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Abstract

The quality of Supervised Fine-Tuning (SFT)
data plays a critical role in enhancing the
conversational capabilities of Large Language
Models (LLMs). However, the availability of
high-quality human-annotated SFT data has be-
come a significant bottleneck for LLMs, neces-
sitating a greater reliance on synthetic training
data. In this work, we introduce Condor, a
two-stage synthetic data generation framework
that incorporates World Knowledge Trees and
Self-Reflection Refinement to produce high-
quality SFT data at scale. Our experimen-
tal results demonstrate that a base model fine-
tuned on only 20K Condor-generated samples
achieves superior performance compared to in-
struct model trained with RLHF. The additional
refinement stage in Condor further enables it-
erative self-improvement for LLMs at various
scales (up to 72B), validating the effectiveness
of our approach. Furthermore, our investiga-
tion into the scaling of synthetic data in post-
training reveals substantial unexplored poten-
tial for performance improvements, opening
promising avenues for future research. 1 2

1 Introduction

Large Language Models (LLMs) are experienc-
ing rapid advancements, with close-source mod-
els such as like GPT (Achiam et al., 2023) and
Gemini (Team et al., 2023), alongside open-source
counterparts such as LLaMA (Dubey et al., 2024),
Qwen (Yang et al., 2024), Mistral (Jiang et al.,
2023a), and Deepseek (Liu et al., 2024a) evolv-
ing at a fast pace. However, this rapid iteration
comes with a significant challenge: the consump-
tion of existing high-quality data for Supervised
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Figure 1: Comparison between Official Mod-
els and Condor-Refined Models, evalauted by
CompassJudger-1-32B. Different families of popular
LLMs benefit greatly from the Condor Refine engine.

Fine-Tuning (SFT). Moreover, the internet is in-
creasingly inundated with synthetic data of varying
quality, making it ever more difficult to construct
and filter higher-quality training data for LLMs.

Empirical studies on SFT training have shown
that both data quality and quantity play crucial roles
in enhancing model performance (Shen, 2024).
While scaling laws suggest that models can achieve
extraordinary capabilities when trained on large
datasets, high-quality data can yield comparable
results at smaller scales. This highlights the im-
portance of generating enough high-quality data to
further enhance large-scale model capabilities. Re-
cently, some research has introduced various meth-
ods for synthesizing SFT training data (Wang et al.,
2024a; Ding et al., 2023; Xu et al., 2023; Yuan
et al., 2024; Tang et al., 2024). However, these
approaches face several limitations that they often
rely heavily on existing datasets for seed prompts,
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lack prompt diversity, and cannot guarantee the
quality of the generated data.

To address these challenges, we introduce Con-
dor, an automated two-stage pipeline for synthetic
data generation that effectively leverages existing
world knowledge. Our approach begins with con-
structing comprehensive World Knowledge Trees
by prompting LLM to generate tags, along with
extensive and up-to-date tags from social media.
With the sampled tags from the tree, we then cre-
ate the question and original responses through an
auto-regressive pipeline. After generating diverse
Q&A pairs, we then employ Self-Reflection Re-
finement to obtain synthesized SFT data with more
higher-quality replies. In this way, Condor not only
ensures the relevance and diversity of the content
but also maintains scalability in data synthesis. We
conduct experiments on multiple models using the
data synthesized by Condor in Figure 1. The re-
sults indicate that the Condor-generated data sig-
nificantly improves the subjective chat capabilities
of the models across different families.

To summarize, our contributions are as follows:
• We propose Condor Void, a novel approach in-
corporating a knowledge inspiration strategy based
on the World Knowledge Tree, enabling models
to acquire rich world knowledge for generating
diverse questions.
• We further introduce Condor Refine, a self-
reflection mechanism that allows models to itera-
tively refine their responses during the construction
phase, resulting in higher-quality responses.
• We investigate the scaling and self-iteration tech-
niques for Condor datasets, offering valuable in-
sights and potential pathways for the scalable ex-
pansion of synthetic data.

2 Related Work

2.1 Synthesizing Instruction Tuning Data
With the rapid development of Large Language
Models (Achiam et al., 2023; Team et al., 2023;
Dubey et al., 2024; Yang et al., 2024; Jiang et al.,
2023a; Liu et al., 2024a) and Large Multi-Modality
Models (Radford et al., 2021; Zhu et al., 2023;
Zhang et al., 2024a,b; Liu et al., 2024b; Chen et al.,
2024), the demand for high-quality training data
continues to grow. As a result, synthetic data gener-
ation has become increasingly crucial. While high-
quality synthetic data can significantly enhance
performance, low-quality synthetic data may lead
to model degradation or collapse.

WizardLM (Xu et al., 2023) introduces an Evol-
Instruct scheme, which expands an initial question
dataset by generating new questions through tech-
niques such as deep thinking, adding constraints,
and reconstruction. However, the quality and diver-
sity of the generated data are strongly influenced
by the original dataset. Similarly, UniGen (Wu
et al., 2024) also employs a seed dataset for data
synthesis but introduces RAG for answer verifica-
tion. Magpie(Xu et al., 2024) explores leverag-
ing models themselves to generate synthetic data
by utilizing chat templates as prompts to directly
produce dialogues. However, this approach is not
universally applicable to all model types, and there-
fore lacks generalization ability. Additionally, the
synthetic data generated often lacks stability, con-
taining noise that requiring extensive filtering to
maintain quality.

In contrast to these methods, Condor eliminates
the dependence on a seed dataset, requiring only
tags as seeds for expansion and generation. This
enables exceptional diversity and scalability in data
production. Furthermore, Condor handles all data
generation tasks with a single model, significantly
reducing costs while maintaining high efficiency.

2.2 LLM Self-Iteration
Recent studies have explored methods for large
language models (LLMs) to improve themselves
through iterative self-enhancement. For in-
stance, I-SHEEP (Liang et al., 2024) and Self-
Instruct (Wang et al., 2023) utilize seed data and
LLMs to generate new instructions. However, these
methods produce instructions that closely resemble
those in the seed dataset, limiting the diversity and
novelty of the generated data. (Tao et al., 2024)
categorizes existing self-iteration methods, high-
lighting works such as self-instruct (Wang et al.,
2023), self-improving (Huang et al., 2022), and
self-training (Gulcehre et al., 2023).

