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Abstract

We transparently create two German-only de-
coder models, LLäMmlein 120M and 1B1,
from scratch and publish them, along with
training data, for the (German) NLP research
community to use2. The model training in-
volved several key steps, including data pre-
processing/filtering, the creation of a German
tokenizer, the training itself, as well as the eval-
uation of the final models on various bench-
marks, also against existing models. Through-
out the training process, multiple checkpoints
were saved in equal intervals and analyzed us-
ing the German SuperGLEBer benchmark to
gain insights into the models’ learning process.

Compared to state-of-the-art models on the
SuperGLEBer benchmark, both LLäMmlein
models performed competitively, consistently
matching or surpassing models with similar pa-
rameter sizes. The results show that the models’
quality scales with size as expected, but perfor-
mance improvements on some tasks plateaued
early during training, offering valuable insights
into resource allocation for future models.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success, yet this progress is predomi-
nantly centered on English. Other languages, in-
cluding German, lag behind due to limited com-
petition, reduced investment, and a lack of trans-
parency in training data, code, and detailed results
(also see Pfister and Hotho, 2024). While smaller
German-only models do exist, such as BERTs or
smaller GPTs (Chan et al., 2020; Scheible et al.,
2020), or the contemporaneous effort by Idahl
(2024), many are closed or undocumented, and
few robust, openly accessible German LLMs have
been built from scratch with full transparency.

These authors contributed equally to this work.
1After submission we also released a new 7B model
2https://professor-x.de/lm/LLaMmlein

Most German-capable LLMs are either multilin-
gual models (e.g., mGPT (Shliazhko et al., 2024))
or English models adapted to German (e.g., Le-
oLM (Plüster, 2023b), BübleLM (Delobelle et al.,
2024), or bloom-clp (Ostendorff and Rehm, 2023)).
Others, like Mistral (Jiang et al., 2023), share little
about their (German) training data, making it diffi-
cult to understand which resources and pretraining
strategies are most suitable for developing strong
German LLMs from scratch. This lack of trace-
ability hampers the community’s ability to identify,
curate, and refine German data, and to examine
how corpus and training choices affect model qual-
ity. Subtle issues – such as performance deteriora-
tions on non-English downstream tasks (Virtanen
et al., 2019) or poor handling of German’s complex
grammar and morphology (Mielke et al. (2019),
also Appendix A) – remain common, even in state-
of-the-art models like Llama 3 (Dubey et al., 2024),
which can revert to English despite a German con-
text, or sometimes sound like machine-translated
from English3.

We present LLäMmlein, the first German-only
LLM family trained entirely from scratch with full
transparency, providing a foundation for systemat-
ically analyzing the relationship between training
data and model outputs. To this end, we share the
model, code, and dataset to foster reproducibility
and collaboration. Although our evaluation is pri-
marily illustrative, it offers insights into the model’s
German capabilities and enables further research
and development. We accompany training with iter-
ative benchmark evaluations, tracking the learning
progress of our 120M and 1B model to illuminate
scaling effects and guide future research.

To achieve this, we: (1) clean and filter a
large German dataset derived from RedPajama V2
(Weber et al., 2024), ensuring high-quality input,

3https://www.reddit.com/r/LocalLLaMA/comments/
1bfce18/still_didnt_found_a_better_small_german_
llm_anyone/
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(2) construct a dedicated German tokenizer (32k
tokens) fitted on varying data amounts to com-
pare against existing German tokenizers, (3) pre-
train two exclusively German autoregressive LLMs
(120M and 1B) and release incremental check-
points, inspired by Biderman et al. (2023), to in-
form efficient stopping criteria and shed light on
learning dynamics, and (4) evaluate the models
on a range of tasks (SuperGLEBer (Pfister and
Hotho, 2024), lm-evaluation-harness-de (Plüster,
2023a; Gao et al., 2021)) to benchmark perfor-
mance against existing models.

In doing so, we directly demonstrate and address
the pressing need for dedicated German-centric
LLM research, establishing a transparent founda-
tion for understanding, improving, and expanding
the German LLM ecosystem.

: Throughout the paper, we highlight interest-
ing findings and insights we gained during the
process in little boxes like this one.

2 Methodology

Pretraining and evaluating a German LLM from
scratch, end-to-end involves several steps, includ-
ing dataset preprocessing (section 2.1.2), tokenizer
fitting (section 3.1), model pretraining (section 2.2),
model evaluation using a comprehensive German
benchmark, as well as multiple translated prompt-
based few-shot QA tasks (section 2.3), and exem-
plary downstream adaptations (section 2.4).

2.1 Dataset

RedPajama V2 is an open4, multilingual dataset de-
signed for training large language models (Weber
et al., 2024). It consists of over 100 billion text
documents collected from 84 CommonCrawl snap-
shots between 2014 and 2023 and encompasses
multiple languages, including English, German,
French, Italian, and Spanish. The dataset was origi-
nally preprocessed using the CCNet pipeline (Wen-
zek et al., 2020) leading to about 30 billion overall
documents further enriched with quality signals
and duplicate indicators. Using perplexity of a lan-
guage model, the RedPajama dataset was divided
into three quality categories, in descending order
of quality: head, middle, and tail. Following a man-
ual inspection of a randomly selected subset, the
head and middle partitions were deemed to con-
tain sufficiently high-quality German texts suitable

4https://commoncrawl.org/terms-of-use

Figure 1: Token count distribution for each partition
separately: head unique, middle unique, head duplicate
and middle duplicate based on gbert-large tokenizer

for continued use. In contrast, the tail partition ex-
hibited inconsistent quality and was consequently
excluded from further training.

2.1.1 Dataset Analysis
The aim of the following preliminary dataset analy-
sis is to gain a deeper understanding of the German
portion of the dataset used. The “official” estimate
of the size of the German segment within the Red-
PajamaV2 dataset, derived through extrapolation
from a smaller sample analyzed with Mistral-7B,
is approximately 3 trillion German tokens (Weber
et al., 2024). Following, we first perform an ex-
ploratory analysis of the dataset to gain a clearer
understanding of the actual amount of German data
it contains, alongside its domain distribution and
the most prevalent data sources.

Statistics Our own count using the gbert-large
tokenizer, led to a token count of 2.7 trillion Ger-
man tokens for head and middle combined, before
document-level deduplication.

Figure 1 breaks down the distribution of each
partition, i.e. head unique, middle unique, head
duplicate and middle duplicate separately. The
first occurence of a document is considered unique,
while all subsequent appearances are marked as du-
plicates. The middle unique partition contains the
largest amount of data, with approximately 1.2 bil-
lion samples, which corresponds to 45% of the full
dataset. The head unique partition, by comparison,
includes around 400 million fewer samples.

