
2024b), Qwen-VL (Bai et al., 2023) and MiniGPT-
4 (Chen et al., 2023) have successfully integrated
vision encoders into pre-trained LLMs. Further-
more, VideoChat (Li et al., 2023) and Video-
LLaMA (Zhang et al., 2023a) extend these ca-
pabilities to video understanding, while models
such as Unified-IO-2 (Lu et al., 2024) and GPT-4-
O (Achiam et al., 2023) expand the scope to include
auditory modalities, showing robust multimodal
reasoning across various inputs.
Learning Dialogue in Video. The importance
of analyzing conversational sentiment using mul-
timodal data (e.g., text, audio, and visual) from
videos has driven the development of numerous
datasets (Busso et al., 2008; Zadeh et al., 2018;
Poria et al., 2019). This has further spurred re-
search into generating and understanding dialogues

from videos, leveraging multimodal cues. For in-
stance, Champagne (Han et al., 2023) introduced
the YTD-18M dataset for dialogue generation us-
ing visual signals and LLMs, while MultiDia-
log (Park et al., 2024) combined audio and visual
data for generating conversations. Beyond text,
efforts like (Shafique et al., 2023) and Emotion-
CLIP (Zhang et al., 2023c) focus on recognizing
nonverbal cues, such as gestures and emotions. Ad-
ditionally, works like FurChat (Cherakara et al.,
2023) and (Lee et al., 2023) explore applying non-
verbal signals to enhance robotic facial expres-
sions and actions. However, existing conversational
datasets are often limited in scale or fail to include
detailed 3D facial and body language information
necessary for modeling nonverbal cues effectively.
Our VENUS dataset addresses these gaps by being
both large-scale and scalable, offering comprehen-
sive conversational data that integrates not only text
but also 3D facial expressions and body languages.
This enables a more nuanced understanding of non-
verbal cues and supports the generation of richer,
context-aware conversations.
Human Motion Synthesis in Conversation. Re-
cent advancements in 3D human reconstruc-
tion (Lin et al., 2023; Dwivedi et al., 2024; Daněček
et al., 2022) have significantly improved the qual-
ity of pseudo-ground truth data, providing a scal-
able and accessible alternative to traditional sensor-
based methods (Yi et al., 2023). Leveraging these
datasets, recent works (Wu et al., 2024; Lu et al.,
2023b) have focused on generating human motions
from text. Building on this progress, our work
utilizes pseudo labels derived from our VENUS,
which addresses the lack of large-scale dataset for
conversational settings. Unlike previous works
like (Ng et al., 2023, 2022), which primarily gener-
ate listener facial motions from text, our approach
extends to produce text, facial expressions, and
body language, aligned with conversational con-
text.

3 Learning Real-World Conversation
with Nonverbal-Cues

Previous studies have primarily focused on dia-
logue models and datasets that consider either text
alone or text along with facial expressions. How-
ever, real conversations rely on both facial expres-
sions and body gestures, utilizing the whole body
for effective communication. To address this gap,
we propose a dialogue model, MARS, for realistic
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Figure 1: Overview of VENUS collection pipeline. (a) and (b) use only audio information, while (c) and (d)
also utilize visual information. The blue boxes contain filtering criteria (F), and the yellow boxes pertain to the
processing steps (P). The final box shown in (d) represents the facial expression and body language combined and
represented using SMPL-X parameters. For more details, refer to the Section 3.1.

interactions. Since no existing dataset simultane-
ously aligns text, facial expressions, and body lan-
guage, we constructed a large-scale dataset, VENUS,
in which text, facial expressions, and body lan-
guage are aligned in the wild.

3.1 VENUS: Video with Nonverbal-Cues and
Utterance Set

In this section, we introduce our pipeline to col-
lect VENUS, which is outlined in Figure 1. Further
details can be found in Appendix A.
Data Collection and Filtering. We collected
YouTube podcast videos to learn nonverbal ex-
pressions included in conversations. Our goal was
to efficiently extract and collect extensive conver-
sation data from YouTube videos with only two
people conversing. We followed the filtering pro-
cess presented in (Han et al., 2023; Zellers et al.,
2021a). Initially, we screened thumbnails using a
lightweight detector model (Jocher et al., 2023) to
check for the presence of people, discarding videos
without any people in the thumbnails (F1). We
then removed the first minute to eliminate opening
music or other introductory content (P1). Subse-
quently, to maximize the extraction of information
from each video, we segmented each video into
10-minute segments and discarded any segments
shorter than 10 minutes (P1 & F2). In this step, we
set the frames per second (FPS) at 25.
Automatic Speech Recognition Transcripts. To
train the conversational model, we collected videos
featuring interactions between two speakers. We

only downloaded audio to collect and filter videos,
which is a cost-effective strategy. Using PyAn-
note (Bredin et al., 2020), we performed speech
diarization to identify videos with precisely two
speakers and discarded videos without exactly two
speakers (F3).

Next, we utilized the state-of-the-arts speech-to-
text model, WhisperX (Bain et al., 2023), to filter
and retain only English videos (F4). For these se-
lected videos, we leveraged WhisperX to generate
time-aligned speech transcripts (P2). By align-
ing the results predicted by the two models, we
extracted the speaker’s transcript at the word, se-
quence, and utterance levels.
Identifying Speakers in Video. To effectively ex-
tract verbal and nonverbal features from videos, it
is crucial to distinguish between the speaker and
the listener. To achieve this, we utilized the Light-
ASD (Liao et al., 2023) active speaker detection
model to identify speakers within the video (P3).
Additionally, we integrated a pretrained person de-
tector model (Jocher et al., 2023) to extract visual
features associated with each speaker. Here, we can
extract frames with the speaker and their bounding
box coordinates. If the number of predicted speaker
frames is less than the more number of predicted
words from WhisperX, we consider it to lack visual
variation and discard it (F5). Then, we cropped the
speaker’s image, f , using the detected speaker’s
bounding boxes. To handle cases where multiple
speakers are speaking simultaneously, we used a
lightweight model (Sandler et al., 2018) to extract
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the features of each speaker and align the speaker’s
images by comparing them with previous frames
based on cosine similarity (P4). The specific steps
of this process are detailed in the Appendix A.3.