Reinforced Self-Training (ReST) (Gulcehre
et al., 2023) achieves self-iteration by generat-
ing multiple outputs, scoring them with a reward
model, and fine-tuning the LLM using the highest-
scoring samples. While effective, this approach
depends on an external reward model to provide ad-
ditional knowledge. Other notable works, such as
Reflexion (Shinn et al., 2023), Self-Refine (Madaan
et al., 2023), and Refiner (Paul et al., 2024), pro-
pose self-iteration techniques where models itera-
tively refine their answers based on feedback from
specific tasks. However, these methods are primar-
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ily designed for specific domains like mathematics,
limiting their ability for generalization.

By contrast, Condor achieves self-improvement
on a wide range of human-preference datasets by
model’s own capabilities, enabling broader applica-
bility while maintaining scalability and efficiency.

3 Methodology

3.1 Pipeline Overview

As shown in Figure 2, the pipeline of Condor is
divided into two stages: data synthesis and data
refinement. In the data synthesis stage, we be-
gin by introducing the World Knowledge Trees,
which serves as a foundation of tags for data gener-
ation. Next, we apply task and difficulty expansion
to enhance the diversity and complexity of ques-
tions under each tag, leading to the creation of the
initial synthetic QA dataset DV . In the data refine-
ment stage, we employ a Self-Reflection Refine-
ment strategy, enabling the model to iteratively op-
timize the generated responses and yield the refined
dataset DR. Notably, we utilize a single model dur-
ing the entire pipeline for better efficiency.

3.2 Condor Void

In data synthesis stage, we generate synthetic data
based on existing world knowledge. This stage con-
sists of two key components: (1) World Knowl-
edge Trees and (2) Q&A pair generation. The
dataset produced from this stage is called DV .

3.2.1 World Knowledge Trees
To construct a comprehensive multi-level tag sys-
tem that encapsulates diverse aspects of world
knowledge, we propose a iterative methodology
that enable knowledge inspiration for models.

We initially instruct the LLM to generate a batch
of common themes from daily life and use them
as a the root tags, i.e., R = {r1, r2, . . . , rn}, repre-
senting broad themes such as marriage, entertain-
ment, and artificial intelligence. From each parent
node, we further generate more detailed sub-tags,
denoted as Li = {li1, li2, . . . , lim}, by feeding the
parent nodes as input to the LLM and the max depth
is set to 3. (For example, a complete chain could be
“AI-Deep Learning-Autonomous Driving”.) The
entire tree is completed through multiple rounds
of recursion, with this process carried out by the
same Qwen2.5-72B-Instruct model as the back-
bone itself through prompting (see Appendix for
all prompts). This hierarchical structure forms the

foundation of World Knowledge Trees, T , which
can be expressed as a union of tree rooted at each
ri: T =

⋃n
i=1{(ri, Li)}.

To ensure the tree remains reflective of real-
world themes and contexts, we also incorporate
some hierarchical labels obtained from websites as
additional trees from social media such as Zhihu
and Reddit, denoted as S = {s1, s2, . . . , sk}. We
then merge them and build enriched World Kn-
woledge Trees system, T =

⋃n
i=1{(ri, Li ∪ Si)},

where Si ⊆ S ensures each root branch is con-
textually informed and relevant. Moreover, the
World Knowledge Trees is designed to be dynamic,
adapting over time with an update function U(T , t)
that that continuously integrates new information.
This robust, evolving framework, comprising over
8,400 tags, is pivotal for maintaining the current
and applicable nature of knowledge required for
the iteration of LLMs.

3.2.2 Q&A Pair Generation
After acquiring the seed tags, we employ various
methods to enhance the diversity of the generated
questions. First, we analyze the public chat data
in the chatbot arena (Zheng et al., 2023) and sum-
marize the most common chat scenarios in human
interactions with LLMs, such as daily conversation,
creative tasks, and role-playing (these 7 tasks with
detailed descriptions are provided in Figure A.2).

The model then engages in a specific task under
the corresponding tag theme to generate questions.
Condor enhances the diversity of the generated
questions and encourages knowledge extrapola-
tion in this pipeline, allowing the model to explore
themes it may not have frequently encountered in a
particular scenario. To further expand the range of
questions, we implement difficulty control, prompt-
ing the model to adapt to three difficulty levels and
generate questions of varying complexity. This
step ensures greater diversity and richness in the
generated data, and finally we obtain Condor Void
datasets with approximately 200k Q&A pairs, i.e.,
|DV | ≈ 200, 000.

3.3 Condor Refine

In this stage, we apply Self-Reflection Refinement
strategy and enable the model to engage in criti-
cal examination of its own responses, followed by
revisiting the questions to generate higher-quality
replies. The refined dataset is referred to as DR.

The initial QA pairs contain responses directly
generated by the model, which are inherently lim-
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Diverse Task

Prompt
for Instruction Synthesis
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3 Difficulty Level 

Difficulty Control
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Synthesized Question

Write a scene where a romantic hopeful's 
surprise proposal goes comically awry due to 
meddlesome townsfolk. (Easy)

Craft a blog post titled "Casting Woes and On-
Set Romance" about the funny and touching 
casting stories of a film set.(Medium)

Outline a novel's opening chapter where a 
screenwriter's script mirrors their messy love 
life, with their love interest as their harshest 
critic, and real-life romance affecting the script. 
(Hard)

Response

Response

Response

Critic Instruction

Prompt for Critique Generation Generated Critique

[Strength Start] … … [Strength End]

[Weakness Start] … … [Weakness End]
[Suggestion Start]……[Suggestion End]

LLM
ResponseQuestion

Refined
Response

Condor Void Pipeline

Condor Refine Pipeline

LLMLLM

LLM
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Figure 2: The Pipeline of Condor Engine. The pipeline is mainly divided into (1) Data synthesis: LLM is inspired
from the World Knowledge Trees with task diversity and difficulty to construct the original question-answer dataset
DV ; (2) Data refinement: LLM is utilized to reflect on the synthesized data and generate critiques for refinement
and improve the quality of responses, producing the refined dataset DR.

ited by the model’s current capabilities. Therefore,
we implement data refinement to further improve
the quality of the responses. We carefully develop
a set of fixed templates that guide the model in
identifying both strengths and weaknesses in its
responses, leading to specific suggestions for im-
provement. Subsequently, we utilize these self-
generated improvement suggestions to prompt the
model and produce enhanced responses by requir-
ing the model to preserve the effective elements of
its original responses and address identified weak-
nesses. The prompt templates examples of Q&A
pairs are provided in the Appendix. Finally, we
obtain 200k high-quality refinement datasets from
DV , i.e., |DR| ≈ 200, 000.

