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Abstract

The effective utilization of structured data, inte-
gral to corporate data strategies, has been chal-
lenged by the rise of large language models
(LLMs) capable of processing unstructured in-
formation. This shift prompts the question: can
LLMs interpret structured data directly in its
unstructured form? We propose an automatic
evaluation data generation method for assess-
ing LLMs’ reasoning capabilities on structure-
rich text to explore this. Our approach supports
8 structured languages and 29 tasks, generat-
ing data with adjustable complexity through
controllable nesting and structural width. We
introduce StrucText-Eval, a benchmark con-
taining 5,800 pre-generated and annotated sam-
ples designed to evaluate how well LLMs un-
derstand and reason through structured text.
StrucText-Eval is divided into two suites: a
regular Test suite (3,712 samples) and a Test-
Hard suite (2,088 samples), the latter empha-
sizing the gap between human and model per-
formance on more complex tasks. Experimen-
tal results show that while open-source LLMs
achieve a maximum accuracy of 74.9% on the
standard dataset, their performance drops sig-
nificantly to 45.8% on the harder dataset. In
contrast, human participants reach an accu-
racy of 92.6% on StrucText-Eval-Hard, high-
lighting LLMs’ current limitations in handling
intricate structural information. The bench-
mark and generation codes are open sourced
in https://github.com/MikeGu721/
StrucText-Eval

1 Introduction

Structured data, often represented by various struc-
tured languages such as JSON (Pezoa et al., 2016),
YAML (Evans, 2001), ORG (org, 2023), or Mark-
down (Gruber, 2012), Latex (Lamport, 1985) etc.,
has consistently been central to corporate data
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strategies due to its ability to capture, store, and an-
alyze essential information systematically. The in-
herent benefits of structured data lie in its standard-
ized format and high degree of organization, which
facilitates efficient data querying and machine pro-
cessing, clearly surpassing the inherent chaos of
unstructured data. However, with the advancement
of large language models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023a,b; Sun et al., 2021),
there has been a significant shift towards the ef-
fective utilization of unstructured data, attributed
to the LLMs’ capacity to comprehend and gener-
ate complex and nuanced semantics within such
data (Brown et al., 2020). Considering that struc-
tured data can be directly presented in an unstruc-
tured format, it makes us wonder: whether it is
possible to rely on LLMs to interpret structured
data through unstructured format directly.

Current LLM researchers have addressed their
comprehension of the structure-rich text of lim-
ited categories: Graphs (Fatemi et al., 2023; Per-
ozzi et al., 2024; Guo et al., 2023; Tang et al.,
2023a; Chen et al., 2023), Tables (Sui et al., 2024;
Campbell-Kelly, 2003; Pasupat and Liang, 2015)
and JSON (Chen et al., 2024; Suzgun et al., 2022).
However, these categories do not encompass all po-
tential use cases of structure-rich text. For instance,
scenarios requiring a direct understanding of arti-
cles in Latex or Markdown formats, data in YAML
or ORG formats, or various custom-structured lan-
guages need to be adequately covered. Moreover,
existing benchmarks often rely on manually an-
notated data for evaluation, which limits the de-
velopment of robust evaluation frameworks and
potentially facilitates model cheating (Zhou et al.,
2023).

We propose a method for automatically gener-
ating evaluation data to assess models’ capabili-
ties in structure-rich text reasoning. This method
is applied to 8 structured languages, as shown in
Fig. 1, across 29 specific tasks, enabling data gen-
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Benchmark CSV/Table Tree JSON YAML XML MD. LaTeX Org Total

BIG-Bench (Srivastava et al., 2022) - - 31,907 - - - - - 31,907
TEMPTABQA (Gupta et al., 2023) 1,208 - - - - - - - 1,208
Struc-Bench (Tang et al., 2023b) 4.1k - - - - - 5.5k - 9,600
DocCGen (Pimparkhede et al., 2024) - - - 18k - - - - 18,000
SUC (Sui et al., 2024) 1,500 - - - - - - - 1,500
StrucText-Eval (Ours) 841 841 841 841 841 841 841 841 6,728

Table 1: Benchmark comparison across different structural language.

eration with controllable difficulty by adjusting
the depth of structured nesting and the number
of width and columns in the sample. Based on
this method, we further introduce the Structure-
Rich Text Evaluation Benchmark (StrucText-
Eval), a comprehensive benchmark with 5,800 pre-
generated and annotated samples designed to evalu-
ate the proficiency of LLMs in deciphering embed-
ded structures within input text. StrucText-Eval
aims to evaluate whether LLMs understand raw
structural tags, execute logical inferences based
on the decoded semantics of these symbols, and
organize their responses according to instruction
requirements.

The StrucText-Eval dataset contains three test
sets: Test (3,712 samples), Real-Test (928 sam-
ples), and Test-Hard (2,088 samples). Since the
Test set questions were created using rule-based
generation, we selected 928 questions from it and
rewrote them using real-world examples to form
the Real-Test set, making it closer to practical
needs for LLMs to understand structured text. The
Test-Hard set includes much longer questions, with
an average length of 16,535 characters and the
longest question containing 102,531 characters,
greatly showing the gap between LLMs and hu-
mans in understanding structured data. The experi-
mental results indicate that StrucText-Eval presents
significant challenges in evaluating current LLMs’
structured text processing capabilities. While var-
ious open-sourced models achieve maximum ac-
curacy of 74.9% under different prompting meth-
ods, their performance declines markedly to 45.8%
when tested on the more complex StrucText-Eval-
Hard dataset. In contrast, human participants at-
tain an accuracy of 92.6% on StrucText-Eval-Hard,
highlighting the limitations of existing LLMs in
comprehending and reasoning through complex
structural information.

Structure-Rich Texts

Structured Data

Tabular

CSV

Tree

Custom Language

Semi-Structured Data

Object Notation

JSON YAML XML

Markup Language

Markdown LaTeX Org

Figure 1: Taxonomy of Structure-Rich Texts covered in
StrucText-Eval.

2 Related Work

2.1 Structural Text Understanding
Enhancements

Recent efforts to enhance LLMs have focused on
integrating external structures such as graphs, tool
flows, and cross-domain representations to im-
prove reasoning capabilities across various tasks.
For instance, ControlLLM utilizes tool graphs to
decompose complex multimodal tasks, resulting
in enhanced performance on image and audio pro-
cessing tasks by leveraging the topological depen-
dencies of tools (Liu et al., 2023). Graph-based
models like GraphGPT and BooG have shown
promising results, with the former improving gen-
eralization across node classification and molecu-
lar tasks via graph instruction tuning (Zhao et al.,
2023; Tang et al., 2024). At the same time, the
latter employs virtual supernodes to unify graph
structures across domains, fostering cross-domain
task transferability (Cheng et al., 2024). Addition-
ally, methods like RC2R demonstrate the effective
combination of knowledge graphs and LLMs for
domain-specific causal reasoning, particularly in
financial risk propagation tasks (Yu et al., 2024).
These advancements highlight the benefits of em-
bedding structural elements, from graph architec-
tures to domain-specific knowledge graphs, within
LLM frameworks to improve task-specific infer-
ence and reasoning.

2.2 Structural Text Understanding
Evaluation

Evaluating LLMs’ understanding of structured data
has become increasingly critical, though bench-
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marks remain limited. GraphQA and Struc-Bench
are key datasets that assess LLMs’ reasoning over
graph-structured data and tabular text, respectively,
illustrating the models’ varying capabilities based
on input encoding (Fatemi et al., 2023; Tang et al.,
2023b). More specialized benchmarks, such as
TEMPTABQA, evaluate temporal reasoning in tab-
ular data, while TableLLM tests LLMs’ proficiency
in handling complex document-based table ma-
nipulation tasks (Gupta et al., 2023; Zhang et al.,
2024). Other works, such as the evaluation of
knowledge graph-based reasoning in complex time-
series QA systems (JMFRN) (Huang et al., 2024),
and privacy-oriented graph tasks in GHRatio (Yuan
et al., 2024), further explore how LLMs handle in-
tricate, structure-rich information, shedding light
on their performance across different structured
data formats.

Our work diverges from prior research by focus-
ing exclusively on structure-based inference, de-
liberately removing semantic content to challenge
LLMs to reason purely from structural patterns.
Unlike previous approaches that use structural data
as supplementary input for classification or seman-
tic tasks (Pasupat and Liang, 2015; Sui et al., 2024),
we design semantically agnostic tasks requiring
models to infer meaning solely from symbolic
structures. Moreover, while earlier benchmarks
emphasize graph reasoning or tabular information
retrieval, our work extends to a broader spectrum of
structure-rich text types, encompassing various in-
put formats and more complex dependency-based
inference tasks.