To align the text and the speaker’s frames, we
segmented the speech into utterances in a video.
Then, using the time and FPS of the speaker’s
video, we calculate the set of frames for each ut-
terance, Uj = {f1, f2, · · · , fi}. Through this cal-
culation, we can construct a set of u utterances,
U = [U ]uj=1, for each video.
Extracting Nonverbal-Cues. We represent nonver-
bal cues as 3D parameters and, following the previ-
ous approaches (Lin et al., 2024; Liu et al., 2024a),
extract facial parameters using the FLAME (Li
et al., 2017) and body and hand gesture param-
eters using the SMPL-X (Pavlakos et al., 2019).
To achieve this, we used EMOCA-v2 (Lu et al.,
2023a) for facial expression and OSX (Lin et al.,
2023) for the whole body, extracting the param-
eters Mf

j = {mf
l }

|Uj |
l=1 where, mf

l ∈ R156 and

M b
j = {mb

l}
|Uj |
l=1 where, mb

l ∈ R179, respectively
(P5 & P6). Finally, we annotated the video with
nonverbal expressions, represented as 3D parame-
ters that are aligned with the text for each utterance.

3.2 Nonverbal-Cues Quantization
In this section, we introduces the tokenization pro-
cess for large-scale collected nonverbal expressions
from VENUS, as illustrated in Figure 2-(a).
Notation and Problem Setup. We denote the se-
quence parameters of face and body movement
at the utterance level as Mf

j = {mf
l }

|Uj |
l=1 and

M b
j = {mb

l}
|Uj |
l=1 , respectively. We represent the

facial components using the expression (ψ) and jaw
parameters (θjaw), resulting in |ψ|+|θjaw| = 53 di-
mensions per frame (i.e., 50 expression parameters
and 3 jaw pose parameters). Similarly, for body lan-
guage, we focus on the upper body (θubody), and the
left and right hands (θlhand, θrhand) This represen-
tation results in |θubody|+|θrhand|+|θlhand| = 117
dimensions per frame (i.e., 27 upper body parame-
ters and 45 left and right hand parameters, respec-
tively). These are expressed as a sequence of W
frames, and to ensure smoothness, we apply the
Savitzky–Golay method (Gorry, 1990) to the se-
quence. Therefore, the sequence of face and body
parameters follows:

M̂f
j = {m̂f

l }Wl=1 M̂ b
j = {m̂b

l}Wl=1, (1)

where m̂f
l = [ψl, θ

jaw
l ] ∈ RW×53 and m̂b

l =

[θubody, θrhand, θlhand] ∈ RW×117.

Architecture. To enable the conversational model,
specifically the LLM, to understand nonverbal cues,
we need to quantize continuous nonverbal features
into discrete tokens. To discrete tokenize nonverbal-
cues, we adopted the architecture based on VQ-
VAE (Van Den Oord et al., 2017; Razavi et al.,
2019), which consists of an encoder-quantizer-
decoder framework, to achieve this tokenization
of nonverbal cues. For the purposes of this expla-
nation, we will denote both input values m̂f

l and
m̂b
l as ml ∈ RW×d where d is the length of the

parameters, which can be either 53 or 117.
In this framework, the encoder, E, and de-

coder, D, are convolution networks with down-
sample ratio q, the quantizer contains a codebook
Z ∈ RK×C , where K denotes the codebook size
and C represents codebook dimension. In the en-
coder process, when the sequence vector m1:W is
input, it is downsampled to obtain latent vector z,
which follows:

E(m1:W ) → z ∈ RC×τ where, τ =
W

q
. (2)

Given the latent vector z and the quantizer Q(·;Z),
the quantized vector ẑ is determined as:

ẑ = Q(z;Z) = argmin
ek

∥z− ek∥22, (3)

where ek denotes the k-th embedding in the code-
book Z . To stabilize training, we employ expo-
nential moving averages (EMA) based codebook
updates following (Zhang et al., 2023b; Guo et al.,
2024). The quantized vector ẑ is the element se-
lected from the codebook that minimizes the recon-
struction error with respect to z. During decoder
process, the quantized latent vector ẑ undergoes up-
sampling process to reconstruct the original input
sequence vector m1:W .

D(ẑ) → m̂1:W ∈ Rd. (4)

Based on this architecture, we developed models
for facial and body language, designated as Face
VQ-VAE and Body VQ-VAE, respectively.
Training losses. We train Face VQ-VAE and
Body VQ-VAE with the following loss functions
Lface and Lbody, respectively:

Lface = Lvq + λfreconLfrecon + λfvelL
f
vel

Lbody = Lvq + λbreconLbrecon + λbvelLbvel
(5)
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Figure 2: System overview. Our system consists of two main parts: (a) the VQ-VAE model trained to quantize
nonverbal cues, and (b) a MARS trained to process quantized nonverbal expressions alongside text. The output
generated by the assistant is visualized by replacing both face and body parameters with SMPL-X.

For codebook learning, we use commitment loss,
Lvq, in the proposed (Van Den Oord et al., 2017).

Lvq = β||z− sg(ẑ)||22, (6)

where sg(·) is a stop gradient operation and β is
commitment loss weight.

First, we introduce Lfrecon for the training of
Face VQ-VAE. For training face features recon-
struction, the expression components ψl and jaw,
θjawl are separated, and each part is calculated, re-
spectively. It follows:

Lfrecon =λψreconL1(ψl, ψ̂l)

+ λjawreconL1(θ
jaw
l , θ̂jawl ).

(7)

Next, to preserve the temporal continuity and natu-
ral dynamics of facial motion, we design a facial
motion velocity loss, Lfvel, as follows:

Lfvel =L1(v(ψl), v(ψ̂l))

+ λθL1(v(θ
jaw
l ), v(θ̂jawl )).

(8)

Here, the function v(p) computes the temporal ve-
locity of a sequence p by taking the frame-wise
difference:

v(pl) = pl+1 − pl. (9)

Similarly, the training objectives for the Body
VQ-VAE, Lbrecon, is defined similarly to those used

in the Face VQ-VAE model. For motion recon-
struction, each component is calculated separately
as Lbrecon = ΣibodyL1(θ

i − θ̂i) where, body ∈
{ubody, rhand, lhand}.

