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Abstract

We revisit knowledge-based visual reasoning
(KB-VR) in light of modern advances in mul-
timodal large language models (MLLMs), and
make the following contributions: (i) We pro-
pose Visual Knowledge Card (VKC) – a
novel image that incorporates not only inter-
nal visual knowledge (e.g., scene-aware in-
formation) detected from the raw image, but
also external world knowledge (e.g., attribute
or object knowledge) produced by a knowl-
edge generator; (ii) We present VKC-enhanced
Multi-Image Reasoning (VKC-MIR) – a four-
stage pipeline which harnesses a state-of-the-
art scene perception engine to construct an ini-
tial VKC (Stage-1), a powerful LLM to gener-
ate relevant domain knowledge (Stage-2), an
excellent image editing toolkit to introduce
generated knowledge into an iteratively-edited
VKC (Stage-3), and finally, an emerging multi-
image MLLM to solve the VKC-enhanced
task (Stage-4). By performing experiments
on three popular KB-VR benchmarks, our ap-
proach achieves new state-of-the-art results
compared to previous top-performing models.
Our code is available at: https://github.
com/yyy1103/VKC.

1 Introduction

Knowledge-based visual reasoning (KB-VR) (Xu
et al., 2024a; Song et al., 2024; Jin et al., 2023;
Shao et al., 2023; Chen et al., 2024b) remains a
challenging task, as it requires machines not only to
understand the concepts and relationships of visual
scenes, but also to associate them with external
world knowledge to perform a chain of reasoning
on open-world questions. As illustrated in Fig.1 (a)
and (b), for KB-VR tasks composed of image (V ),
question (Q), and answer (A), image captioning
(Liu et al., 2024c; Su and Gou, 2024) and scene
graph generation (Zhang et al., 2024; Kim et al.,
2024) are often considered foundational tasks to

∗∗Corresponding author.

Figure 1: Motivation illustration. Tc, Gs, and V KC denote
image caption, scene graph, and visual knowledge card (gener-
ated by our method). In our VKC-MIR framework, we employ
a multi-image MLLM to address the proposed multi-image
input <V ,V KC,Q> (different from the standard input <V ,Q>
and existing enhanced inputs such as <V ,Q,Tc/Gs>).

validate the model’s general understanding of each
image. For example, scene graphs provide fine-
grained spatial information about an image. In
Natural Language Processing (NLP), knowledge is
generally represented as structured triples or graphs
(Schwenk et al., 2022; Chen et al., 2023, 2024b),
which facilitate representation learning. However,
it is under-explored to depict knowledge in other
modalities (e.g., images) for KB-VR tasks, due to
the steep complexity of knowledge representation
and processing in non-textual modalities.

Advanced image-sequence understanding capa-
bilities are required in practical applications, such
as multi-image instruction (Jiang et al., 2024; Wu
et al., 2024a). However, popular MLLMs insert
visual features into the sequence of embeddings,
which can easily exhaust the language model’s con-
text window, resulting in significant memory and
computational overhead (Li et al., 2024b). Re-
cent studies (Liu et al., 2024d; Li et al., 2024a)
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show that multi-image MLLMs (e.g., mPLUG-
Owl3 (Ye et al., 2024)), which are pre-trained or
fine-tuned on interleaved text-image data or multi-
image data, perform better than single-image mod-
els (e.g., Qwen-VL-Chat (Bai et al., 2023)) when
addressing multi-image inputs. However, if the im-
ages contain distracting content, the MLLMs will
instead get confused, leading to a performance drop
(Liu et al., 2024d). Therefore, providing relevant
images that can convey task clues is beneficial for
boosting the multi-image abilities of MLLMs.

Inspired by these advances on multi-image
MLLMs, we aim to explore the new perspective
of knowledge acquisition and representation for
KB-VR and pose the question: Could knowledge
be described in the form of images so that we can
employ a multi-image MLLM to solve an original
single-image task enhanced by generating “knowl-
edge image” as additional visual input? To this
end, as shown in Fig.1 (c), we introduce the novel
concept named Visual Knowledge Image (VKC),
which aims to convey knowledge clues recognized
for KB-VR tasks, and a corresponding framework
named VKC-enhanced Multi-Image Reasoning
(VKC-MIR), which first generates VKC from the
original task and then solves the enhanced task with
the generated VKC using multi-image MLLMs. In
particular, to decrease irrelevant knowledge, we
first construct VKC as a coarse scene image com-
posed of detected entity regions and then integrate
it with external knowledge facts relevant to visual
concepts in the image. Consequently, VKC-MIR
consists of four stages: (1) visual scene perception;
(2) external knowledge generation; (3) knowledge
image editing; and (4) multi-image reasoning.