Overall, most samples are unique (1.9 billion
samples) and only significantly less are marked as
duplicates, appearing a second or more times (777
million samples) across the entire dataset. The
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Figure 2: Top 20 most frequent domains across the full
dataset in gray with frequencies in head and middle
partitions separately.

most common token-per-document count can be
found at nine, with approximately 3.6 million oc-
currences in the dataset. A second peak (most
prominent for the unique split) occurs at around
100 tokens per document. In total, the 2.7 trillion
German tokens are distributed across samples with
lengths ranging from 1 to 1 034 799 tokens, averag-
ing approximately 1000 tokens per sample.

Domain Analysis The dataset contains content
crawled from various domain names. Figure 2
displays the top 20 sources from which the data
was collected, with the overall count illustrated as
gray bars and separate plots for the head (pink) and
middle (blue) unique splits.

Wikipedia clearly stands out as the largest con-
tributor, with a combined total of over 11.5 million
samples. Among these, about 10 million entries be-
long to the head category, while about 1.45 million
stem from the middle partition. This distribution
aligns with the fact that the split into head, mid-
dle and tail was created using a perplexity score
criterion based on a language model trained on
Wikipedia (Weber et al., 2024) – consequently,
texts closer in style to Wikipedia tend to be ranked
higher. Besides Wikipedia, it is evident that news
websites also constitute a significant portion of the
dataset. For the middle split, “welt.de” emerges
as the most frequent domain, contributing around
2.47 million samples. With the exception of do-
mains like eBay, hotels and Perlentaucher, the list
is largely dominated by general news outlets.

2.1.2 Further Dataset Preprocessing

To remove common web boilerplate, such as
EU-specific “General Data Protection Regulation”
(GDPR) notices or similar repetitive content, we
utilize a paragraph-level deduplication scheme
powered by Dolma – a framework that enables ef-
ficient deduplication through a Rust-based Bloom
filter (Soldaini et al., 2024). A Bloom filter is a
probabilistic method that works similarly to a hash
table, determining whether an element has already
been previously encountered or not. This ensures
that highly redundant text is filtered out, improv-
ing the overall quality and diversity of the dataset.
This approach may inadvertently over-remove valid
and relevant content, such as short texts mistak-
enly treated as entire paragraphs being removed
across the dataset. To mitigate this, and to pre-
serve meaningful short text sections – such as lists
or frequently occurring itemized phrases that are
contextually significant – we excluded paragraphs
containing fewer than three words from the dedu-
plication process.

Despite these efforts, we found that some un-
usual artifacts, such as long sequences of guitar
chords, remained, as they scored low perplexity
(41.2) compared to the average perplexity of 206.35
in the respective snapshot (2014_52) and were
therefore not removed by the preliminary quality
filter. To address this, we built a token-to-word
ratio filter. Here, we compared the word count
(whitespace separated) with the token count using
the German GPT-2 tokenizer (Schweter, 2020). Ac-
cording to our intuition, a usual ratio between the
two counts indicates abnormal or low-quality text,
whereas a close match suggests valid German con-
tent. A simple example illustrates this clearly: The
phrase “Der Himmel ist blau” consists of 4 words
and 4 tokens, so it is not removed by our filter. In
contrast, “/de/c/trebic-unesco” counts as 1 word
but 11 tokens, and should therefore be excluded by
this token-to-word ratio filter.

Preliminary examinations and manual review
suggested a ratio of tokens to words of eight as
a valid threshold. Thus, paragraphs exceeding this
threshold were excluded from the dataset.

Interesting: Regular patterns of non-textual
data, such as guitar chords, can yield a low
perplexity and therefore remain in the dataset
through quality filtering processes.
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2.2 Model Pretraining Framework

While there are several existing resources and
repositories for training an LLM from scratch5, we
chose the TinyLlama GitHub repository as the back-
bone of our project (Zhang et al., 2024). It was used
to pretrain the 1B English Llama 2-based (Touvron
et al., 2023) TinyLlama model from scratch before
and builds upon the lit-gpt repository (AI, 2023),
which provides robust tooling for data preparation,
fine-tuning, pretraining, and deploying LLMs using
PyTorch Lightning.

It includes all key features such as multi-GPU
and multi-node distributed training with FSDP as
well as FlashAttention-2 (Dao, 2024). In addition,
it provides scripts to convert the models into Hug-
gingFace format for easier use and distribution.

We modified the codebase6 for our requirements:
1. We significantly improved the data loader speed
by adding various layers of caching. 2. We en-
able training directly from a directory of jsonl-files,
without any prior preprocessing. 3. Most impor-
tantly, inspired by our reviewers’ feedback, we
retrained our models logging exact datapoints as
they enter the model. This allows us to correlate the
training data and its order for each of our published
(intermediate) checkpoints7.

2.3 Model Evaluation Setup

2.3.1 Intermediate Checkpoint Evaluation
To get a better understanding of the training, we
monitor the progress and regularly evaluate inter-
mediate checkpoints on six representative Super-
GLEBer tasks (Pfister and Hotho, 2024) following
a finetuning to the task from the respective check-
point. These tasks were selected to encompass a
range of problem types to assess our model’s perfor-
mance. Within classification, (1) Natural Language
Inference(NLI) (Conneau et al., 2018) requires de-
termining whether a hypothesis is entailed, neutral,
or contradictory to a premise; (2) FactClaiming
Comments (Risch et al., 2021) involves binary clas-
sification of fact-checkable claims; (3) DB Aspect
(Wojatzki et al., 2017) addresses multi-label cate-
gorization and polarity detection in input sentences;
and (4) WebCAGe (Henrich et al., 2012) tests if
a given word’s sense aligns across two contexts.

5a small subset: https://github.com/Hannibal046/
Awesome-LLM#llm-training-frameworks

6https://github.com/LSX-UniWue/LLaMmlein
7Since the performance of the original model (without data

logging) and the new model (with data logging) did not differ
significantly, we kept the original scores throughout the paper.

For sequence tagging, (5) EuroParl (Faruqui and
Padó, 2010) evaluates Named Entity Recognition
on European Parliament data. Finally, in the sen-
tence similarity domain, (6) PAWSX (Liang et al.,
2020) challenges the model to detect paraphrases
via vector representations.

2.3.2 Final Model Evaluation
To assess general knowledge and abilities, we eval-
uated our final models on the full SuperGLEBer
benchmark (29 tasks across classification, sequence
tagging, question answering, and sentence similar-
ity) (Pfister and Hotho, 2024), as well as machine-
translated, prompt-based, few-shot QA tasks using
the lm-evaluation-harness-de by Plüster (2023a) (if
not stated otherwise, they are evaluated measuring
unnormalized and Byte-length normalized accu-
racy (Gao et al., 2021)): (1) ARC-Challenge-DE
(Clark et al., 2018): Grade-school science ques-
tions (1471 samples). Few-shot evaluation with
25 samples. (2) MMLU-DE (Hendrycks et al.,
2021): 6829 multiple-choice questions across 57
topics (e.g., math, medicine, law). Few-shot evalu-
ation with five samples. (3) HellaSwag-DE (Zellers
et al., 2019): Commonsense reasoning dataset
with 11 000 translated samples, featuring incom-
plete sentences with multiple-choice completions.
Few-shot evaluation with ten samples. (4) Truth-
fulQA-DE (Lin et al., 2022): 817 questions across
38 categories designed to evaluate model truthful-
ness, particularly in handling misconceptions in a
zero-shot evaluation setting. Performance here is
measured using MC1 (Single-true): accuracy in
selecting a single correct answer and MC2 (Mul-
ti-true): the normalized probability assigned to all
correct answers (Gao et al., 2021).