3.3 MARS: Multimodal Language Model with
Nonverbal-Cues

Using the quantized codebooks from Face VQ-
VAE and Body VQ-VAE, the generation of text
and nonverbal-cues sequences relies on their re-
spective decoders and quantized representations.
Previous studies typically follow an auto-regressive
approach; however, this cannot be directly applied
when utilizing two codebooks. Inspired by meth-
ods proposed in studies that involve multiple code-
books (Lu et al., 2023b), we propose MARS, a mul-
timodal language model with nonverbal-cues, de-
signed to predict hierarchical discrete codes that
capture nonverbal cues effectively. This is illus-
trated Figure 2 - (b).
Training. The MARS is designed with the Trans-
former (Vaswani, 2017) architecture, where the
input consists of textual tokens paired with cor-
responding nonverbal tokens. The code indices
corresponding to the facial expression and body
language parameter sequences, M̂f

j and M̂ b
j , are

denoted as Xf = [xf1 ,x
f
2 , · · ·xfW/q] and Xb =

[xb1,x
b
2, · · ·xbW/q], respectively. Thus, the input to-

kens are composed of three elements: the word
tokens Xw = [xw1 ,x

w
2 , · · · ,xwl ], along with the
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Dataset # Dialogues # Turns Length (hrs) Text Video Nonverbal cues
IEMOCAP (Busso et al., 2008) 151 7, 333 12 ✓ ✓ ✗

CMU-MOSEI (Zadeh et al., 2018) 3, 228 - 65 ✓ ✓ ✗

MELD (Poria et al., 2019) 1, 433 13, 708 13.7 ✓ ✓ ✗

YTD-18M (Han et al., 2023) 18M 54M∗ 30K∗ ✓ ✓ ✗

MultiDialog (Park et al., 2024) 8, 733 187, 859 340 ✓ ✓ ✗

BEAT (Liu et al., 2022) ✗ ✗ 76 ✓ ✗ ✓

EMAGE (Liu et al., 2024a) ✗ ✗ 60 ✓ ✗ ✓

TalkShow (Yi et al., 2023) ✗ ✗ 27 ✗ ✗ ✓

Ours (VENUS) 89, 459 1, 114, 328 14, 910 ✓ ✓ ✓

Table 1: Comparison of the VENUS dataset with the previous conversational and 3D gesture dataset. The first
block represents the conversation dataset, while the second block represents the gesture dataset. “*” represents an
estimated value. For # Turns, it was calculated by multiplying the average number of utterances per video 3 by the
number of videos. The Length (hrs) was considered to be a maximum of 1 minute per video for the calculations.
Nonverbal cues indicate whether 3D data or any other annotations for facial expressions or body language are
provided. Best and second are highlighted. Our dataset is the largest conversational dataset with annotations of
nonverbal cues.

facial and body code indices, Xf and Xb.
Given that we input and generate nonverbal-cues

corresponding to each word, the input sequences,
T , are organized to align with their respective
timestamps.

T = {x | xi ∈
⋃

c

Xc, c ∈ {w, f, b}}, (10)

where the sequence is ordered as T =
[xw1 ,x

f
1 ,x

b
1,x

w
2 , · · · ].

Therefore, the word, face, and body token code
indices prediction can be formulated as an auto-
regressive prediction problem:

p(T ) =
l∏

j=1

pθ(x
w
j | T<j)

W/q∏

k=1

[
pθ(x

f
k | T<k) · pθ(xbk | T<k)

]
,

(11)

where θ represents the trainable parameters of the
model. In this formulation, the word tokens are
predicted first, followed by the face and body token
indices.

4 VENUS Dataset Analysis

We conducted data analysis to demonstrate the qual-
ity of the VENUS dataset. Additional analysis results
can be found in the Appendix A.
Statistic. The summary statistics of our dataset
and comparison with statistics from other conversa-
tional and 3D gesture datasets are shown in Table 2

Total number of collected channels 869
Total number of collected videos 27, 128
Total number of collected nonverbal expressions 1B
Total number of dialogues 89, 459
Total number of turns 1, 114, 328
Total number of sentences 7, 118, 654
Total of unique words 527, 270
Average number of turns per dialogue 21
Average length of utterances per dialogue in words 170.829
Average length of utterances per dialogue in seconds 55.305
Average number of nonverbal expressions per utterance in frames 547

Table 2: Summary of VENUS statistics. The “video”
refers to the video before it is segmented into 10-minute
intervals, while “dialogues” refers to the conversations
extracted from the videos segmented into 10-minute
intervals.

and Table 1, respectively. As shown in Table 2, our
dataset is large-scale, featuring lengthy utterances
with numerous words and rich nonverbal expres-
sions. Each conversation averages 21 turns, which
supports effective training for multi-turn dialogues.
Table 1 highlights that, compared to existing video-
based multi-modal dialogue datasets, our dataset
is the first to include annotations for nonverbal ex-
pressions. While YTD-18M (Han et al., 2023) has
more videos, its conversations are segmented into
intervals of up to one minute, potentially hindering
context comprehension. In contrast, VENUS despite
having fewer videos, includes longer conversations,
making it better suited for understanding extended
dialogues. Furthermore, our dataset stands out as
the largest-scale 3D annotated dataset when com-
pared to previous 3D gesture datasets.
Distribution of Nonverbal Cues. To analyze
the diversity of nonverbal expressions in our
dataset, we sampled 10 random frames per video
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Face Body

VMSE (10−1) ↓ LVD (10−3)↓ w-VL2 (10−7) ↓ Diversity ↑ Variation ↑ VMSE ↓ LVD (10−1)↓ w-VL2 (10−4) ↓ Diversity ↑ Variation (10−1) ↑
GT 9.3323 0.8760 2.4189 0.2803

(Ng et al., 2023) 0.5787 0.4422 0.3832 7.5866 0.5873 2.6424 0.1268 0.4338 2.0151 0.1985
(Guo et al., 2024) 0.5474 0.4160 0.3429 7.7693 0.6253 2.0608 0.0994 0.2100 1.9934 0.1951

