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Abstract
Tabular data are crucial in many fields and
their understanding by large language mod-
els (LLMs) under high parameter efficiency
paradigm is important. However, directly ap-
plying parameter-efficient fine-tuning (PEFT)
techniques to tabular tasks presents significant
challenges, particularly in terms of better ta-
ble serialization and the representation of two-
dimensional structured information within a
one-dimensional sequence. To address this,
we propose TableLoRA, a module designed
to improve LLMs’ understanding of table struc-
ture during PEFT. It incorporates special to-
kens for serializing tables with special token
encoder and uses 2D LoRA to encode low-rank
information on cell positions. Experiments on
four tabular-related datasets demonstrate that
TableLoRA consistently outperforms vanilla
LoRA and surpasses various table encoding
methods tested in control experiments. These
findings reveal that TableLoRA, as a table-
specific LoRA, enhances the ability of LLMs
to process tabular data effectively, especially
in low-parameter settings, demonstrating its
potential as a robust solution for handling table-
related tasks.

1 Introduction

Tabular data are widely used in numerous fields,
and LLMs are also widely applied to the under-
standing and processing of tabular data, such as
Table-GPT (Li et al., 2024b), TableLLM (Zhang
et al., 2024), etc.. Meanwhile, the PEFT (Man-
grulkar et al., 2022) (Parameter-Efficient Fine-
Tuning) paradigm, with its advantages of high
parameter efficiency, is widely used to fine-tune
LLMs. Consequently, exploring methods to learn
improved table representations under a high param-
eter efficiency paradigm to address table-related
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Question: Within the population that did not belong to a 
visible minority group, what was the percentage of canadian-
born women aged 15 to 24 in a low-income situation?

Vanilla LLama : 15.2 Llama + LoRA: 15.2
Llama + TableLoRA : 15.4 Ground Truth: 15.4

Figure 1: An Example of Common Errors when Directly
Using LoRA to Finetune Llama on Tabular Tasks.

issues more effectively remains a critical and valu-
able area of research.

However, directly applying PEFT(e.g., Low-rank
Adaptation(LoRA)) to table-related tasks reveals
several critical challenges:

Challenge 1: How to better serialize tables. Pre-
vious studies have shown that different methods
of table serialization affect the results (Sui et al.,
2024a). However, even with existing serialization
techniques, models still struggle to accurately rec-
ognize table structures. E.g., in the TableQA ex-
ample shown in Figure 1, it needs to retrieve cell
from the table. The column for retrieval can be
easily identified through the same header names in
the query. However, the Llama model fine-tuned
with LoRA fails to recognize the cell in the same
column as the header.

Challenge 2: How to better represent two-
dimensional structured information in a one-
dimensional sequence. The positional information
of rows and columns in a table is crucial for un-
derstanding the table structure, row-column cor-
respondence, and so on. E.g., to comprehend the
hierarchical left header in Figure 1, one must rec-

22376

mailto:hxyhxy@stu.xjtu.edu.cn
mailto:haoeliu@stu.pku.edu.cn
yuan.ze.jian@xjtu.edu.cn
mailto:mezho@microsoft.com
mailto:yeyehe@microsoft.com
mailto:haoyu.dong@microsoft.com
mailto:shihan@microsoft.com
mailto:dongmeiz@microsoft.com


ognize that cells like "15 to 24 years" are in the
leftmost column and identify their corresponding
row and column content. However, during LoRA
fine-tuning, positional information is not explicitly
learned and is only implicitly computed through
attention, leading to the query in Figure 1 being
unable to accurately locate the rows to retrieve
through the hierarchical structure of the left header.

To promote the recognition and understand-
ing of table structures during tabular tasks and
enhance the ability of Large Language Models
(LLMs) to process tables within PEFT, we propose
TableLoRA1, a module compatible with the PEFT
framework for LLMs. Existing tabular LLMs at-
tempt to learn table structure relationships using
attention mechanisms through additional training.
In contrast, we directly inform the model of these
relationships through our design, which consists of
two key components:

To address Challenge 1, the Special Tokens En-
coder enhances tabular data representation during
fine-tuning. The challenge lies in effectively learn-
ing and incorporating the special tokens [tab],
[row], and [cell], which replace traditional mark-
down or HTML formats and provide a structured
tabular representation for improved model process-
ing. We use a fine-tuning method inspired by p-
tuning to ensure effective gradient propagation to
special token embeddings, enhancing the model’s
ability to understand and manipulate tabular data.

To address Challenge 2, 2D LoRA is designed
to address the limited information derived from
the two-dimensional cell positions compared to the
rich semantics each token conveys. To tackle this,
we encode row and column indices using low-rank
embeddings and upscale these to integrate with the
Large Language Model’s (LLM) token embeddings.
This approach provides precise row and column in-
dex identifiers, enabling the LLM to infer whether
two cells align along the same row or column. The
importance of this structural awareness cannot be
overstated for tasks that require the comprehension
of tabular data. The 2D LoRA operates in parallel
with the original LoRA framework for each layer,
enhancing the LLM’s ability to effectively incorpo-
rate structural information and to generate content
based on structured tabular data.

We conducted experiments on three models
across four datasets that encompass QA and fact

1The code will be open-sourced on
https://github.com/microsoft/TableLoRA.

verification tasks on the tables. The results in-
dicate that TableLoRA consistently demonstrates
improvements over vanilla LoRA. Specifically, it
achieves a 5.9% improvement in HiTab. Further-
more, TableLoRA mitigates 40.56% of the per-
formance gap between LoRA and full fine-tuning.
For further validation, we conducted control ex-
periments contrasting various table representation
learning methods, highlighting the advantages of
TableLoRA’s structural design. Finally, we de-
signed and executed a series of exploratory ana-
lytical experiments to unravel the principles under-
lying TableLoRA’s efficacy.

The main contributions are as follows:
• TableLoRA is the first to propose a table-specific
LoRA, which aids in learning structured informa-
tion from tables by modifying the model archi-
tecture. This innovative approach enhances the
model’s ability to understand and process tabular
data effectively.
• Under PEFT low-parameter settings, TableLoRA
demonstrates a superior capability to capture and
learn table structures. This makes it highly efficient
and effective in scenarios where computational re-
sources and parameter budgets are limited.
• The experimental results of TableLoRA are
impressive. It consistently outperforms vanilla
LoRA, showing significant improvements in vari-
ous datasets, thus validating its efficacy and robust-
ness in handling table-related tasks.
• We summarized and designed various methods
for table representation learning, and, through con-
trolled experiments, we proved that the current
TableLoRA is the optimal solution among them.

