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Abstract

Data contamination poses a significant chal-
lenge to the fairness of LLM evaluations in nat-
ural language processing tasks by inadvertently
exposing models to test data during training.
Current studies attempt to mitigate this issue
by modifying existing datasets or generating
new ones from freshly collected information.
However, these methods fall short of ensuring
contamination-resilient evaluation, as they fail
to fully eliminate pre-existing knowledge from
models or preserve the semantic complexity of
the original datasets. To address these limita-
tions, we propose CoreEval, a Contamination-
resilient Evaluation strategy for automatically
updating data with real-world knowledge. This
approach begins by extracting entity relation-
ships from the original data and leveraging the
GDELT database to retrieve relevant, up-to-
date knowledge. The retrieved knowledge is
then recontextualized and integrated with the
original data, which is refined and restructured
to ensure semantic coherence and enhanced
task relevance. Ultimately, a robust data re-
flection mechanism is employed to iteratively
verify and refine labels, ensuring consistency
between the updated and original datasets. Ex-
tensive experiments on updated datasets vali-
date the robustness of CoreEval, demonstrat-
ing its effectiveness in mitigating performance
overestimation caused by data contamination.

1 Introduction

In recent years, Large Language Models (LLMs)
have demonstrated exceptional performance across
a wide range of Natural Language Processing
(NLP) tasks (Li et al., 2024a; Ma et al., 2024).
Publicly available datasets serve as standardized
benchmarks for evaluating model performance, en-
suring consistency and reproducibility in assess-
ments. However, the static and public nature of
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Figure 1: Different workflows for mitigating data con-
tamination: (a) Data Rewriting, where LLMs modify ex-
isting data, potentially altering original labels; (b) Data
Generation, where LLMs create new data from origi-
nal data and task instructions, risking loss of semantic
complexity; and (c) Our CoreEval Framework, where
LLMs integrate external knowledge with original data
for robust, semantically coherent, and label-consistent
updates.

these datasets poses a significant challenge: data
contamination, where test data may inadvertently
appear in the training sets of newer LLMs. This
contamination can artificially inflate model perfor-
mance, compromising the reliability of LLM eval-
uations (Banerjee et al., 2024; Li et al., 2024c).

To mitigate data contamination, curating new
datasets has become a widely adopted approach.
Recently, researchers have explored automated
dataset construction methods to reduce the time
and labor costs associated with manual curation
(Ying et al., 2024). These approaches using LLMs
can be broadly categorized into two types: data
rewriting, which modifies existing data while pre-
serving its original structure, and data generation,
which leverages newly collected data to create task-
specific datasets (Li et al., 2024b; Wu et al., 2024).
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Despite their widespread adoption, these meth-
ods have significant limitations. As illustrated in
Figure 1 (a), data rewriting employs prompt-based
instructions to guide LLMs in modifying existing
data. While this approach is straightforward, it
often risks generating data with labels that devi-
ate from the original annotations. Additionally,
the rewriting process may inadvertently introduce
contaminated data, as models could rely on pre-
existing information from their training corpus. On
the other hand, data generation, which directly
produces new datasets based on data and task intro-
duction, shown in Figure 1 (b), fails to preserve the
semantic richness and complexity of the original
dataset, leading to information loss. These limi-
tations undermine the reliability and effectiveness
of existing approaches for contamination-resilient
evaluation.

Therefore, this paper introduces CoreEval, a
framework designed to mitigate data contamination
and enable reliable, up-to-date LLM evaluation. As
illustrated in Figure 1, CoreEval goes beyond sim-
ple data rewriting and generation. Instead, it sys-
tematically integrates newly acquired knowledge,
preserving data quality, enhancing robustness, and
maintaining semantic richness while ensuring align-
ment with task objectives. Specifically, CoreEval
first extracts entity relationships from the original
data and utilizes the Global Database of Events,
Language, and Tone (GDELT) Project to retrieve
up-to-date, real-world knowledge. This knowledge
is then recontextualized with original data to refine
and restructure the dataset, ensuring semantic co-
herence and alignment with task objectives. Finally,
a rigorous data reflection mechanism enforces la-
bel consistency and preserves dataset integrity. We
systematically evaluate CoreEval on multiple NLP
datasets across different LLMs. Extensive experi-
ments on these updated datasets validate the stabil-
ity of our framework, demonstrating that CoreEval
not only upholds high data quality but also effec-
tively mitigates performance overestimation caused
by data contamination. The contributions of this
paper can be summarized as follows:

• We propose CoreEval, an automatic
contamination-resilient evaluation strategy
that integrates real-world knowledge to
update datasets.

• We design a structured workflow inspired by
cognitive learning theory to ensure reliable
and timely LLM evaluation.

• Extensive experiments across multiple tasks
and a series of LLMs demonstrate the effec-
tiveness of CoreEval in mitigating data con-
tamination.

2 Related Works

2.1 Data Contamination

Many datasets are widely used to evaluate models
in NLP tasks like sentiment analysis (Saif et al.,
2013; Rogers et al., 2018), stance detection (Li
et al., 2021; Glandt et al., 2021), and emotion classi-
fication (Chen et al., 2017). With LLMs, it is often
assumed that a more advanced base model yields
superior performance (Pathak and Rana, 2024).
However, despite their critical role in benchmark-
ing, the lack of transparency regarding the training
data of these models makes it challenging for re-
searchers to verify whether a given model has been
contaminated by specific datasets.

Recent studies have explored data contamination
in the evaluation of LLM. Aiyappa et al. (2023)
analyzed ChatGPT’s stance detection, highlight-
ing risks associated with its closed nature and up-
dates. Li et al. (2024c) reported contamination
rates from 1% to 45% across six Question Answer-
ing (QA) benchmarks. To tackle these challenges,
researchers have explored methods for detecting
contamination, revealing the limitations of string-
matching techniques like n-gram overlap (Yang
et al., 2023; Jiang et al., 2024a; Ippolito et al.,
2023). Simple test variations, such as paraphrasing,
can bypass these methods, allowing even a 13B
model to overfit benchmarks and perform compa-
rably to GPT-4. Dekoninck et al. (2024a) further
emphasized these issues with the introduction of
Evasive Augmentation Learning (EAL).

2.2 Contamination-Resilient Method

To achieve contamination-resilient evaluation, up-
dating datasets by collecting new data is an intuitive
solution. However, due to the time-consuming and
labor-intensive nature of this process, automatic
update methods have emerged (Wu et al., 2024).
These methods primarily fall into two categories:
data rewriting and data generation.