Ours 0.5106 0.4020 0.2339 7.8430 0.6236 1.9946 0.0962 0.2027 1.9998 0.1956

Lrecon

L1 0.5106 0.4020 0.2339 7.8430 0.6236 1.9946 0.0962 0.2027 1.9998 0.1956
L2 0.5471 0.4124 0.3630 6.3334 0.6425 2.3384 0.1139 0.3078 1.9732 0.1879

smooth L1 0.4106 0.4034 0.3313 6.3874 0.6052 2.3210 0.1128 0.2787 2.0603 0.2025

Dim

8 0.5106 0.4020 0.2339 7.8430 0.6236 2.0596 0.0995 0.2280 1.9183 0.1794
16 0.5217 0.4100 0.2582 7.6855 0.6023 1.9946 0.0962 0.2027 1.9998 0.1956
32 0.5294 0.4150 0.2439 7.6986 0.6006 2.1199 0.1022 0.2192 1.9838 0.1926
64 0.5152 0.4071 0.2360 7.6203 0.5890 2.1577 0.1037 0.2312 1.9947 0.1942
128 0.5222 0.4153 0.2314 7.7554 0.6098 2.1427 0.1037 0.2244 1.9633 0.1876
256 0.5296 0.4183 0.2443 7.8247 0.6212 2.1410 0.1034 0.2387 1.9936 0.1939

Size

64 0.6628 0.5181 0.4472 6.6604 0.4566 4.2495 0.1993 0.8084 0.7093 0.0306
128 0.5770 0.4514 0.3549 7.3002 0.5458 2.1905 0.1054 0.2670 1.9114 0.1801
256 0.5313 0.4184 0.2583 7.6053 0.5890 2.074 0.1003 0.2119 1.9663 0.1889
512 0.5106 0.4020 0.2339 7.8430 0.6236 1.9946 0.0962 0.2027 1.9998 0.1956

Table 3: Experimental results on Face VQ-VAE and Body VQ-VAE. “Lrecon” represents Lf
recon and Lb

recon,
“Dim” refers to the codebook embedding dimension, and “size” indicates the codebook size. Our key results are
highlighted. The Face VQ-VAE achieved the best performance with L1 loss, an embedding dimension of 8, and a
codebook size of 512, while the Body VQ-VAE performed best with L1 loss, an embedding dimension of 16, and
the same codebook size.

(a) Distribution of facial expression (b) Distribution of body language

Figure 3: Visualization of the distribution of
nonverbal-cues. (a) Facial expression embeddings are
well-clustered despite the absence of emotion class la-
bels, capturing meaningful emotion patterns. (b) Body
language embeddings are similarly well-clustered, rep-
resenting common conversational gestures that enhance
communication or naturally occur during dialogue. Rep-
resentative examples are provided for each cluster.

from approximately 1, 000 videos and applied T-
SNE (Van der Maaten and Hinton, 2008) for di-
mensionality reduction. In Figure 3, we display
the results by creating 7 clusters for facial expres-
sions and 8 clusters for body languages using DB-
SCAN (Ester et al., 1996).

Figure 3-(a) displays the distribution of facial
expressions, covering both the ψ and θjaw. We
can observe a variety of emotions, despite the ab-
sence of emotion labels. Notably, the blue and
green points appeared the most since podcast con-
versations target to entertain or inform the view-
ers, leading to a larger portion of neutral and pos-
itive expressions. In Figure 3-(b) the distribution
of body language θubody, θlhand and θrhand is dis-
played. The most common body language observed
involves arms in a relaxed, lowered position, which

typically reflects a conversational attitude. In addi-
tion, gestures that enhance or clarify the speaker’s
message, such as resting the chin on the hand or ex-
pressive hand movements, were frequently noted.

5 Experiments

5.1 Experiment Setup

We trained and evaluated our model using a subset
of the VENUS dataset in our experiments Both
VQ-VAE and MARS were trained on 3, 924 videos
and 69, 412 utterances. For evaluation, VQ-VAE
used the full test set consisting of 997 videos and
30, 390 utterances, whereas MARS was evaluated on
a subset of 1, 000 utterances sampled from the test
set.

5.2 Nonverbal-cues Quantization

Evaluation Metric. We quantitatively evaluate
how realistically facial expressions and body lan-
guages have been quantized, based on evaluation
methods proposed in previous studies (Ng et al.,
2022, 2023; Liu et al., 2024a). To this end, we
adopt five metrics to assess the realism and diver-
sity of facial expressions and body language. To
evaluate realism, we use VMSE, LVD, and win-
dow Vertex L2, while diversity is assessed using
diversity and variance. Detailed explanations of
these metrics are provided in the Appendix B.2.
Results. We conducted an ablation study to evalu-
ate our Face and Body VQ-VAE models, varying
one component at a time (Table 3). Based on the
results, we chose L1 loss for the Face VQ-VAE and
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Text Nonverbal

PPL ↓ BERT ↑ METEOR ↑ NLL-F ↓ NLL-B ↓

LLaMA 1B
zero-shot 5427.1 0.811 0.110 16.232 17.039
MARS 1665.8 0.834 0.130 8.676 5.330

Qwen 1.5B
zero-shot 3315.5 0.823 0.116 15.019 15.911
MARS 2990.0 0.839 0.115 8.812 6.144

LLaMA 3B
zero-shot 5477.0 0.818 0.136 16.504 17.574
MARS 926.9 0.835 0.133 8.057 5.325

Qwen 3B
zero-shot 56781.1 0.811 0.131 20.850 20.874
MARS 800.0 0.839 0.123 7.295 4.666

Table 4: Quantitative results of MARS. ↓ means a
lower score is better, ↑ means a higher score is bet-
ter. Here, “NLL-F” and “NLL-B” denote the negative
log-likelihood (NLL) for face tokens and body tokens,
respectively. MARS demonstrates superior precision in
generating nonverbal cues, highlighting its effectiveness
in producing both text and nonverbal expressions.

L1 loss for the Body VQ-VAE, with embedding
dimensions of 8 and 16, respectively. Both used a
codebook size of 512. These settings outperformed
previous works (Ng et al., 2023; Guo et al., 2024).