Our work opens new research directions and
highlights the need for knowledge carriers to han-
dle multi-modal knowledge challenges. Our con-
tributions can be summarized as follows: (1)
We introduce the novel concept of VKC, which
presents knowledge in the form of images, offer-
ing a new perspective for multi-image MLLMs to
handle KB-VR tasks. VKC also enjoys several
advantages: (i) is a vivid image composed of key
regions and knowledge details of a raw image; (ii)
is task-independent, which can be applied to any
visual task where raw images are provided; (iii) is
model-agnostic, which can be applicable to a va-
riety of multi-image models. (2) We propose the
novel framework, VKC-MIR, which integrates
the proposed VKC with MLLMs. The comprehen-

sive four-stage pipeline, encompassing visual scene
perception, external knowledge generation, knowl-
edge image editing, and multi-image reasoning,
provides a holistic solution to KB-VR. (3) Exten-
sive experiments on popular benchmarks show that
VKC-MIR achieves state-of-the-art (SOTA) re-
sults compared to the previous top models, showing
its effectiveness and performance advantages.

2 Related Work

2.1 Knowledge-based Visual Reasoning

KB-VR requires the model to incorporate knowl-
edge beyond the content of the given image and
the question for answer prediction. Recently, inte-
grating LLMs has significantly advanced state-of-
the-art (SoTA) methods. PICa (Yang et al., 2022)
incorporated GPT-3 for few-shot learning. Prophet
(Shao et al., 2023) further refined the use of GPT-3
by prompting with answer heuristics. VCTP (Chen
et al., 2024b) introduced visual Chain-of-Thought
(CoT) prompting, which enhances KB-VR by guid-
ing the model through a step-by-step reasoning pro-
cess. KB-VR models often suffer from unwanted
visual information that is not related to the ques-
tion during retrieval. To this end, LLM-RA (Jian
et al., 2024) identified key visual entities for multi-
modal joint retrieval. VIG (Liu et al., 2024e) intro-
duced multi-grained visual information to retrieve
knowledge. RZF-VQA (Wu et al., 2024c) reduced
retrieval errors by associating external knowledge
with a common feature space.

2.2 Multi-image MLLMs

Most previous MLLMs primarily handle single-
image input scenarios, leaving the performance of
MLLMs when addressing practical multiple images
under-explored. To this end, Liu et al. (Liu et al.,
2024d) proposed a new MIBench benchmark, to
evaluate the multi-image abilities of MLLMs. The
results revealed that, when faced with multi-image
inputs, current models exhibited significant short-
comings, e.g., limited multi-image reasoning and
fine-grained perception. Thus, MLLMs are sug-
gested to be pre-trained or fine-tuned on interleaved
image-text data. Idefics2 (8B) (Laurençon et al.,
2024) performed a multi-stage pre-training using
interleaved image-text documents, image-text pairs,
and PDF documents. Unlike Idefics2 that collected
noisy data from the Web, Mantis (8B) (Jiang et al.,
2024) conducted instruction tuning on academic-
level data resources. Integrating pre-training and

21884



Figure 2: VKC-MIR overview (see Alg.1 for details). Stage-1: given an image, we first construct a scene graph using
HiKER-SGG (Zhang et al., 2024), and then segment the global image into key entity regions using GLEE (Wu et al., 2024b), and
subsequently visualize the scene graph by introducing entity regions using graphviz, thus generating our initial VKC. Stage-2:
we employ OPT-66B (Zhang et al., 2022) as domain experts, to generate external knowledge about detected visual concepts.
Stage-3: we perform message passing between LLM-generated knowledge and the updated VKC, using a text-to-image toolkit
SEED-X (Ge et al., 2024b). Notably, for the space limit, we only exhibit the new message in each Vi here. Stage-4 (see Fig.1
(c)): we employ a multi-image MLLM, mPLUG-Owl3 (Ye et al., 2024), to solve our VKC-enhanced task.

instruction tuning on multi-image data, mPLUG-
Owl3 (8B) (Ye et al., 2024) improved the ability to
understand long image sequences.