3 StrucText-Eval Construction

3.1 Structure-Rich Texts Taxonomy

To explore structure-rich texts comprehensively,
we propose a dataset for eight structured data
types, each categorized within a taxonomy de-
picted in Fig. 1. This taxonomy encompasses
both structured and semi-structured data formats.
The structured data types include Tree ((Cormen
et al., 2022)), Tabular ((Campbell-Kelly, 2003)),
and Object Notation such as JSON ((Pezoa et al.,
2016)), YAML ((Evans, 2001)), and XML ((Bray
et al., 1998)). The semi-structured data types in-
clude Markup Languages like Markdown ((Gru-
ber, 2012)), LaTeX ((Lamport, 1985)), and Org
((org, 2023)). Within StrucText-Eval, Tabular is
stored in CSV format, whereas Tree is denoted by
a custom format that nodes are represented as the

#Sample #Reference #GroundTruth Depth Width
StrucText-Eval-Test

3,712 804 47 - -
1,856 582 19 1 1
1,856 1,026 74 2 1

StrucText-Eval-Real-Test
928 562 74 - -
464 319 39 1 1
464 805 109 2 1

StrucText-Eval-Test-Hard
2,088 16,535 1,169 - -

232 573 22 1 1
232 614 26 1 2
232 663 25 1 3
232 992 80 2 1
232 2,108 136 2 2
232 3,866 283 2 3
232 5,036 312 3 1
232 32,428 2,229 3 2
232 102,531 7,411 3 3

Table 2: Statistics for StrucText-Eval test suite.

string “xxx”, connected with “->” and separated
by “\n”. For examples encompassing all languages
and tasks, please refer to Sec. F in the Appendix.

3.2 Generation of Test Suite

An example of JSON’s PathCompose is shown in
Fig. 2 to illustrate the dataset generation process.
The generation process mainly entails construct-
ing an abstract structure tree, manually drafting
question templates, and developing corresponding
answer discovery algorithms. The first step of the
generation process is to define the complexity of
the problem, characterized by depth, width, and
column (Col), as well as its type, including task
and language. During the construction of the ab-
stract tree, depth represents the depth of the tree,
width indicates the number of children for each
non-leaf node, and Col specifies the number of
fields associated with each node. When construct-
ing the question template, predefined templates are
retrieved based on the specified task. Finally, dur-
ing sample generation, the selected task is used
to identify the corresponding ground truth accord-
ing to specific rules, and both the abstract tree and
the ground truth are translated into the selected
language.

Eight task categories have been delineated for
eight languages, as detailed in Fig. 3b. Twenty-
nine rules and question templates have been for-
mulated for these tasks, with the specific rule tem-
plates detailed in Sec. G in the Appendix. Each
sample in the dataset comprises four main fields:
“Reference”, “Question”, “Requirement” and “An-
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Figure 2: The illustration of the dataset generation pro-
cess, the Json PathCompose task, is an example.

swer”. We give examples for each language and
task in Sec. F in the Appendix.

3.3 Generation of Real-Test Suite

To enhance the alignment between StrucText-Eval-
Test and real-world data, we selected a represen-
tative subset of samples for manual modification.
We maintained consistency with StrucText-Eval-
Test by extracting equal proportions of data across
tasks, languages, and complexity levels. Five grad-
uate students from computer science backgrounds
were invited to modify the “Reference” and “An-
swer” parts of raw data by replacing abstract node
values with meaningful real-world information. In
the annotation process, each question is assigned a
unique scenario (e.g., athletic activities, glassware
specifications), and annotation needs to ensure
the modified content is aligned with these scenar-
ios and thereby facilitating diverse, non-repetitive
datasets that closely approximate real-world appli-
cations. For instance, to annotate in an athletic
scenario, an abstract JSON structure “a”: “b”, “c”:
“ddd” is transformed into “Name”: “James”, “Spe-
ciality”: “Running”. The comprehensive guide-
lines for manual rewriting are detailed in Appendix
C.

3.4 Statistic Information

StrucText-Eval has assembled two datasets.
StrucText-Eval-Test comprises 3,712 samples,
StrucText-Eval-Real-Test comprises 928 samples,
and StrucText-Eval-Test-Hard comprises 2,088
samples, each of the 29 specific tasks for eight
languages as depicted in Fig. 3a. Detailed statis-
tics regarding the number of samples, lengths, and
complexity levels across all tasks, languages, and
difficulties are detailed in Tab. 2.

4 Experiment Setup

To evaluate LLMs’ current capability of processing
structure-rich text and executing dependent infer-
ence, we conducted a series of experiments using
StrucText-Eval in various settings. Our study uti-
lizes both prompt-based and finetuning methods to
analyze the performance variations.

4.1 Models

We tested six Open-Source LLMs in both
StrucText-Eval Test and Test-Hard Suite, and we
used the short name (in the bracket) of these LLMs
in the experiments: Qwen/Qwen2-7B-Instruct
(Qwen-2-7B), Qwen/Qwen2-72B-Instruct
(Qwen-2-72B), meta-llama/Meta-Llama-3.1-
8B-Instruct (Llama-3.1-8B), meta-llama/Meta-
Llama-3.1-72B-Instruct (Llama-3.1-70B),
meta-llama/Meta-Llama-3.1-405B-Instruct
(Llama-3.1-405B), mistralai/Mistral-7B-
Instruct-v0.2 (Mistral-0.2-7B)

Considering the huge expense of using an API-
based model, we only tested six Close-Source
LLMs in StrucText-Eval-Hard: gpt-4o-2024-08-
06 (gpt-4o), gpt-4o-mini-2024-07-18 (gpt-4o-
mini), gemini-1.5-pro(gemini-1.5-pro), gemini-
1.5-flash(gemini-1.5-flash), GLM-4-Plus (glm-4-
plus), GLM-4-Flash (glm-4-flash).

4.2 Prompt-based Method

We also evaluated the impact of different prompt
designs on the performance of LLMs by utiliz-
ing six distinct prompt configurations in the main
experiments. Detailed implementation of these
prompts can be found in the Appendix in Sec. E.
The six primary prompt settings are as follows:
Naive involves a straightforward in-

put of “Context”, “Question”, and “Op-
tions” into the LLMs to generate re-
sponses. Self-Chain-of-Thought
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(a) Benchmark Decomposition

Task Name Abbr. Task Description

Syntax SY
Focuses on detecting structural errors in data formats such as
JSON, XML, and YAML.

PathWalk PW
Focuses on extracting specific sections or subsections from struc-
tured documents such as org, LaTeX, or markdown files.

TextRetrieval TR
Assesses the ability to extract specific information from various
document formats, including text content and image filenames.

Statistic ST
Concentrates on statistical queries to calculate the number of em-
ployees meeting specific salary conditions.

Join JO
Assesses the ability to filter data sets that meet specific criteria by
combining multiple tables in a database through SQL queries.

Tree.Height TH
Evaluates calculating the height of the longest path from the root
node to any leaf node in a tree structure.

Node.Depth ND
Assesses the depth of any node in a tree structure relative to the
root node.

PathCompose PC
Evaluates reasoning of paths and multi-level data indexing within
hierarchical or tree-like structures.

(b) Descriptions of tasks for evaluating structured data understanding in
large language models

Figure 3: The tasks within StrucText-Eval and their description.

(Self-CoT) (Kojima et al., 2022) incor-
porates a step-by-step reasoning prompt to
guide the model through logical reasoning.
Plan-and-Solve CoT (PS-CoT) (Wang
et al., 2023) emphasizes problem decomposition
before solving, encouraging the model to first
break down the problem before generating a
solution. With Hint (w/ hint) provide
manually curated hints to the model to observe
its performance when additional information
is injected. Since this approach introduces
supplementary data, it is delineated by a dashed
line from other methods in Table 3. Few-Shot
Demonstration involves appending a few
training data directly to the prompt. The Simple
Few-Shot Demonstration uses only the
shortest examples from the training set as few-shot
demonstrations.

4.3 Evaluation Method

We use the RougeL metric (Lin, 2004) to assess
the degree of character-level similarity between
model outputs in the main content of this paper.
Sometimes, the task requires the LLM to generate
the entire reasoning path leading to the answer,
which results in high RougeL scores. So, we assign
a score of 0 if the RougeL score falls below 0.75.

Additionally, we present the results of other
evaluation metrics, including LLM-as-Judge-
Score (Zheng et al., 2023), BLEU (Papineni et al.,
2002), and Exact Match, in Tab. 6 in the Ap-
pendix. Furthermore, we conduct a consistency
analysis across these metrics compared to human
judgments, as shown in Fig. 5.