2 Related Work

2.1 Tabular Task

Recently, table-related tasks have received consid-
erable attention in the field. Various tasks and
datasets have been proposed, such as TableQA
(WikiTQ (Pasupat and Liang, 2015), FeTaQA (Nan
et al., 2022), HiTab (Cheng et al., 2022), Hy-
bridQA (Chen et al., 2020c)), Text2SQL (Wik-
iSQL (Zhong et al., 2017), Spider (Yu et al.,
2018), BIRD (Li et al., 2024a)), Fact Verifica-
tion (TabFact (Chen et al., 2020b)), and tabu-
lar analysis (Table2Analysis (Zhou et al., 2020),
Table2Charts (Zhou et al., 2021), AnaMeta (He
et al., 2023), DS-1000 (Lai et al., 2022),
Text2Analysis (He et al., 2024a)). These datasets
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Figure 2: The Framework of TableLoRA. It consists of two main components: Special Tokens Encoder and 2D
LoRA. (1) The Special Tokens Encoder (§3.1) incorporates specially defined tokens into the model’s input alongside
word embeddings just before the transformer layers. (2) The 2D LoRA (§3.2) embeds row and column indices and
integrates them into the model at each layer, enabling the processing of tabular data’s structure and content.

include various types of tables, such as database ta-
bles (e.g., BIRD (Li et al., 2024a), Spider (Yu et al.,
2018)), simple tables (tables with the first row as
a header and several subsequent rows containing
corresponding values, e.g., WikiTQ (Pasupat and
Liang, 2015)), and hierarchical tables (tables with
tree-structured hierarchy in the top header or the
left header, e.g., HiTab (Cheng et al., 2022)). Their
common feature is that the input includes tables,
requiring models to have the capability to under-
stand and analyze the tables, such as understanding
row-column correspondences and positional infor-
mation within the tables.

2.2 Tabular Representation Learning

In the era preceding Large Language Models, table
representation methodologies can be divided into
model designs and extra training techniques (Dong
et al., 2022). Within model designs, various ap-
proaches are employed to effectively capture the
structural details of tabular data: (1) Table Seri-
alization: This method linearizes tables for better
integration with transformer-based models, e.g.,
TaPEx (Liu et al., 2021), TABBIE (Iida et al.,
2021). (2) Structural Positional Encoding: This
technique encodes structural information, such as
row and column indices, to preserve spatial rela-
tionships within tables e.g., TaPas (Herzig et al.,
2020), MATE (Eisenschlos et al., 2021), TAB-
BIE (Iida et al., 2021), and TUTA (Wang et al.,
2021). (3) Structure-Based Attention Mechanisms:
These mechanisms incorporate structural infor-

mation into the model through attention, enhanc-
ing the focus on relevant table components, e.g.,
TURL (Deng et al., 2020) and TUTA (Wang et al.,
2021). (4) Multiple Encoder Frameworks: This
approach uses multiple encoders to process table
data more comprehensively, e.g., TABBIE (Iida
et al., 2021), DoT (Krichene et al., 2021), and
KGPT (Chen et al., 2020a). For the design of our
control experiments in §4.3.1, we draw inspiration
from these model design strategies. However, it has
been observed that directly applying these meth-
ods to the era of LLMs does not bring significant
improvements.

2.3 Tabular Large Language Model

With the advent of the era of LLMs, a series of
works related to large models for tables have fol-
lowed one after another. To enhance the perfor-
mance of LLMs in table tasks, existing work pri-
marily focuses on improvements from the follow-
ing perspectives: (1) Input sequence level: employ-
ing different serialization or augmentation meth-
ods, e.g., TAP4LLM (Sui et al., 2024b), Spread-
sheetLLM (Dong et al., 2024), CoCoST (He et al.,
2024b); (2) Reasoning level: increasing task ac-
curacy by breaking down problems into multi-
ple steps to form a reasoning chain, e.g., Chain-
of-Table (Wang et al., 2024); (3) Training strat-
egy level: enhancing training effects by construct-
ing large-scale training datasets and synthesiz-
ing data, e.g., TableLlama (Zhang et al., 2023),
TableLLM (Zhang et al., 2024), StructLM (Zhuang

22378



et al., 2024), Table-GPT (Li et al., 2024b). How-
ever, in scenarios with limited data and compu-
tational resources, there is a lack of relevant ex-
ploration on how to more efficiently improve the
model’s capabilities in table tasks. Moreover, in
the PEFT setting, merely modifying the input se-
quence does not sufficiently enable the model to
learn the structural information of tables. There-
fore, in TableLoRA, we have made improvements
specifically for tables through model design.

2.4 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) methods
efficiently adapt large pretrained models to various
downstream tasks by fine-tuning only a small sub-
set of additional parameters, significantly reducing
computational and storage costs while maintaining
performance. PEFT encompasses techniques like
soft prompt methods (e.g., Prompt Tuning (Lester
et al., 2021), P-tuning (Liu et al., 2024)), which
optimize specific task parameters by adding learn-
able prompts to the input embeddings. Another
approach is low-rank adaptation (e.g., LoRA (Hu
et al., 2022)), which inserts smaller trainable ma-
trices into the model. Despite their advantages,
these methods lack the ability to understand table
structures. TableLoRA addresses this and improve
performance on tasks involving structured data.

3 Methodology

Tabular tasks involve generating an answer se-
quence output given a table T and related text
text (such as questions, table captions, etc.). The
table consists of n columns and m rows of cells,
T = {v0,0, v0,1, . . . , vm,n}.

TableLoRA is divided into two primary compo-
nents as shown in Figure 2: Special Tokens En-
coder and 2D Low-Rank Adaptation (2D LoRA).
The Special Tokens Encoder is designed to enhance
the model’s understanding of tabular data by incor-
porating specially defined tokens that provide a
clear and structured representation of tables. These
special token encoder is added to the model’s in-
put at the same stage as the word embeddings, just
before the transformer layers. On the other hand,
2D LoRA is aimed at encoding the structural in-
formation of tables by embedding row and column
indices and integrating them into the Large Lan-
guage Model at each layer. This dual approach
ensures that the model can effectively process both
the content and the structure of tabular data, leading

to improved performance in related tasks.

3.1 Special Tokens Encoder
In special tokens encoder, we introduce the incorpo-
ration of special tokens to enhance the representa-
tion of tabular data during the fine-tuning process.