4 Experiments and Results

4.1 Training and Evaluation Settings
Training Settings. We use xTuner (Contributors,
2023b) for training, set the initial learning rate to
2e-5 and train for 3 epochs in all experiments. Un-
less specifically stated, we start training from the
base model and compare it with the RLHF model.

Evaluation Settings. We use OpenCom-
pass (Contributors, 2023a) and employ greedy
inference to evaluate all models. We select 8
human-preference benchmarks for evaluation of
the chat capabilities and reports the average nor-
malized score at the percentage scale. Additionally,

due to the high cost of conducting subjective
evaluations with a paid API model, we use GPT4o
as the Judge Model for main results only, and
we judge with the open-source CompassJudger-
1-32B (Cao et al., 2024) in ablation study and
scaling experiments. Furthermore, we also select
a range of knowledge-based Q&A datasets for
groundtruth-based evaluations.

Data Synthesis Settings. Only one model is
required for data synthesis and data refinement
throughout the entire pipeline. In the main experi-
ments, we use 200k data synthesized by Qwen2.5-
72B for model training. Additionally, for SOTA
comparisons and self-interaction experiments, we
also generate 200k data points using Qwen2.5-7B
to test the effectiveness of the Condor pipeline.

4.2 Main Results

We first generate two sets of Condor data using
Qwen2.5-7B and Qwen2.5-72B and compare them
with existing state-of-the-art synthetic baselines.
Then using Condor data generated by Qwen2.5-
72B-Instruct, we train both the Base and Instruct
versions of Qwen2.5-7B and compare their perfor-
mance against the official model on both Chat and
Knowledge benchmarks.
Comparing with the State-of-the-art. We use
the data obtained from various data synthesis meth-
ods to train starting from the Qwen2.5-7B-Base,
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Datasets Score Range Tulu v2 Evol Instruct WildChat Magpie Qwen2.5-7B-Instruct Condor Refine 7B Condor Refine 72B

AlignBenchv1.1 (Liu et al., 2023) 0~10 3.100 3.350 5.150 5.930 6.220 6.020 6.200
AlpacaEvalv2 (Dubois et al., 2024) 0~10 3.880 5.150 10.81 37.02 34.66 41.37 44.10
ArenaHard (Li et al., 2024) 0~100 4.691 15.87 18.53 50.81 53.65 60.39 60.87
CompassArena (Contributors, 2023a) 0~100 5.774 17.31 19.23 33.25 33.80 32.83 36.13
FoFoBench (Xia et al., 2024) 0~1 0.110 0.310 0.340 0.440 0.520 0.450 0.450
FollowBench (Jiang et al., 2023b) 0~1 0.432 0.614 0.693 0.821 0.840 0.835 0.830
MTBench101 (Bai et al., 2024) 0~10 6.610 7.530 7.720 8.270 8.600 8.380 8.370
WildBench (Lin et al., 2024) -100~100 -36.90 -29.78 -27.60 13.47 16.71 19.78 30.13
Average 0~100 24.65 34.33 39.53 55.67 58.02 58.38 60.03

Table 1: Comparison Results with Other Data Synthesis Methods. We adopt SFT data generated by various
approaches to tune Qwen2.5-7B-Base and use GPT-4o as the judge model.

Datasets Score Range Qwen2.5-7B-Instruct Qwen2.5-7B-Base Qwen2.5-7B-Instruct

Official Condor Void Condor Refine Condor Void Condor Refine

AlignBenchv1.1 (Liu et al., 2023) 0~10 6.220 6.040 6.200 6.240 6.200
AlpacaEvalv2 (Dubois et al., 2024) 0~10 34.66 32.84 44.10 38.76 44.60
ArenaHard (Li et al., 2024) 0~100 53.65 42.44 60.87 53.56 61.53
CompassArena (Contributors, 2023a) 0~100 33.80 32.43 36.13 35.17 40.12
FoFoBench (Xia et al., 2024) 0~1 0.520 0.410 0.450 0.500 0.470
FollowBench (Jiang et al., 2023b) 0~1 0.840 0.850 0.830 0.880 0.850
MTBench101 (Bai et al., 2024) 0~10 8.600 8.220 8.370 8.410 8.430
WildBench (Lin et al., 2024) -100~100 16.71 14.09 30.13 21.54 32.70
Average 0~100 58.02 54.09 60.03 59.14 61.29

Table 2: Performance Comparison on Human-preference Benchmarks Judged by GPT4o-0806. The results
demonstrate that Condor Refine significantly enhances the subjective chat capability of models. The Average Score
is calculated by normalizing the scores for each dataset to a percentage scale and then taking their average.

and evaluate the model with GPT-4o judge. As
shown in Table 1, Condor data generated by both
the 7B and 72B models significantly outperforms
other data synthesis methods and even surpasses
the official model after RLHF. This observation
indicates that self-improvement is achievable even
at the 7B scale, which will be further analyzed in
detail in Section 4.5. Moreover, Condor requires
only a single model for the entire data synthesis and
refinement pipeline with and mach smaller volume
of data than most synthetic datasets, highlighting
its efficiency and effectiveness.

Human-preference Evaluation. We select sev-
eral widely-used human-preference benchmarks
and calculate the final normalized average scores
on these datasets (detailed calculation logic is pro-
vided in A.1). We use GPT-4o as the Judge Model,
and the average results are reported in Table 2. As
shown in the table, the results of training the Base
model with DR surpassed the official model on
almost all human-perference benchmarks. It is
noteworthy that this stage only employs SFT and
does not include RLHF as applied in the official
model, highlighting the significant potential of Con-
dor’s constructed data in enhancing the model’s
subjective chat capabilities. Furthermore, continue
tuning on the Instruct model further improves per-
formance, demonstrating that the data synthesized
by Condor complements the original model’s ca-
pabilities and can enhance human-preference per-
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Figure 3: Average Score on Human-preference
Benchmarks. CompassJudger-1-32B and GPT-4o pro-
vide a consistent trend in scoring.

formance without introducing conflicts. To further
verify these results, we also conducted evaluations
using CompassJudger-1-32B (Cao et al., 2024). As
shown in Figure 3, evaluations using both Judge
Models reached a consistent conclusion.
Knowledge Performance Evaluation. We further
conduct experiments on several knowledge-based
benchmarks (BoolQ, CMO, DROP, GaokaoBench,
GPQA, GSM8k, HumanEval, IFEval, Math, MBPP,
MMLU, Race) to assess the model’s objective
question-answering capabilities in Table 3. It is
worth noting that our synthetic data doesn’t specif-
ically include knowledge-based QAs like the of-
ficial models, yet it achieves comparable or even
superior results. The outcome indicates that our
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Method Average Knowledge Score

Qwen2.5-7B-Instruct Official 70.51
Qwen2.5-7B-Base Condor Void 70.50
Qwen2.5-7B-Base Condor Refine 70.00
Qwen2.5-7B-Instruct Condor Void 70.57
Qwen2.5-7B-Instruct Condor Refine 69.70

Table 3: Performance Comparison on Knowledge-
Based Benchmarks. When trained on high-quality
SFT data, the differences in the model’s performance
on knowledge-intensive Q&A tasks are minimal. The
detailed results are shown in Table 9.

dataset not only enhances the model’s human-
preference performance but also preserves its ob-
jective knowledge QA capabilities. Additionally,
the results demonstrate that the model’s chat ability
and knowledge capability are largely independent.
The knowledge capability primarily relies on the
foundational base model’s abilities, whereas the
chat ability can be improved by SFT and RLHF.