5 Analysis

5.1 Overall Performance in StrucText-Eval

The overall performance in StrucText-Eval is pre-
sented in Table 3, revealing significant variations in
the performance of different models across various
languages and tasks. For instance, the Qwen2-72B-
Instruct model demonstrates optimal performance
on JSON-formatted tasks with an 85.8% accuracy
under the “Naive” prompt. It also achieves notable
results in YAML and CSV tasks, with accuracies
of 82.7% and 86.4%, respectively. In contrast,
the Meta-Llama-3.1-8B-Instruct-Turbo model per-
forms poorly under the same settings, achieving
only 64.6% accuracy on LaTeX tasks. Manually in-
jected hints (w/ hint) generally improve model per-
formance, particularly in tasks requiring deep rea-
soning, such as those involving YAML and JSON.
For example, the Meta-Llama-3.1-70B-Instruct-
Turbo model’s accuracy improves from 75.4% un-
der the “Naive” prompt to 84.9% with the “w/ Hint”
strategy. However, with “Self-CoT” and “PS-CoT”
prompts, specific models like Qwen2-7B-Instruct
exhibit lower accuracy across multiple tasks, es-
pecially when handling complex structures such
as XML and Tree data, performing significantly
worse than other prompting methods.

These performance disparities can be primar-
ily attributed to training sample biases and the in-
fluence of different prompting strategies. JSON,
being a widely used format in internet data, is fre-
quently encountered by many large models during
training, leading to a pronounced advantage in han-
dling JSON-formatted tasks—a clear manifestation
of training sample bias. Moreover, the choice of
prompting strategy directly affects a model’s infer-
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Model Prompt Languages Tasks all
JSON LaTeX Md. ORG CSV Tree XML YAML PC PW SY TR JO ST ND TH

Qwen2-7B

Base 70.4 68.8 68.0 54.5 83.5 68.9 57.6 68.5 48.5 74.2 49.2 72.4 79.5 78.4 47.7 93.2 30.0
Self-CoT 12.8 1.5 1.5 9.1 29.0 4.5 3.6 3.5 4.5 6.4 6.1 8.1 27.3 26.1 2.3 6.8 17.2
PS-CoT 31.7 31.7 19.4 20.1 67.0 36.4 25.8 24.9 9.8 19.8 32.6 34.1 63.6 60.2 25.0 72.7 29.1

w/ Hint 70.8 66.1 66.5 58.1 85.2 56.8 55.2 70.2 43.9 72.3 43.2 75.3 86.4 77.3 45.5 65.9 44.0

Qwen2-72B

Base 85.8 73.7 75.1 67.1 92.6 86.4 71.2 82.7 80.3 81.5 62.9 80.8 90.9 90.9 77.3 95.5 42.6
Self-CoT 85.4 69.9 70.8 65.2 95.5 90.2 79.5 89.7 78.8 77.1 81.1 81.7 90.9 95.5 84.1 95.5 51.0
PS-CoT 89.5 70.1 68.9 61.7 92.0 84.8 81.1 93.4 76.5 77.6 87.9 80.8 81.8 93.2 86.4 97.7 65.3

w/ Hint 90.0 72.5 79.1 68.6 94.9 81.1 72.7 90.8 81.1 84.0 77.3 82.4 95.5 92.0 72.7 86.4 49.4

Llama-3.1-8B

Base 43.9 64.6 49.3 48.3 42.6 50.0 26.5 46.9 30.3 49.4 1.5 61.0 11.4 45.5 22.7 79.5 21.3
Self-CoT 52.2 40.6 49.2 39.0 66.5 43.2 36.6 55.2 40.9 40.2 39.7 53.0 77.3 65.9 52.3 36.4 48.5
PS-CoT 45.8 18.7 34.0 32.8 64.0 63.1 44.6 41.3 48.8 50.5 44.7 32.8 69.8 56.8 64.3 62.8 55.9

w/ Hint 44.9 62.2 55.9 48.1 29.0 54.5 30.5 51.4 31.8 45.4 9.1 63.4 2.3 22.7 38.6 90.9 26.9

Llama-3.1-70B

Base 93.8 70.9 69.8 62.8 72.7 51.5 78.7 88.8 81.8 75.4 82.6 81.0 72.7 59.1 47.7 43.2 50.8
Self-CoT 93.6 71.4 69.7 54.8 96.0 84.1 87.1 95.9 88.6 67.9 86.4 85.7 97.7 93.2 77.3 97.7 76.7
PS-CoT 94.5 68.7 72.7 61.7 93.7 83.2 93.9 98.5 90.8 77.0 93.9 84.2 93.2 90.9 81.8 90.9 72.9

w/ Hint 93.6 73.9 77.4 71.6 72.7 74.2 80.4 93.6 88.6 84.9 84.1 83.5 70.5 60.2 65.9 75.0 58.4

Llama-3.1-405B

Base 82.0 62.9 70.0 60.9 96.6 65.9 61.5 78.1 74.2 69.4 32.6 82.4 97.7 94.3 45.5 79.5 38.3
Self-CoT 87.7 62.2 74.2 62.2 95.5 75.8 78.5 90.8 87.9 73.2 63.6 83.4 100.0 90.9 59.1 88.6 67.1
PS-CoT 84.5 67.4 76.0 66.7 92.0 86.7 94.7 94.7 88.3 79.1 93.2 81.1 97.7 85.2 90.9 88.6 74.9

w/ Hint 85.4 68.3 75.1 66.7 98.3 70.5 74.5 87.2 74.2 78.0 59.1 84.9 97.7 97.7 50.0 84.1 46.5

Mistral-7B

Base 32.5 42.1 44.9 40.2 9.1 4.5 14.8 33.5 6.1 30.8 0.0 47.7 0.0 6.8 0.0 0.0 11.3
Self-CoT 56.5 35.1 40.3 36.6 34.7 15.9 33.7 54.3 28.8 49.2 64.4 43.9 6.8 23.9 13.6 13.6 8.1
PS-CoT 43.9 19.7 22.9 15.6 14.8 18.2 34.6 44.1 18.9 30.6 56.8 29.1 22.7 6.8 13.6 22.7 19.5

w/ Hint 34.6 39.4 52.7 40.5 10.2 6.8 12.7 36.5 9.8 34.3 0.0 48.9 0.0 8.0 0.0 0.0 10.6

Table 3: RougeL score for open sourced LLMs’ performance. Bolded text represent the best performance in the
column. Underlined text represent the second best performance in the column.

Figure 4: Heatmaps illustrating the correlation of RougeL scores and standard deviations (STD) across different
models and evaluation criteria. The rows represent different levels of depth, and the columns represent varying
levels of width, indicating increasing task complexity. “All” refers to combined results across languages and tasks,
while “GPT” shows results specific to GPT-based models. “Lang STD” and “Task STD” indicate the variability in
performance across different languages and tasks, respectively.

ence capabilities. The “w/ Hint” method, which
introduces human reasoning rules, compensates for
the model’s limitations in reasoning through com-
plex structures. Conversely, while the “Self-CoT”
and “PS-CoT” approaches encourage step-by-step
reasoning, they often result in logical inconsisten-
cies and reasoning errors in complex tasks due
to the requirement for autonomous generation of
reasoning paths.

5.2 Performance Comparison on
StrucText-Eval Test and Real-Test

Fig. 6 shows that most LLMs demonstrate com-
parable performance across both test sets, with
variations typically within three percentage points.
This consistency validates the effectiveness of our
synthetic data design in simulating real-world sce-
narios. Moreover, introducing rule hints makes the
performance disparity between the two test sets
more pronounced. Llama3.1-405B’s advantage in
Real-Test further amplifies, exceeding its Test set
performance by over six percentage points. Sim-
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Model Prompt
Base w/ Hint 3-Shot Simple 3-Shot

Human 92.6 - - -
GPT-4o-Turbo 51.1 54.2 69.5 49.7
GPT-4o-Mini 39.3 47.7 65.6 39.9
Gemini1.5-Pro 11.2 15.7 53.0 12.5
Gemini1.5-Pro-Flash 12.9 12.9 38.3 11.9
GLM-4-Plus 47.3 50.9 65.8 51.7
GLM-4-Flash 40.9 47.8 55.2 41.7
QWen-2-7B 29.6 35.0 51.9 30.0
QWen-2-72B 42.5 45.3 61.4 36.2
Llama-3.1-8B 22.3 26.7 33.7 34.2
Llama-3.1-70B 45.8 56.0 58.4 50.1
Llama-3.1-405B 34.4 41.7 48.7 40.6
Mistral-0.2-7B 7.0 9.5 21.0 6.9

Table 4: Performance of all LLMs and Humans on
StrucText-Eval-Hard. Bolded text represent the best
performance in the column. Underlined text represent
the second best performance in the column.