Data rewriting modifies existing data to gener-
ate updated versions. Ying et al. (2024) proposed
two strategies: mimicking, which preserves style
and context, ensuring consistency, and extending,
which introduces varied difficulty to broaden the
dataset’s cognitive scope. Data generation relies on

22285



Figure 2: Overall flow of our CoreEval framework.

newly collected data to build task-specific datasets.
LatestEval (Li et al., 2024b) ensures integrity by
using texts from recent sources, avoiding overlaps
with pre-trained corpora. Similarly, LiveBench
(White et al., 2024) creates novel datasets by ex-
tracting challenges from up-to-date sources like
math competitions, arXiv papers, news articles,
and transforming them into more challenging,
contamination-free versions. Despite their innova-
tions, these methods have limitations. Data rewrit-
ing may produce inconsistent labels and introduce
contamination from model biases, while data gen-
eration often fails to fully capture the semantic
depth of the original dataset, leading to information
loss. These challenges reduce the reliability and
practicality of datasets for contamination-resilient
evaluations. Unlike these studies, CoreEval com-
bines structured knowledge retrieval, semantic re-
contextualization, and iterative label verification to
ensure dataset quality and robustness. By utiliz-
ing real-world updates and a reflection mechanism,
CoreEval mitigates contamination while preserving
semantic complexity.

3 CoreEval Framework

3.1 Preliminary

In this section, we introduce our novel CoreEval
framework, inspired by Bruner’s cognitive theory,
for constructing contamination-resilient datasets
that integrate real-world knowledge. Building upon
Bruner’s cognitive learning theory (Bruner, 2009),

we assert that the essence of learning lies in the
active formation of cognitive structures rather than
the passive absorption of information. Learners
actively construct their own knowledge systems
by synthesizing newly acquired knowledge with
their existing cognitive frameworks. Learning is
conceptualized as involving three nearly simulta-
neous processes: the acquisition of information,
the transformation of information, and its subse-
quent evaluation. As shown in Figure 2, we or-
ganize these processes into three components to
better align with LLM evaluation. 1) Real-World
Knowledge Attainment corresponds to informa-
tion acquisition, collecting real-time knowledge
from the GDELT database. 2) Knowledge Re-
contextualization component handles information
transformation, updating the dataset by incorporat-
ing new knowledge. 3) Data Reflection component
addresses the evaluation process by refining and
assessing the data. This structure ensures that all
learning processes are effectively integrated into a
cohesive framework.

3.2 Real-World Knowledge Attainment

To incorporate real-world knowledge, we leverage
GDELT (Leetaru and Schrodt, 2013), a compre-
hensive CAMEO-coded database containing over
200 million geolocated events spanning global cov-
erage from 1979 to the present. Given a dataset
D = {(d1, y1), (d2, y2), ..., (dn, yn)} consisting
of n samples, where each sample di is paired
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with a corresponding label yi from the label set
Y = {y1, y2, ..., yn}. The knowledge extraction
process begins by identifying relevant entities from
the data using LLMM, where the input di acts as
information cues for entity extraction.

Ei ←M(di) (1)

where Ei = {ei,1, ei,2, ..., ei,ji} and ji represents
the set and number of entities extracted from di.
These extracted entities form the foundation for
subsequent knowledge retrieval. To efficiently
query large-scale data, we utilize Google Big-
Query1 and the GDELT. BigQuery enables fast,
scalable processing of vast datasets like GDELT,
while the API facilitates seamless real-time data
retrieval. A list of extracted entities is used to query
GDELT databases G for data points within a spe-
cific time period to retrieve the most relevant and
up-to-date knowledge. Then we employ LLM to
summarize the knowledge to obtain. The overall
retrieval process can be formalized as:

Ki ← G(Ei, tstart, tend)

K̂i ←M(Ki)
(2)

where Ki indicates the knowledge retrieved from
the GDELT database. K̂i represents the knowledge
after being summarized by the LLM. tstart and tend
represent the start and end times for the query2.

3.3 Knowledge Recontextualization
The knowledge recontextualization phase involves
integrating new knowledge with existing cognitive
structures, transforming it into a form suited for
new tasks. During this phase, learners process and
reorganize newly acquired knowledge to enhance
both understanding and application. We begin by
extracting relational triples from the original sen-
tence di. These relational triples are represented
as Ti = {⟨ei,j , ri,j , e′i,j⟩ | j = 1, 2, ..., li}, where
ei,j and e

′
i,j are entities, and ri,j denotes the rela-

tion between them. li is the number of relational
triples extracted from di. Next, using new knowl-
edge K̂i and an LLMM, we update the original
triples Ti by generating replacement triples T̂i. The
updated sentence dui is then derived by substituting
the original triples with T̂i, as shown by:

T̂i ←M(Ti, K̂i)

dui ← f(di, T̂i)
(3)

1https://cloud.google.com/bigquery
2We chose the release date of the latest open-source model

as the starting point for retrieval to prevent overlap with the
model’s training data.

where f is the replacement operation.
Furthermore, semantic rewriting is performed

while preserving the Ti, resulting in:

dsi ←M(di, Ti) (4)

We leverage the semantic style of dsi combined with
the label yi to construct a semantic dataset Ds.

The updated text d̂i adopts the semantic style of
dsi , preserving its linguistic characteristics while
incorporating the triples of T̂i. Additionally, to
maintain classification coherence, the label of d̂i is
kept consistent with that of the original sentence di.
Formally, this process is represented as:

d̂i ←M(di, d
u
i , T̂i, d

s
i ) (5)

The updated dataset D̂ is then formed by com-
bining d̂i with the corresponding label. This pro-
cess ensures the systematic integration of new
knowledge while maintaining the coherence and
adaptability of the transformed content.

3.4 Data Reflection

To evaluate the quality of the generated text, we
design an agent to reflect and perform evaluations.
This evaluation process employs prompting (Wei
et al., 2022) to facilitate step-by-step reasoning.
The assessment focuses on two key criteria:

Incorrect Information: Evaluating whether the
generated text accurately reflects the facts derived
from the provided knowledge. Any discrepancies
or inconsistencies are flagged for re-generation.

Label Alignment: Measuring the degree of
alignment between the generated text and the corre-
sponding ground truth label, ensuring consistency
and relevance to the intended output.