To assess the impact of checkpoint averaging on
model performance (Vaswani et al., 2017; Dubey
et al., 2024), we also evaluate averaged checkpoints
on the SuperGLEBer benchmark.

2.4 Exemplary Downstream Adaptations
As examples of downstream adaptation, we fine-
tune our model with LoRA (Hu et al., 2022) in
two settings: instruct-tuning (adapting the model
to respond to user prompts) and for demonstration
purposes on Bavarian and Swiss in Appendix H.

3 Experiments

3.1 Tokenizer
We follow the TinyLlama setup and fit an Llama 2
Byte-Pair Encoding (BPE) tokenizer with a 32 000-
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token vocabulary (Touvron et al., 2023). We trained
three tokenizers on different amounts of data:

(1) 1TB: Spans backward from the most recent
data until 1TB of data is processed (2) 2023-2021:
Includes all splits of the high quality data split from
years 2023 to 2021 (847GB) (3) 2023_14: Consists
of the most recent 2023_14 split (67GB)

3.2 Model Pretraining

We trained two models, LLäMmlein 120M and
LLäMmlein 1B, using filtered subsets of our pre-
processed dataset (section 2.1). Detailed config-
urations for both models are provided in Table 6,
and Figures 3 and 4 display the model’s loss curve,
where each training resume is distinguished by a
unique color.

3.2.1 LLäMmlein 120M

LLäMmlein 120M was trained on the filtered head
unique partition, comprising 1T pretraining tokens
(2 epochs). The training setup included a maximum
learning rate of 6e-4, grouped query attention of 4,
a sequence length of 2048, and a global batch size
of 1024. We employed the full-shard FSDP strat-
egy across 32 L40 GPUs on 16 nodes, completing
training in approximately 10 000 GPU hours.

3.2.2 LLäMmlein 1B

LLäMmlein 1B was trained on the filtered, head
and middle unique partitions, resulting in a dataset
of 1.3T unique tokens, and 3T overall tokens seen
during training. The training setup featured a maxi-
mum learning rate of 6e-4, a global batch size of
1024 (per device batch size of 16), and was exe-
cuted on 64 A100 80GB GPUs across 8 nodes over
32 days (50 000 GPU hours).

3.3 Downstream Adaptations

For instruct-tuning, we use LoRA (Hu et al.,
2022) with supervised finetuning, PEFT (Man-
grulkar et al., 2022) and default hyperparameters
for three epochs on the following datasets
from huggingface: “LSX-UniWue/Guanako”,
“FreedomIntelligence/alpaca-gpt4-deutsch”,
“FreedomIntelligence/evol-instruct-deutsch”, and
“FreedomIntelligence/sharegpt-deutsch”. We train
and publish a separate adapter for each dataset,
and also a combined model across all datasets.

Tokenizer Head Middle

word count 46 509 357 80 782 685

german-gpt2 1.68 1.72
gbert-large 1.72 1.74

ours 1TB 2.27 2.27
ours 2023-2021 2.07 2.10
ours 2023_14 1.76 1.80

Table 1: Fertility of our three tokenizers with different
training data sizes in comparison to other German tok-
enizers on two unseen training data samples: one from
head and one from middle partition.

4 Evaluation

4.1 Tokenizer

We evaluate our custom Llama2-based tokenizers
by measuring their fertility on random samples
and training splits, comparing them to two estab-
lished German tokenizers: german-gpt2 (vocab
size: 50 266) and gbert-large (vocab size: 31 102).
Fertility measures how many subwords represent a
single original word, with a value of 1 indicating
perfect segmentation (Rust et al., 2021; Ali et al.,
2024). Although differing vocabulary sizes com-
plicate direct comparisons, the results still provide
relative performance insights.

Table 1 shows the fertility of all tokenizers on
two unseen dataset snapshots. Both german-gpt2
and gbert-large achieve the lowest fertility. Notably,
among our own tokenizers, the one trained on the
smallest dataset (2023_14) produces fewer tokens
on average than those trained on larger datasets.
This suggests that a smaller dataset may enable
more efficient tokenization by concentrating on the
most frequent tokens, while larger datasets intro-
duce greater variability and less efficient segmen-
tation. As seen in Table 5, the tokenizer trained
on less data also appears to yield more meaningful
subword segments. Consequently, we selected the
tokenizer trained on the 2023_14 snapshot.

Interesting: Fitting a tokenizer on “too much”
data can reduce its efficiency, possibly due to
having to account for variation in the data.

To validate this finding, we repeated the exper-
iment using a variety of disjoint training datasets
and different test sets, including snapshots from
different time periods as well as random internet
texts. Interestingly, we consistently observed the
same outcome across all variations.
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Model FactCl. EUParl PAWSX NLI DB Asp. WebCAGe

10 000 0.711 0.531 0.427 0.549 0.454 0.689
100 000 0.708 0.532 0.464 0.559 0.479 0.700
200 000 0.705 0.497 0.497 0.575 0.464 0.703
300 000 0.712 0.525 0.497 0.615 0.498 0.682
400 000 0.713 0.522 0.488 0.627 0.511 0.695
466 509 0.711 0.538 0.489 0.629 0.517 0.687

german-gpt2 0.707 0.533 0.394 0.479 0.429 0.645
gbert-base 0.751 0.616 0.561 0.436 0.478 0.693

bert-ger-cased 0.721 0.607 0.537 0.490 0.480 0.679

Table 2: Results of LLäMmlein 120M checkpoints on
six SuperGLEBer tasks compared to similarly sized
german-gpt2, gbert-base and bert-base-german-cased

4.2 Pretraining Process

During training, we regularly saved and evaluated
checkpoints to monitor the training process (sec-
tion 2.3.1). Intermediate checkpoints will be pub-
lished to enable further analysis and comparison
with other models .

4.2.1 LLäMmlein 120M
We evaluated LLäMmlein 120M against german-
gpt2, gbert-base, and bert-base-german-cased.
While it consistently outperformed the decoder-
only german-gpt2 model, BERT-based models ex-
celled in the first three tasks (FactClaiming, Eu-
roParl, PAWSX), reflecting known limitations of
autoregressive architectures in tasks like sequence
tagging and sentence similarity (Pfister and Hotho,
2024). However, LLäMmlein 120M demonstrated
superiority in complex classification tasks, outper-
forming all models in NLI from checkpoint 10 000
onward, with its best checkpoint exceeding bert-
base-german-cased by 14%. It also closely matches
the top scores for DB Aspect and WebCAGe clas-
sification.