Figure 5: Correlation between different evaluation met-
rics.

ilarly, Llama3.1-8B demonstrates enhanced per-
formance on Real-Test, achieving results approx-
imately 3.5 percentage points higher. However,
Qwen2-7B exhibits a contrasting trend, with its
Real-Test performance falling approximately six
percentage points below its Test set results. These
divergent patterns suggest that rule hints influence
models’ capacity to generalize to authentic data.

5.3 Overall Performance on StrucText-Eval
Hard

Table 4 presents the performance of various models
on the StrucText-Eval Hard dataset, characterized
by more complex tasks with longer sequences and
deeper structures. This complexity results in a sig-
nificant performance decline across all models. For
instance, the accuracy of the Qwen2-72B-Instruct
model decreases from 78.4% to 65.0%, while the
Meta-Llama-3.1-70B-Instruct-Turbo model’s accu-
racy drops sharply from 75.4% to 43.2%. Unlike
the standard dataset, the Hard dataset demands
more advanced reasoning skills, and even with

Figure 6: Performance comparison among open-source
models on StrucText-Eval Test and Real-Test.

the “w/ Hint” strategy, models achieve only lim-
ited improvements, in contrast to the substantial
gains observed in more straightforward contexts.
Notably, human accuracy on StrucText-Eval-Hard
reaches 95.7%, significantly surpassing that of the
best-performing large language models (LLMs),
highlighting a considerable gap in models’ capa-
bilities for structured reasoning.

This performance gap can be primarily at-
tributed to biases in training data and the limita-
tions of current prompting methods. The StrucText-
Eval Hard dataset, with increased question com-
plexity and depth, requires models to possess en-
hanced abstraction abilities and a deeper under-
standing of complex structures. However, most
models are trained on relatively more straightfor-
ward structured text, which makes them less effec-
tive when tackling deeply nested reasoning tasks.
Additionally, prompting methods like “w/ Hint”
fail to achieve human-level understanding in multi-
layered scenarios. The differences in prompting
methods become more pronounced with increased
complexity; more straightforward methods, such
as Self-CoT, need to be revised for guiding models
through multi-step reasoning in these challenging
contexts. While the “3-shot demonstration” ap-
proach significantly improves model performance,
the simpler “simple 3-shot” method, despite fol-
lowing similar reasoning rules, fails to match the
former due to its insufficient complexity.

5.4 Performance Gap on Human & LLMs
with Different Ability

Fig. 7 reveal significant performance variations
among GPT-4, Qwen-2.7B, and human partici-
pants in structured data processing tasks. GPT-
4 demonstrates superior performance in compu-
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Figure 7: Performance on StrucText-Eval Hard on best LLM, famous small llm, and human in each task. LLM
Performance is plotted against the left y-axis, while Human Performance is plotted against the right y-axis

tational tasks, achieving over 88% accuracy in
Join and Statistics operations, substantially out-
performing Qwen2-7B’s modest results, which are
38.89% and 62.50%, respectively. Moreover, GPT-
4 exhibits enhanced stability across tasks, partic-
ularly in computational operations, with standard
deviations below 0.35, whereas Qwen-2.7B shows
higher variability with standard deviations exceed-
ing 0.4.

Human participants excel in copy-intensive
tasks such as PathWalk with 96.50% and TextRe-
trieval with 95.00%, significantly surpassing both
models’ performance in these areas. However, in
computational tasks, human performance aligns
closely with GPT-4, suggesting that advanced lan-
guage models have achieved near-human capa-
bility in specific structured computational oper-
ations. These findings underscore the complemen-
tary strengths of human cognition and artificial in-
telligence in processing structured data while high-
lighting the impact of model scale on performance
stability and complex reasoning capabilities.

5.5 Model Performance Across Different
Difficulty Levels, Languages, and Tasks

Figure 4 illustrates the performance variations of
models across different languages and tasks. The
two figures on the left reveal that, while numerical
differences exist among models, including GPT
models, they exhibit a consistent trend: Increas-
ing the reference’s depth and width results in a
significant decline in performance. Notably, all
models show a high variance in performance when
the depth and width are high, suggesting that the
StrucText-Eval effectively distinguishes the capa-
bilities of most models under these conditions.

However, for GPT models, substantial variance
in performance is observed only when the depth
and width increase significantly, indicating that

the StrucText-Eval-Hard Test suite is necessary to
differentiate the performance of more advanced
models better. Additionally, there is considerable
variance in model performance across different
languages and tasks, suggesting substantial differ-
ences in models’ proficiency in handling various
linguistic and task-specific challenges. This dis-
crepancy is likely due to biases in training samples
and the varying difficulty levels of those samples,
as suggested by earlier analyses.

5.6 Correlation Between Different Metrics
Figure 5 presents the correlations between vari-
ous evaluation metrics. The high correlation be-
tween Human Judge and GPT-4o Judge (0.9937)
indicates a strong alignment between GPT-4o’s
automated assessments and human evaluations. Al-
though Exact Match exhibits a notable correlation
with Human Judge (0.9501), its stringent crite-
ria often result in scores significantly lower than
those of human evaluators, making it less suit-
able for capturing the diversity and naturalness
of model outputs. Among the metrics, RougeL
stands out with a correlation of 0.9932 with Hu-
man Judge, demonstrating its effectiveness in cap-
turing surface-level textual similarity while main-
taining high consistency with human judgments.
Compared to the more rigid Exact Match and the
relatively lower correlation of BLEU, RougeL of-
fers a better balance between textual similarity and
evaluation accuracy.

6 Conclusion

The capability to directly interpret structural-rich
text in a free-text format is an essential skill all
LLMs require. In response, we have developed
StrucText-Eval to evaluate this capability of LLMs.
We find that the proficiency of current LLMs in
training on these structural-rich texts varies depend-
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ing on user frequency, leading to different perfor-
mance when the same tasks are performed in vari-
ous languages. LLMs’ understanding of structural-
rich texts remains superficially tied to the training
data, and these models need a profound understand-
ing of the structure itself. This deficiency becomes
evident when LLMs encounter complex structures
composed of common languages or need to parse
structural-rich text by custom languages, resulting
in significant performance degradation.

Limitation

This paper focuses on evaluating LLM’s reasoning
abilities on structure-rich text by designing a bench-
mark called StrucText-Eval. However, StrucText-
Eval includes only eight types of structured lan-
guages and encompasses a total of 29 different
tasks. Given the vast array of actual structured lan-
guages and the myriad methodologies employed
beyond these 29 types, StrucText-Eval can only par-
tially represent the LLMs’ capacity to understand
structure-rich text. Additionally, due to regional
restrictions, we are unable to utilize some highly ef-
fective baseline LLMs, such as Gemini and Claude.
Therefore, the conclusions drawn in this paper are
based on the assumption that GPT-4 and GPT-4
Turbo represent the top-tier LLMs now.

Ethical Concern

We contend that this article is devoid of ethical
concerns for several reasons:

1. Nature of StrucText-Eval Content:
StrucText-Eval is primarily composed
of structured language syntax and some
nonsensical strings, which do not present
potential ethical issues such as gender bias or
racial discrimination.

2. Objective Presentation of Experimental
Results: The experimental results pertain-
ing to StrucText-Eval objectively demonstrate
the comprehension abilities of various large
models on structure-rich text included in the
benchmark. We have thoroughly validated the
outputs and assessment details of the models
to ensure that the entire evaluation adheres to
the experimental setup and maintains objec-
tivity.

3. Completion of Manual Tasks: All manual
tasks associated with this study were con-
ducted by the authors themselves, thereby

eliminating any issues of unfair labor prac-
tices or unethical cost imposition.
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A Case Study

Two case studies illustrate the evaluation setup of
StrucText-Eval (Figure 8). In the JSON-based Text
Retrieval task, GPT4-Turbo accurately identified
deeply nested objects and adhered to the free-text
format for outputting dictionary types, reflecting
its firm grasp of structured text. Minimax also
produced a correct answer but deviated from the
prescribed format, a common issue explored in ex-
isting research. In contrast, GPT4-Turbo initially
failed to merge two tables and deduce the correct
record count without fine-tuning in the SQL-based
Join task. However, a finetuned model steadily im-
proved, achieving the correct solution after 5100
training steps. This progression demonstrates the
importance of task-specific fine-tuning in enhanc-
ing models’ capabilities in handling complex SQL
queries and database structures.