The prompting allows the agent to iteratively
reflect on these criteria, providing a rationale for
its evaluation. Based on this reflection, the agent
determines whether the text required to be regen-
erated to improve accuracy or alignment. Detailed
prompts can be found in Appendix A.1.

3.5 Apply to Existing Datasets

We selected five representative Natural Language
Understanding (NLU) tasks from the TweetEval
Benchmark (Barbieri et al., 2020) and GLUE
Benchmark (Wang, 2018), including Emotion
Recognition (Mohammad et al., 2018), Irony De-
tection (Van Hee et al., 2018), Stance Detec-
tion (Mohammad et al., 2016), Microsoft Research
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Paraphrase Corpus (MRPC) (Dolan and Brock-
ett, 2005), and Recognizing Textual Entailment
(RTE) (Wang, 2018), to apply our method for auto-
matic updating and evaluation. Table 1 presents the
statistical characteristics of these datasets. Notably,
for the MRPC and RTE datasets, we refine the
provided sentence pairs during the data reflection
phase and ensure the supervision of label accuracy
for improved consistency and correctness.

Dataset Train Test Label Space

Emotion 3,257 1,421 joy, optimism, sadness, anger
Irony 2,862 784 irony, not irony
Stance 2,620 1,249 favor, against, neutral
MRPC 4,076 1,587 equivalent, not equivalent
RTE 2,490 277 entailment, not entailment

Table 1: Statistical overview of the five datasets, de-
tailing training and test set sizes along with their corre-
sponding task labels.

3.6 Human Verification on Data Quality

To ensure the reliability of our proposed strategy,
we conduct a comprehensive human evaluation
with five experienced computational linguistics re-
searchers. All evaluators underwent prior training
to ensure consistency in their assessments. The
evaluators analyze 50 randomly selected samples
based on four key criteria: Fluency, Coherence,
Factuality, and Accuracy. Following the approach
of Ying et al. (2024), Fluency and Coherence are
rated on a 3-point scale: 2 (Good), 1 (Acceptable),
and 0 (Unsatisfactory). Factuality and Accuracy
are rated as 1 (Yes) or 0 (No). Detailed evaluation
guidelines can be found in Appendix D.

To assess inter-annotator agreement, we use
Fleiss’ Kappa Statistic (Fleiss, 1971). As shown in
Table 2, the results demonstrates that our method
generates high-quality data through proper demon-
stration and structured workflow. Moreover, the
values of κ falling within the range 0.70 < κ < 0.85
indicate substantial agreement among annotators.

Dataset Fluency Coherence Factuality Accuracy κ

Emotion 2.99 2.55 0.98 0.94 0.73
Irony 2.97 2.74 0.99 0.97 0.78
Stance 2.99 2.56 0.98 0.96 0.73
MRPC 2.98 2.92 0.98 0.96 0.86
RTE 2.99 2.86 0.96 0.96 0.80

Table 2: The statistics of the updated datasets are pre-
sented. κ denotes Fleiss’ Kappa (Fleiss, 1971).

4 Experiment

This section first presents the experimental setups,
including model configurations and metrics. We
then address the following questions to assess the
effectiveness of our CoreEval: Q1: How does
LLM performance change across different tasks
after data updates? Q2: Does CoreEval outperform
existing methods in resisting data contamination?
Q3: How does the dataset perform under different
contamination proportions and types?

4.1 Experiment Setup
Large Language Models. For our experimental
investigation, we curated a diverse set of language
models comprising eight widely-adopted open-
source LLMs: Llama3-8B (Dubey et al., 2024),
Llama2-13B (Touvron et al., 2023), Ministral-
8B (MistralAI, 2024b), Mistral-NeMo-12B (Mis-
tralAI, 2024a) (abbreviated as Mistral-12B), Yi1.5-
6B (Young et al., 2024), Yi1.5-9B (Young et al.,
2024), Qwen2.5-7B (Qwen, 2024), and Qwen2.5-
14B (Qwen, 2024)3. The experimental evaluation
also included three prominent proprietary LLMs:
ChatGPT, Gemini1.5, and Claude3.54.

Evaluation Metrics. Inspired by Opitz (2024),
we adopted the macro F1-score as the unified eval-
uation metric across all tasks to ensure consistency
in performance assessment. Following Ying et al.
(2024), we evaluate the model’s performance P
using the macro F1-score and subsequently em-
ploy performance gain as a metric to assess its
resilience to data contamination. This metric quan-
tifies the improvement from test set fine-tuning,
with a smaller boost indicating greater resistance
to contamination. In the contamination test experi-
ment, we implement two simulation settings. The
first involves training solely on the test set and mea-
suring the performance gain δ1 = Ptest − Pzero

against zero-shot performance where Ptest denotes
performance after fine-tuning on the test set only,
and Pzero represents the zero-shot performance.
The second setting incorporates both training and
test sets, comparing the performance gain δ2 =
Ptrain+test−Ptrain. where Ptrain indicates perfor-
mance after fine-tuning on the training set alone,
and Ptrain+test represents performance after fine-
tuning with both training and test sets. Detailed

3For all aforementioned open-source models, we utilized
instruction-tuned versions of the model weights.

4In our experiments, we utilized the following model ver-
sions: gpt-3.5-turbo-0125 for ChatGPT, gemini-1.5-flash for
Gemini1.5, and claude-3-5-haiku-20241022 for Claude3.5.
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information about metric δ can be found in Ap-
pendix B.

4.2 Performance Test (Q1)
We first evaluate the zero-shot performance of
LLMs on both the original and our updated datasets,
using zero-shot evaluation as a standard configu-
ration for assessing LLMs capabilities. We ana-
lyze how LLMs performance varies across different
tasks after data updates. Refer to Appendix C.1 for
the inference configurations. To mitigate prompt
bias, we average results across multiple prompt
templates, with detailed prompts provided in Ap-
pendix A.2.

The experimental results, illustrated in Figure 3,
reveal the following: 1) While proprietary models
generally outperform most open-source models,
the Qwen2.5 series achieves comparable or even
superior performance among open-source mod-
els. 2) Emotion recognition and stance detec-
tion tasks substantially decline in performance
on our updated dataset relative to the original
one. This decline can be attributed to two factors.
First, these tasks may already be contaminated in
existing LLMs, leading to decreased performance
on our updated dataset, which aligns with prior
studies (Aiyappa et al., 2023; Sainz et al., 2024).
Second, emotion and stance tasks inherently in-
volve more subjective interpretations and contex-
tual nuances, requiring an understanding of com-
plex, evolving social and cultural contexts. The in-
jection of new knowledge can alter textual patterns,
including time-dependent emotional and stance ex-
pressions, thereby affecting LLM judgments. This
underscores the importance of timely LLM itera-
tions. 3) Proprietary models exhibit a more sig-
nificant performance drop of 5.42%, compared to
3.62% for open-source models, suggesting that pro-
prietary models may suffer from more severe
data contamination. The lack of transparency in
their training data and model parameters makes
detecting and mitigating data contamination in pro-
prietary systems a critical challenge.