4.3 Ablation Study

We further investigate the impact of model type,
size, and question difficulty on Condor training
through a series of ablation experiments using Con-
dor data generated by Qwen2.5-72B-Instruct. For
the type ablation, we evaluate models of different
families, including Qwen, InternLM, and Llama.
For the size ablation, we test Qwen2.5 at 7B, 14B,
and 32B parameter scales. Additionally, in the
difficulty ablation, we train models with datasets
containing questions of varying difficulty levels.
In all experiments, we utilize CompassJudger as
judger for subjective evaluation.
Model Type. From Table 5, it is evident that
training on DR consistently improves performance
across different models. Almost all models demon-
strate significant enhancements on all subjective
evaluation datasets. Compared to the official model,
Qwen2.5-7B shows an improvement more than 6%
(56.9% to 63.3%) after training on Condor Refine.
InternLM and Llama exhibit an even larger im-
provement by about 10%. These results highlight
that the quality of the base models plays a crucial
role in determining the conversational performance
of the final Instruct model.
Model Size. We further evaluate the adaptability
of models of different sizes to DR in Figure 4.
Interestingly, we find that the improvement for the
14B and 32B models is notably greater compared
to the smaller variants. This suggests that larger
models demonstrate a greater capacity to learn and
benefit from the refined data more.
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Figure 4: Performance Comparison across Different
Model Sizes. Larger models benefit from Condor Refine
by a larger margin.

Different level Exp. Easy Exp. Medium Exp. Hard Exp. All

Easy Data ✓ ✓
Medium Data ✓ ✓
Hard Data ✓ ✓
AlignBenchv1.1 6.180 6.220 6.160 6.260
AlpacaEvalv2 58.76 56.89 58.51 60.00
ArenaHard 58.55 61.02 61.81 61.37
CompassArena 42.22 38.95 43.07 43.62
FoFoBench 0.450 0.460 0.470 0.480
FollowBench 0.830 0.860 0.840 0.840
MTBench101 8.180 8.170 8.160 8.180
WildBench 26.98 29.41 31.53 31.13
Average Score 61.71 62.14 62.93 63.27

Table 4: Ablations on Different Levels of Task Diffi-
culty. Harder tasks yield greater improvements.

Task Difficulty. Table 4 presents the perfor-
mance of models trained with Condor data of vary-
ing difficulty levels. The results show that tasks
of increasing difficulty contribute to greater per-
formance improvements, with more challenging
tasks yielding higher average scores. Additionally,
combining all three difficulty levels during train-
ing further enhances performance, resulting in an
average improvement of 0.34%.

4.4 Scaling of Condor Data

The performance of models within the Condor
pipeline improves with respect to the increasing
amount of training data, tags, and tasks. To in-
vestigate these relationships in detail, we conduct
comprehensive experiments, as outlined below.
Training Data Amount. We visualize the rela-
tive performance under different sampling propor-
tions of training data in Figure 5. Surprisingly, we
find that the model retains a high percentage of its
performance even when trained on only a small
proportion of the data. Additionally, while some
performance fluctuations are observed on specific
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Datasets Qwen2.5-7B Internlm2.5-7B Llama3.1-8B

Official Condor Refine Official Condor Refine Official Condor Refine

AlignBenchv1.1 6.160 6.260 5.640 5.790 4.660 5.290
AlpacaEvalv2 32.42 60.00 26.34 55.53 24.10 47.33
ArenaHard 54.72 61.37 16.19 36.02 31.33 45.73
CompassArena 34.95 43.62 34.03 42.92 9.230 20.48
FoFoBench 0.450 0.480 0.400 0.410 0.370 0.500
FollowBench 0.860 0.840 0.810 0.790 0.830 0.840
MTBench101 8.370 8.180 8.000 8.070 8.180 8.190
WildBench 15.69 31.13 -13.37 17.71 -2.24 20.45
Average 56.90 63.27 47.19 56.44 45.18 55.24

Table 5: Performance Comparison across Different Types of Models. Condor Refine shows strong adaptability
over different types of models.
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Figure 5: Performance Comparison under Different
Proportions of Training Data. "Average" represents
the average score across 8 benchmarks, and the results
show a clear and consistent improvement as the size of
the training data increases (Detailed scores in Table 11).

benchmarks due to the relatively smaller data sizes
– the overall average score consistently improves as
the total amount of training data scales up.

Number of WKT Tags and Tasks. To better un-
derstand the impact of tags and tasks in the Condor
pipeline, we conduct ablation experiments by incre-
mentally increasing the proportions of Tasks and
WKT Tags. As shown in Figure 6, while there are
some fluctuations, the fitted average performance
consistently improves with the increasing number
of tags and tasks, indicating that both factors con-
tribute positively to enhancing the model’s human-
preference capabilities. Furthermore, the influence
of tasks is observed to be more significant than that
of tags, as evidenced by the larger performance im-
provements associated with adding tasks. Detailed
scores are provided in Tables 12 and 13.
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Figure 6: Performance Results under Different Pro-
portion of WKT Tags and defined Tasks. Tasks have
a more significant influence than tags, as evidenced by
the significant drop with a small proportion of tasks.

4.5 Self Iteration

We conduct self-iteration experiments using Con-
dor data generated by Qwen2.5-7B and Qwen2.5-
72B to evaluate whether a single model can en-
hance its chat capabilities by itself. We train the
Base model and then report human-preference per-
formance scores across 8 benchmarks. As shown
in Table 6, both the 7B and 72B models achieve
self-improvement even compared with the RLHF
models. Notably, the improvement for the 72B
model is slightly greater than that of the 7B model,
suggesting that larger, more capable models are
better equipped to achieve self-improvement.