Aspect Requirements

Structure
• Maintain the original data structure and format
• Do not alter the nesting levels or relationships

Content

• Use real-world examples from assigned scenarios (e.g., e-
commerce, finance, sports)

• Ensure data values are realistic and scenario-appropriate
• Maintain semantic relationships between related fields

Reference

• Base modifications on actual examples from the assigned
scenario

• Keep data consistency within each reference
• Avoid sensitive or identifiable information

Table 5: Guidelines for Manual Data Annotation

B Few-Shot Demonstration on Structural
Text Inference

Figure 9 demonstrates that model performance
improves with an increasing number of demon-
strations under Few-Shot settings. In the 3-shot
scenario, GPT-4 achieves an accuracy of 69.5%,
significantly outperforming models like Gemini-
Pro-Flash and Mistral, which remain around 21%
or lower. The Qwen-2-72B-Instruct model shows
steady improvement as more examples are pro-
vided, although it continues to trail behind GPT-
4. Generally, performance increases from 1-shot
to 3-shot, but the gains become less pronounced
at 5-shot, with some models showing overfitting.
In contrast, the performance of CoT and PS ap-
proaches remains less consistent as the number of
demonstrations increases.

This trend suggests that a more significant
number of examples helps models to understand
problem structures and reasoning processes bet-
ter, thereby enhancing their inference capabili-
ties. However, providing too many examples
can lead to models overfitting to specific patterns,
which diminishes their ability to generalize to new
tasks. The quality and diversity of examples are
critical—high-quality examples can guide practi-
cal reasoning, while poor examples may mislead
the models. While few-shot learning enhances
model adaptability, those with limited pretraining
data or lower parameter counts may struggle to
capitalize on this approach entirely. For CoT and
PS methods, the reasoning process requires addi-
tional steps, which means that simply increasing
the number of few-shot demonstrations does not
consistently yield performance improvements.

C Detail about Manual Works

This paper involves the manual works in writing
Question Templates, acquisition of human perfor-
mance on StrucText-Eval-Hard-Test and construct-
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Figure 8: Cases for performance of different LLMs and finetuned stages on Structured Text.

ing Real-Test Suite. All annotation works are car-
ried out by the authors of this paper, so there is no
payment for manual annotation.

C.1 Development of Question Templates

The development and validation of Question Tem-
plates constituted a significant component of our
methodological framework. Three researchers col-
laboratively formulated and verified 29 distinct
Question Templates. To ensure transparency and
reproducibility, we have made these templates ac-
cessible to the academic community through our
public repository.

C.2 Human Performance Evaluation

To establish a robust human baseline for the
StrucText-Eval-Hard-Test, we conducted a com-
prehensive evaluation process. Three researchers
independently responded to an identical set of 500
questions, with each researcher dedicating approx-
imately 17 hours to this task. The human per-
formance metrics presented in Table 4 represent
the mean scores calculated from this substantial
dataset of 1,500 responses.

C.3 Construction of Real-Test Suite

The development of the StrucText-Eval-Real-Test
Suite involved five researchers in a systematic an-

notation process. Initially, the first author gener-
ated 928 diverse scenario categories, encompassing
domains such as athletics, financial services, glass-
ware specifications, academic writing etc. Subse-
quently, these scenarios were systematically as-
signed to individual questions. The annotators
were tasked with modifying samples according
to their assigned scenarios, adhering to specific
annotation guidelines as detailed in Table 5. This
process resulted in a comprehensive test suite of
928 questions.

D Other Metrics

Given the substantial expense in evaluating all re-
sults using multiple metrics, we selected a subset
of 300 test results for each model on the StrucText-
Hard dataset, using a naive prompting method for
assessment. The complete evaluation results are
presented in Table 6.

E Detail Prompt

The prompts used in the experiment can be catego-
rized into three types: Example of Base Prompts
are shown in Tab. 7. Example of CoT Prompts are
shown in Tab. 8. Example of Few-Shot Prompts
are shown in Tab. 9. Example of Rule Hints are
shown in Tab. 10.
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Figure 9: The model’s performance on StrucText-Eval-
Test under different Few-Shot Demonstration settings.

Model Human GPT-4o 4o-Mini RougeL BLEU EM

GPT-4o-Turbo 56.13 55.75 51.00 51.1 45.94 40.31
GPT-4o-Mini 36.15 36.02 40.73 39.3 46.08 33.93
Gemini1.5-Pro 12.39 12.80 10.62 11.2 12.60 8.75
Gemini1.5-Pro-Flash 13.83 13.19 12.96 12.9 14.01 9.67
GLM-4-Plus 52.90 52.62 46.02 47.3 32.75 38.27
GLM-4-Flash 41.50 41.34 38.99 40.9 37.43 34.80
QWen-2-7B 32.95 31.99 30.10 29.6 27.98 18.70
QWen-2-72B 40.87 38.66 31.24 42.5 37.76 35.67
Llama-3.1-8B 21.78 21.98 22.36 22.3 20.88 14.75
Llama-3.1-70B 46.64 41.38 40.83 45.8 41.50 27.46
Llama-3.1-405B 35.01 35.97 35.88 34.4 28.00 21.29
Mistral-0.2-7B 7.85 7.33 7.32 7.0 5.09 4.47

Table 6: Performance of all LLMs and Humans on
StrucText-Eval-Hard based on different metrics (1,000
samples for each metrics).

F Examples for All Languages & Tasks

In this section, we provide detailed examples for
each language we discuss, illustrating how specific
tasks are executed within those languages. These
examples are meant to offer clear insights into the
application and utility of each language in various
contexts. Through these demonstrations, readers
can better understand the unique features and capa-
bilities of each language when applied to different
tasks.

F.1 Tree

See Figure 10.

Figure 10: Sample input and tasks of Tree.

o->p\np->q\nq->r\nq->s\nq->t\nq->u\np->v\nv->w\nv-
>x\nv->y\nv->z\np->ab\nab->bb\nab->cb\nab->db\nab-
>eb\np->fb\nfb->gb\nfb->hb\nfb->ib\nfb->jb\no-
>kb\nkb->lb\nlb->mb\nlb->nb\nlb->ob\nlb->pb\nkb-
>qb\nqb->rb\nqb->sb\nqb->tb\nqb->ub\nkb->vb\nvb-
>wb\nvb->xb\nvb->yb\nvb->zb\nkb->ac\nac->bc\nac-
>cc\nac->dc\nac->ec\no->fc\nfc->gc\ngc->hc\ngc-
>ic\ngc->jc\ngc->kc\nfc->lc\nlc->mc\nlc->nc\nlc-
>oc\nlc->pc\nfc->qc\nqc->rc\nqc->sc\nqc->tc\nqc-
>uc\nfc->vc\nvc->wc\nvc->xc\nvc->yc\nvc->zc\no-
>ad\nad->bd\nbd->cd\nbd->dd\nbd->ed\nbd->fd\nad-
>gd\ngd->hd\ngd->id\ngd->jd\ngd->kd\nad->ld\nld-
>md\nld->nd\nld->od\nld->pd\nad->qd\nqd->rd\nqd-
>sd\nqd->td\nqd->ud

What is the path from the root node to the node z. Answer should look like A->D->H.

Input

Question

o->p->v->z

Ground Truth

Task 1

What is the depth of node nd? Answer an integer, root is of depth 0.

Question

3

Ground Truth

Task 2

What is the height of the root node, i.e., the number of edges in the longest path from root node 
to any leaf nodes? Answer an integer, leaf is of height 0.

Question

3

Ground Truth

Task 3

F.2 Tabular
See Figure 11.

F.3 JSON
See Figure 12.

F.4 YAML
See Figure 13.

F.5 XML
See Figure 14.

F.6 LaTeX
See Figure 15.

F.7 Markdown
See Figure 16.

F.8 Org
See Figure 17.