We define three special tokens: [tab], [row],
and [cell], which are used to replace traditional
markdown or HTML formatting. Before entering
table T and text text into the model, the table needs
to be serialized and concatenated with the text to
form a single input sequence input. During the se-
rialization process, these special tokens are used as
delimiters: [tab] signifies the beginning of a table,
[row] indicates the start of a new row, and [cell]
marks the beginning of a new cell within a row, as
shown in Equation (1). These tokens are designed
to provide a structured and clear representation of
tabular data, facilitating more effective processing
and comprehension by the model.





input = concate(table_string, text)
table_string
= serialize(T )
= [TAB] [ROW] [CELL] v0,0 [CELL] v0,1 . . .

[ROW] [CELL] v1,0 . . . [CELL] vm,n

(1)

To ensure effective learning of special token em-
beddings, we designed a special token encoder
inspired by soft prompt methods (Qin and Eis-
ner, 2021), which optimize task-specific param-
eters by adding learnable prompts to input em-
beddings. Both approaches require adding new
learnable embeddings to the pre-trained model, but
the key difference is that soft prompt methods add
prompts only at the sequence’s beginning, while in
TableLoRA, special tokens appear at multiple posi-
tions throughout the sequence. Thus, we adopt the
encoder from the soft prompt method and extend it
to create a position-flexible special token encoder.
The formula is as follows:

word_embeddingi

=

{
WordEmbedding(ti), ti /∈ S
SpecialTokenEncoder(ti), ti ∈ S

(2)

where, ti ∈ input is one token of input, S =
{[TAB], [ROW], [CELL]} is the set of special token.
Each word_embeddingi is concatenated to form a
word embedding sequence that serves as input to
the model.

In this paper, the encoder from P-tuning (Liu
et al., 2024) is chosen as the special token encoder,
which consists of a word embedding layer and a
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linear layer. Furthermore, we compare the effects
of different soft prompt methods in controlled ex-
periments (§4.3.2).

3.2 2D Low-Rank Adaptation (2D LoRA)

Compared to the rich semantics conveyed by each
token, the information that can be derived from the
2D cell positions is relatively limited. To address
this, we add index embeddings for the row and col-
umn indices. Since the information density of these
indices is relatively low, we choose to represent
them using low-rank embeddings. These low-rank
embeddings are then upscaled and integrated with
the token embeddings of the LLM. This approach,
termed 2D LoRA, operates in parallel with the orig-
inal LoRA (Hu et al., 2022) framework for each
layer, enabling the LLM to incorporate structural in-
formation effectively. Specifically, precise row and
column index identifiers are provided, allowing the
LLM to infer whether two cells are aligned along
the same row or column. This structural awareness
is critical for tasks that require an understanding of
tabular data.

The mathematical formulation of this integration
can be expressed as follows:

h = W0x+BAx
+Btab (Embrow(IDxrow) + Embcol(IDxcol))

(3)

where, h represents the hidden states. W0, B and
A are the weight matrix of the LLM and the origi-
nal LoRA. Btab is additional parameters introduced
by the 2D LoRA. Embrow and Embcol denote the
embeddings of the row and column indices, respec-
tively. IDx represents which row/column this token
belongs to. Specifically, for tokens that are not part
of the table, both the IDxcol and IDxrow are set to
0. For special tokens, the token [TAB] has both
IDxcol and IDxrow set to 0, the token [ROW] has
IDxcol set to 0 and IDxrow set to the correspond-
ing row number, and the token [CELL] has both
IDxcol and IDxrow corresponding to its respective
cell value.

The origin of 2D LoRA lies in the addition of
column ID and row ID embeddings to word em-
beddings, similar to Tapas (Herzig et al., 2020).
The uniqueness of 2D LoRA lies in its specific em-
beddings, which are distinct for each transformer
layer. This differentiation is crucial as layers vary
in depth and informational needs, as will be demon-
strated in subsequent experiments (see Figure 3),
showing varying impacts across layers. Addition-
ally, our use of low-dimensional embeddings to

represent row/column IDs captures essential po-
sitional information efficiently, without requiring
high-dimensional semantic embeddings.

4 Experiment

We conducted three parts of the experiment: First,
the main experiment, which involved performing
TableLoRA and baseline experiments on 3 mod-
els in 4 datasets to demonstrate the effectiveness
of TableLoRA. Second, the control experiment, in
which we designed various variants of encode table
methods to compare with TableLoRA, highlighting
the advantages of TableLoRA’s structural design.
Third, further analysis, including an ablation study
and in-depth analysis of TableLoRA, to deeply ex-
plore the mechanisms of TableLoRA.

4.1 Experiment Setup

Our experiments were conducted on four table-
related datasets: HiTab (Cheng et al., 2022), Wik-
iTQ (Pasupat and Liang, 2015), FeTaQA (Nan
et al., 2022), and TabFact (Chen et al., 2020b).
The first three are Table QA datasets, where the
input consists of a table and a related query, and
the task is to answer the query based on the table,
with the output being the answer to the question.
Among them, HiTab involves tables with complex
hierarchical structures, such as multi-layered tree
structures in the top or left header, as shown in
Figure 1. The last dataset, TabFact, is for fact ver-
ification, where the input is a table and a related
statement, and the task is to determine the truthful-
ness of the statement based on the table, with the
output being the judgment result.

We conducted experiments on three open-source
LLMs: Llama 2 (Touvron et al., 2023), Llama 3,
and DeepSeek (DeepSeek-AI, 2024). In addition,
we include several larger models as baselines for
comparison. Due to their closed-source nature or
computational constraints, we perform inference
only on these models without fine-tuning. Details
are provided in §A.2. We use the official metrics
for each dataset, as shown in the header of Table 1.

All experiments were run on Linux machines
with 4 NVIDIA Tesla A100 80G memory GPUs.
The LLaMA Factory framework served as the foun-
dation, which we extensively customized to incor-
porate TableLoRA-related techniques and meth-
ods. In the main experiments, LoRA and 2D LoRA
share the same rank (8). PEFT is applied to the
k_proj and v_proj layers. For more training de-
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Table 1: Main Experiments Results. All metric numbers are in %. ∆ represents the difference between the respective
metric and TableLoRA, with red indicating negative values, showing how much it decreased.