5 Analysis and Discussion

5.1 Which capability is improved the most?

We evaluate the scores for each benchmark across
different sub-capability dimensions and observe im-
provements in sub-capabilities after Condor train-
ing (detailed information in Appendix A.2). As
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Datasets 7B-IT 7B-Condor 72B-IT 72B-Condor

AlignBenchv1.1 6.220 6.020 6.940 6.980
AlpacaEvalv2 34.66 41.37 47.64 56.15
ArenaHard 53.65 60.39 85.67 84.86
CompassArena 33.80 32.83 43.70 48.73
FoFoBench 0.520 0.450 0.660 0.600
FollowBench 0.840 0.840 0.920 0.910
MTBench101 8.600 8.380 8.450 8.440
WildBench 16.71 19.78 45.23 47.75
Average 58.02 58.38 70.14 71.12

Table 6: Condor Self Iteration Experiments on Qwen
7B and 72B. Here, "IT" refers to the Instruct model
after official RLHF. We use GPT-4o as the judge.
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Figure 7: Qwen2.5-7B Performance improvements on
Various Sub-Dimensions. Condor Refine consistently
improves the model among all the sub-dimensions.

shown in Figure 7, the model demonstrates im-
provement across all sub-capabilities, with the most
significant score increases observed in the tasks
of Creation, QA, and Chat. These areas align
closely with the core aspects of the model’s human-
preference capability, highlighting Condor’s effec-
tiveness in enhancing key conversational skills.

5.2 How large is the synthetic data coverage?

We extract the embeddings of questions from Con-
dor and Magpie and use t-SNE for dimensionality
reduction and visualization. To ensure a fair and
balanced comparison, we randomly sample 200k
questions from each dataset for this analysis. Note
that according to Magpie’s claimed method, it is ca-
pable of feedbacking the model’s own training data,
which means that the data distribution obtained by
Magpie is somewhat close to the model’s original
SFT data. As shown in Figure 8, Condor has a
similar or even broader distribution compared to
Magpie, which indicates that the questions gener-
ated by Condor have good diversity.

Figure 8: t-SNE visualization of Condor and Magpie.
Condor shows great alignment with Magpie, highlight-
ing its large diversity and generalization capabilities.

Category Language Chat Creation Following Knowledge Total

Win Rate 59.56 89.04 66.99 59.40 86.12 72.62

Table 7: Human alignment evaluation. We report the
average win rate across each category.

5.3 Human alignment evaluation

To prevent potential bias caused by LLM judge,
we conduct a manual voting process to verify the
improvement of the Condor model in terms of hu-
man alignment capabilities. We organize a total
of 5 researchers with a doctoral level and select
100 questions from 5 categories from the test sets
including AlpacaEval, ArenaHard, Fofo, and so on.
We have both the official Qwen2.5-7B model and
the Qwen2.5-7B Condor model to answer these
questions, and the researchers select the winner for
each question. As shown in Table 7, it can be ob-
served that Condor still achieve a significant lead
in the human voting results, especially in the Chat,
Creation, and Knowledge categories, demonstrat-
ing the effectiveness of its data.

6 Conclusion

In this paper, we propose Condor, a two-stage
data synthesis engine to generate high quality data
for supervised fine-tuning. Extensive experiments
demonstrate that with the high quality data gener-
ated by Condor, the performance of the fine-tuned
model surpasses many existing methods and the
official RLHF models using a small amount of syn-
thetic data. We also explore the scaling of synthetic
data and self-iteration experiments, demonstrating
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that models can achieve self-iteration through syn-
thetic data.

7 Limitations

Despite the significant improvements brought by
Condor in human preference performance, there
are still many experiments that require further ex-
ploration, such as the use of multi-round iterative
synthetic data and how to further enhance the diver-
sity of the synthetic data. Additionally, the halluci-
nations produced by LLMs in synthetic data could
also become a potential risk. These issues need to
be further addressed and improved, which will in
turn enhance the quality of the synthetic data.
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A Appendix

A.1 Detailed Calculation Method for the Subjective Evaluation Scores.
Since the metrics for statistical scoring of various subjective chat datasets are not the same, and the
scoring ranges are not all 0-100, we use the following mapping relationships when calculating the average
subjective chat score for the model:

• The scoring ranges for CompassArena, AlpacaEvalv2, and ArenaHard are 0-100, and no special
treatment is needed when calculating the overall mean score.

• For FoFo and Followbench, the scoring range is 0-1, and we multiply by 100 when calculating the
overall mean score.

• For AlignBenchv1.1 and MTBench101, the scoring range is 0-10, and we multiply by 10 when
calculating the overall mean score.

• For WildBench, the scoring range is -100 to 100, and we add 100 to the score and then divide by 2
for mapping.

• The final calculated total Average score is the mean score of these datasets after they have been
mapped to the 0-100 range.

A.2 Detailed Information for Sub-capabilities Improvement of Condor
Based on the subscore for each capability dimension provided by each dataset, we aggregated the model’s
scores by dimension, thereby obtaining the model’s scores on each capability dimension across these
subjective test datasets. Specifically, according to the different subscores for various capability dimensions
provided by different datasets, we aggregated the scores in the following manner:

• Math: The math and reasoning capabilities of model, we aggregate the sub-score from AlignBench,
CompassArena.

• Task: The task problem svoling capability of model, we aggregate from AlignBench, ArenaHard and
MTBench101.

• Creation: The ability of the model to create various types of content as required is aggregated from
AlignBench, CompassArena, MTBench101, and WildBench.

• Role-play: The role-playing capability of the model is aggregated from AlignBench, AlpacaEval,
and WildBench.

• QA: The knowledge-based question-answering capability of the model is aggregated from Align-
Bench and CompassArena.

• Chat: The daily chat capability of the model is aggregated from AlignBench, AlpacaEval, ArenaHard,
MTBench101, and WildBench.

• IF: The instruction following capability of the model is aggregated from FoFo and FollowBench.

• Language: The language understanding and processing capability of the model is aggregated from
AlignBench and CompassArena.
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Datasets Qwen2.5-7B-Instruct Qwen2.5-7B-Base Qwen2.5-7B-Instruct

Official Condor Void Condor Refine Condor Void Condor Refine

AlignBenchv1.1 6.160 6.080 6.260 6.320 6.320
AlpacaEvalv2 32.42 33.04 60.00 43.98 63.85
ArenaHard 54.72 43.35 61.37 57.33 63.30
CompassArena 34.95 33.78 43.62 38.17 46.68
FoFoBench 0.450 0.380 0.480 0.500 0.480
FollowBench 0.860 0.860 0.840 0.830 0.850
MTBench101 8.370 8.120 8.180 8.280 8.240
WildBench 15.69 13.82 31.13 18.52 32.99
Average 56.90 54.01 63.27 59.67 64.85

Table 8: Detailed Results for Condor on Subjective Evaluation Datasets Judged by CompassJudger-1-32B.