G Rules & Rule Hints

We list all the rules in Regular Express in this sec-
tion, and list all the hints for these rules in Lis. 1.
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 7: Prompt of Naive Prompt method

G.1 Tree

We build tree-structured input as a list of edges in
a tree, in a format of “father->child”, sepa-
rated by newline.

identifier := [a-z]+

Edge := identifier->identifier

Tree := Edge(\nEdge)*

InputF ile := Tree

G.2 Tabular

Formally, input texts are classified as tabular data
given that they are composed of a list of newline
separated lines, each of which is a list of text cells
delimited by comma.

head := [A-Z][a-z]*

cell := [A-Za-z0-9]+

headline := identifier(, identifier)*

subline := cell(, cell)*

Tabular := headline(\nsubline)+

InputF ile := Tabular

G.3 JSON

Due to the inherit hierarchy structure of Object
Notations, we adopted a recursive scheme to define
our input texts.

lb(left bracket) := [[]

rb := []]

val := [a-z]+

key := [A-Z]+

JSON := {
"id":"val"

"subs":lbrb|lbJSON(,\nJSON

)*rb

("key":"val"\n)+

}
InputF ile := JSON

G.4 YAML

The rules for constructing YAML and XML input
are similarly recursive.
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

Please follow the format below for your output:

### Reasoning Prcess:
xxxx

### Answer:
xxxxx

Table 8: Prompt of CoT method

Y AML :=

id : val

subs : lbrb|(\n(\t) ∗ - Y AML)

+ (key : val\n)+

InputF ile := Y AML

G.5 XML
firstline := <?xml version="1.0"

textttencoding =“UTF-8”?>

XML :=

firstline

XMLObject

tag := [A-Z]+

val := [a-z]+

attr := [A-Z]+="val"

content := [a-z \n\t]*

XMLObject :=

<tag( attr) ∗ >
((\t) ∗XMLObject)∗
content

</tag>

InputF ile := XML

G.6 LaTeX

In LaTeX input texts, we include textbf and
includegraphics commands to accommo-
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Demonstration
!<INPUT 2>! – Question
!<INPUT 3>! – Reference
!<INPUT 4>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Demonstration:
!<INPUT 1>!

### Question:
!<INPUT 2>!

### Reference:
!<INPUT 3>!

### Requirement:
!<INPUT 4>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 9: Prompt of Few Shot method

date for the text retrieval tasks. The headings serve
as anchors for structure traversal.

command := \(section|subsection|
subsubsection)

heading := command{[a-z]+}|[a-z]+
inclg :=

\includegraphics[width=

0.5\textwidth]{[a-z]+[.]
(png|jpg|jpeg|gif)}

bf := \textbf{[a-z ]+}
content := ([a-z ]|bf |inclg)+
LaTeX := heading\ncontent(\nLaTeX)∗

InputF ile := LaTeX

G.7 Markdown

In markdown input texts, the syntax counterparts
for heading, text face and including figure are em-
ployed in our dataset.

heading := [#]* [a-z]+

inclg := !lbaltrb\([a-z]+[.](png

|jpg|jpeg|gif)

"hover text"\)

bf := [*]{2}[a-z ]+[*]{2}

content := ([a-z ]|bf |inclg)+
Markdown := heading\n

content(\nMarkdown)∗
InputF ile := Markdown

G.8 Org

In Org input texts, the syntax is obtained from
JSON construction rules by replacing the markups
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# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
!<INPUT 4>! – Rule Hint
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

### Rule Hint:
!<INPUT 4>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 10: Prompt of \w Hint method

for heading, including figures and bold font face.

heading := [*]* [a-z]+

inclg := lb{2}[a-z]+[.](png|jpg|
jpeg|gif)rb{2}

bf := [*][a-z ]+[*]

content := ([a-z ]|bf |inclg)+
Org := heading\ncontent(\nOrg)∗

InputF ile := Org

Listing 1: All rule hints in StrucText-Eval
SQL,Tree,JSON,YAML,XML,Markdown,LaTeX,

↪→ ORG
To find the value of specific field of

↪→ record with specified primeKey.
↪→ You have to first, locate the line
↪→ with the specific primeKey. Then
↪→ find the required value under the
↪→ desired column in that line.

To get the number of people with salary
↪→ above a threshold, you need to
↪→ find the table with salary
↪→ information. Then you go over each
↪→ line and check the salary field.

↪→ During the process count only
↪→ those lines with value of salary
↪→ strictly greater than the
↪→ specified threshold towards your
↪→ final sum. The sum after checking
↪→ each line is the right answer.

To get the number of female, first find
↪→ the table with column name ’’.
↪→ Then check each line for field
↪→ gender, and count these lines with
↪→ value ’female’ towards your final
↪→ sum. The process applies to
↪→ finding number of male too.

To get the number of people living in
↪→ specified city who are also taller
↪→ than threshold, you need to first
↪→ join the two table on primeKey,
↪→ and check each row of joined table
↪→ for lines that satisfies both
↪→ condition, i.e., lines with city
↪→ specified in query and height
↪→ strictly greater than threshold.
↪→ The total number of such rows is
↪→ the right answer.

To answer the height of tree, you need
↪→ to take a recursive strategy. For
↪→ each node, you will find its
↪→ height by first finding its
↪→ children’s heights. Then, the
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Figure 11: Sample input and tasks of tabular data.

primeKey gender age name height weight color
a female 23 n 157 144 olive
b male 39 o 191 104 swarthy
c male 14 p 134 162 black
d male 39 q 163 124 brown

primeKey status salary companylocation
a employed 460789 TwitterNY
b retired861910 NVIDIA GA
c retired360565 Meta CA
d employed 350426 Google GA

What is the color of record with primeKey c

Input

Question

black

Ground Truth

Task 1

How many people who work in IL are taller than 171?

Question

0

Ground Truth

Task 2

How many people work with salary more than 516275?

Question

1

Ground Truth

Task 3

How many people are female?

Question

1

Ground Truth

Task 4

↪→ height of node is the maximum
↪→ subtree heights plus 1. The base
↪→ case occurs when a node has no
↪→ children, i.e., it’s a leaf node.
↪→ Leaf’s height is defined to be 0,
↪→ without the need of further
↪→ queries. Then the height the tree
↪→ is the height of its root node.

To find the depth of a node, you need to
↪→ find the number of edges from
↪→ root to node. You have to start
↪→ from the root with depth 0 and
↪→ assign the depth for each node
↪→ recursively. For any given node,
↪→ it gets depth of current depth.
↪→ Increment the depth by 1 before go
↪→ to its subtree and repeat the
↪→ process until every node gets a
↪→ depth.

To get the path from root to a node, you
↪→ need to find recursively. For any
↪→ node, you can find the path to
↪→ the target node by find path from
↪→ its children to target. Then check
↪→ each child’s output, if any child
↪→ returns with valid path instead
↪→ of an empty path indicating target
↪→ -not-found, the path from node to

Figure 12: Sample input and tasks of JSON.

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
{
"id":"q",
"X":"s",
"subs":[]
}]}

]
}

What is the first object’s id of subs?

Input

Question

p

Ground Truth

Task 1

What is the object with id p? The content should be an excerpt as it appears in the JSON file.

Question

{\n"id":"p",\n"Y":"t",\n"subs":[\n{\n"id":"q",\n"X":"s",\n"subs":[]}]}

Ground Truth

Task 2

How to access value ”u"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj["Z"]

Ground Truth

Task 3

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the JSON file, separated by \\n\\n.

Question

{\n  "id":"q",\n  "X":"s",\n  "subs":[]\n  }

Ground Truth

Task 4

Is there any structural error in this JSON? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 5

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
"id":"q",
"X":"s",
"subs":]
]}

]
}

Input for Task 5

↪→ target is that path from its child
↪→ to target prepended with itself.
↪→ The answer can be found by
↪→ searching with root as starting
↪→ point.

To find the object with specified id,
↪→ you need to first parse the json
↪→ file and get the outermost object,
↪→ starting from which search the
↪→ subs field recursively and looking
↪→ for the desired value in id field
↪→ for each visited object. Retrieve
↪→ the content of that object once
↪→ found.

To find the first object’s id of subs,
↪→ first parse the json file and get
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Figure 13: Sample input and tasks of YAML.

id: "s"
Z: e,
subs: 
- id: "t"

Y: d,
subs: 
- id: "u"

X: c,
subs: []

What is the first object's id of subs?

Input

Question

t

Ground Truth

Task 1

How to access value ”d"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj[“subs”][0][“Y”]

Ground Truth

Task 2

Is there any structural error in this YAML? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

id: "s"
Z: e,
subs: 
- id: "t"

Y: d
subs: 
- id: "u"

X:
subs: []

Input for Task 3

What is the object with id t? The content should be an excerpt as it appears in the YAML file.

Question

id: "t”\n  Y: d,\n  subs: \n  - id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 4

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the YAML file, separated by \\n\\n.

Question

id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 5

↪→ the outermost object, in the
↪→ outermost object’s subs list, get
↪→ the first element. That element is
↪→ another object, and its id is the
↪→ answer.

To find the error in the json file, you
↪→ need to parse the json file and
↪→ report any syntax error if
↪→ encountered any. Potential errors
↪→ include missing ending curly
↪→ braces.