Model
HiTab WikiTQ FeTaQA TabFact

acc ∆ acc ∆ bleu ∆ acc ∆

Llama 2
Full Finetune 48.61 -0.33 46.20 5.74 32.10 4.10 52.29 -25.77
Lora 43.00 -5.94 38.76 -1.70 25.13 -2.87 76.93 -1.13
TableLoRA 48.94 0.00 40.46 0.00 28.00 0.00 78.05 0.00

Llama 3
Full Finetune 61.62 3.05 56.84 3.39 34.86 4.62 84.18 0.17
Lora 57.06 -1.50 51.98 -1.47 29.09 -1.14 83.49 -0.52
TableLoRA 58.56 0.00 53.45 0.00 30.23 0.00 84.01 0.00

DeepSeek
Full Finetune 54.92 7.99 47.01 6.59 32.15 4.87 79.44 2.40
Lora 43.25 -3.69 37.34 -3.08 26.68 -0.61 75.20 -1.85
TableLoRA 46.94 0.00 40.42 0.00 27.29 0.00 77.05 0.00

Large Models
GPT-4o 55.05 - 58.38 - 14.34 - 44.01 -
Claude-3.7 56.88 - 66.90 - 13.58 - 80.14 -
Llama 3.3-70B 22.79 - 41.30 - 7.66 - 15.99 -

tails, see §B.

4.2 Main Results

In the main experiments, we evaluated TableLoRA,
the original LoRA (Hu et al., 2022), and full pa-
rameter fine-tuning across three models and four
datasets. Results are presented in Table 1, and ex-
perimental parameters are detailed in §B. Few have
attempted to improve PEFT for table tasks, so no
additional baselines are available. To validate the
model structure’s superiority, we summarized com-
mon table representation methods and designed
variant experiments for comparison in §4.3.1.

The results show that TableLoRA outperforms
baseline LoRA fine-tuning, with a 5.9% improve-
ment on the Llama2 model when applied to the
HiTab dataset, demonstrating its effectiveness with
table-based inputs.

In a low-parameter setting, TableLoRA mitigates
LoRA’s shortcomings compared to full fine-tuning
for table tasks. It reduces the performance gap
between LoRA and full fine-tuning by an aver-
age of 40.56% (excluding the TabFact outlier on
Llama2, as detailed in §C). Specifically, on the
HiTab dataset with Llama2, TableLoRA improves
LoRA by 5.95%, matching full fine-tuning perfor-
mance. This demonstrates that TableLoRA can
learn complex tabular structures with fewer param-
eters, addressing LoRA’s deficiencies.

Compared with large models, on WikiTQ,
Claude 3.7 and GPT-4o generally outperform
TableLoRA and related baselines, indicating that
tuning-based approaches still require improvement
compared to reasoning-focused LLMs, and may
need enhancement through incorporation of rein-
forcement learning for further progress. In contrast,

on FeTaQA, TableLoRA and its baselines consis-
tently surpass reasoning LLMs, potentially because
the tuning process enables better acquisition of Fe-
TaQA’s answer sentence structures, thereby achiev-
ing higher BLEU scores.

4.3 Control Experiments

4.3.1 Table Representation learning Methods

To further validate the superiority of the
TableLoRA structure, we summarized common ta-
ble representation learning methods in §2.2 and
designed controlled experiments based on those
designs. The results are shown in Table 2. Refer-
ring to the table pre-training methods before the
era of LLMs (Dong et al., 2022), common table
representation learning methods that can be applied
to LLMs include: describing through strings, en-
hancing structural information through positional
embedding, and enhancing structural information
through attention masks. Therefore, we designed
the following variant experiments, and more details
are shown in §D.

Different format: Table input can be serialized
using various formats, such as markdown, HTML,
and CSV (the main experimental baseline in §4.2
uses markdown). Compared to the special token en-
coder in TableLoRA, adding a special token yielded
better results than the best-performing markdown
format.

Add in string sequence: The positional infor-
mation in the table (e.g., which row and which
column) is added to the string sequence. Com-
pared with the 2D LoRA in TableLoRA, the latter
incorporates positional information into the model
through embedding, allowing the model to learn
positional information more directly, resulting in
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Table 2: Control Experiments on the LLama2 of the
Hitab. All metric numbers are in %.

Control Exp HiTab

TableLoRA 48.94
LoRA (same rank) 43.00
LoRA (comparable params) 43.06

Special Token Control Exp
Different format (html) 32.25
Different format (csv) 43.06
Prompt Tuning 42.56

2D LoRA Control Exp
Add in string sequence 31.06
Add in attention mask (1) 40.50
Add in attention mask (2) 41.00
Add in positional embedding 39.00

greater improvement.
Add in positional embedding: The positional

information in the table (e.g., which row and which
column) is added to the word embedding through
positional embedding. Experiment results show
that this does not bring about an effective improve-
ment to the model. Compared with the 2D LoRA in
TableLoRA, the latter incorporates positional infor-
mation into each layer of the model through LoRA,
continually emphasizing structural information at
different layers during model inference, resulting
in greater improvement.

Add in attention mask: This approach im-
proves the model’s attention mechanism by incor-
porating positional information from tables, focus-
ing on two variants: (1) highlighting tokens within
the same cell, and (2) highlighting tokens within
the same row, column, or cell. In comparison to the
2D LoRA method in TableLoRA, the latter variant
learns position vectors in different feature spaces
at different layers through embedding, allowing for
better integration with the model and resulting in a
greater improvement in performance.

4.3.2 Special Token Encoder
We evaluated the impact of different encoders
for special tokens. The special token encoder in
TableLoRA is inspired by soft prompt methods,
as described in §3.1. Common soft prompt meth-
ods include P-tuning and prompt tuning (Lester
et al., 2021). For the control experiment, we use
the prompt tuning encoder, which mainly consists
of a word embedding layer. We modify it similarly
to P-tuning for our experiments. The results in Ta-
ble 2 show that the prompt tuning encoder fails to
effectively learn table-related token embeddings at

Table 3: Ablation Study on the LLama2 of the Hitab.
All metric numbers are in %.

Method HiTab ∆

TableLoRA 48.94 0
w/o Special Token Encoder 47.19 -1.75
w/o 2D LoRA 44.13 -4.81
LoRA 43 -5.94

different positions in the sequence.

4.3.3 The Number of Parameters
To verify that the effectiveness of TableLoRA is not
due to an increase in the number of parameters, we
conducted experiments by increasing the parameter
count of the original LoRA to make it comparable
with TableLoRA. In Llama2, TableLoRA trains
0.130% of the parameters, while LoRA (same
rank) (the baseline in §4.2) trains 0.062% of the
parameters. By increasing the rank of LoRA from
8 to 16, we obtain LoRA (comparable params),
which trains 0.124% of the parameters. The experi-
mental results are shown in Table 2.