Datasets Qwen2.5-7B-Instruct Qwen2.5-7B-Base Qwen2.5-7B-Instruct

Official Condor Void Condor Refine Condor Void Condor Refine

BoolQ (Clark et al., 2019) 86.06 87.83 86.82 87.34 86.33
CMO (Contributors, 2023a) 22.60 25.00 28.85 23.08 20.19
DROP (Dua et al., 2019) 80.81 79.31 78.50 81.53 80.46
GaokaoBench (Zhang et al., 2024c) 60.42 63.87 63.64 60.69 60.13
GPQA Diamond (Rein et al., 2023) 35.35 34.34 35.86 35.35 35.35
GSM8K (Cobbe et al., 2021) 92.27 91.21 90.75 91.43 91.96
HumanEval (Chen et al., 2021) 89.63 89.02 85.98 87.20 86.59
IFEval loose (Zhou et al., 2023) 81.70 81.70 79.85 83.36 80.96
Math (Hendrycks et al., 2021) 83.21 82.31 81.91 82.67 82.47
MBPP (Austin et al., 2021) 74.32 74.32 73.54 74.32 74.71
MMLU-Pro (Wang et al., 2024b) 54.70 52.15 50.70 54.73 53.02
Race-high (Lai et al., 2017) 85.05 84.88 83.56 85.16 84.28
Average 70.51 70.50 70.00 70.57 69.70

Table 9: Performance Comparison on Knowledge-Based Benchmarks. The score range across all the tasks are
0~100. When trained on high-quality SFT data, the differences in the model’s performance on knowledge-intensive
question-answering tasks are minimal.

Datasets Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Qwen2.5-14B Qwen2.5-32B

Official Condor Refine Official Condor Refine Official Condor Refine Official Condor Refine Official Condor Refine Official Condor Refine

AlignBenchv1.1 3.420 3.000 4.670 4.660 5.620 5.400 6.160 6.260 6.560 6.660 6.780 6.880
AlpacaEvalv2 2.860 3.730 6.090 26.58 20.87 42.86 32.42 60.00 33.66 71.18 35.53 74.41
ArenaHard 1.740 2.180 10.49 16.29 30.49 36.18 54.72 61.37 71.00 74.95 76.82 86.83
CompassArena 6.280 2.280 9.630 21.57 20.72 35.58 34.95 43.62 35.78 55.05 40.18 60.18
FoFoBench 0.010 0.000 0.130 0.130 0.300 0.330 0.450 0.480 0.550 0.580 0.590 0.630
FollowBench 0.410 0.440 0.550 0.620 0.720 0.760 0.860 0.840 0.920 0.900 0.940 0.920
MTBench101 5.600 4.950 7.030 7.310 8.040 7.950 8.370 8.180 8.430 8.300 8.490 8.330
WildBench -84.57 -79.33 -54.88 -22.31 -8.35 5.190 15.69 31.13 23.42 40.80 22.46 45.84
Average 18.75 17.75 29.13 33.23 44.57 51.11 56.90 63.27 62.38 71.03 64.87 75.07

Table 10: Performance Comparison across Different Model Sizes. Qwen2.5-7B, 14B, and 32B all benefit from
Condor Refine by a significant margin.
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Datasets
Proportion 1% 2.5% 5% 10% 25% 50% 100%

AlignBenchv1.1 5.280 6.140 6.070 6.150 6.200 6.270 6.260
AlpacaEvalv2 22.36 56.65 55.53 58.88 60.62 56.89 60.00
ArenaHard 42.00 56.99 59.27 59.56 63.17 61.64 61.37
CompassArena 20.02 40.80 43.35 41.82 40.22 42.98 43.62
FoFoBench 0.180 0.410 0.420 0.470 0.460 0.480 0.480
FollowBench 0.800 0.760 0.800 0.820 0.820 0.820 0.840
MTBench101 6.710 8.010 8.160 8.170 8.180 8.220 8.180
WildBench 0.440 29.23 28.54 29.20 28.79 30.41 31.13
Average 44.07 59.74 60.79 62.09 62.50 62.68 63.27

Table 11: Performance Comparison under Different Proportions of Training Data. Here, 100% indicates the
use of the full dataset, which is approximately 200K synthetic data for training, while the other proportions involve
random sampling of the full dataset based on the given percentage.

Datasets
Proportion 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

AlignBenchv1.1 6.140 6.180 6.180 6.240 6.250 6.190 6.140 6.260
AlpacaEvalv2 60.12 55.65 55.03 56.89 56.77 57.76 58.14 60.00
ArenaHard 62.19 62.43 60.81 60.01 59.73 60.11 60.99 61.37
CompassArena 42.57 40.98 41.87 42.25 42.88 41.75 43.50 43.62
FoFoBench 0.450 0.470 0.490 0.480 0.500 0.460 0.480 0.480
FollowBench 0.800 0.860 0.850 0.830 0.870 0.830 0.810 0.840
MTBench101 8.180 8.200 8.150 8.170 8.140 8.180 8.200 8.180
WildBench 28.83 27.96 29.70 28.97 27.15 28.89 29.25 31.13
Average 62.08 62.43 62.43 62.30 62.98 62.07 62.46 63.27

Table 12: Performance of the model after training with different numbers of tags in the training data. The
total number of Chinese tags is 4249, and the total number of English tags is 4296. We randomly sampled the
Chinese and English tags in proportion and then combined the sampled Chinese and English data for training to
ensure a balance of tags between the two languages.

Datasets
Task Number 1 2 3 4 5 6 7

AlignBenchv1.1 6.180 6.280 6.240 6.150 6.200 6.160 6.260
AlpacaEvalv2 56.65 58.26 59.75 56.65 57.64 58.51 60.00
ArenaHard 62.60 59.40 60.86 60.61 61.60 62.91 61.37
CompassArena 42.83 42.62 41.10 42.63 42.85 43.88 43.62
FoFoBench 0.420 0.420 0.440 0.440 0.490 0.460 0.480
FollowBench 0.810 0.830 0.760 0.750 0.780 0.820 0.840
MTBench101 8.110 8.240 8.210 8.180 8.150 8.190 8.180
WildBench 33.07 33.69 31.38 31.38 29.33 30.94 31.13
Average 61.70 62.16 61.46 60.89 62.04 62.81 63.27

Table 13: Performance of the model after training with different numbers of tasks in the training data. All the
results in the table were obtained by testing the Qwen2.5-7B-Base model after training on the relevant datasets, with
the number of tasks increasing by inclusion. The first task is Role-Playing, the second task is Daily Chat, the third
task is Domain Knowledge Q&A, the fourth task is Given Material Processing, the fifth task is Response Format
Control, the sixth task is View, and the seventh task is Creation.
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Prompt for Tag Synthesis

Please provide a list of common life scenarios in python list format, for example ["Education",
"Entertainment", "Marriage"]. Continue to expand this list.