In addition, we also introduce multi-modal
knowledge graphs (MMKG) (Peng et al., 2023;
Lee et al., 2024), which incorporate multi-modal
knowledge (text, images, video, audio) in the large-
scale graph structure, and discuss the distinctions
between our concept and MMKG in Appendix F.

3 Methodology

Our method, VKC-MIR, is visualized in Fig.2.
Given a raw image, VKC-MIR first generates a
new scene image composed of detected entity re-
gions and their spatial connections, and then inte-
grates additional domain knowledge generated by
LLM into scene image. Two key benefits of our
proposed staged approach are that: (i) the genera-
tion task at each stage of our approach is simpler
than learning to create a detailed knowledge image
directly. Through each stage, the search space is
restricted to the associated contents of the previ-
ously generated components, making VKC-MIR a
powerful method for knowledge image generation;
(ii) the data flow at each stage of our approach is
essentially a collection of knowledge triples, which
can be effectively integrated by advanced technolo-

gies such as entity linking or image editing. Mak-
ing a fundamental determination whether or not a
piece of knowledge should be incorporated into our
knowledge image allows for more accurate answer
predictions in the last stage of our approach. Next,
we detail each stage in our VKC-MIR (Alg.1).

Algorithm 1 VKC-MIR Algorithm
Input: Input Image and Question {V , Q}.
Output: Visual Knowledge Card and Answer {V KC, A}.
Require: GS denotes a scene graph for V ; EM =
{E1, ..., E|EM |} is the set of visual entities detected in V
and Em is the m-th entity (1 ≤ m ≤ |EM |); VS denotes a
scene image generated by visualizing GS with EM ; KN =
{K1, ...,K|KN |} is the set of external knowledge generated
by LLMs and Kn is the n-th knowledge (1 ≤ n ≤ |KN |); Vn

is the n-th knowledge image generated by introducing Kn;
Pkg , Pt2i, and Pmir are the prompt for knowledge generation,
image editing, and multi-image reasoning.
1: # Stage-1. Visual Scene Understanding
2: GS ← SceneGraphGenerator (V )
3: EM ← EntityExtractor (V )
4: VS ← SceneImageGenerator (GS , EM )
5: # Stage-2. External Knowledge Generation
6: Let ENM be entity names of EM

7: KN ← LLMGenerate (ENM , Q, Pkg) # See Alg.2
8: # Stage-3. Knowledge Image Editing
9: V0 ← VS

10: for 1 ≤ n ≤ |KN | do
11: Vn ← ImageEditor (Vn−1, Kn, Pt2i)
12: V KC ← V|KN |
13: # Stage-4. Multi-image Reasoning
14: A← MultiImageMLLM (V ,V KC,Q, Pmir)
15: return {V KC, A}
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Stage-1: Visual Scene Perception. Scene graph
generation (SGG) offers a structured depiction of
an image via the identification of objects and their
relations. To effectively organize visual concepts in
VKC, we first construct a scene graph GS (Step 2)
using a robust SGG engine, HiKER-SGG (Zhang
et al., 2024), which exhibits the powerful abilities
of generating scene graphs on both uncorrupted
and corrupted images (e.g., containing real-world
weather corruptions such as fog, snow, and smoke).
The constructed GS is a collection of textual triples
< Eh, SR,Et > where Eh, SR, and Et indicate
head entity, spatial relation, and tail entity, respec-
tively, e.g., <Man1, beside, Man2>. Then, we uti-
lize GLEE (Wu et al., 2024b), to detect key visual
entities and segment the global image into small
entity region images EM (Step 3). Next, we obtain
a scene image VS (Step 4), using a graph visual-
ization software, graphviz1. Concretely, we adopt
its layout programs that take textual descriptions
of graphs and produce diagrams in the pre-defined
formats, e.g., replacing each entity node Eh/Et

in GS with its region image E′
h/E

′
t and convert-

ing each SR node in GS into a directed depen-
dency edge that is labeled with SR. Consequently,
VS becomes a collection of multi-modal triples
< E′

h, SR,E′
t >. Such directed edges also facil-

itate message passing, enabling the updating of
knowledge representations in VKC.