The experimental results indicate that the per-
formance improvement of TableLoRA is due to its
effective encoding of the table structure, rather than
to a small increase in the number of parameters.
Even when LoRA’s parameter count is increased
to a comparable level, it only provides a 0.06% im-
provement over the same-rank LoRA. In contrast,
TableLoRA delivers a 5.88% improvement over the
parameter-comparable LoRA.

4.4 Further Analysis

4.4.1 Ablation Study
An ablation study is conducted to further investi-
gate the components that contribute to the enhance-
ments in the performance of the model in Table 3.
The results indicate that both the Special Token En-
coder and 2D LoRA can bring about improvements
to varying degrees, with 2D LoRA in particular
contributing to a 4.81% enhancement. Moreover,
the improvements are more pronounced when both
are used simultaneously.

4.4.2 Tables of Varying Complexity
To deeply explore the improvements brought by
TableLoRA to tables of different complexities,
we tested the enhancements of TableLoRA with
varying upper/left header depths on the HiTab
dataset (Cheng et al., 2022). The header depth
refers to the hierarchical depth of headers in a
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Figure 3: Heatmap of TableLoRA’s Enhancement on
HiTab Dataset Influenced by Top / Left Header Depth.

hierarchical table, where 1 represents a single-
layer header with no hierarchical structure, and
2 or above indicates the corresponding deepest hi-
erarchical depth. The results are shown in Fig-
ure 3, where the values indicate the performance
of TableLoRA compared to LoRA.

It can be seen that TableLoRA provides greater
improvements on more complex tables with deeper
hierarchies (i.e., further to the right or lower in
the heatmap). This is because TableLoRA en-
hances the model’s understanding of the table struc-
ture, especially the relationships between rows and
columns and the hierarchical relationships. How-
ever, for particularly complex tables, such as those
with top/left header depths of 3/4, the improve-
ments brought by TableLoRA are limited, indicat-
ing areas needing further improvement.

When both the top and left header depths are 1,
a slight drop is observed. (1) The HiTab dataset is
imbalanced, containing only 35 samples with one-
hierarchy headers. This small sample size limits
the reliability of statistical conclusions. Case stud-
ies of the three misclassified examples indicate that
the errors were caused by perturbations. (2) To fur-
ther assess the effectiveness of TableLoRA on flat
tables—including those with one-hierarchy head-
ers—we conducted experiments on additional flat-
structured datasets (e.g., WikiTQ, FeTaQA, Tab-
Fact, see Table 1), where TableLoRA consistently
achieves stable improvements.

4.4.3 Queries with Different Aggregations
In order to further explore the underlying mecha-
nisms and scope of TableLoRA, we conducted ex-
periments to evaluate the model’s performance on
various aggregations (functions in HiTab (Cheng
et al., 2022)) involved in the queries, as illustrated
in Figure 4. To ensure the experiment’s reliability,
we selected and analyzed aggregation types from
the HiTab dataset that had more than 20 samples.

For queries that require precise positioning us-
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Figure 4: Performance and Data Volumes of Queries
with Different Aggregations on HitTab. Accuracy is in
%.

ing table structures, the improvement is more
pronounced, such as with Argmax/Argmin and
None. TableLoRA showed a 17.2% improvement
on Argmax/Argmin, as it needs to identify which
elements in the table should be included in the
computation. These elements are usually located
in the same row or column, and the 2D LoRA in
TableLoRA helps the model to position them more
accurately. TableLoRA demonstrated a 7.3% im-
provement on “None” queries, which do not in-
volve aggregation and are typically for retrieval.
TableLoRA enhances the model’s ability to locate
cell positions and retrieve the results.

The model’s ability to perform numerical com-
putations still requires improvement. Regardless of
whether TableLoRA is applied, the model performs
poorly on queries involving arithmetic operations
such as Div, Diff, and Sum, sometimes even achiev-
ing 0% accuracy. Future research should explore
how to enhance the model’s computational capabil-
ities when working with tables.

4.4.4 2D LoRA at Different Layers

The impact of different layer 2D LoRA on the re-
sults is shown in Figure 5. In the experiment, se-
lected model layers use 2D LoRA, while unselected
layers use LoRA. Details are in §E.2.

It can be observed that the earlier the layer, the
more conducive it is to learning 2D information.
For instance, whether the layers are divided into
two or four parts, performance decreases as the
number of layers increases. Additionally, the even-
numbered layers, being one layer ahead of the odd-
numbered layers, exhibit better performance com-
pared to the odd-numbered layers.

4.4.5 TableLoRA with Different Rank

Figure 6 illustrates the performance of TableLoRA
and LoRA under different ranks, demonstrating
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that TableLoRA consistently improves with vary-
ing ranks, indicating the scalability of the method.

4.4.6 Case Study
The improvements brought by TableLoRA are con-
cretely visualized in Figure 1. As shown, the model
is enhanced primarily in two aspects. First, the row-
column correspondence has been improved. For
instance, in the column selection of the query in
Figure 1, the original query can accurately iden-
tify the "canadian-born" column. However, due to
LoRA’s error in detecting which cells belong to the
same column, the final retrieved result is incorrect.
Second, TableLoRA improves the understanding
of the tree-structured header. For example, when
performing row selection in the query in Figure 1,
LoRA selects the nearest upper row for "15 to 24
years" without recognizing that it is a parent node
in a hierarchical structure, with its child nodes cor-
responding to several rows below. By addressing
these two issues, TableLoRA successfully retrieves
the correct answers corresponding to the query.

5 Conclusion

In summary, this paper presents TableLoRA, a
novel method for enhancing LLMs’ understand-
ing of tabular data within the PEFT. By introducing
special tokens encoder for table serialization and
a 2D LoRA mechanism to encode cell positions,
TableLoRA addresses the structural comprehen-
sion limitations of existing models. Experiments
on multiple datasets show that TableLoRA consis-
tently outperforms vanilla LoRA and the other ta-
ble representation learning methods, demonstrating
significant improvements in handling table-related
tasks. This approach is both efficient and effec-
tive, marking a significant advancement in the fine-
tuning of LLMs for tabular data.
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Figure 6: Performance of TableLoRA and LoRA with
Different Ranks on HitTab. Accuracy is in %.