Performance trends during pretraining varied by
task. We calculate the Spearman correlation co-
efficient r to measure the strength and direction
of the relationship between pretraining steps and
task performance, and the corresponding p-value to
assess the statistical significance of the correlation.
FactClaiming and EuroParl showed minimal varia-
tion, but PAWSX (r = 0.607, p = 0.04), NLI (r =
0.947, p < 0.0001), and DB Aspect (r = 0.909, p <
0.0001) displayed significant linear improvements.

Despite this, an Analysis of Variance (ANOVA)
across all 29 SuperGLEBer benchmark tasks re-
vealed no statistically significant performance im-
provements beyond the 300 000 training check-
point (Figure 5). In particular, average perfor-
mance at checkpoints 300 000 (0.693) and 466 509
(0.699) only demonstrated small gains of 0.06 (Fig-

Model FactCl. EUParl PAWSX NLI DB Asp. WebCAGe

10 000 0.735 0.708 0.461 0.642 0.563 0.677
100 000 0.734 0.662 0.511 0.709 0.607 0.699
500 000 0.733 0.712 0.539 0.734 0.613 0.720

1 000 000 0.750 0.697 0.540 0.740 0.629 0.756
1 430 512 0.736 0.713 0.526 0.749 0.623 0.765

Llama 3.2. 1B 0.665 0.537 0.551 0.603 0.557 0.689
EuroLLM-1.7B 0.724 0.654 0.585 0.529 0.587 0.662

gbert-base 0.751 0.616 0.561 0.436 0.478 0.693
mbart-large-50 0.723 0.727 0.358 0.336 0.471 0.651

gbert-large 0.747 0.636 0.654 0.736 0.550 0.716
leo-mistral-7b 0.741 0.649 - 0.807 0.664 -

leo-hessianai-7b 0.747 - - - 0.669 0.781

Table 3: Results of LLäMmlein 1B across multiple
training checkpoints on six SuperGLEBer tasks, in com-
parison to the best-performing models and models with
similar parameter size. Following SuperGLEBer, re-
sults of models that experienced out-of-memory (OOM)
errors on an A100 80 GB are indicated with a “-”.

ure 5), despite additional 166 509 training steps
(≈349 billion tokens). These findings problema-
tize the marginal returns of extended training on
downstream tasks, suggesting potential early con-
vergence or benchmark limitations in capturing nu-
anced model improvements on average across tasks.
While LLäMmlein quickly reached a plateau for
certain tasks, i.e. those that might require more ba-
sic structure recognition (FactClaiming/EuroParl),
it continued to learn and improve on some more
complex tasks. Interestingly, contrary to the “curse
of monolingual models” posited by Kydlíček et al.
(2024), which suggests monolingual models excel
at LM but lack reasoning, our model demonstrates
strong performance on deeper semantic tasks such
as NLI and WebCAGe.

Contradiction: Kydlíček et al. (2024) sug-
gests monolingual models excel at LM but often
lack reasoning; ours appear strong in both.

4.2.2 LLäMmlein 1B
We compared LLäMmlein 1B’s performance on the
SuperGLEBer benchmark to the best-performing
models for each task and similarly sized models
(Table 3). All models and checkpoints are eval-
uated after a task-specific finetuning, following
SuperGLEBer evaluation protocol. While not al-
ways securing the top spot, it remains competitive
across tasks, even against much larger models. As
with the 120M model, LLäMmlein 1B trails in sen-
tence similarity tasks like PAWSX. However, it
achieves competitive results for EuroParl. Examin-
ing task progress over time reveals noticeable im-
provements across all tasks, except for FactClaim-
ing. Compared to the LLäMmlein 120M model,

2232



Spearman correlation analysis indicated significant
positive relationships between training time and
performance for all remaining tasks. In particu-
lar, also for EuroParl (r = 0.431, p = 0.009) and
WebCAGe (r = 0.92, p < 0.0001), suggesting that
LLäMmlein 1B continues to benefit from extended
training. Nevertheless, across all SuperGLEBer
tasks, the advantage of extended pretraining dimin-
ished after roughly 30% of the pretraining data was
processed. From this state, despite a slow decline
in loss, no significant improvements were observed
across the 29 downstream tasks (Figure 6). To
investigate further, we evaluated the checkpoint
where SuperGLEBer performance plateaued, along
with its instruction-tuned variants on generative
tasks (Plüster, 2023a). Interestingly, while Super-
GLEBer performance stagnated, generative bench-
mark results (Table 9) continued to improve on
average, likely due to enhanced autoregressive lan-
guage modeling capabilities.

Interesting: While generative tasks benefit
from further pretraining, other task types do no
longer after about 30% of the pretraining data.

4.3 Final Model Evaluation

Detailed results for all SuperGLEBer tasks
can be found in Table 7, and on the offi-
cial website https://lsx-uniwue.github.io/
SuperGLEBer-site/leaderboard_v1.

4.3.1 LLäMmlein 120M
After evaluating LLäMmlein’s performance across
pretraining, we compared its final results against
other models on the full SuperGLEBer bench-
mark, including pairwise t-tests to compare results
with other models on the SuperGLEBer bench-
mark. As shown in Table 2 and fig. 7a, the fi-
nal checkpoint of LLäMmlein significantly out-
performs german-gpt2, establishing itself as the
leading German decoder model in this size range.
Against BERT-based models (gbert-base and bert-
german-cased), no significant differences were
found (Table 2 and figs. 7b and 7c), despite BERT’s
known strengths in sequence tagging and similarity
tasks (Pfister and Hotho, 2024). This highlights
LLäMmlein’s ability to compete effectively with
established BERT models, even with their architec-
tural advantages.

We further evaluated our results on the lm-
evaluation-harness-de evaluation benchmark for
autoregressive models against german-gpt2, the

Model Truth.QA ARC-Chal. HellaSwag MMLU

german-gpt2 0.432 0.236 0.268 0.238
ours 120M 0.404 0.238 0.320 0.245

Llama 3.2 1B 0.407 0.310 0.412 0.284
Llama 3.2 1B Inst. 0.440 0.296 0.411 0.343
ours 1B 0.365 0.311 0.483 0.253
ours 1B Guanako 0.375 0.313 0.502 0.258
ours 1B Alpaka 0.397 0.323 0.499 0.258

Llama 2 7b 0.422 0.381 0.513 0.400
leo-hessianai-7b-chat 0.452 0.442 0.624 0.401
Disco-Llama3-Ger-8B Inst. 0.530 0.538 0.664 0.559
em-german-7b-v01 0.427 0.233 0.276 0.241

Table 4: Performance of our (instruction tuned)
models on the lm-evaluation-harness-de, with Truth-
fulQA (mc2), ARC-Challenge (acc_norm), HellaSwag
(acc_norm), MMLU (acc). Short version of Table 8.

only other German-only decoder model available
at this parameter size (Table 4), and find that we
outperform or closely match this model for all tasks,
except for TruthfulQA.