Stage-2: External Knowledge Generation.
Following (Chen et al., 2024a; Alamdari et al.,
2024; Xu et al., 2024b), we employ LLM as a
domain expert, to generate triplets of specialized
and precise textual knowledge. Furthermore, to
migrate knowledge hallucination (Liu et al., 2024b;
Ji et al., 2023), our knowledge generation com-
prises two key components: knowledge generator
and knowledge verifier. In summary, the generator
first prompts the LLM to generate domain-specific
knowledge for given entities. Subsequently, the
verifier recognizes and filters the erroneous triples
generated by the generator, to promote the preci-
sion of generated KGs. Concretely, the verifier
uses existing criteria mined from open KGs within
RuleHub (Ahmadi et al., 2020) to identify format
errors and some conflict errors.

The above verifier can check basic contradictory
knowledge, e.g., ensuring that a person’s age is not
a negative number. However, when facing complex
knowledge conflicts (e.g., an NBA player belongs

1https://graphviz.org/

to different teams at different time periods), the
verifier fails to work because conflicting tuples are
correct historical facts. Therefore, we add a history
knowledge verifier after this basic verifier, to ex-
plore better solutions to contradictory knowledge.
We describe this in Appendix D due to space limit.

Algorithm 2 LLMGenerate Algorithm
Input: Entity Names, Question, and Prompt {ENM , Q, Pkg}.
Output: Generated Knowledge {KN}.
Require: Dm is domain knowledge generated by LLM given
ENm (1 ≤ m ≤ |ENM |); Tm is a set of triple examples
found by the retriever RKB from knowledge base KB regard-
ing ENm; AKm is a set of generated attribute knowledge
regarding Nm; NN<m,l> is an entity-entity pair with ENm

(1 ≤ m ≤ |ENM |) as head and ENl (1 ≤ l ≤ |ENM |) as
tail; D<m,l> is domain knowledge generated by LLM given
NN<m,l>; T<m,l> is a set of triple examples found by RKB

from KB regarding NN<m,l>; OK<m,l> is a set of gener-
ated object knowledge regarding NN<m,l>; KC is the set of
knowledge candidates and KCv is the resulting set after using
the verifier; Pkg is the prompt for knowledge generation.
1: AK,OK ← ∅
2: #Generate attribute knowledge
3: for 1 ≤ m ≤ |ENM | do
4: Dm ← LLMGen (ENm)
5: Tm ← KBR (KB,ENm)
6: AKm← LLMGen (Dm, Tm, Pkg)
7: AK ← AK ∪ {AKm}
8: #Generate object knowledge
9: for 1 ≤ m ≤ |ENM | do

10: for 1 ≤ l(̸= m) ≤ |ENM | do
11: NN<m,l> ←< ENm, ENl >
12: D<m,l> ← LLMGen (NN<m,l>)
13: T<m,l> ← KBR (KB,NN<m,l>)
14: OK<m,l> ← LLMGen (D<m,l>, T<m,l>, Pkg)
15: OK ← OK ∪ {OK<m,l>}
16: #Verify by rules and re-rank by question Q
17: KC ← AK ∪OK
18: KCv ← RuleVerify (KC)
19: KN ← TupleRank(KCv, Q)
20: return KN

We elaborate the knowledge generation work-
flow in Alg.2 where entity names and the question
are used as arguments. Each generated knowledge
tuple depicts either attribute knowledge of a single
entity or object knowledge between two entities
detected from the raw image. We employ an open-
source LLM, OPT-66B (Zhang et al., 2022), to
generate the domain knowledge text Dm via a sim-
ple prompt (e.g., “Generate a paragraph of domain
knowledge text (512 tokens) about the given en-
tity”). Next, following (Chen et al., 2024a), we
retrieve several reference triples Tm from DBpe-
dia2, an open-source encyclopedic KG, for few-
shot prompting. Concretely, the LLM outputs two
categories of knowledge: (i) for a specified entity

2https://www.dbpedia.org/
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ENm, the LLM outputs attribute knowledge AKm

(line 6) in the form of < ENm, AR,Et >, where
AR is a new attribute of ENm learned from Dm

and Et is the corresponding attribute value; and (ii)
for a specified entity-entity pair < ENm, ENl >,
the LLM outputs object knowledge OK<m,l> (line
14) in the form of < ENm, OR,ENl >, where
OR is a new object relation learned from D<m,l>.
In particular, we add Dm and Tm to Pkg, as exem-
plified in Fig.6 (Appendix C), where knowledge
triples regarding “Yao Ming” are outputted. Next,
we collect all generated tuple candidates (line 17).