Limitations

One limitation of this paper is that we can only
validate our method on open-source models. Un-
fortunately, we are unable to test its effectiveness
on the current state-of-the-art GPT series models
due to accessibility constraints. This limitation re-
duces the generalizability of our findings to the
most advanced models available. Additionally,
the experiments require substantial GPU compu-
tational resources, raising concerns about energy
consumption and environmental sustainability.

Another limitation is that, although TableLoRA
demonstrates stable improvements compared to
LoRA, it still cannot match the results achieved
through full finetuning. This discrepancy suggests
that while TableLoRA offers notable benefits, it
may not yet reach the performance level achieved
by fine-tuning techniques.
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still be present. Furthermore, despite our careful
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vertently introduce inappropriate information into
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Acknowledgments

We thank all anonymous reviewers for their valu-
able comments. Xinyi He and Zejian Yuan were
supported in part by the National Key R&D Pro-
gram of China (2023YFB4704900) and NSFC
(61976170, 62088102).

22384



References
Wenhu Chen, Yu Su, Xifeng Yan, and William Yang

Wang. 2020a. Kgpt: Knowledge-grounded pre-
training for data-to-text generation. arXiv preprint
arXiv:2010.02307.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020b. Tabfact: A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020c. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026–1036, Online. Association for Computa-
tional Linguistics.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

DeepSeek-AI. 2024. Deepseek llm: Scaling open-
source language models with longtermism. arXiv
preprint arXiv:2401.02954.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. 2020. Turl: table understanding through
representation learning. Proceedings of the VLDB
Endowment, 14(3):307–319.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 5426–5435. International
Joint Conferences on Artificial Intelligence Organi-
zation. Survey Track.

Haoyu Dong, Yuzhang Tian, Jianbo Zhao, Junyu Xiong,
Mengyu Zhou, Yun Lin, José Cambronero, Yeye He,
Shi Han, and Dongmei Zhang. 2024. Spreadsheetllm:
Encoding spreadsheets for large language models.
In The 2024 Conference on Empirical Methods in
Natural Language Processing (EMNLP ’24).

Julian Eisenschlos, Maharshi Gor, Thomas Mueller, and
William Cohen. 2021. Mate: Multi-view attention for
table transformer efficiency. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7606–7619.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma,
Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, Zejian Yuan, and Dongmei Zhang. 2024a.

Text2analysis: A benchmark of table question an-
swering with advanced data analysis and unclear
queries. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(16):18206–18215.

Xinyi He, Mengyu Zhou, Mingjie Zhou, Jialiang Xu,
Xiao Lv, Tianle Li, Yijia Shao, Shi Han, Zejian Yuan,
and Dongmei Zhang. 2023. AnaMeta: A table under-
standing dataset of field metadata knowledge shared
by multi-dimensional data analysis tasks. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 9471–9492, Toronto, Canada.
Association for Computational Linguistics.

Xinyi He, Jiaru Zou, Yun Lin, Mengyu Zhou, Shi
Han, Zejian Yuan, and Dongmei Zhang. 2024b. Co-
CoST: Automatic complex code generation with on-
line searching and correctness testing. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 19433–19451,
Miami, Florida, USA. Association for Computational
Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Syrine Krichene, Thomas Müller, and Julian Martin
Eisenschlos. 2021. Dot: An efficient double trans-
former for nlp tasks with tables. arXiv preprint
arXiv:2106.00479.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. ArXiv, abs/2211.11501.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024a. Can llm already serve
as a database interface? a big bench for large-scale

22385

https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://github.com/deepseek-ai/DeepSeek-LLM
https://github.com/deepseek-ai/DeepSeek-LLM
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://www.microsoft.com/en-us/research/publication/encoding-spreadsheets-for-large-language-models/
https://www.microsoft.com/en-us/research/publication/encoding-spreadsheets-for-large-language-models/
https://doi.org/10.1609/aaai.v38i16.29779
https://doi.org/10.1609/aaai.v38i16.29779
https://doi.org/10.1609/aaai.v38i16.29779
https://doi.org/10.18653/v1/2023.findings-acl.604
https://doi.org/10.18653/v1/2023.findings-acl.604
https://doi.org/10.18653/v1/2023.findings-acl.604
https://doi.org/10.18653/v1/2024.emnlp-main.1082
https://doi.org/10.18653/v1/2024.emnlp-main.1082
https://doi.org/10.18653/v1/2024.emnlp-main.1082
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243


database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2024b. Table-gpt:
Table fine-tuned gpt for diverse table tasks. In SIG-
MOD 2024.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian-
guang Lou. 2021. Tapex: Table pre-training via
learning a neural sql executor. arXiv preprint
arXiv:2107.07653.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. AI Open, 5:208–215.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,
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A Experiment Configuration Details

A.1 Datasets Selection
We selected four datasets (HiTab, WikiTQ, Fe-
TaQA, TabFact) because they are classic, reliable,
and cover diverse table structures and tasks. Ta-
ble 4 summarizes their characteristics. Varying
instruction systematically test the model’s ability
to locate and retrieve information from tables at
different difficulty levels, while diverse output rig-
orously assess its capacity to generate responses
with varying linguistic or structural demands.

Table 4: Dataset Selection.

Dataset Table Instruct Output
HiTab hierarchical query words

WikiTQ flat query words
FeTaQA flat query sentences
TabFact flat fact/statement bool

A.2 Models Used
For all experiments conducted in this paper, we
employed three pre-trained large language mod-
els (LLMs): DeepSeek LLM-7B Chat (deepseek-
ai/deepseek-llm-7b-chat), Llama 2-7B Chat (meta-
llama/Llama-2-7b-chat-hf), and Meta Llama 3-8B
Instruct (meta-llama/Meta-Llama-3-8B-Instruct).
Llama 2 is a collection of pre-trained and fine-
tuned models optimized for dialogue, outperform-
ing most open-source chat models. Llama 3,
the next generation of Llama models, offers en-
hanced reasoning capabilities and strong perfor-
mance across various benchmarks. DeepSeek is
an advanced model trained on a large English and
Chinese dataset, available in both base and chat ver-
sions, and open-sourced for the research commu-
nity. These models were selected based on their rel-
evance in the current landscape of language model
research and their suitability for fine-tuning tasks
on structured datasets, such as the TabFact dataset.