5.3 Semantic Evaluation for MARS

Training Settings. We employ LLaMA 3.2 In-
struct (Meta, 2024) and Qwen 2.5 Instruct (Yang
et al., 2024) as the large language model. To clarify
the model’s role, we incorporated a system prompt
that facilitates effective generation of both non-
verbal and textual tokens. Additionally, since the
nonverbal token is added as a special token, we per-
formed supervised fine-tuning to ensure model’s
understanding of them. Further details can be
found in the Appendix C.
Evaluation metrics. To evaluate MARS, we sepa-
rately assess the quality of its text and nonverbal
token outputs, as ensuring accurate alignment be-
tween these token types is inherently challenging.
First, we use Perplexity (PPL) as a general measure
for both text and nonverbal tokens. For text tokens,
we use BERT-score and METEOR as evaluation
metrics, while for nonverbal tokens, we rely on
Negative log-likelihood (NLL).
Quantitative Results. We compared the quanti-
tative performance of the LLM (Meta, 2024) and
our MARS model. As shown in Table 4, the con-
ventional LLM model showed limitations in un-
derstanding special tokens containing nonverbal
information, failing to generate them properly. In
contrast, MARS, which was trained by interleaving
nonverbal tokens within the textual input, achieved
the lowest perplexity and the highest BERTScore
across all model sizes, indicating its superior ability
to generate semantically coherent dialogues. Fur-

It was all last minute as well because when I sent you the text,

it was just the day after or it was the same day?

Day after, right. And that was about 14 days ago,

 and I'm still sort of trying to remember what day it was.

Generated 

Facial 

expression

Input Text

Generated 

Text

Generated 

Body 

language

Frames

GT Text Day after, right.

Figure 4: Qualitative results for MARS. Qualitative re-
sults showcasing inputs and outputs of our MARS model.
Inputs include the user’s text, face, and body language,
while MARS outputs corresponding text, facial expres-
sions, and body language. Underlined text indicates
where MARS matches the ground truth (GT). Moreover,
MARS produces improved text compared to GT and also
successfully generates corresponding facial and body
language aligned with the context.

thermore, the significantly lower NLL scores for
nonverbal cues demonstrate that MARS successfully
captures and generates nonverbal behaviors. These
results not only validate the effectiveness of our
approach in handling multimodal signals but also
highlight the scalability of MARS, as its performance
improves with larger model sizes in both textual
and nonverbal generation tasks.
Qualitative Results. We use qualitative results to
assess the effectiveness of our model in generating
the listener’s text and nonverbal expressions. As
shown in Figure 4, our MARS not only aligns with
the ground-truth (GT) but also produces more con-
textually enriched text and corresponding face and
body languages. This demonstrates the qualitative
effectiveness of our model in generating richer and
more expressive listener responses.

6 Conclusion

In this work, we introduce VENUS, a video-based
multimodal conversation dataset designed to un-
derstand and generate both text and nonverbal ex-
pressions, and present MARS. This language model
can produce both dialogue and corresponding non-
verbal behaviors. The VENUS dataset is built from
YouTube videos, including real conversational text
and the accompanying nonverbal cues (such as fa-
cial expressions and body language) annotated in
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3D parameters. Using VENUS, our MARS model
learns to align and generate both textual and non-
verbal elements, resulting in more engaging and
natural interactions. We believe that our VENUS
dataset and MARS model will support a wide range
of applications, such as virtual humans and gaming,
by enabling the production of nonverbal behaviors
in 3D.

7 Limitations

This study explores the development of a large
language model (LLM) for generating nonverbal
cues nameed MARS, supported by a custom dataset
named VENUS designed to capture diverse nonver-
bal communication patterns. While the proposed
approach demonstrates promising results, certain
limitations remain that warrant further exploration.

First, the VENUS dataset utilized in this research
is primarily curated from the Podcast channel,
which may limit the diversity of nonverbal expres-
sion patterns in the data (e.g., crying or angry ex-
pressions). Furthermore, pseudo-labeling was em-
ployed in the dataset, which, while effective, could
introduce potential inaccuracies that require fur-
ther refinement. Additionally, not all data within
the VENUS dataset was utilized, leaving room for
broader exploration in future work. Second, the
evaluation metrics used in this study, though ef-
fective for assessing initial performance, may not
fully capture the nonverbal communication. More
sophisticated and comprehensive metrics are nec-
essary to evaluate the system’s performance in real-
world scenarios.

Looking ahead, future work will aim to address
these limitations by incorporating a wider range of
nonverbal modalities, such as vocal expressions, to
enrich the dataset and enhance the robustness of
the model. Moreover, we plan to develop advanced
evaluation metrics that better reflect the complexity
of nonverbal communication. These improvements
will further generalize and validate the applicability
of our approach across diverse datasets and scenar-
ios.

8 Ethical Considerations

In this paper, we introduce a large-scale multimodal
conversational dataset named VENUS derived from
publicly available YouTube videos. The dataset
is designed to advance research in real-world con-
versational understanding by including frames, re-
constructed facial expressions and body language

of the interlocutors. While this dataset provides
valuable insights for understanding conversational
behavior, it may raise privacy concerns as it cap-
tures the visual and auditory cues of individuals. To
address these concerns, we follow ethical practices
adopted by prior works (Zellers et al., 2021b, 2022;
Han et al., 2023) and release only the video IDs in-
stead of the raw video frames. Additionally, the re-
constructed face and body motions are represented
as template meshes, ensuring anonymization and
preventing direct identification of individuals. To
further protect user privacy, future directions may
include further anonymizing faces and improving
methods for deidentifying personal information.
We remain committed to respecting user privacy
and ensuring compliance with ethical standards in
dataset creation and usage.
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A Details of VENUS Dataset Collection

In this section, we provide more details about
VENUS that are not included in the main paper.