4.3 Contamination Test (Q2)
To assess the effectiveness of our method in miti-
gating the overestimation problem caused by data
contamination, we follow prior studies (Zhou et al.,
2023; Ying et al., 2024) and simulate data contam-
ination scenarios. Specifically, we introduce test
prompts and the test set with ground truth labels,
during the training phase to simulate data contami-

nation conditions, enabling a rigorous assessment
of our approach’s resistance to data leakage.

We conduct contamination simulations on eight
open-source models, comparing results across three
types of datasets: the original dataset D, seman-
tic dataset Ds, and our updated dataset D̂. De-
tailed training configurations are provided in Ap-
pendix C.2. The results are presented in Table 3,
where δ1 captures both the model’s ability to im-
prove task comprehension and its potential to mem-
orize test set information due to contamination. In
contrast, δ2 isolates the effect of training data, mak-
ing it a more reliable indicator of contamination by
attributing performance gains solely to test set ex-
posure. This distinction ensures that δ2 provides a
precise measure of an LLM’s resistance to data con-
tamination. Our observations reveal several critical
trends regarding data contamination in LLMs:

Performance overestimation intensifies with
increasing model size in contaminated settings.
For instance, in our simulation using the orig-
inal dataset, Qwen2.5-7B shows δ1 and δ2 val-
ues of 12.01 and 4.74, respectively, whereas the
larger Qwen2.5-14B model exhibits higher values
of 17.45 and 7.19. This trend is consistent across
different model series. However, when tested on
our updated dataset, these parameter-scale-induced
discrepancies are significantly reduced.

Cognitively complex tasks are more sensitive
to data contamination. Tasks such as irony detec-
tion, stance detection, and RTE, consistently yield
higher δ values, suggesting a positive correlation
between task cognitive complexity contamination
sensitivity. These cognitively demanding tasks may
prompt models to rely more on shortcuts like mem-
orization, making them more vulnerable to data
contamination compared to simpler tasks like emo-
tion recognition and MPRC.

Our real-world knowledge integration
method significantly improves contamination
mitigation. While simple data rewriting techniques
provide some resistance to data contamination,
our method, incorporating real-world real-time
knowledge, demonstrates superior performance
mitigating overestimation and counteracting the
effects of contamination. Notably, it outperforms
conventional approaches such as semt, highlighting
the importance of dynamic knowledge updates in
ensuring model robustness.
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Figure 3: Performance (%) of the eleven involved LLMs (zero-shot) on the original and our updated datasets. We
employ various prompt templates and use their average as the final result. Refer to Appendix C.3 for further details.

Figure 4: Data contamination resistance (%) of eight open-source models under different data proportions (20%,
40%, 60%, 80%, 100%). The first row shows δ1 values for the test set-only scenario across the original dataset,
semantic dataset, and our updated dataset. The second row presents δ2 values for the train and test set scenario. The
results are the mean values calculated across all eight open-source models.

4.4 Impact of Contamination Proportion (Q3)

In this section, we examine how varying data pro-
portions influence the effects of data contamination.
For the ‘test set only’ simulated scenario, we sam-
ple different proportions of the test set to compute
δ1 and analyze how varying ratios of the test data
contamination impact performance overestimation.
For the ‘training set and test set’ simulated sce-
nario, we vary the proportion of the training set
and compute δ2 by incorporating it with the test
set. All training configurations remain consistent
with those detailed in Section 4.3. The results are
visualized in Figure 4.

δ1 exhibits an upward trend, reflecting in-
creasing performance overestimation as more
test set data is exposed. This is expected, as
greater test set contamination amplifies the model’s
memorization effect, artificially inflating perfor-
mance.
δ2 demonstrates a downward trend, aligning

with the explanation in Section 4.3. This met-
ric isolates and quantifies performance improve-
ments resulting from test set contamination, inde-

pendent of enhanced task understanding. When
incorporating the training set during the training
process, models develop task understanding pri-
marily through training data rather than test data.
Therefore, as the proportion of the training set in-
creases, δ2 effectively filters out the performance
gains attributed to task understanding from test
data, leading to a more precise measurement of
performance overestimation due to contamination
by the test data.

Our updated dataset demonstrates stronger
resistance to data contamination across both sce-
narios, significantly reducing performance overes-
timation regardless of task complexity or the ratio
between test and training sets. Further analysis of
the mean and variance of δ1 and δ2 across differ-
ent proportions for the original, semantic, and our
datasets (outlined in Appendix C.4) reveals that our
CoreEval provides more stable metrics across vari-
ous data proportions compared to both the original
and semantic datasets. These findings underscore
the critical role of incorporating real-world and
real-time knowledge into dataset design to enhance
model robustness against data contamination.
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Emotion Irony Stance MRPC RTE AVG
δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓

Llama3-8B
orig 9.37 4.47 30.09 7.07 23.41 6.80 10.98 7.05 20.88 8.79 18.95 6.84
semt 4.86 1.34 9.66 3.05 20.00 3.14 6.37 2.78 12.20 0.12 10.62 2.09
ours 3.27 1.33 2.00 1.89 11.66 2.57 0.75 0.53 4.21 0.13 4.38 1.29

Llama2-13B
orig 11.83 4.55 52.46 7.97 38.26 6.98 26.98 6.83 26.24 9.02 31.16 7.07
semt 7.69 1.60 23.15 2.42 32.70 3.26 18.44 2.50 22.63 2.15 20.92 2.38
ours 7.41 0.57 18.23 1.12 24.50 2.56 10.09 -0.31 21.12 1.10 16.27 1.01

Ministral-8B
orig 12.65 6.85 39.66 7.58 30.80 8.51 25.64 8.91 17.08 6.64 25.17 7.70
semt 6.77 1.58 10.53 1.98 28.47 3.38 11.94 2.84 6.50 -0.72 12.84 1.81
ours 4.41 0.15 2.54 0.58 20.97 2.36 3.86 0.32 4.03 -1.46 7.16 0.39