B Training Configurations

B.1 Hardware and Frameworks
We employed machines with four NVIDIA A100
GPUs for fine-tuning. The LLaMA Factory frame-
work served as the foundation, which we ex-
tensively customized to incorporate TableLoRA-
related techniques and methods. To enable full-
parameter fine-tuning of large-scale models, we
used DeepSpeed version 0.14.4. The configuration
file employed during fine-tuning was the default
DeepSpeed zero-2 stage configuration file from the

example directory provided by the LLaMA Fac-
tory framework. To ensure consistency and elim-
inate any framework-induced bias in the results,
we applied the same DeepSpeed framework and
configuration file for both LoRA fine-tuning and
TableLoRA fine-tuning.

B.2 LoRA Fine-Tuning

The LoRA fine-tuning used eight LoRA ranks with
an alpha value of 16 and a dropout rate of 0.1. In all
cases, training employed a batch size of 8 per de-
vice, with gradient accumulation steps of 2, a learn-
ing rate of 5e-6, and a cosine scheduler. Training
was conducted for three epochs with a maximum
sequence length of 4,000 tokens on the TabFact
dataset and 1,000 tokens on other datasets. Mixed
precision (FP16) and distributed training were en-
abled using DeepSpeed. TableLoRA, a variant of
LoRA, used the same fine-tuning parameters.

B.3 TableLoRA Fine-Tuning

The main implementation of TableLoRA involves
both Special Tokens and 2D LoRA. The training
of Special Tokens employs p-tuning with its de-
fault parameters, while the hyperparameters for 2D
LoRA are consistent with those of LoRA. Specif-
ically, for 2D LoRA, the maximum values for
columns and rows are set to 40 and 600 on other
datasets, and 50 and 600 on the TabFact dataset.

B.4 Full-parameter Tuning

The full fine-tuning process employed a learning
rate of 5e-6 with a cosine scheduler and a maximum
gradient norm of 1.0. Training was conducted over
3 epochs with a maximum sequence length of 4000
tokens, utilizing a batch size of 8 per device and gra-
dient accumulation steps of 2. The model training
leveraged mixed precision (FP16) and distributed
training capabilities provided by DeepSpeed. To
ensure efficiency and stability, the preprocessing
pipeline involved 16 workers, and warmup steps
were set to 0. Additionally, the training process
included advanced optimization techniques such
as AdamW, with careful monitoring of loss curves
and model performance metrics throughout.

B.5 Consistency in Training

To ensure comparability across different models
and datasets, we applied the same training con-
figurations to all experiments. This uniformity
minimized the influence of hyperparameter differ-
ences, isolating the effects of model architectures
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and dataset characteristics. By maintaining con-
sistent training parameters, we could confidently
attribute variations in performance to the intrinsic
properties of the models or datasets rather than
external factors.

All models demonstrated expected convergence
behaviors, with the training process yielding the
lowest observed loss values for each model. This
result confirmed the stability and reliability of the
training procedures. The standardized and well-
calibrated configurations enabled us to conduct a
robust comparison across different models and fine-
tuning techniques, ultimately producing meaning-
ful and consistent insights.

C Details of Main Results

To quantify the average gap reduction between dif-
ferent fine-tuning methods, we calculate the rela-
tive improvement of the TableLoRA method over
the LoRA method, normalized by the difference
between the full finetune method and the LoRA
method. Mathematically, this can be expressed as:

Gap Reduction =
1

n

n∑

i=1

Pfull_finetunei − Ptablelorai
Pfull_finetunei − Plorai

where Ptablelorai represents the performance met-
ric obtained using the TableLoRA method, Plorai
represents the performance metric obtained using
the LoRA method, and Pfull_finetunei represents the
performance metric obtained using the full finetune
method for the i-th instance. The total number of
instances is denoted by n.

When fine-tuning LLaMA2 on the TabFact
dataset, we observed that full-parameter tuning re-
sulted in significantly lower accuracy compared to
LoRA, despite both approaches being applied to
the same task. One possible reason for this is that
LLaMA2’s pretraining may not be well-aligned
with the task-specific requirements of TabFact, par-
ticularly in terms of logical reasoning and table-
based data modeling. Full-parameter fine-tuning,
which adjusts all weights, might inadvertently inter-
fere with the model’s pre-existing knowledge, dis-
rupting its ability to generalize effectively. On the
other hand, LoRA’s approach, which only adjusts
a small set of parameters, focuses more on task-
specific patterns, leading to better performance.
Furthermore, we encountered issues related to op-
timization during full-parameter fine-tuning, such

as gradient vanishing, which made the optimiza-
tion process unstable. This instability often led to
convergence problems, preventing the model from
reaching an optimal solution. LoRA, due to its
reduced parameter space, was less prone to such is-
sues and exhibited a more stable convergence. Ad-
ditionally, TabFact’s inherent noise and specific pat-
terns could have been more effectively captured by
LoRA, as it is less likely to overfit to irrelevant fea-
tures. In contrast, other models like LLaMA3 and
DeepSeek may have better adapted to the task dur-
ing pretraining, resulting in higher accuracy when
subjected to full-parameter fine-tuning.

D Details of Control Experiment

Different format: When comparing with the spe-
cial token encoder, three types of table serialization
formats are involved: markdown, HTML, and CSV.
In the experiment, we maintained consistency
with the pandas library for specific serializa-
tion methods: DataFrame.to_markdown(),
DataFrame.to_html(), and
DataFrame.to_csv().

Add in string sequence: We add the posi-
tion information of each cell to the string se-
quence. Specifically, the position string “(row_idx,
col_idx)” of each row and column is added to the
front of the string of each serialized table cell.

Add in positional embedding: We use Sinu-
soidal Positional Embedding to encode the row/-
column indices separately. The row and column
indices are consistent with those in Equation (3).
The calculated embeddings are added to the word
embeddings, similar to the original positional em-
beddings in the transformer, for computation.

Add in attention mask: The positional attention
mask is combined with the causal mask typically
used in LLMs, ensuring that causal constraints are
preserved while embedding the structural informa-
tion of the table. This integration occurs at each
layer during the forward pass, enabling the model
to consistently emphasize table-specific structural
patterns throughout inference. At the core of this
method is the concept of weight amplification,
which boosts the model’s focus on structural infor-
mation. Tokens within the same cell receive higher
attention weight (e.g., adding a mask value of 1),
prompting the model to prioritize these tokens. To-
kens within the same row or column receive a lower
amplification (e.g., mask value of 0.5), highlighting
their contextual relevance to a lesser extent, while
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Table 5: Ablation Study on each model for each dataset. All metric numbers are in %.