4.3.2 LLäMmlein 1B
We evaluated LLäMmlein 1B against similarly
sized and larger models. Compared to Llama 3.2
(1B) and EuroLLM (1.7B), LLäMmlein 1B con-
sistently outperformed both (Figures 8a and 8b).
Leo-hessianai-7b , showed superior performance,
reaffirming the size advantage of 7B models (Ta-
ble 4 and fig. 8c). Interestingly, LLäMmlein 1B
showed no significant difference in performance
compared to other, larger models like the Disco-
Llama3-German (8B), Llama 3.1 (8B), and gbert-
large (Table 4 and figs. 8d to 8f), highlighting its
efficiency and competitiveness.

Table 4 compares LLäMmlein 1B and its
instruction-tuned variants with Llama 3.2 1B and
larger models. Notably, the German-finetuned
Disco-Llama 3 (8B) instruct model achieved the
highest scores overall, showing the benefit of in-
creased size and instruction tuning. However, this
model had no significant advantage over LLäMm-
lein 1B on SuperGLEBer, suggesting that on aver-
age model size matters more for generative tasks
than for this benchmark.

For smaller models, Llama 3.2 (1B) achieved
the best TruthfulQA score. However, in comple-
tion tasks like ARC-Challenge and HellaSwag,
LLäMmlein 1B Instruct models consistently out-
performed both the base LLäMmlein model and
Llama 3.2 1B, indicating that instruct-tuning en-
hances performance on structured completion tasks.
Conversely, Llama 3.2 1B Instruct excelled in the
broader knowledge-focused MMLU benchmark.
Interestingly, instruct-tuning improved LLäMm-
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lein scores across all tasks, a trend not observed for
the Llama 3.2 model.

Task-specific results highlighted structural dif-
ferences. While ARC-Challenge and HellaSwag
focus on commonsense reasoning, TruthfulQA and
MMLU emphasize factual understanding. Smaller
models, even when finetuned, struggle more with
question-answering tasks. Comparing the 120M
and 1B versions, the latter consistently outper-
formed the smaller model by 10%, except for
MMLU and TruthfulQA. Interestingly, the 120M
model outperforms the 1B model on TruthfulQA,
aligning with Lin et al. (2022), who found smaller
models often beat their larger counterparts.

Confirmation: 120M model is better at Truth-
fulQA than 1B model, confirming the findings
of Lin et al. (2022).

We observed that scaling from 120M to 1B pa-
rameters yields only marginal improvements in sen-
tence similarity and question answering tasks (Ger-
manQuAD and MLQA), with performance differ-
ences below 2% and 4%, respectively (Table 7).
This contrasts with SuperGLEBer, where these
tasks showed more significant scaling benefits.

Contradiction: Scaling provides fewer ben-
efits for tasks like QA and sentence similarity,
contradicting prior results from SuperGLEBer
(Pfister and Hotho, 2024).

4.4 Checkpoint Averaging

Checkpoint averaging did not improve – or even
change – downstream task performance on Super-
GLEBer for either the 120M or 1B model (see Fig-
ure 9 for the 1B model). This was unexpected, but
we hypothesize the checkpoints being too far apart,
as Vaswani et al. (2017) averaged checkpoints writ-
ten every 10 minutes near the end of training, while
our checkpoints are about 6-8 hours apart.

Interesting: Checkpoint averaging ineffec-
tive, possibly checkpoints are too far apart.

5 Related Work

5.1 German LLMs and Their Limitations

While several language models include German,
relatively few have been trained exclusively on
German data, and even fewer have transparently
documented the process and model capabilities.

German-only Models Early German-focused
models were predominantly encoder-based (e.g.,
BERT variants) trained on corpora up to 163.4GB
(Chan et al., 2020). A GPT-2 style German
model was trained on 16GB of mixed-domain data
(Schweter, 2020). Contemporaneous to our work,
DOSMo (Idahl, 2024) introduced a Mistral-7B
model trained on 1T tokens of German text from
a variety of sources. However, little details about
DOSMo’s training process, data filtering, and eval-
uation is publicly known. Furthermore, after accep-
tance two ModernBERT models have been trained
using our dataset (Ehrmanntraut et al., 2025).

Multi-/Crosslingual Models Including German
Several multilingual models incorporate Ger-
man data, including Büble (Delobelle et al.,
2024), bloom-6b4-clp-german (Ostendorff and
Rehm, 2023), GerPT2 (Minixhofer, 2020), Disco-
Llama3-German-8B (DiscoResearch and Occiglot,
2024), EuroLLM-1.7B (Martins et al., 2024),
and leo-hessianai-7b (Plüster, 2023b), as well as
mGPT (Shliazhko et al., 2024), a multilingual vari-
ant of GPT-2. While these models demonstrate
the feasibility of German (transfer) language mod-
eling, they typically offer limited transparency in
German data preprocessing, training conditions,
and systematic evaluation. In contrast, our work
is the first to (1) train a German-only LLM fully
from scratch, (2) provide a detailed, transparent de-
scription of the training pipeline and data sources,
and (3) rigorously evaluate the resulting model’s
German capabilities.

5.2 Comparable Efforts in Other Languages

Transparent training and comprehensive evaluation
have become more common in other language con-
texts. Pythia (Biderman et al., 2023), for exam-
ple, released a suite of English models with de-
tailed training logs, and Latxa (Etxaniz et al., 2024)
continued pretraining Llama 2 models on Basque
data (4.2B tokens), thus significantly improving
the models’ Basque language modelling capabili-
ties, while openly documenting its setup and perfor-
mance. Furthermore, Virtanen et al. (2019) show
that explicitly pretraining models monolingually
on Finnish is able to outperform multilingually
trained models. Our approach extends this ethos
of openness and thorough evaluation to the Ger-
man language, advancing both model quality and
reproducibility.
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6 Conclusion

We developed two German-only decoder mod-
els, LLäMmlein 120M and 1B, trained from
scratch with tailored tokenization and preprocess-
ing. Throughout training, we evaluated intermedi-
ate checkpoints to analyze task-specific learning
dynamics, noting varied speeds of improvement
and early plateaus for some tasks.

On the SuperGLEBer benchmark, LLäMmlein
1B consistently matched or outperformed compara-
ble models, including multilingual Llama 3.2 1B,
highlighting the potential benefits of monolingual
training for language-specific tasks. While gener-
ative question answering revealed limitations of
smaller models, our 1B model performed compara-
bly to larger models in most tasks.

Future work includes deeper analysis of training
dynamics using our published checkpoints and data,
creating high-quality German instruct datasets, and
exploring domain-specific fine-tuning for further
improvement.