Mistral-12B
orig 17.41 7.59 40.43 10.59 34.69 9.35 26.51 9.30 13.43 7.49 26.50 8.86
semt 10.83 1.44 8.46 4.27 30.49 3.69 10.54 2.28 2.74 0.11 12.61 2.36
ours 7.64 1.54 2.92 3.40 23.35 3.19 0.61 0.43 1.45 -0.62 7.19 1.59

Yi1.5-6B
orig 11.42 4.65 39.78 8.45 31.75 8.64 14.96 7.71 19.64 8.80 23.51 7.69
semt 4.76 0.60 20.47 2.62 24.70 2.46 6.92 1.39 11.16 0.36 13.60 1.49
ours 3.50 0.84 16.35 0.75 18.79 2.45 -1.00 0.21 6.76 1.69 8.88 1.19

Yi1.5-9B
orig 15.03 9.04 44.34 14.13 33.67 11.60 23.87 10.41 9.21 8.08 25.22 10.65
semt 6.17 1.94 12.86 2.31 25.50 3.79 6.48 1.89 2.53 1.71 10.71 2.33
ours 4.50 0.51 7.59 0.55 19.66 2.00 -3.50 0.27 0.45 -0.37 5.74 0.59

Qwen2.5-7B
orig 6.65 3.44 19.77 4.86 18.51 5.24 8.06 4.16 7.08 6.03 12.01 4.74
semt 4.93 1.06 10.37 2.77 18.06 2.87 3.21 2.32 1.74 0.72 7.66 1.95
ours 4.72 0.61 6.82 2.31 15.25 2.32 0.04 -0.39 2.31 1.08 5.83 1.19

Qwen2.5-14B
orig 11.53 5.71 27.75 9.78 20.83 8.10 19.95 6.94 7.21 5.43 17.45 7.19
semt 5.79 1.46 1.46 2.76 17.03 2.87 5.49 1.42 0.52 0.12 6.06 1.72
ours 4.57 0.99 -3.57 0.93 13.98 1.20 -4.73 0.37 4.38 0.00 2.93 0.70

Table 3: Data contamination resistance (%) of eight open-source models across simulated scenarios. orig denotes
using original dataset, semt denotes using semantic dataset, which involves restating the text while preserving its
original meaning, and ours denotes using our updated dataset. Following Section 4.2, we use multiple prompt
templates to mitigate prompt biases, reporting averaged performance. Best performances are in bold.

Emotion Irony Stance MRPC RTE AVG
δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓

Llama3-8B -0.32 -0.01 -0.13 0.12 0.03 -0.06 0.22 0.05 -9.20 -4.77 -1.88 -0.93
Llama2-13B 0.23 0.05 0.28 0.83 0.00 0.05 0.24 0.15 -4.57 -3.72 -0.76 -0.53
Ministral-8B -0.15 -0.14 -0.14 0.56 0.12 0.18 1.52 -0.06 -15.14 -10.61 -2.76 -2.01
Mistral-12B 0.18 0.09 0.08 -0.52 -0.02 0.40 0.36 0.22 -0.21 0.96 0.08 0.23
Yi1.5-6B -0.48 0.40 0.30 0.45 0.03 0.23 -0.07 -0.21 -3.29 4.28 -0.70 1.03
Yi1.5-9B 0.02 0.29 -0.20 0.73 -0.29 -0.25 -0.03 0.23 -3.77 -4.08 -0.85 -0.62
Qwen2.5-7B 0.03 0.25 0.04 0.25 0.23 -0.11 0.24 0.25 -2.28 -3.82 -0.35 -0.64
Qwen2.5-14B -0.06 0.10 -0.05 -0.09 -0.17 -0.19 0.30 0.15 -1.40 -2.71 -0.28 -0.55

Table 4: Data contamination resistance performance (%) of eight open-source models on original datasets under
text-only contamination scenarios.

4.5 Impact of Contamination Types (Q3)

In this section, we further extend our investigation
by implementing a text-only contamination test,
drawing upon the methodologies proposed by Li
et al. (2024c) and Jiang et al. (2024b). Diverging
from previous simulation scenarios that involved
the exposure of both test labels and texts during the
training phase, this specific experimental setup ex-
clusively leaks the textual content of the evaluation
samples. Detailed training configurations are elab-
orated in Appendix C.2, and the comprehensive
results are presented in Table 4.

The experimental findings indicate that the δ1

and δ2 values, when measured on the original
datasets under these text-only contamination con-
ditions, are predominantly negative across eight
distinct open-source models. This observation sug-
gests that text-only contamination, without label
leakage, does not contribute to performance over-
estimation, consistent with the prior research by Li
et al. (2024c). Conversely, the substantial perfor-
mance improvements observed in Table 3, where
test sets including ground truth labels and test
prompts are contaminated, highlight the critical
need for targeted mitigation strategies to address
this type of data contamination.
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5 Conclusion

In this paper, we introduce CoreEval, an automatic
contamination-resilient evaluation framework in-
corporating real-time real-world knowledge. We
further propose a structured workflow engineered
to guarantee the timeliness and reliability of LLM
evaluations. Extensive experiments across various
NLP tasks demonstrate CoreEval’s robust effective-
ness in mitigating data contamination. CoreEval
is developed to be broadly applicable across NLP
tasks, delivering efficient contamination-resilient
evaluation while ensuring high data quality with
minimal human intervention, thus facilitating fairer
and more timely LLM assessment.
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Limitations

Our proposed CoreEval framework updates text
based on up-to-date and real-world knowledge. Al-
though we have implemented data reflection and
iteration processes to minimize inaccuracies, there
is a possibility of generating a minimal amount of
hallucinated data. Given our manual evaluation
scores for the quality of updated data, the impact of
such minimal hallucinated data on the evaluation
of LLMs for most NLP tasks is negligible. Fur-
thermore, in this study, CoreEval is applied only
to classification tasks. In the future, we plan to
extend its application to more complex tasks such
as question answering and summarization.
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open-access datasets, ensuring compliance with
data accessibility standards. We have taken mea-
sures to remove any information related to user
privacy from these datasets to protect individual
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world knowledge required for updates is sourced

from GDELT. While updating the data, there is
a possibility of introducing references to relevant
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A Various Prompt Templates

A.1 Prompt of CoreEval Framework

Figure 5 presents the prompts in the process of
Real-World Knowledge Attainment. The work-
flows of Knowledge contextualization are shown
in Figure 6, Figure 7, Figure 8, Figure 9, Figure 10,
and Figure 11. Ultimately, Figure 12 and Figure 13
demonstrate the prompts of data reflection.