To get the path to access specified
↪→ value. You have to do a recursive
↪→ search along the subs fields,
↪→ starting from the outermost parsed
↪→ object. For each visited object,
↪→ check each fields except for subs,
↪→ and record the path along the way
↪→ , i.e., subs inside brackets and

Figure 14: Sample input and tasks of XML.

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A Z=\"v\">\n <B Y=\"u\">\n  <C>\n   <D>\n    dentist\n   
<E X=\"t\">\n    essence\n   </E>\n   <F W=\"s\">\n    far\n   <G V=\"r\">\n    groot\n   cafe\n  
<H>\n   <I>\n    idiot\n   <J>\n    jargon\n   <K>\n    kangaroo\n   </K>\n   <L>\n    lamb\n   
halo\n  <M U=\"q\">\n   <N T=\"p\">\n    nob\n   <O>\n    oops\n   <P S=\"o\">\n    perish\n   
<Q>\n    qualify\n   monkey\n  <R>\n   <S>\n    salvage\n   <T>\n    transformer\n   <U R=\"n\">\n    
unique\n   <V Q=\"m\">\n    vigor\n   ravish\n  banana\n <W P=\"l\">\n  <X>\n   <Y>\n    yogurt\n   
<Z O=\"k\">\n    zen\n   <AB>\n    apple banana\n   </AB>\n   <BB>\n    banana banana\n   X-ray\n  
</X>\n  <CB N=\"j\">\n   <DB>\n    dentist banana\n   <EB M=\"i\">\n    essence banana\n   <FB 
L=\"h\">\n    far banana\n   <GB>\n    groot banana\n   cafe banana\n  <HB K=\"g\">\n   <IB>\n    
idiot banana\n   <JB>\n    jargon banana\n   <KB>\n    kangaroo banana\n   </KB>\n   <LB J=\"f\">\n    
lamb banana\n   halo banana\n  <MB I=\"e\">\n   <NB H=\"d\">\n    nob banana\n   <OB G=\"c\">\n    
oops banana\n   <PB>\n    perish banana\n   <QB F=\"b\">\n    qualify banana\n   monkey banana\n  
wake\n <RB E=\"a\">\n  <SB D=\"zy\">\n   <TB C=\"yy\">\n    transformer banana\n   <UB>\n    unique 
banana\n   <VB B=\"xy\">\n    vigor banana\n   </VB>\n   <WB A=\"wy\">\n    wake banana\n   salvage 
banana\n  </SB>\n  <XB>\n   <YB>\n    yogurt banana\n   <ZB ZY=\"vy\">\n    zen banana\n   <AC>\n    
apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   X-ray banana\n  </XB>\n  <CC>\n   <DC 
YY=\"uy\">\n    dentist cafe\n   <EC XY=\"ty\">\n    essence cafe\n   <FC WY=\"sy\">\n    far 
cafe\n   <GC>\n    groot cafe\n   cafe cafe\n  </CC>\n  <HC>\n   <IC VY=\"ry\">\n    idiot cafe\n   
<JC UY=\"qy\">\n    jargon cafe\n   <KC TY=\"py\">\n    kangaroo cafe\n   <LC>\n    lamb cafe\n   
halo cafe\n  ravish banana\n <MC>\n  <NC SY=\"oy\">\n   <OC>\n    oops cafe\n   <PC>\n    perish 
cafe\n   </PC>\n   <QC>\n    qualify cafe\n   <RC>\n    ravish cafe\n   nob cafe\n  <SC 
RY=\"ny\">\n   <TC>\n    transformer cafe\n   <UC>\n    unique cafe\n   <VC QY=\"my\">\n    vigor 
cafe\n   </VC>\n   <WC>\n    wake cafe\n   salvage cafe\n  </SC>\n  <XC>\n   <YC>\n    yogurt 
cafe\n   </YC>\n   <ZC PY=\"ly\">\n    zen cafe\n   <AD OY=\"ky\">\n    apple dentist\n   </AD>\n   
<BD>\n    banana dentist\n   X-ray cafe\n  <CD NY=\"jy\">\n   <DD>\n    dentist dentist\n   <ED 
MY=\"iy\">\n    essence dentist\n   <FD>\n    far dentist\n   <GD LY=\"hy\">\n    groot dentist\n   
cafe dentist\n  </CD>\n  monkey cafe\n apple

What is the content of tag HB? The content should be an excerpt as it appears in the XML file.

Input for Task 3

Question

<IB>\n  idiot banana\n </IB>\n <JB F=\"jy\">\n  jargon banana\n </JB>\n <KB>\n  kangaroo banana\n 
</KB>\n <LB>\n  lamb banana\n </LB>\n halo banana

Ground Truth

Task 1

What is the tag with attribute of value xy?

Question

N

Ground Truth

Task 2

Is there any structural error in this XML? If so, give the answer 'True' and spot them out. If it is 
free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A>\n <B>\n  <C>\n   <D Z=\"d\">\n    dentist\n   
</D>\n   <E>\n    essence\n   </E>\n   <F>\n    far\n   </F>\n   <G Y=\"c\">\n    groot\n   </G>\n   
cafe\n  </C>\n  <H X=\"b\">\n   <I>\n    idiot\n   </I>\n   <J W=\"a\">\n    jargon\n   </J>\n   
<K>\n    kangaroo\n   </K>\n   <L V=\"zy\">\n    lamb\n   </L>\n   halo\n  </H>\n  <M U=\"yy\">\n   
<N T=\"xy\">\n    nob\n   </N>\n   <O S=\"wy\">\n    oops\n   </O>\n   <P R=\"vy\">\n    perish\n   
</P>\n   <Q Q=\"uy\">\n    qualify\n   </Q>\n   monkey\n  </M>\n  <R>\n   <S P=\"ty\">\n    
salvage\n   </S>\n   <T O=\"sy\">\n    transformer\n   </T>\n   <U>\n    unique\n   </U>\n   <V 
N=\"ry\">\n    vigor\n   </V>\n   ravish\n  </R>\n  banana\n </B>\n <W>\n  <X>\n   <Y M=\"qy\">\n    
yogurt\n   </Y>\n   <Z L=\"py\">\n    zen\n   </Z>\n   <AB>\n    apple banana\n   </AB>\n   <BB 
K=\"oy\">\n    banana banana\n   </BB>\n   X-ray\n  </X>\n  <CB>\n   <DB J=\"ny\">\n    dentist 
banana\n   </DB>\n   <EB I=\"my\">\n    essence banana\n   </EB>\n   <FB H=\"ly\">\n    far 
banana\n   </FB>\n   <GB>\n    groot banana\n   </GB>\n   cafe banana\n  </CB>\n  <HB G=\"ky\">\n   
<IB>\n    idiot banana\n   </IB>\n   <JB F=\"jy\">\n    jargon banana\n   </JB>\n   <KB>\n    
kangaroo banana\n   </KB>\n   <LB>\n    lamb banana\n   </LB>\n   halo banana\n  </HB>\n  <MB>\n   
<NB>\n    nob banana\n   </NB>\n   <OB E=\"iy\">\n    oops banana\n   </OB>\n   <PB>\n    perish 
banana\n   </PB>\n   <QB>\n    qualify banana\n   </QB>\n   monkey banana\n  </MB>\n  wake\n </W>\n 
<RB D=\"hy\">\n  <SB>\n   <TB>\n    transformer banana\n   </TB>\n   <UB>\n    unique banana\n   
</UB>\n   <VB C=\"gy\">\n    vigor banana\n   </VB>\n   <WB B=\"fy\">\n    wake banana\n   </WB>\n   
salvage banana\n  </SB>\n  <XB A=\"ey\">\n   <YB ZY=\"dy\">\n    yogurt banana\n   </YB>\n   <ZB>\n    
zen banana\n   </ZB>\n   <AC YY=\"cy\">\n    apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   
</BC>\n   X-ray banana\n  </XB>\n  <CC XY=\"by\">\n   <DC WY=\"ay\">\n    dentist cafe\n   </DC>\n   
<EC VY=\"zx\">\n    essence cafe\n   </EC>\n   <FC UY=\"yx\">\n    far cafe\n   </FC>\n   <GC>\n    
groot cafe\n   </GC>\n   cafe cafe\n  </CC>\n  <HC TY=\"xx\">\n   <IC>\n    idiot cafe\n   </IC>\n   
<JC SY=\"wx\">\n    jargon cafe\n   </JC>\n   <KC RY=\"vx\">\n    kangaroo cafe\n   </KC>\n   
<LC>\n    lamb cafe\n   </LC>\n   halo cafe\n  </HC>\n  ravish banana\n </RB>\n <MC QY=\"ux\">\n  
<NC PY=\"tx\">\n   <OC>\n    oops cafe\n   </OC>\n   <PC OY=\"sx\">\n    perish cafe\n   </PC>\n   
<QC>\n    qualify cafe\n   </QC>\n   <RC NY=\"rx\">\n    ravish cafe\n   </RC>\n   nob cafe\n  
</NC>\n  <SC>\n   <TC MY=\"qx\">\n    transformer cafe\n   </TC>\n   <UC>\n    unique cafe\n   
</UC>\n   <VC>\n    vigor cafe\n   </VC>\n   <WC>\n    wake cafe\n   </WC>\n   salvage cafe\n  
</SC>\n  <XC LY=\"px\">\n   <YC KY=\"ox\">\n    yogurt cafe\n   </YC>\n   <ZC JY=\"nx\">\n    zen
cafe\n   </ZC>\n   <AD>\n    apple dentist\n   </AD>\n   <BD IY=\"mx\">\n    banana dentist\n   
</BD>\n   X-ray cafe\n  </XC>\n  <CD>\n   <DD HY=\"lx\">\n    dentist dentist\n   </DD>\n   <ED>\n    
essence dentist\n   </ED>\n   <FD GY=\"kx\">\n    far dentist\n   </FD>\n   <GD>\n    groot
dentist\n   </GD>\n   cafe dentist\n  </CD>\n  monkey cafe\n </MC>\n apple\n</A>