7 Limitations

While the LLäMmlein models represent a signifi-
cant contribution to German NLP research, several
limitations remain: 1. Limited Capabilities on
some domains Due to the scarcity of high-quality
German resources for e.g. coding, we found the
models perform poorly on such tasks. 2. Mono-
lingual Focus While being considered a strength
in the context of this setup, LLäMmlein lacks the
ability to leverage multilingual contexts or perform
cross-lingual tasks, which could limit usability in
certain scenarios. 3. Evaluation Scope While eval-
uated extensively on the SuperGLEBer benchmark
and lm-evaluation-harness, other domains such as
literature, spoken language, or dialects were not
tested, leaving gaps in the understanding of model
capabilities. 4. Long-Context Handling The mod-
els were trained with a maximum sequence length
of 2048 tokens, which limits their applicability to
tasks requiring extended contexts, such as process-
ing long documents or legal texts.
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A Exemplary Shortcoming of Current
Multilingual Models in German

Llama 3.1 8B:

Was haben David Hasselhoff und Markus
Söder gemein?
Die beiden haben in den 1980er Jahren
die Fernsehserie "Miami Vice" gemein-
sam gespielt. Hasselhoff spielte Krafte-
durch die Figur von Ricardo Montalban,
der Cobrai im Film "Zorba the Greek"
gespielt hat; Söder war Lieutenant Vin-
cent Lopiano und wurde während des
Drehprozesses an einen Verletzung
erkrankt.

Issues:

• Kraftedurch: This name is non-
sensical and seems like a verbatim
translation of two English words.

• Cobrai: Like Kraftedurch a non-
sensical name.

• wurde während des Dreh-
prozesses an einen Verletzung
erkrankt: Grammatically in-
correct, mixing verb forms and
incorrect article use.

Ours 1B chat_selected:

Was haben David Hasselhoff und Markus
Söder gemein?
Sowohl David Hasselhoff als auch
Markus Söder sind zwei berühmte
deutsche Persönlichkeiten, die sich in der
Unterhaltungs- und Politikwelt einen Na-
men gemacht haben. Sie teilen einige
gemeinsame Merkmale wie ihren Erfolg
bei den Fans, ihre Popularität und ihren
Sinn für Humor.

Ignoring the possibly absurd content of this
query, the responses highlight underlying issues
with the German language of existing multilingual
open-source LLMs. The response from Llama 3.1
8B contains glaring grammatical errors and nonsen-
sical phrases, such as “Kraftedurch” (a meaningless
word) and “wurde während des Drehprozesses an
einen Verletzung erkrankt” (grammatically inco-
herent), which highlight a lack of robust German
language training. These issues, which required
minimal effort to uncover, exemplarily show the in-
adequacy of current large-scale LLMs for German8,
where even basic grammatical rules are frequently
violated. This demonstrates the critical importance
of dedicated, large-scale German LLM pretraining
to address these shortcomings.

B Removed Datapoints. . .

To improve the overall quality and diversity of
the dataset, we applied additional paragraph-level
deduplication, to remove repetitive and redundant
boilerplate texts (Appendix B.1) and a token-to-
word ratio filter (Appendix B.2), to further exclude
low-quality content. For instance, the following
paragraphs were removed by our additional prepro-
cessing steps:

B.1 . . . from deduplication
{ "raw_content": ...Die Nutzung der im Rahmen des
Impressums oder vergleichbarer Angaben veroef-
fentlichten Kontaktdaten wie Postanschriften,

8https://www.reddit.com/r/LocalLLaMA/comments/
1bfce18/still_didnt_found_a_better_small_german_
llm_anyone/
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Telefon- und Faxnummern sowie Emailadressen
durch Dritte zur Uebersendung von nicht aus-
druecklich angeforderten Informationen ist nicht
gestattet..., ...}

{ "raw_content": ...5) Datenverarbeitung bei
Eröffnung eines Kundenkontos Gemäß Art. 6 Abs.
1 lit. b DSGVO werden personenbezogene Daten
im jeweils erforderlichen Umfang weiterhin er-
hoben und verarbeitet, wenn Sie uns diese bei der
Eröffnung eines Kundenkontos mitteilen. Welche
Daten für die Kontoeröffnung erforderlich sind, ent-
nehmen Sie der Eingabemaske des entsprechenden
Formulars auf unserer Website. ... }

B.2 . . . from tokenizer filtering

{"raw_content": "Home > B > Bamboo >
Masaya 1Masaya 1 Guitar Tabs Masaya 1
Guitar Tabs Bamboo Do you like Masaya 1?
Share with your friends now Bass TabsBass
Tabs v2ChordsChords v2Chords v3Chords
v4TabsTabs v2Ukulele Artist/band: Bamboo
e|—-3—3—3—3—3—3-3-3—0-0—0-0-0-0-0-
0-0-0-0-0-0-0-0-0-0————-| B|—-3—3—3—
3—3—3-3-3—0-0—1-1-1-3-3-3-3-p1-1-1-3-3-
3-3-3————|G|————————–0-0-0—
0-0—2-2-2-2-2-2-2-2-2-2-2-2-2-2————-|...,
"doc_id": "2014-52/0086/de_head.json.gz/84",
"quality_signals": {"ccnet_perplexity": 41.2, ...}}

{"raw_content": DogsTootsie You are not logged
in: Owner: merrier_with_a_terrierBreed: Wire Fox
Terrier Gender: Female Jun 20, 2008twolfgirl66
Cute little girl!!!!!!!!!!!!!!!!!!!!!!! Jun 20, 2008 tton-
tosmommy aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaawwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww...,
"doc_id":2014-52/0058/de_head.json.gz/309,
...}

C Tokenizer

To investigate the performance differences of
our three trokenizer variants trained on different
amounts of data, we analyzed the most frequently
used tokens and the total number of unique sub-
words produced by each tokenizer on the head

2023_14 2023-2021 1TB german-gpt2
Rank Token Frequency Token Frequency Token Frequency Token Frequency

1. . 2.967.221 Ġ 3.520.850 e 6.129.204 . 2.964.871
2. , 2.535.194 . 2.967.544 Ġd 4.474.530 , 2.538.127
3. Ċ 1.941.957 e 2.736.916 n 3.586.091 Ċ 1.941.957
4. Ġder 1.510.132 , 2.535.765 . 2.967.544 Ġder 1.509.384
5. Ġund 1.247.787 r 2.256.061 i 2.926.354 Ġund 1.247.544
6. Ġdie 1.140.601 Ċ 1.941.957 r 2.724.928 Ġdie 1.140.601
7. - 1.017.930 in 1.808.081 , 2.535.904 - 1.022.213
8. Ġin 826.190 Ġde 1.547.525 Ġ 2.061.515 Ġin 822.906
9. Ġ( 600.305 nd 1.281.432 Ċ 1.941.957 Ġ( 599.928
10. Ġvon 588.567 Ġu 1.264.085 s 1.791.900 Ġvon 588.567

unique 31.959 31.568 31.328 49.723

Table 5: Comparison of the most frequently used tokens
on the “2014_52” head snapshot. “Unique” gives the
count of distinct tokens used to encode the unseen data.

snapshot of 2014_15 (Table 5). As expected,
all tokenizers shared common punctuation tokens
(e.g., “.” and “,”) among their most frequent en-
tries. However, notable distinctions emerged in
how frequently used German words were tokenized.
The 2023_14 tokenizer captures frequent German
words like “der” and “und”, whereas 2023-2021
and 1TB, exhibited a higher frequency of single-
character tokens (e.g., “e”, “r”). This pattern sup-
ports the hypothesis that the smaller dataset al-
lows for a more efficient representation of fre-
quently used tokens, while the larger datasets intro-
duce more variability, leading to tokenization into
smaller subunits. Remarkably, the frequent tokens
of 2023_14 closely resembled those of german-
gpt2 (vocab size (50 266), reinforcing its alignment
with established baselines in capturing essential
German vocabulary. Notably, the 2023_14 tok-
enizer utilized nearly its entire vocabulary (31 959
out of 32 000 tokens) when processing the unseen
data, suggesting an effective distribution.