A.1 Safety Filtering
We utilized WildGuard (Han et al., 2024) to filter
unsafe contents in video transcriptions. WildGuard
assesses the risk level(“harmful” or “unharmful”)
and the parsing error on a single-turn basis for
both prompts and responses. To maintain conver-
sational context while applying safety filtering, we
transformed video transcriptions into single-turn
segments using a sliding-window approach. Our
safety filtering strategies are as follows: 1) An ut-
terance is flagged as harmful if it is identified as
such when considering both the prompt and the
corresponding response. 2) An utterance is also
deemed harmful if it is classified as harmful inde-
pendently, whether it appears as a prompt or as a
response, within a single turn. 3) If the cumulative
duration of harmful utterances within a video ex-
ceeds three minutes, the entire video is discarded to
ensure safety compliance. By implementing these
measures, we ensure robust safety filtering while
preserving as much video information as possible.

A.2 Video Collection Strategy
To collect videos centered on conversations, we
first used the YouTube API 1 to collect channel
IDs that include the word “Podcast” in their chan-
nel names. After identifying these channels, we
retrieved up to 300 videos per channel that were
created between January 1, 2015, and December
31, 2023. Due to the inherent limitations of the
YouTube API, duplicate videos were occasionally
retrieved during this process. To ensure the quality
of the dataset, we removed all duplicates, retaining
only unique videos.

A.3 Re-annotate Speaker
To align the text by the speaker with nonverbal ex-
pressions, we segmented the speech into individual
utterances in a video, U = [Uj ]

n
j=1 where n is the

number of utterances in a video. Next, we used
the time of the utterances, T = [(tstart

j , tend
j )]nj=1,

extracted from WhisperX and the FPS to calculate
the start and end frames of each utterance. Then,
we cropped the speaker’s image to focus on the seg-
ments where the speaker is actively speaking. To
handle speaker alignment, we used a lightweight

1https://developers.google.com/youtube

Algorithm 1 Cropping and Aligning Speaker
Input: Frames with the speaker, F = [fi]

m
i=1, speaker’s

bounding box coordinates, B, and utterance start and end
time, T .
Output: Utterance frames set without duplicates,
Uj

1: (sj , ej)← ⌊(tstart
j , tend

j )× FPS⌋
2: Fj ← F [sj : ej ]
3: U ′

j ← []
4: for all f in Fj do
5: u′

j,k ← f [xj
top : xj

bottom, y
j
top : yj

bottom]

6: Append u′
j,k to U ′

j

7: end for
8: Uj ← {}
9: uprev ← None

10: for each cropped frame u′
j,k in U ′

j do
11: if k = 2 then
12: ep ← MobileNet(uprev)
13: ej,1 ← MobileNet(u′

j,1)
14: ej,2 ← MobileNet(u′

j,2)
15: sim← argmax(cos(ej,1, ep), cos(ej,2, ep))
16: uj ← u′

j,sim

17: else
18: uj ← u′

j,1

19: end if
20: Append uj to Uj

21: uprev ← uj

22: end for
23: return Uj

model (Sandler et al., 2018) to extract the features
of the speaker’s cropped images and re-aligned
them by comparing with previous frames based on
cosine similarity. This is shown in Algorithm 1.

A.4 Batching for Nonverbal Cue Annotation
To efficiently extract 3D information from a large
corpus of speaker images, batch processing is es-
sential. However, since we detect and crop speakers
from video frames using the detection model, the
resulting images I ∈ Rh×w inherently vary in di-
mensions due to differences in the bounding boxes,
where h and w denote height and width of each
image, respectively.

To address the challenge of variable image sizes
and enable batch inference, we propose a resizing
and padding strategy that preserves the aspect ratio
of each speaker image while standardizing their
dimensions. The main idea is to scale each image
such that its longest side matches a predetermined
size S, followed by padding to create a square im-
age of dimensions S × S. Firstly, we compute the
scaling factor s based on the original dimensions
of the image:

s =
S

max(w, h)
(12)

This scaling factor ensures that the largest di-
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Figure 5: The diversity of topics of videos in VENUS,
displayed as a word cloud. Larger words indicate more
videos from that topic.

mension of the image is resized to S, maintaining
the asepct ratio. The image is then resized to new
dimensions h′ = s× h and w′ = s× w.

After resizing, we create a zero-initialized square
image Ipad ∈ RS×S , and resized image Iresized ∈
Rh′×w′

is then placed at the center of Ipad to ensure
spatial consistency and preserve central features of
the speaker. The offsets for centering are calculated
as :

δh =

⌊
S − h′

2

⌋
, δw =

⌊
S − w′

2

⌋
(13)

The padded image Ipad is then defined as:

Ipad(i, j)

=




Ir(i− δh, j − δw) if

i ∈
[
δh, δh + h′

)

j ∈
[
δw, δw + w′)

0 otherwise.
(14)

This approach maintains the aspect ratio of the
original images and ensures that all images have a
uniform size, facilitating efficient batch processing.

A.5 Topic analysis
We visualized the titles of videos from the entire
dataset in Figure 5 as a Venn-style word cloud (Cop-
persmith and Kelly, 2014), with the size propor-
tional to the number of videos gathered for that
topic. The most frequent 3 topics are interview
(6.64%), life (4.51%), and recap (4.3%). As these
proportions indicate, the topics of the VENUS videos
are almost uniformly distributed, covering a wide
range of conversational topics.

A.6 Text-Based Sentiment Analysis
For data analysis, we automatically predicted the
sentiment (neutral, positive, negative) of the text us-
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Figure 6: Word cloud for text-based sentiment analy-
sis. It illustrates changes in facial expressions and body
language when each word carries a positive or negative
context.

ing a Roberta-based sentiment classifier (Camacho-
Collados et al., 2022). In the sentiment analy-
sis conducted with VENUS at the sentence level,
the results showed that 63.79% of the sentences
were classified as neutral, 17.36% as positive, and
18.85% as negative. Based on the sentiment anal-
ysis results at the sentence level, we conducted a
frequency analysis accordingly.

These results were visualized using a word cloud,
as illustrated in Figure 6. First, an analysis of the
words reveals positive and negative associations
with certain professions and religions, with “sol-
dier” appearing in both positive and negative con-
texts. Interestingly, in real-world conversations,
“Friday” is often associated with positive sentiment,
while “Monday” is linked to negative sentiment.