A.2 Prompt of Contamination Test

To address potential result bias stemming from task
sensitivity to prompts, we employed three prompt
templates for each task. The performance metrics
were then averaged across these prompt variations
to obtain the final results. The comprehensive set
of prompt templates utilized for all five tasks is
detailed in Table 5, 6, 7, 8, and 9, which present
the complete prompt formulations for each task-
specific evaluation.

B Data Contamination Resistance
Indicators

Data contamination, which refers to the inflated
performance of a model on a specific dataset or
benchmark due to the leakage of test data, can dis-
tort the true evaluation and assessment of a LLM’s
capabilities. (Zhou et al., 2023; Dekoninck et al.,
2024b) Therefore, mitigating the overestimation of
performance caused by data contamination is key
to addressing this issue. The degree of spurious
performance growth following data contamination
becomes the primary metric for evaluating data
contamination mitigation efforts.

However, precisely determining whether a
model has been contaminated by certain datasets
remains challenging in practice. Previous studies
have simulated data contamination by directly train-
ing models on test sets of specific datasets (Ying
et al., 2024; Li et al., 2024c; Jiang et al., 2024b;
Zhou et al., 2023). The mitigation effectiveness is
then quantified by measuring the performance gap
between the contaminated model before and after
data updates. In our work, we similarly introduce
δ1, which measures the performance difference be-
tween the model’s evaluation results after training
solely on the test set and its zero-shot performance
(i.e., performance without any training) as one of
the indicators for evaluating data contamination
mitigation.

Furthermore, we argue that the performance im-
provements of LLMs directly exposed to test set
data may stem from two sources: enhanced task un-
derstanding through exposure to task-specific data,
and direct memorization effects from test set con-
tamination. To isolate the latter effect, we propose
δ2, which compares the performance difference be-
tween models trained on both train and test sets
versus those trained exclusively on the train set. δ2
effectively eliminates the task-understanding gains
from the train set while capturing the additional
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benefits derived from test set inclusion in training
(i.e., the primary impact of data contamination),
thereby providing a more accurate reflection of
data contamination’s contribution to model perfor-
mance.

The substantial difference between these two in-
dicators, as demonstrated in Table 3, effectively
validates this observation. Moreover, the declining
trend of δ2 with increasing train set proportions, as
illustrated in Figure 4, confirms that this indicator
successfully isolates the impact of data contamina-
tion by removing the contribution of improved task
understanding.

C Experimant Detail

C.1 Inference Configuration in Performance
Test

For proprietary models, we set the temperature to
1.0, top-p to 1.0, max tokens to 1024, and fixed the
seed to ensure experimental reproducibility. For
open-source models, we load model weights in
bf16 format, set the temperature to 1.0, top-p to
1.0, max tokens to 512, and apply greedy decoding
to guarantee reproducibility.

C.2 Training Configuration in Contamination
Test

Due to computational resource constraints, we ap-
plied LoRA fine-tuning (Hu et al., 2021) to eight
open-source models. The LoRA hyperparameters
were configured with a rank of 16, alpha of 32,
dropout of 0.1, learning rate of 1e-4, and 3 epochs.
For the RTE task, we set the training batch size to
2 and maximum sequence length to 512. For all
other tasks, the maximum sequence length was set
to 400, while the training batch size was adjusted
according to model size. Specifically, Llama3-
8B, Qwen2.5-7B, Mistral-8B, and Yi1.5-6B were
trained with a batch size of 8; Yi1.5-9B, Llama2-
13B, and Mistral-12B with a batch size of 3; and
Qwen2.5-14B with a batch size of 2. For text-only
contamination simulated scenarios, we configured
the LoRA hyperparameters with a rank of 16, al-
pha of 32, dropout of 0.1, training batch size of 1,
maximum sequence length of 1024, and 3 epochs.
The learning rate was set to 1e-3 for the RTE task
and 1e-5 for other tasks.

During inference, we employed a greedy de-
coding strategy by setting do_sample to False
and num_sample to 1, thereby ensuring the repro-
ducibility of our experimental results.

C.3 Experimental Result of Performance Test
We employed a greedy decoding strategy by setting
do_sample to False and num_sample to 1, thereby
ensuring the reproducibility of our experimental
results. The detailed results of the original dataset
and our updated dataset are presented in Table 10.

C.4 Experimental Result of Data Proportion
Analysis

Table 11 presents the detailed experimental results
of our data proportion analysis, encompassing the
performance of eight open-source models across
five tasks. The evaluation was conducted using
varying proportions (20%, 40%, 60%, 80%, and
100%) of both test and training sets, along with the
average performance across all five tasks.

Table 12 illustrates the standard deviations in
data contamination resistance performance under
varying data proportions for three datasets: the orig-
inal, semantic, and our proposed updated dataset.
The analysis reveals that our updated dataset con-
sistently achieves lower variance compared to its
counterparts. This reduced variability substanti-
ates that our dataset yields more stable and robust
evaluation metrics across different degrees of data
contamination.

D Guideline of Human Evaluation

Table 13 outlines the guidelines for human evalu-
ation. Before presenting annotators with the final
evaluation materials, we conduct a training session,
providing them with this form and comprehensive
instructions. This helps ensure they fully grasp the
evaluation process, the significance of each metric,
and the corresponding scoring standards.

22295



Figure 5: Prompt in Real-World Knowledge Attainment

Figure 6: Prompt of triples generation and updating.
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Figure 7: Prompt of semantic rewriting for emotion recognition, irony detection, and stance detection tasks.
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Figure 8: Prompt of semantic rewriting for MRPC and RTE tasks.
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Figure 9: Prompt of updated sentence for emotion recognition, irony detection, and stance detection tasks.

22299



Figure 10: Prompt of semantic rewriting for MRPC task.
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Figure 11: Prompt of semantic rewriting for RTE task.