Input

↪→ index into subs inside brackets,
↪→ and at which field you find the
↪→ value.

To get the most deeply nested objects,
↪→ start from the outermost object,
↪→ recursively search along the subs
↪→ fields. For each object, check its
↪→ subs field, any object with an
↪→ empty subs is one most deeply
↪→ nested object.

To find the object with specified id,
↪→ you need to first parse the yaml
↪→ file and get the outermost object,
↪→ starting from which search the
↪→ subs field recursively and looking
↪→ for the desired value in id field
↪→ for each visited object. Retrieve
↪→ the content of that object once
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Figure 15: Sample input and tasks of LaTeX.

O
monkey \textbf{banana}nob wake yogurt groot wake 
jargon ravish
\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwid
th]{mh.jpeg}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake 
jargon\textbf{dentist} ravish

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

banana\ncafe\ndentist

Ground Truth

Task 1

Extract all included graph files. Print those file names separated by \\n.

Question

mh.jpeg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the LaTeX 
file, including the heading line and any sub-section.

Question

\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwidth]{mh.jpeg
}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake jargon\textbf{dentist} ravish

Ground Truth

Task 3

↪→ found.
To find the first object’s id of subs,

↪→ first parse the yaml file and get
↪→ the outermost object, in the
↪→ outermost object’s subs list, get
↪→ the first element. That element is
↪→ another object, and its id is the
↪→ answer.

To find the error in the yaml file, you
↪→ need to parse the yaml file and
↪→ report any syntax error if
↪→ encountered any. Potential errors
↪→ include missing key before colon.

To get the path to access specified
↪→ value. You have to do a recursive
↪→ search along the subs fields,
↪→ starting from the outermost parsed
↪→ object. For each visited object,
↪→ check each fields except for subs,
↪→ and record the path along the way
↪→ , i.e., subs inside brackets and
↪→ index into subs inside brackets,
↪→ and at which field you find the
↪→ value.

To get the most deeply nested objects,
↪→ start from the outermost object,
↪→ recursively search along the subs
↪→ fields. For each object, check its
↪→ subs field, any object with an
↪→ empty subs is one most deeply
↪→ nested object.

To find the content of a specific tag,

Figure 16: Sample input and tasks of Markdown.

w
banana cafe vigor cafe peris![alt](mj.gif "hover 
text")h perish monkey wake
# x
cafe cafe vigor cafe perish peris**banana**h monkey 
wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover 
text")afe perish perish monkey wake

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

cafe\nbanana

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

mj.gif\nnj.jpg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the 
markdown file, including the heading line and any sub-section.

Question

# x
cafe cafe vigor cafe perish peris**banana**h monkey wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover text")afe
perish perish monkey wake

Ground Truth

Task 3

Figure 17: Sample input and tasks of Org.

p
kanga*lamb*roo zen yogurt X-ray halo zen nob qualify
* q
lamb zen yogurt X-ray halo zen nob qu[[ei.jpg]]alify
** r
monkey zen yogurt X-ray halo zen nob qualify

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

lamb

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

ei.jpg

Ground Truth

Task 2

What is the content of 1th subsection under 1th section? The content should be an excerpt as it 
appears in the org file, including the heading line and any sub-section.

Question

** r\nmonkey zen yogurt X-ray halo zen nob qualify

Ground Truth

Task 3
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↪→ you need to search for desired tag
↪→ throughout the xml file. Once
↪→ located, find the surrounding left
↪→ and right angle, these area is
↪→ tha starting tag. Then find the
↪→ ending tag, which is the tag
↪→ surrounded by angle with exception
↪→ that right angle is preceded by a
↪→ slash. The content between
↪→ starting and ending tags is the
↪→ answer.

To find the tag name of particular
↪→ attribute value, just search the
↪→ file for that value and find the
↪→ surrounding left and right angles,
↪→ i.e., boundary of tag. The word
↪→ next to left angle is tag name.

To find the error in the xml file, you
↪→ need to parse the xml file and
↪→ report any syntax error if
↪→ encountered any. Potential errors
↪→ include missing ending tags.

To find the bold texts, search for
↪→ double stars, i.e., **, the
↪→ content between two occurrences of
↪→ double stars is the bold texts.
↪→ Note that the bold range should
↪→ start from the double stars
↪→ occurring at i-th spot throughout
↪→ the whole input file, where i is
↪→ odd, and end with double stars
↪→ occurring at jth spot where j is
↪→ even. For example, text between
↪→ double stars appearing first and
↪→ second time.

To find the content of certain section,
↪→ starting from the headings start
↪→ with one hashtag, and go to the
↪→ ith heading as specified in number
↪→ of sections. Then start from that
↪→ line, look for j-th heading with
↪→ 2 hashtags as specified in
↪→ subsection number. For kth
↪→ subsubsection, look for kth
↪→ heading with 3 hashtags starting
↪→ from the located subsubsection.
↪→ Stop searching early if the
↪→ subsection or subsubsection is not
↪→ queried.

To find the image files, look for texts
↪→ matching ![*](TARGET "*"), the
↪→ TARGET part is filename. Star
↪→ means any text is possible.

To find the bold texts, search for macro
↪→ textbf, and everything after \\
↪→ textbf{ and before the first }
↪→ encountered is bold text.

Note that section title is enclosed by
↪→ \\section{}, and \\subsection for
↪→ subsection, \\subsubsection for
↪→ subsubsection. To find the content
↪→ of certain section, look for ith
↪→ section as specified, and start
↪→ from there look for jth subsection
↪→ . And from located subsection,
↪→ look for kth subsubsection as
↪→ queried. Search may stop early if
↪→ subsection or subsubsection is not
↪→ queried.

To find the image files imported, search

↪→ for pattern \\includegraphics[*]{
↪→ TARGET}, the TARGET part is the
↪→ filename. Star means any text is
↪→ possible.

To find the bold texts, search for
↪→ single star, i.e., *, the content
↪→ between two occurrences of single
↪→ star is the bold texts. Note that
↪→ the bold range should start from
↪→ the single star occurring at i-th
↪→ spot throughout the whole input
↪→ file, where i is odd, and end with
↪→ single star occurring at jth spot
↪→ where j is even. For example,
↪→ text between single star appearing
↪→ first and second time.

Note that section, subsection,
↪→ subsubsection titles are preceded
↪→ by *, **, *** respectively, with
↪→ one or more whitespaces in between
↪→ . To find the content of certain
↪→ section, look for ith section as
↪→ specified, and start from there
↪→ look for jth subsection. And from
↪→ located subsection, look for kth
↪→ subsubsection as queried. Search
↪→ may stop early if subsection or
↪→ subsubsection is not queried.

To find the image files, look for texts
↪→ matching [[TARGET]], the TARGET
↪→ part is filename

H Detail Setting

All experiments and training process is carried out
on a three 3090 GPUs service. The setting of API
calling is illustrated in Tab. 11
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Random Seed
torch.manual_seed torch.cuda.manual_seed_all numpy.random.seed random.seed torch.backends.cudnn.deterministirc

42 42 42 42 True
AutoCausalLM

temperature top_p top_k num_beams max_new_token
0.95 0.95 5 2 1

Table 11: All the parameter setting in our experiments.
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