For the topic path I have given, please provide multiple corresponding sub-paths and return them
in Python list format. For example, for "Entertainment Gossip-Celebrity News", return ["Celebrity
Interviews", "Celebrity Charity Events"]. Here is the given topic path: topic. Please provide the
corresponding sub-paths.

Prompt for Question Synthesis

Now we need to create high-quality SFT data for LLM training, so we need you to produce a
batch of such data. You only need to create Questions. I will give you a theme and some examples
of SFT data Questions. You need to create three Questions of different difficulty levels based on
this new theme.
Your Questions must meet the following requirements:
1. You must strictly create only three Questions at a time. These three Questions must be in the
domain of [[domain]] and the Questions should align with the given theme of [[theme]].
2. The Questions you create must have context and sufficient information; they should not be
abrupt and directly ask the question.
3. Your reply must strictly follow the format below. Your Questions need to be included between
[Question Start] and [Question End], and the difficulty level should be indicated at the beginning,
as in the following format:

[Easy][Question Start]Question[Question End]
[Medium][Question Start]Question[Question End]
[Hard][Question Start]Question[Question End]
4. Your Questions of different difficulty levels should be distinct and actually reflect the different
levels of difficulty.

Here are some examples of high-quality SFT data Questions for [[domain]]: [example
list]
Now it’s your turn. Please provide the three Questions of different difficulty levels you created
about the theme of [[theme]] for [[domain]], according to the requirements. Do not be confined by
the theme; your Questions only need to be related to the theme. You can use your rich imagination,
but note that you cannot copy the expression from the examples; you must have your own new
expression:

Prompt for Response Critic

There is now a user’s question and a model’s response. You need to write a critique for this
response, pointing out the strengths and weaknesses of the model’s answer to help the model
improve its response.
Your critique must strictly adhere to the following format:
[Critique Start]
[Strength Start]Strength[Strength End]
[Weakness Start]Weakness[Weakness End]
[Suggestion Start]Suggestion[Suggestion End]
[Critique End]
That is, you must place the strength, weakness, and suggestion in their respective sections.
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Here is the user’s question and the model’s response: [dialogue]
Now it’s your turn. Please provide your Critique as required:

Prompt for Refined Response Synthesis

Now there is a user’s question, a model’s answer, and the user’s feedback. Please help modify the
model’s answer based on the user’s feedback to make it better.
Your improved answer must strictly adhere to the following format: [Improved Answer Start]Your
answer[Improved Answer End] That is, you must place your answer between [Improved Answer
Start] and [Improved Answer End].

Below is the user’s question, the model’s answer, and the feedback:
[Question Start]question[Question End]
[Answer Start]answer[Answer End]
[Feedback Start]critique[Feedback End]
Now it’s your turn, please provide your improved answer as required:
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Condor Void Example - User Question

I was watching a documentary about mapping ancient cities, and it got me thinking about how
maps have evolved over time. Have you ever seen an old map and marveled at how different it
looks from today’s maps? What’s the oldest map you’ve ever seen?

Condor Void Example - Origin Answer

As a digital AI assistant, I don’t have personal experiences, emotions, or visual interactions, so I
haven’t "seen" maps in the classical sense. I don’t have a physical presence, and my interactions
are limited to text-based conversations. However, I’d be delighted to take you on a journey through
the evolution of maps and highlight some notable examples of ancient and historic maps!

The Evolution of Maps
1. Prehistory ( 20,000 BCE - 3,000 BCE): Early maps were often simple, symbolic, and focused
on specific areas, like the Turin Papyrus Map ( 1160 BCE), which depicts the location of gold
mines in ancient Egypt.
2. Ancient Civilizations ( 3,000 BCE - 500 CE): - Babylonian Map of the World ( 600 BCE): A
clay tablet showing the world as a flat disk, surrounded by an ocean. - Ptolemy’s World Map ( 150
CE): A more accurate, yet still flawed, representation of the known world, using longitude and
latitude.
3. Medieval Period ( 500 - 1500 CE): - Mappa Mundi ( 1300 CE): A symbolic, Christian-centric
map, often displaying Jerusalem at the center.
4. Age of Exploration ( 1500 - 1700 CE): - Waldseemüller Map (1507 CE): One of the earliest
maps to depict the New World, naming America after Amerigo Vespucci.
5. Modern Cartography ( 1700 CE - present):
- Triangulation and Surveying: Led to more accurate mapping of territories.
- Aerial Photography and Satellite Imaging (20th century): Revolutionized mapmaking with high-
resolution, globally consistent data.
- Digital Maps (late 20th century - present): Enabled interactive, dynamically updated, and highly
accurate maps, like Google Maps.

Some of the Oldest Known Maps
- Cave of El Castillo Map ( 14,000 BCE): A simple, prehistoric map etched into a cave wall in
Spain, showing the location of a nearby water source.
- The Bedolina Map ( 5,000 BCE): A rock carving in Italy, depicting a valley with topographical
features.
- The Nubian Map ( 2,000 BCE): An ancient Egyptian map, showing the location of Nubian gold
mines and territories.

Marveling at Old Maps
While I may not have personal experiences, I can certainly help you appreciate the historical
context, artistic value, and cartographic innovations of old maps. If you’d like to discuss a specific
map or era in more detail, feel free to ask!