After using the verifier to exclude erroneous tu-
ples (line 18), we calculate the semantic similarity
score for each “tuple-question” pair using Sentence-
BERT (Reimers and Gurevych, 2019) (i.e., gener-
ating their sentence vectors and then calculating
the cosine similarity between the pairwise vectors)
and select the top tuples according to the result-
ing scores (line 19). Thus, the selected knowledge
tuples (or items) are relevant to the question.

Stage-3: Knowledge Image Editing. VKC-
MIR uses an image editing tool to generate the fi-
nal image that looks like a vivid “knowledge card”.
Specifically, we employ SEED-X (Ge et al., 2024b),
a text-to-image (T2I) toolkit as a follow-up work to
SEED-LLaMA (Ge et al., 2024a). We design the
template Pt2i below, which includes task instruc-
tions and editing requirements. To indicate data
flow (e.g., through various instructions or manipu-
lations), we mark each data element in blue.

********** Adding Attribute Knowledge **********
Instruction: Strictly ensure that other elements of the
image remain unchanged, adding the current knowledge
< ENm, attribute, value > to the input image Vn−1.
Image Editing Requirements: Add a box containing
value next to ENm and then point a blue arrow, attached
the <attribute> name, from ENm to that box.
Output: Vn

********** Adding Object Knowledge **********
Instruction: Strictly ensure that other elements of the
image remain unchanged, adding the current knowledge
< ENm, relation, ENi > to the input image Vn−1.
Image Editing Requirements: Add a red arrow from
ENm to ENi and attach the <relation> to the arrow.
Output: Vn

As shown in Steps 9-12 of Alg.1, we design
an iterative process to gradually add the selected
knowledge items to VKC rather than injecting all
the items at once, which could lead to an erroneous
image (see Sections 6.4 and 6.5). In addition, to
prevent entity regions in VKC from being over-
crowded, we use a string name rather than a ran-
dom region image for each new entity. Given that

Pt2i is followed, the final image will have high-
level semantics that comply with these multimodal
instructions and retain low-level details (e.g., the
original entity regions retain uncorrupted).

Stage-4: Multi-image Reasoning. In the fi-
nal stage, we use mPLUG-Owl3 (Ye et al., 2024)
to solve the VKC-enhanced task. In particular,
mPLUG-Owl3 uses Siglip-400m (Zhai et al., 2023)
as visual encoder and Qwen2 (Yang et al., 2024)
as language model. Given a multi-image input
<V, V KC,Q> in our enhanced task, mPLUG-
Owl3 first extracts visual features for the image se-
quence [V, V KC] and then uses a linear projection
to align the dimensions of visual features to be the
same as those of the language model. The projected
visual features are denoted by Himg = [IV , IV KC ].
Based on multi-modal input, the corresponding text
sequence is Stext = [Timg, Timg, Q], where Timg

is a plain text <|image|> to indicate the original
location of the image. We feed Stext into a text
encoder to obtain the text features Htext. In the lan-
guage model, mPLUG-Owl3 then integrates Himg

with Htext through cross-attention operations. In
particular, we design a prompt template Pmir for
mPLUG-Owl3 such as:“Look at Image 1 (V KC)
which may provide knowledge clues and answer
the following question (Q) based on Image 2 (V )”.

4 Experiment Setup

4.1 Datasets and Compared Methods

We evaluate VKC-MIR on three popular KB-
VR benchmarks: A-OKVQA (Schwenk et al.,
2022), OK-VQA (Marino et al., 2019), and InfoS-
eek (Chen et al., 2023). Following (Chen et al.,
2024b), we report the results (%) using the com-
mon VQA accuracy metric (Antol et al., 2015).
We describe the details of datasets in Appendix A.