Model HiTab WikiTQ FeTaQA TabFact

Llama 2

TableLoRA 48.94 40.46 28.00 78.05
w/o Special Token Encoder 47.19 39.73 27.72 78.00
w/o 2D LoRA 44.13 39.60 25.91 77.37
LoRA 43.00 38.76 25.13 76.93

Llama 3

TableLoRA 58.56 53.45 30.23 84.01
w/o Special Token Encoder 58.43 53.52 29.81 83.88
w/o 2D LoRA 57.25 52.75 30.19 83.23
LoRA 57.06 51.98 29.09 83.49

DeepSeek

TableLoRA 46.94 40.42 27.29 77.05
w/o Special Token Encoder 45.63 38.87 27.50 76.78
w/o 2D LoRA 44.44 37.71 26.92 75.62
LoRA 43.25 37.34 26.68 75.20

tokens not sharing a row or column relationship
receive no additional weight, maintaining neutral
attention scores.

E Details of Further Analysis

E.1 Ablation Study

The ablation results for each dataset are shown in
Table 5.

E.2 Performance of 2D LoRA at Different
Layers

We conduct the following sets of experiments for
different model layers: (1) Halving: The model
layers are divided into two halves for the exper-
iment, i.e., layers 0-15 and 16-31. (2) Odd and
Even: The model layers are divided into odd and
even numbers for the experiment, i.e., layers 0, 2,
..., 30 and layers 1, 3, ..., 31. (3) Quartering: The
model layers are divided into four quarters for the
experiment, i.e., layers 0-7, 8-15, 16-23, and 24-31.

E.3 Efficiency Comparison

Table 6: Training Efficiency. The experiments were
conducted on HiTab LLama2, using the same batch size
for comparison. GPU Memory refers to the total GPU
memory usage when training is stable.

Method Duration GPU Memory

Full Finetune 45min 280G
LoRA 33min 160G
TableLoRA 36min 168G

Compared to Full Finetune, TableLoRA sig-
nificantly reduces computational resources and

time while bridging the performance gap between
LoRA and Full Finetune. As shown in Table 6,
TableLoRA uses similar time and GPU resources
as LoRA, with time being 80% of that of Full Fine-
tune and GPU usage being 57%. Notably, for a
fair comparison, the experiments used the same
batch size. If the batch size were increased so
that TableLoRA and Full Finetune used the same
GPU memory, TableLoRA could achieve even bet-
ter time efficiency.

F Prompt

An example of the prompt is shown below (the
example is the sample in Figure 1):

<s> [INST] This is a hierarchical table
question answering task. The goal
for this task is to answer the given
question based on the given table.

The table might be hierarchical.
Here is the table to answer this
question. Answer the question.

/*
[TAB] [ROW] [CELL] low income [CELL]

total [CELL] total [CELL] canadian -
born [CELL] canadian -born [CELL]
immigrant [CELL] immigrant [ROW]
[CELL] low income [CELL] female
[CELL] male [CELL] female [CELL]
male [CELL] female [CELL] male [ROW]
[CELL] low income [CELL] percentage
[CELL] percentage [CELL] percentage
[CELL] percentage [CELL] percentage
[CELL] percentage [ROW] [CELL] total
age groups [CELL] [CELL] [CELL] [CELL]
[CELL] [CELL] [ROW] [CELL] visible
minority [CELL] 21.9 [CELL] 21.1
[CELL] 19.3 [CELL] 18.5 [CELL] 22.0
[CELL] 21.0 [ROW] [CELL] not a
visible minority [CELL] 14.3 [CELL]
12.2 [CELL] 14.2 [CELL] 12.2 [CELL]
14.3 [CELL] 12.3 [ROW] [CELL] under
15 years [CELL] [CELL] [CELL] [CELL]
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[CELL] [CELL] [ROW] [CELL] visible
minority [CELL] 25.4 [CELL] 25.2
[CELL] 22.3 [CELL] 21.8 [CELL] 34.3
[CELL] 36.2 [ROW] [CELL] not a
visible minority [CELL] 15.2 [CELL]
15.2 [CELL] 14.9 [CELL] 14.9 [CELL]
26.1 [CELL] 25.7 [ROW] [CELL] 15 to
24 years [CELL] [CELL] [CELL] [CELL]
[CELL] [CELL] [ROW] [CELL] visible
minority [CELL] 26.3 [CELL] 26.2
[CELL] 18.6 [CELL] 17.9 [CELL] 29.2
[CELL] 28.6 [ROW] [CELL] not a
visible minority [CELL] 15.8 [CELL]
13.7 [CELL] 15.4 [CELL] 13.3 [CELL]
20.8 [CELL] 18.7 [ROW] [CELL] 25 to
54 years [CELL] [CELL] [CELL] [CELL]
[CELL] [CELL] [ROW] [CELL] visible
minority [CELL] 20.7 [CELL] 19.3
[CELL] 12.6 [CELL] 11.1 [CELL] 21.3
[CELL] 19.8 [ROW] [CELL] not a
visible minority [CELL] 12.7 [CELL]
11.2 [CELL] 12.5 [CELL] 10.9 [CELL]
14.3 [CELL] 13.7 [ROW] [CELL] 55 to
64 years [CELL] [CELL] [CELL] [CELL]
[CELL] [CELL] [ROW] [CELL] visible
minority [CELL] 17.1 [CELL] 16.8
[CELL] 17.3 [CELL] 16.9 [CELL] 17.0
[CELL] 16.7 [ROW] [CELL] not a
visible minority [CELL] 14.4 [CELL]
13.2 [CELL] 14.5 [CELL] 13.2 [CELL]
13.4 [CELL] 13.1 [ROW] [CELL] 65
years and over [CELL] [CELL] [CELL]
[CELL] [CELL] [CELL] [ROW] [CELL]
visible minority [CELL] 17.3 [CELL]
14.3 [CELL] 15.1 [CELL] 9.8 [CELL]
17.4 [CELL] 14.4 [ROW] [CELL] not a
visible minority [CELL] 16.2 [CELL]
9.5 [CELL] 17.1 [CELL] 10.0 [CELL]
12.9 [CELL] None

*/
Table Caption: The table caption is this

table displays the results of
prevalence of low income. the
information is grouped by low income
(appearing as row headers), total ,

canadian -born , immigrant , female and
male , calculated using percentage

units of measure (appearing as
column headers).

Question: within the population that did
not belong to a visible minority

group , what was the percentage of
canadian -born women aged 15 to 24 in
a low -income situation?

The answer is:
[/INST]

22391