Which aspect of old maps fascinates you the most? Is it:
•A) The artistic and symbolic representations
•B) The historical context and cultural influences
•C) The cartographic innovations and technological advancements
•D) Something else (please share!)
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Condor Refine Example - Reflection

[Strength Start]
Strengths:
1.Comprehensive Response: The model provides an exhaustive overview of the evolution of maps,
covering various historical periods, notable examples, and technological advancements.
2.Structured Formatting: The use of clear headings, numbered lists, and concise bullet points
enhances readability and facilitates easy understanding of complex information.
3.Engagement Initiator: The response ends with an interactive element, encouraging user participa-
tion and potentially leading to a more in-depth discussion.
4.Honesty About Limitations: The model transparently acknowledges its limitations as a digital AI
assistant, setting clear expectations for the user.
[Strength End]

[Weakness Start]
Weaknesses:
1.Length and Information Overload: The response is lengthy and packed with numerous examples,
which might overwhelm the user. Some points could be elaborated upon in subsequent interactions
rather than all at once.
2.Lack of Visual Enhancement: Despite discussing maps, the response is text-only. Incorporating
images, diagrams, or even suggesting external visual resources could significantly enhance the
user’s understanding and engagement.
3.Initial Acknowledgement Could Be Brief: While honesty about the model’s limitations is
appreciated, the initial acknowledgement could be more concise to quickly transition to the more
engaging and informative sections.
4.Question Response Mismatch: The user inquired about the oldest map the model has "seen,"
which the model addresses by stating its inability to see. However, the model could more directly
address the implicit curiosity about old maps by initially highlighting one or two of the oldest
known maps before delving into the broader evolution.
[Weakness End]

[Suggestion Start]
Suggestions for Improvement:
1.Tiered Information Disclosure: Initially provide a brief overview of the evolution of maps and
highlight 2-3 of the oldest known maps. Offer the user the option to explore specific eras or types
of maps in more detail, facilitating a more interactive and paced information exchange.
2.Incorporate Visual Aids or References: Suggest reputable online resources or include descriptions
that encourage users to visually explore the mentioned maps, enhancing their understanding of
cartographic developments.
3.Refine the Initial Limitation Disclosure: Condense the initial acknowledgement to a single
sentence, swiftly moving the focus to the engaging content (e.g., "As a text-based AI, I’ll guide
you through the fascinating evolution of maps, highlighting notable examples and innovations.").
[Suggestion End]
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Condor Refine Example - Refined Answer

Discovering the Ancient Roots of Modern Maps

As a text-based AI, I’ll guide you through the fascinating evolution of maps, highlighting notable
examples and innovations.

Let’s Start with the Oldest Known Maps:
1.Cave of El Castillo Map ( 14,000 BCE):
Etched into a Spanish cave wall, this simple map shows the location of a nearby water source.
2.The Bedolina Map ( 5,000 BCE):
A rock carving in Italy, depicting a valley with topographical features.

Visual Exploration Suggestion: Visit the British Museum’s Online Collection or Google Arts &
Culture to see high-resolution images of these ancient maps.**

Curious About the Evolution of Maps? Here’s a concise overview. Feel free to pick any era to
explore in more depth:
- Prehistory ( 20,000 BCE - 3,000 BCE): Simple, symbolic maps (e.g., Turin Papyrus Map)
- Ancient Civilizations ( 3,000 BCE - 500 CE): Notable examples include Babylonian Map of the
World and Ptolemy’s World Map
- Medieval to Modern ( 500 - present): Advances from Mappa Mundi to Triangulation, Aerial
Photography, and Digital Maps like Google Maps

Which Era or Aspect of Old Maps Would You Like to Explore Further?
•A) Ancient symbolic representations
•B) Medieval navigational charts
•C) The leap to digital cartography
•D) Something specific (please share, and I’ll delve deeper!)
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Detailed explanation of total 7 chat tasks

[Task 1-Role Playing]
Engage in simulated conversations or behaviors by assuming different roles to explore various
perspectives or scenarios.

[Task 2-Daily Chat]
Participate in casual conversations, including greetings, small talk, and sharing everyday experi-
ences.

[Task 3-Domain QA]
Provide specialized and accurate answers to questions within a specific domain or field.

[Task 4-Given Material Processing]
Analyze, process, and summarize given texts, data, or other materials.

[Task 5-Response Format Control]
Adjust the format, style, and expression of responses according to specified requirements.

[Task 6-View]
Offer personal opinions, insights, or perspectives on a particular topic.

[Task 7-Creation]
Generate new content such as articles, stories, poetry, designs, etc.
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Comparison Example - User Question

Is the ATF a violation in of itself against the American people?

Comparison Example - Qwen2.5-7B-Instruct Response

The term "ATF" typically refers to the Bureau of Alcohol, Tobacco, Firearms and Explosives, a
federal agency within the United States Department of Justice. The ATF is responsible for reducing
crime and preventing violence by reducing the illegal flow and improper use of firearms, alcohol,
tobacco, and explosives.

The ATF itself is not a violation against the American people. Rather, it is an agency that operates
under the laws and regulations established by the U.S. government to enforce laws related to
alcohol, tobacco, firearms, and explosives. The agency’s actions are generally aimed at preventing
crime and ensuring public safety.

However, like any government agency, the ATF can be subject to criticism and controversy.
Some criticisms have been raised regarding the agency’s enforcement practices, the impact of its
regulations on law-abiding citizens, and concerns about civil liberties. These criticisms do not
imply that the agency itself is a violation, but rather that its actions or policies may be subject to
scrutiny and debate.

If you have specific concerns or questions about the ATF’s actions or policies, it would be helpful
to provide more context or details so that a more accurate and informed response can be given.

Comparison Example - Qwen2.5-7B-Condor-Refine Response

The term "ATF" typically refers to the Bureau of Alcohol, Tobacco, Firearms and Explosives, a
federal agency in the United States responsible for enforcing federal laws related to the manufacture,
possession, and use of alcohol, tobacco, firearms, and explosives. The ATF is not a violation
against the American people; rather, it is an agency that operates within the legal framework
established by the U.S. Congress to enforce specific laws.

However, the ATF’s operations and the laws it enforces can be subjects of debate and criticism. For
example, some argue that the agency’s enforcement of gun control laws infringes on the Second
Amendment rights of law-abiding citizens. Others may criticize the agency for its handling of
certain cases or its budget and resource allocation. Additionally, there have been instances where
the ATF has been involved in controversial operations, such as the Ruby Ridge and Waco incidents,
which have fueled public debate and criticism.

It’s important to note that the ATF’s role is to enforce the laws as they are written, and the laws
themselves are subject to interpretation and debate. The agency’s actions are generally aimed at
reducing crime and ensuring public safety, but the effectiveness and fairness of these actions are
often subjects of public and political discourse.

If you have specific concerns or questions about the ATF’s operations or the laws it enforces, it
might be helpful to look at the broader context of U.S. law and policy, including the legislative
history and the ongoing debates surrounding gun control and public safety. For more detailed
information, you can refer to official ATF publications, such as the ATF’s annual reports, or consult
reputable news sources and legal analyses."
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