Also, Figure 6 shows the nonverbal cues associ-
ated with words such as “think” and “well”, com-
paring their usage in positive versus negative senti-
ment contexts. For words like “think” and “well”,
sentiments are not prominently reflected in body
language. However, these words often convey a
thoughtful or pondering demeanor. Notably, facial
expressions tend to include frowning when spoken
with negative sentiments. We can infer from these
results that nonverbal cues are closely related to
sentiment, and leveraging these expressions can
enhance the understanding and interpretation of
conversations.

A.7 VENUS Annotation

In this section, we describe the annotation structure
of the VENUS dataset, as illustrated in Figure 9.

The primary keys in VENUS include “Channel
ID”, “Video ID”, “Duration”, “FPS”, “Segment
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ID”, “Conversation”, “Facial expression”, “Body
language”, “Speaker bbox” and “Harmful utterance
ID”. Among these, “Conversation” key contains the
complete conversation information for a specific
video segment, encompassing all data related to
utterances. Within “Conversation” key, the “Words”
key provides time-aligned word information and
their corresponding timestamps for each utterance,
ensuring temporal alignment of words within the ut-
terance. “Facial expression” and “Body language”
keys represent all nonverbal cue features within
the video segment. These nonverbal features are
provided alongside utterance IDs and frame infor-
mation to enable mapping between utterances and
features. Features of “Facial expression” include
a total of 153 features, encompassing information
about facial shape, expressions, and jaw. Mean-
while, features of “Body language” comprises 179
features, which include details about the root of the
body, upper and lower body, left and right hands,
jaw, and overall body shape. “Speaker bbox” rep-
resents the results of active speaker detection, pro-
viding information about the speaker location in
each frame. This information is expressed in the
form of coordinates [xtop, ytop, xbottom, ybottom], ac-
curately indicating the detected speaker’s region
in every frame. Finally, we introduce the “Harm-
ful utterance ID” key to mark utterances identified
as harmful by our safety strategy. If an utterance
ID is included under this key, it does not appear
in the “Conversation” key. This approach allows
us to preserve the maximum amount of video data
by retaining all safe utterances while filtering out
those deemed harmful, thereby maintaining both
ethical standards and dataset integrity.

A.8 VENUS Visualization
We present data visualizations to demonstrate the
high quality of the annotated nonverbal expressions
in our dataset. For visualization, we converted
the FLAME parameters from EMOCA-v2 to the
SMPL-X parameters. As shown in Figure 8, VENUS
effectively captures key nonverbal expressions, in-
cluding facial expressions and body language.

In the first video of Figure 8, the phrase “get
out” is accompanied by a gesture resembling throw-
ing something away from the speaker. In the sec-
ond video, the word “quote” is articulated with a
hand gesture resembling air quotes, emphasizing
the quoted content in the speech. These represent
the emphasis and intended meaning that nonver-
bal expressions add to verbal interactions. VENUS
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Figure 7: Overview of VQ-VAE architecture. Encoder
(left) quantizes the speaker’s noverbal-cues, while the
decoder (right) projcets the learned discrete codebook
tokens back into continuous nonverbal-cues sequence
space. The downsampling block consists of 1D convolu-
tional layers with a stride of 2. Both the Face VQ-VAE
and Body VQ-VAE follow the same architecture.

annotates these expressions, ensuring a rich rep-
resentation of the subtle, yet essential, aspects of
human interaction.

B Details of VQ-VAE

We trained a VQ-VAE to quantize facial expres-
sions and body language patches, which are uti-
lized as the input and output for the predictor model.
Our Face VQ-VAE and Body VQ-VAE were con-
structed based on the structure proposed by (Guo
et al., 2024), with the internal detailed illustrations
provided in Figure 7.

B.1 Implementation Details

For our VQ-VAE, we use a codebook size of 512
and set the downsampling factor q = 8 in the en-
coder. When training, we set the sequence length,
W = 512, to effectively learn utterance-level se-
quences, with shorter utterances padded with ze-
ros. The learning rate is initialized at 1e− 4, and
the model is trained for 100 epochs. We set 10%
warmup steps and apply a learning rate decay of
0.1 after 50% steps and 0.01 after 75% steps. For
regularization and optimization, we employ EMA
with a decay rate of 0.99, L2 regularization with
weight decay of 0.1, gradient clipping with a maxi-
mum norm of 1.0, and gradient accumulation over
4 steps. We also apply L2 normalization to the
codebook vectors. The optimal model checkpoint
is selected based on the validation reconstruction
loss.

When codebook learning in Lvq, we set commit-
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ment loss weight, β = 0.02. For the Face VQ-VAE,
the the reconstruction loss weight λfrecon is set to
1, with λψrecon = 1 and λjawrecon = 5, determined
empirically. And the face velocity loss weight λfvel
is set to 0.5, with λθ = 5 is also empirically chosen.
Similarly, for the Body VQ-VAE, the reconstruc-
tion loss weight and velocity loss weight are set to
λbrecon = 1 and λbvel = 0.5, respectively.

B.2 Evaluation Metrics
To evaluate the performance of the VQ-VAE, we
utilize several metrics to assess both realism and
diversity. These evaluation metrics are inspired by
prior works (Ng et al., 2023; Zhang et al., 2023b;
Liu et al., 2024a) We denote ground-truth motion
features and generated motion features as mgt, and
mpred. For realism, we calculate the window Ver-
tex L2, VMSE, and LVD while for diversity, we
calculate the diversity and variance.
VMSE. This metric evaluates the reconstruction
error by calculating the mean squared difference
between predicted and ground truth vertices in 3D
space, offering an intuitive and precise measure of
geometric accuracy. We denote the function that
maps to the vertex space as V(·) and the VMSE is
defined as follows:

VMSE =
1

N

N∑

i=1

||V(mpred,i)−V(mgt,i)||22.