D Training

LLäMmlein 120M LLäMmlein 1B

Parameters 124 668 672 1 035 638 784
Heads 12 32
Layer 12 22
Tokens 1T 3T
Training steps 466 509 1 430 512
Learning rate 6e-4 6e-4
Batch size 1024 1024
Context length 2048 2048

Table 6: Architectural and training details of LLäMm-
lein models

Architectural and training details for both
LLäMmlein models can be found in Table 6. In ad-
dition, we provide the loss curves for both models
in Figures 3 and 4. For LLäMmlein-120M over-
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Figure 3: Loss curve of LLäMmlein 120M model. Each color indicates a run, resumed after a training interruption.

Figure 4: Loss curve of LLäMmlein 1B model. Each color indicates a run, resumed after an interruption. The
visible jumps correspond to different chunks of training data, each sampled from a distinct part of the dataset.

all, ten restarts were necessary: Due to cluster set-
tings, training was resumed at least every two days,
and additionally, training had to be restarted a few
times to address GPU and NCCL errors. Before
starting the training run for LLäMmlein-1B, we
preliminary attempted to estimate the runtime for
replicating the original TinyLlama training settings
on our hardware as a sanity check. Based on our
extrapolations, the process would have taken over
200 days using 16 A100 GPUs, compared to the 90
days reported for TinyLlama on the same hardware.
After suspecting sharding configuration issues, we
adapted the Fully Sharded Data Parallel (FSDP)
strategy to a hybrid sharding approach. This re-
duced the extrapolated runtime to approximately
100 days, which we deemed satisfactory. Next, we
scaled our training to the final 64 GPUs, bringing
the extrapolated runtime down to 36 days. Early in
the training run, we identified further inefficiencies
related to improper use of the available InfiniBand.
We halted the training, corrected the configuration,
switched back to full sharding, and implemented
dataset pre-caching in RAM on each node. Af-
ter these optimizations, we restarted the training,
achieving a final overall runtime of 32 days (already
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Figure 5: Statistical analysis of performance progress
of 120M LLäMmlein over several checkpoints evalu-
ated on the full SuperGLEBer dataset. Although all
pairwise comparisons were calculate, non-significant
connections (ns) were excluded for clarity.

including a few slower initial days before the final
configuration change (green in Figure 4)), with a
total of two restarts, illustrated in different colors
in Figure 4. We will publish the code including all
mentioned fixes/adaptations upon publication.
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Figure 6: Statistical analysis of performance progress
of 1B LLäMmlein over several checkpoints evaluated
on the full SuperGLEBer dataset.

E Evaluation on SuperGLEBer

To investigate the influence of training steps on
the model performance, we performed an Analy-
sis of Variance (ANOVA) across multiple check-
points that we evaluated on all 29 benchmark tasks.
For the 120M model no significant improvements
were observable after the 300 000 checkpoint (Fig-
ure 5), while average performance plateaued after
the 500 000 checkpoint for the 1B model (Figure 6),
raising questions whether training could have been
concluded earlier, or if further training still pro-
vides improvements uncaptured by the benchmark.

Table 7 depicts concrete numbers for the Super-
GLEBer benchmark comparing the reported en-
coder and decoder models with our final LLäMm-
lein 120M and 1B models, as well as their respec-
tive saturated variants. LLäMmlein is competitive
with models of the same parameter size and partic-
ularly excels in classification tasks, where the 1B
model achieves the highest average score. Notably,
there is no significant difference observed between
our models and its saturated counterparts. Compar-
ing the 120M and 1B model it is noticeable that the
1B LLäMmlein model shows clear superiority for
classification and sequence tagging tasks compared
to the 120M version. However, this performance
gap is smaller for question answering and sentence
similarity tasks.

E.1 120M vs. other models

Figure 7 illustrates comparisons (incl. t-tests) of
our model against existing models of the same
size on the SuperGLEBer benchmark. LLäMmlein
clearly outperforms german-gpt2, confirming its su-

periority among German decoder models of similar
size. When comparing LLäMmlein with the two
BERT models – gbert-base and bert-base-german-
cased – no statistically significant differences were
found, which makes our 120M model the first to
match the average performance of a similarly sized
encoder on the SuperGLEBer benchmark.

E.2 1B vs. other Models

Figure 8 compares our 1B model against models
(using t-tests) of similar sizes and larger on the Su-
perGLEBer benchmark. To ensure comparability,
we excluded tasks in pairwise analysis, where one
model lacked a score due to CUDA out-of-memory
errors. Among models with similar parameter sizes,
we compare LLäMmlein 1B to Llama 3.2 with 1B
parameters and EuroLLM with 1.7B parameters
and significantly outperform them both. While we
were (expectedly) outperfomed by the seven times
larger leo-hessianai-7b model, no significant per-
formance differences were found between LLäMm-
lein 1B and other much larger models, such as the
German-finetuned Diso-Llama 3 with 8B parame-
ters, Llama3.1 8B and gbert-large.

F lm-evaluation-harness-de

As decoder-only models are effective for generative
tasks we further evaluated our models on the lm-
evaluation-harness-de (Table 8).

During analysis of the training process, we found
no siginificant average performance improvement
on the SuperGLEBer benchmark for the 1B model
starting from the 500 000 checkpoint. To further
investigate, we evaluated this checkpoint on the
lm-eval-harness as well (Table 9 and section 4.2.2).