Figure 12: Prompt in Incorrect Information of Data Reflection
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Figure 13: Prompt in Label Alignment of Data Reflection

Variant Emotion Recognition Prompt

Prompt #1 Emotion detection is the task of identifying the emotional tone expressed in a given text. The possible
emotions include joy, anger, sadness, and optimism.
**The answer must be one and only one from the options: "joy", "anger", "sadness", and "optimism".
No other responses are acceptable.**
If none of the options seem to apply, select the one that is closest to the emotional tone of the text.

text: {text}
Question: What is the primary emotion expressed in the text? Please select and only select the correct
answer from "joy", "anger", "sadness", and "optimism". The response must strictly adhere to the
following JSON FORMAT:
{
"emotion": "joy" | "anger" | "sadness" | "optimism"
}

Prompt #2 Analyze the emotional tone of the following text. The emotions to choose from are joy, anger, sadness,
and optimism.
text: {text}
Provide the detected emotion in JSON FORMAT:
{
"emotion": "joy" | "anger" | "sadness" | "optimism"
}

Prompt #3 Emotion detection is the task of identifying the emotional tone expressed in a given text. The possible
emotions include joy, anger, sadness, and optimism.
**The answer must be one and only one from the options: "joy", "anger", "sadness", and "optimism".
No other responses are acceptable.**
If none of the options seem to apply, select the one that is closest to the emotional tone of the text.

text: {text}
Question: What is the primary emotion expressed in the text? Please select and only select the correct
answer from "joy", "anger", "sadness", and "optimism".

Table 5: Prompt templates for Emotion Recognition task.
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Variant Irony Detection Prompt

Prompt #1 Irony detection is the task of identifying whether a given text contains irony. Irony is when the literal
meaning of the text is opposite or significantly different from the intended meaning, often used to
convey criticism, sarcasm, or humor. The possible labels are "irony" and "not irony".
text: {text}
Question: Does the text contain irony? Irony can be characterized by:
- A contrast between what is said and what is meant (verbal irony).
- A situation where the expected outcome is different from the actual result (situational irony).
- Exaggeration or sarcasm used to convey a hidden message or criticism.
Please select the correct answer from "irony" and "not irony".
Answer this question with JSON FORMAT:
{
"irony detection": "irony" | "not irony"
}

Prompt #2 Analyze the following text to determine whether it contains irony. Irony is when there is a discrepancy
between what is said and what is meant, or when the outcome of a situation is unexpected or opposite
to what was anticipated. The labels to choose from are "irony" and "not irony".
text: {text}
Please provide your answer in JSON FORMAT:
{
"irony detection": "irony" | "not irony"
}

Prompt #3 Irony detection is the task of identifying whether a given text contains irony. Irony often involves:
- Saying one thing while meaning another (verbal irony).
- A situation where the outcome is surprising or opposite to what was expected (situational irony).
- Sarcasm or exaggerated statements to make a point or criticism.
text: {text}
Question: Does the text contain irony? Please select the correct answer from "irony" and "not irony".

Table 6: Prompt templates for Irony Detection task.

Variant Stance Detection Prompt

Prompt #1 Stance detection is to determine the attitude or tendency towards a certain target through a given
sentence, including favor, against and neutral.
text: {text}
Question: What is the attitude of the text toward "{target}"? Please select the correct answer from
"favor", "against" and "neutral".
Answer this question with JSON FORMAT:
{
"stance": "favor" | "against" | "neutral"
}

Prompt #2 Given a text, determine the sentiment towards the specified target: {target}. Possible answers are
"favor", "against", or "neutral".
text: {text}
Please provide your answer in JSON FORMAT:
{
"stance": "favor" | "against" | "neutral"
}

Prompt #3 Stance detection is to determine the attitude or tendency towards a certain target through a given
sentence, including favor, against and neutral.
text: {text}
Question: What is the attitude of the text toward "{target}"? Please select the correct answer from
"favor", "against" and "neutral".

Table 7: Prompt templates for Stance Detection task.
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Variant MRPC Prompt

Prompt #1 The task is to determine whether a given sentence pair is semantically equivalent. The possible labels
are "semantically equivalent" and "not semantically equivalent".
sentence1: {sentence1}
sentence2: {sentence2}
Question: Are the sentences semantically equivalent? Please select the correct answer from "semanti-
cally equivalent" and "not semantically equivalent".
Answer this question with JSON FORMAT:
{
"mrpc": "semantically equivalent" | "not semantically equivalent"
}

Prompt #2 Given a pair of sentences, determine whether they are semantically equivalent. The possible labels are
"semantically equivalent" and "not semantically equivalent".
sentence1: {sentence1}
sentence2: {sentence2}
Please provide your answer in JSON FORMAT:
{
"mrpc": "semantically equivalent" | "not semantically equivalent"
}

Prompt #3 The task is to determine whether a given sentence pair is semantically equivalent. The possible labels
are "semantically equivalent" and "not semantically equivalent".
sentence1: {sentence1}
sentence2: {sentence2}
Question: Are the sentences semantically equivalent? Please select the correct answer from "semanti-
cally equivalent" and "not semantically equivalent".

Table 8: Prompt templates for MRPC (Microsoft Research Paraphrase Corpus) task.

Variant RTE Prompt

Prompt #1 Recognizing Textual Entailment (RTE) is the task of determining whether a given premise entails a
hypothesis. The possible labels are "entailment" and "not entailment".
premise: {premise}
hypothesis: {hypothesis}
Question: Does the premise entail the hypothesis? Please select the correct answer from "entailment"
and "not entailment".
Answer this question with JSON FORMAT:
{
"rte": "entailment" | "not entailment"
}

Prompt #2 Given a premise and a hypothesis, determine whether the premise entails the hypothesis. The possible
labels are "entailment" and "not entailment".
premise: {premise}
hypothesis: {hypothesis}
Please provide your answer in JSON FORMAT:
{
"rte": "entailment" | "not entailment"
}

Prompt #3 Recognizing Textual Entailment (RTE) is the task of determining whether a given premise entails a
hypothesis. The possible labels are "entailment" and "not entailment".
premise: {premise}
hypothesis: {hypothesis}
Question: Does the premise entail the hypothesis? Please select the correct answer from "entailment"
and "not entailment".