(15)
LVD. This is a metric similar to VMSE, measuring
the L1 distance in the vertex space, and it is defined
as follows:

LVD =
1

N

N∑

i=1

||V(mpred,i)−V(mgt,i)||1. (16)

Window Vertex L2. This metric evaluates the tem-
poral consistency of predicted motion by comput-
ing the L2 distance between the averaged ground-
truth and predicted vertex positions over sliding
windows:

wV L2 =
1

W

W∑

i=1

∥∥∥∥∥∥
1

S

S∑

j=1

V
(i,j)
gt − 1

S

S∑

j=1

V
(i,j)
pred

∥∥∥∥∥∥

2

2
(17)

Diversity. This metric quantifies the variability of
motion parameters by assessing the spatial distance
between selected pairs, providing the diversity of
motion representations. This follows as:

Diversity =
1

K

K∑

k=1

∥mik −mjk∥22 , (18)

where K represents the number of randomly se-
lected pairs, while mik and mjk denote the motion
parameters from the first and second indices, re-
spectively. Here, we randomly selected 1,000 pairs
(K = 1, 000) and computed the diversity by repeat-
ing this process 10 times.
Variance. This metric quantifies the average tem-
poral variability of motion parameters. Given a
motion sequence with T frames and D parameters,
where md ∈ RT represents the trajectory of the
d-th parameter over time and m̄d is its mean, the
variance is computed as the mean of per-parameter
temporal variances:

Variance =
1

D

D∑

d=1

1

T

T∑

t=1

(md,t − m̄d)
2 (19)

C Details of MARS

C.1 Details
We trained MARS using the LLaMA 3.2-Instruct and
Qwen 2.5-Instruct formats and incorporated a sys-
tem prompt to enhance the model’s understanding
of nonverbal tokens. This is presented in Table 5.
For supervised fine-tuning, we set the batch size
per GPU at 8 and the maximum sequence length
at 4, 096, and trained over a total of 50 epochs.
During inference, we set the maximum sequence
length to 512.

C.2 Evaluation Metrics
BERT-score (Zhang et al., 2019) evaluates the sim-
ilarity between generated text and reference text at
a deeper semantic level. It leverages contextual em-
beddings derived from pre-trained BERT models to
compare candidate and reference tokens. By com-
puting F1 scores based on the cosine similarity of
these embeddings, BERTScore provides a nuanced
and robust assessment of the semantic alignment
and quality of the generated outputs.
Negative Log-Likelihood (NLL) (Bengio et al.,
2000) is a function that guides the training of prob-
abilistic models by maximizing the likelihood of
the observed data. It measures the discrepancy be-
tween the probability distribution predicted by the
model and the actual observed data, thereby eval-
uating how well the model approximates the true
data distribution.
PPL (Bengio et al., 2000), or perplexity, quantifies
how effectively a language model predicts the next
word in a sequence. Lower perplexity values sig-
nify greater confidence and accuracy in the model’s
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predictions, indicating higher quality in generating
coherent and contextually appropriate outputs.
METEOR (Banerjee and Lavie, 2005), short for
Metric for Evaluation of Translation with Explicit
Ordering, evaluates the quality of generated text
by aligning it with the reference text. It incorpo-
rates factors like precision, recall, and semantic
similarities, such as synonyms and paraphrasing,
to provide a more nuanced evaluation.

System Prompt
You are a helpful assistant. Text includes
nonverbal tokens <FACE_*>, <BODY_*> interleaved
with language. Help interpret meaning while
considering these cues.

Input Format
{
"role": ["user" / "assistant"],
"name": [role_ID],
"content": "Text interleaved with special tokens
<FACE_TOKEN_ID> (facial cues), <BODY_TOKEN_ID>
(body languages)."
}

Examples
{
"role": "user",
"name": "crXEd-NEsS8_000_9"
"content": "Yeah, <FACE_259><BODY_172> do you
have one of those little <FACE_12> <BODY_359>
things in your car?"
}

{
"role": "assistant",
"name": "crXEd-NEsS8_000_10"
"content": "I have
<FACE_12><BODY_239><FACE_251><BODY_492> one."
}

Table 5: Input for training MARS
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Text

Youtube ID: sHWtnfnmM6o  (00:52:15 ~ 00:52:16)

Video 

frames

time

It’s like okay, get out of here.

Body

language

Facial

expression

Text

Youtube ID: s73z0TJGOqs  (00:52:07 ~ 00:52:10)

Video 

frames

time

This is quote, healthy person York virus.

Body

language

a in New who died fromthe

Facial

expression

Text

Youtube ID: KTuZxA9FDWc  (00:34:48 ~ 00:34:51)

Video 

frames

time

our

Body

language

Facial

expression

This life.is

Text

Youtube ID: WOpEaklhS8w  (00:11:04 ~ 00:11:09)

Video 

frames

time

We had an employee   that’s ···    ···      ··· that would          miss a deadline.

Body

language

Facial

expression

Figure 8: Visualization for VENUS dataset. This demonstrates the capability of the VENUS dataset to capture
multimodal communication, encompassing speech, body language, and facial expressions. Words are time-aligned
using WhisperX, with YouTube IDs providing access to ground truth transcription. “· · · ” indicates an omission in
the text.
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{
“Channel_id” : “UCbk_QsfaFZG6PdQeCvaYXJQ” ,
“Video_id” : “G51M8YGs_OM” ,
“Duration” : “01:01:00 ~ 01:11:00” ,
“FPS” : 25,
“Segment_id” : 5
“Conversation” : [ 
 {
  “Utt_id” : 0 , 
  “Speaker” : 0 , 
  “Text” : “after that they come and recruit everyone in …”, 
  “Start time” : 0.109 , 
  “End time” : 66.088 ,
  “Words” : [
   { “Word” : “after” , “Start_time” : 0.109, “End_time” : 0.896 },
                         . . .   
  ] 
 } , . . .
],
“Facial expression” : [
  { “Utt_id” : 0, “Frame” : 2, “Features” : [
    2.81959653e-01, 
    1.82807636e+00, …
   ]
  } ,
] ,
“Body language” : [
  { “Utt_id” : 0 , “Frame” : 2 , “Features” : [
    0 , 
    3.14159274e+00 , …
   ]
  } ,
] ,
“Speaker bbox” : [
  { “Frame” : 2 , “Bbox” : [
    167.741073, 
    49.3815689, 
    783.573852, 
    474.881866
    ] 
  }
]
“Harmful_utterance_id” : [ ]  

}

Figure 9: VENUS annotation format. This is an example of an annotation for a single segmented video. We
provide the VENUS dataset in JSON format.
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