A finding of the translated lm-evaluation-
harness-de: During testing, we identified several
instances of residual English text. For example, in
the "high_school_computer_science" section:

{’question’: ’In Python 3, which of the follow-
ing function convert a string to an int in python?’,
’choices’: [’int(x [,base])’, ’long(x [,base] )’,
’float(x)’, ’str(x)’], ’answer’: 0, ’question_de’: ’In
Python 3, which of the following function convert
a string to an int in python?’, ’choices_de’: [’int(x
[,base])’, ’long(x [,base] )’, ’float(x)’, ’str(x)’], ...}

and in the "machine_learning" section:
{’question’: ’_ refers to a model that can nei-

ther model the training data nor generalize to new
data.’, ’choices’: [’good fitting’, ’overfitting’, ’un-
derfitting’, ’all of the above’], ’answer’: 2, ’ques-
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Figure 7: Comparison of LLäMmlein 120M across the full SuperGLEBer benchmark with: (7a) german-gpt2, (7b)
gbert-base and (7c) bert-base-german-cased. The asterisks indicate the level of statistical significance: “ns” denotes
not significant (p > 0.05), while increasing significance is represented as follows: * (p ≤ 0.05), ** (p ≤ 0.01), ***
(p ≤ 0.001), and **** (p ≤ 0.0001).
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Figure 8: Performance comparison of LLäMmlein 1B accross the full SuperGLEBer benchmark with: (8a) Llama
3.2 1B, (8b) EuroLLM-1.7B, (8c) leo-hessianai-7b, (8d) on German-finetuned Disco-Llama 3 8B, (8e) Llama 3.1
8B and (8f) gbert-large. The asterisks indicate the level of statistical significance: “ns” denotes not significant
(p > 0.05), while increasing significance is represented as follows: * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001),
and **** (p ≤ 0.0001). For consistency, we entirely excluded tasks from the pairwise t-tests, where a larger model
lacked a score due to a cuda out of memory error.
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Model TruthfulQA ARC-Challenge HellaSwag MMLU

german-gpt2 0.261|0.432 0.195|0.236 0.262|0.268 0.238|0.263
ours 120M 0.247|0.404 0.194|0.238 0.291|0.320 0.245|0.276

Llama 3.2 1B 0.280|0.407 0.265|0.310 0.339|0.412 0.284|0.302
Llama 3.2 1B Instruct 0.279|0.440 0.259|0.296 0.340|0.411 0.343|0.343
ours 1B 0.239|0.365 0.266|0.311 0.390|0.483 0.253|0.270
ours 1B full 0.257|0.388 0.282|0.318 0.395|0.499 0.254|0.273
ours 1B Alpaka 0.268|0.397 0.279|0.323 0.399|0.499 0.258|0.273
ours 1B Evol 0.255|0.378 0.284|0.323 0.397|0.498 0.250|0.268
ours 1B Guanako 0.257|0.385 0.280|0.314 0.394|0.498 0.260|0.275
ours 1B Sharegpt 0.242|0.371 0.275|0.317 0.398|0.504 0.250|0.270

Llama 2 7b 0.268|0.422 0.333|0.381 0.396|0.513 0.400|0.396
leo-hessianai-7b-chat 0.301|0.452 0.405|0.442 0.485|0.624 0.401|0.401
Disco-Llama3-Ger-8B 0.331|0.495 0.456|0.497 0.491|0.654 0.545|0.529
Disco-Llama3-Ger-8B Inst. 0.364|0.530 0.506|0.538 0.515|0.664 0.559|0.555
em-german-7b-v01 0.225|0.427 0.197|0.233 0.258|0.276 0.241|0.263

Table 8: Performance comparison of (instruction tuned)
LLäMmlein variants as well as similar sized and vari-
ous larger models on the lm-evaluation-harness-de in-
cluding the: TruthfulQA (mc1|mc2), ARC-Challenge
(acc|acc_norm), HellaSwag (acc|acc_norm) and MMLU
(acc|acc_norm). This is the full table of Table 4, includ-
ing all metrics and all trained instruct adapters.

Model TruthfulQA ARC-Challenge HellaSwag MMLU

ours 1B_sat. full 0.256|0.495 0.205|0.247 0.252|0.258 0.227|0.250
ours 1B_sat. Alpaka 0.273|0.494 0.213|0.255 0.253|0.259 0.229|0.251
ours 1B_sat. Evol 0.261|0.501 0.211|0.249 0.254|0.256 0.229|0.253
ours 1B_sat. Guanako 0.264|0.501 0.224|0.246 0.251|0.261 0.231|0.255
ours 1B_sat. Sharegpt 0.262|0.495 0.202|0.243 0.255|0.261 0.230|0.249

Table 9: Performance comparison of “saturated”
LLäMmlein 1B instruction tuned variants from check-
point 500 000, from which no significant improvement
was noticeable on the SuperGLEBer benchmark (has to
be compared to Table 8).

tion_de’: ’_______ refers to a model that can nei-
ther model the training data nor generalize to new
data.’, ’choices_de’: [’gute Anpassung’, ’Über-
anpassung’, ’Unteranpassung’, ’alle oben genan-
nten’], ...}’}

Thus, the results and their information value
about German language capabilities may not be
completely accurate.

G Checkpoint Averaging

Aiming to boost our performance, we experimented
with checkpoint averaging (Section 4.4). However,
no significant differences were observable when
comparing the final 1B LLäMmlein model with av-
eraged checkpoints from the last five or ten check-
points on the SuperGLEBer benchmark (Figure 9).
A possible reason for this could be, that the check-
points were saved with too large intervals between
them, as we recorded approximately three check-
points per day. In contrast, in the transformer paper
(Vaswani et al., 2017), where this technique was
successfully used, checkpoints were saved every
ten minutes.
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Figure 9: Comparison of results for the LLäMmlein
1B model and its five and ten checkpoints-averaged
versions.

H Exemplarily Dialectic Analysis

To showcase the model’s versatility, we finetuned
adapters on specific dialectal data. For Bavar-
ian, we used approximately 25 700 Wikipedia
pages from the Bavarian column of the “cis-
lmu/bavarian_to_english” dataset on Hugging-
Face. For Swiss German, we finetuned
an adapter on 206 047 documents from the
“HuggingFaceFW/fineweb-2” dataset. Following
the setup in Section 3.3, these experiments, though
not quantitatively evaluated, highlight the model’s
adaptability and potential, as illustrated in Ap-
pendix F.
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Prompt Variant Output

In Berlin. . .
German In Berlin-Mitte ist ein Mann mit einem Messer angegriffen und schwer verletzt worden.
Bavarian In Berlin is a Stod in da Bundesstod Berlin.
Swiss In Berlin ist es heute Nacht zu einem Brand gekommen.

In Minga. . .
German In Minga, der Stadt der Münchner, gibt es viele Sehenswürdigkeiten, die man sich anschauen kann.
Bavarian In Minga is a Gmoa in Bayern.
Swiss In Minga Minga ([mINga]) isch en Begriff, wo im südliche Afrika, in de südliche Sahara und in de südliche Halbinse, wo in de Sahelzone liegt, gebräuchlig isch.

In Züri. . .
German In Züri West, dem neuen Album von Züri West.
Bavarian In Züri is a Stod in der Schweiz.
Swiss In Züri isch es nid so heiss wie in Basel.

Table 10: Example outputs in German, Bavarian, and Swiss dialects for the base model and two adapter variants,
when being asked about the “regional captial”, showcasing linguistic adaptability across regional varieties. The
outputs demonstrate varying levels of accuracy in adapting to the target dialects. While some results capture the
linguistic characteristics effectively, others fall short, highlighting the challenges of fine-tuning models for nuanced
regional variations. The tendency of the Bavarian adapter to adhere to the Wikipedia style is pronounced as it starts
with a short descriptive sentence every time.
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