Table 9: Prompt templates for RTE (Recognizing Textual Entailment) task.
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Model Emotion Irony Stance MRPC RTE AVG

Llama3-8B orig 74.91 64.02 61.34 72.47 75.98 69.74
ours 62.42 65.27 46.19 79.62 82.19 67.14

Llama2-13B orig 74.25 43.29 47.68 57.86 65.02 57.62
ours 58.06 47.24 36.41 72.06 67.20 56.19

Mistral-8B orig 76.94 56.72 56.52 64.90 82.92 67.60
ours 60.95 62.92 39.38 75.29 85.84 64.88

Mistral-12B orig 73.96 56.95 55.95 67.82 83.91 67.72
ours 57.55 63.53 39.09 78.61 85.30 64.82

Qwen2.5-7B orig 74.43 71.15 61.02 70.30 87.59 72.90
ours 60.01 67.13 44.93 84.13 83.48 67.94

Qwen2.5-14B orig 78.19 69.12 68.08 72.95 88.93 75.45
ours 60.85 70.05 46.55 83.40 83.69 68.91

Yi1.5-6B orig 75.25 54.57 51.03 70.21 79.15 66.04
ours 61.30 50.14 40.66 81.81 81.43 63.07

Yi1.5-9B orig 77.48 53.40 59.36 72.48 87.89 70.12
ours 61.73 56.45 40.91 81.75 85.54 65.28

ChatGPT orig 78.32 62.93 65.67 70.86 83.53 72.26
ours 63.23 62.54 49.29 83.36 82.88 68.26

Gemini1.5 orig 78.49 66.82 66.58 71.80 89.99 74.74
ours 61.50 68.03 46.98 81.83 85.67 68.80

Claude3.5 orig 77.59 67.68 73.97 67.16 82.00 73.68
ours 62.36 67.45 48.76 80.62 77.60 67.36

Table 10: Performance (%) of the eleven involved LLMs (zero-shot) on the original and our updated datasets. We
utilize macro F1-score as the unified evaluation metric.

Proportion(%) Emotion Irony Stance MRPC RTE AVG
δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓ δ1 ↓ δ2 ↓

20
orig 3.52 10.51 31.09 15.87 20.39 11.43 6.69 11.77 4.80 10.95 13.30 12.10
semt 3.48 2.92 15.86 7.45 19.73 6.14 1.87 3.70 3.32 2.30 8.85 4.50
ours 3.18 0.88 11.77 4.50 15.58 4.75 2.03 -1.65 -0.57 1.13 6.40 1.92

40
orig 6.91 7.99 37.84 11.00 25.00 10.10 12.49 9.69 7.58 9.08 17.96 9.57
semt 4.67 1.66 17.05 3.61 22.80 5.00 6.00 3.28 4.00 1.71 10.90 3.05
ours 3.61 0.37 11.53 2.35 17.38 4.49 2.86 -0.40 0.41 1.13 7.16 1.59

60
orig 8.68 7.39 40.00 10.77 27.86 9.20 16.00 9.02 10.57 9.85 20.62 9.25
semt 5.63 1.87 14.44 5.95 24.73 3.94 6.34 2.82 5.72 2.16 11.37 3.35
ours 4.23 0.77 8.95 3.36 18.70 3.39 1.37 0.10 1.26 0.72 6.90 1.67

80
orig 11.55 6.29 41.11 10.11 30.70 9.74 19.03 8.06 12.96 7.92 23.07 8.42
semt 6.07 1.33 13.96 4.78 26.36 3.91 8.22 2.53 6.35 0.94 12.19 2.70
ours 4.29 0.10 8.48 2.83 19.08 2.85 1.85 0.24 1.72 1.13 7.09 1.43

100
orig 13.31 6.55 41.98 8.71 32.71 8.73 21.68 8.11 15.08 7.24 24.95 7.87
semt 6.67 1.16 13.82 3.03 27.21 3.23 8.99 2.47 6.26 0.59 12.59 2.10
ours 4.70 1.01 8.34 0.90 19.72 2.48 1.32 0.06 3.93 0.13 7.60 0.92

Table 11: Data contamination resistance performance (%) of eight open-source models across simulated scenarios
under different data proportions (20%, 40%, 60%, 80%, 100%). The results are the mean values calculated across
all eight open-source models. orig denote using original dataset, semt denote using semantic dataset, and ours
denote using our updated dataset. We employ multiple prompt templates to avoid prompt-sensitive biases, and use
their averaged performance as the final results. The best scores are in bold.
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Emotion Irony Stance MRPC RTE AVG
σ(δ1 ) σ(δ2 ) σ(δ1 ) σ(δ2 ) σ(δ1 ) σ(δ2 ) σ(δ1 ) σ(δ2 ) σ(δ1 ) σ(δ2 ) σ(δ1 ) σ(δ2 )

orig 3.85 1.69 4.37 2.71 4.85 1.03 5.85 1.52 4.11 1.49 4.61 1.69
semt 1.25 0.69 1.39 1.79 3.00 1.14 2.77 0.52 1.39 0.75 1.96 0.98
ours 0.60 0.38 1.69 1.32 1.64 1.00 0.63 0.77 1.69 0.44 1.25 0.78

Table 12: Standard deviations of data contamination resistance performance (%) across different data proportions
(20%, 40%, 60%, 80%, 100%). The results are the mean values calculated across all eight open-source models. The
best scores are in bold.

Guideline of Human Evaluation
(1) Fluency

Definition
Assess whether the language of the sentence is fluent, without grammatical or spelling
errors. The scoring range is 1-3.

Score

1 point: The text contains multiple grammatical and/or spelling errors, significantly
impacting the readability and understanding.
2 points: The text contains a few grammatical or spelling errors, slightly affecting
readability, but the overall meaning of the text is understandable.
3 points: The text is grammatically and orthographically correct, expressing fluently
and naturally, easy to understand.

(2) Coherence

Definition
Assess whether the question is logically clear and articulated explicitly. The scoring
range is 1-3.

Score

1 point: The sentence lacks logical structure, is expressed in a disorganized manner,
making it difficult for readers to understand.
2 points: The sentence has a basic logical structure, with a relatively clear
theme or argument, but the expression may not be
direct enough or some parts may be slightly vague, affecting overall clarity.
3 points: The question or answer has a clear structure, is logically coherent, expressed
directly and clearly, easy to understand, and effectively conveys the theme or argument.

(3) Factuality

Definition
Score based on whether [text] contains multiple factual errors, generally conforms to facts
but contains minor errors or inaccuracies, or is entirely based on facts with all provided
information being accurate. The scoring range is 0-1

Score

0 point: The text contains multiple factual errors or significant inaccuracies, making
the information misleading or incorrect.
1 point: The text is entirely factually accurate, with all provided information verified
as correct.

(4) Accuracy

Definition
Score the category accuracy considering if the label category matches the content,
ranging from 0-1.

Score
0 point: The assigned label does not match the content or is misleading.
1 point: The assigned label accurately reflects the content.

Table 13: Guideline of human evaluation for data quality.
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