We compare VKC-MIR with four categories of
existing methods: (1) Pure multi-modal methods
(not using LLMs) that adopt uni-modal encoders to
address the input of the corresponding modality, in-
cluding LXMERT (Tan and Bansal, 2019), KRISP
(Marino et al., 2021), MAVEx (Wu et al., 2022),
GPV-2 (Kamath et al., 2022), UnifER (Guo et al.,
2022), and RZF-VQA (Wu et al., 2024c). (2) LLM-
based methods that first generate descriptive cap-
tions about images and then employ language-only
LLMs to address new textual input such that each
image must be replaced with its caption, including
PICa (Yang et al., 2022), Prophet (Shao et al.,
2023), and VCTP (Chen et al., 2024b). (3) Open-
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source single-image MLLMs that improve the ca-
pabilities of LLMs by integrating data from mul-
tiple modalities, including Qwen-VL-Chat (Bai
et al., 2023), LLaVA-1.5 (Liu et al., 2024c), and
mPLUG-Owl (Ye et al., 2023). (4) Open-source
multi-image MLLMs that are pre-trained or fine-
tuned on interleaved image-text data and multi-
image data, including Mantis (Jiang et al., 2024),
Idefics2-I (Laurençon et al., 2024), and mPLUG-
Owl3 (Ye et al., 2024). We describe the details of
these methods in Appendix B. We did not widely
compare with closed-source MLLMs such as GPT-
4o, due to expensive APIs and limited visits.

4.2 Implementation Details

To control the quantity of knowledge items, we set
implementation options below. In Stage-1, we set
the maximum number of detected visual entities
to 8. In Stage-2, we set the number of reference
triples retrieved from DBPedia to 3. Also, we set
the largest number of triples generated for a spe-
cific entity to 5 and the largest number of triples
generated for an entity-entity pair (composed of
two distinct entities) to 3. This may generate a total
number of up to 8*5+8*7*3=208 candidates. In
Stage-3, after parameter tests (Section 6.4), we set
the total number of tuples (added to VKC) to 16
while the number added in each iteration to 1.

We performed all experiments on 4 NVIDIA
3090 24GB GPUs. Generating our VKC involves
the interactions of multiple LLMs/MLLMs. De-
tailed computational costs are: (1) Memory: we
keep the size of VKC consistent with that of the
raw image, preventing a large increase in memory
workload. For example, the average size of VKC
on the OK-VQA dataset is only 1.72M. (2) Time:
the inference time of the original/enhanced task
is approximately 2.4/2.6 hours on average, show-
ing that extra time of using VKC is negligible. (3)
Parameter: the tools used in each stage are open-
source and the whole pipeline does not require
retraining on new datasets. Thus, our method can
be easily deployed for real-world applications.

5 Results and Analysis

5.1 Quantitative Results

VKC-MIR exhibits superior performance than
all other methods. Through the results in Table 1,
we observe that: (a) VKC-MIR achieves the high-
est score of 58.9/64.8/25.1 on the A-OKVQA/OK-
VQA/InfoSeek dataset, surpassing prior top meth-

ods such as Prophet (calling GPT-3) by 3.2/3.7/1.9
and VCTP (using Llama-2) by 4.5/9.9/3.7, respec-
tively. (b) Pure multi-modal methods show much
worse performance than LLM-based methods or
MLLMs. (c) Among single-image MLLMs, Qwen-
VL-Chat performs best and shows a performance
comparable to that of Mantis. (d) The multi-image
group performs better than the single-image group
from an overall perspective. Due to the excellent
performance and availability of mPLUG-Owl3, we
select it as our default MIR model in the last stage.

Methods A-OKVQA OK-VQA InfoSeek
Pure Multi-modal Methods (not using LLMs)
LXMERT (2019) 25.9 35.3 6.7
KRISP (2021) 27.1 38.4 7.6
MAVEx (2022) 36.4 41.3 8.2
GPV-2 (2022) 40.7 39.7 8.6
UnifER (2022) 41.5 42.1 10.7
RZF-VQA (2024) 43.8 46.7 12.4
Language-only LLM-based Methods
PICa-GPT3 API (2022) 47.1 48.0 16.9
Prophet-GPT3 API (2023) 55.7 61.1 23.2
VCTP (Llama2-70B) (2024) 54.4 54.9 21.4
Open-source Single-image MLLMs
Qwen-VL-Chat (2023) 49.4 56.6 19.7
mPLUG-Owl (2023) 47.8 53.6 20.0
LLaVA-1.5 (2024) 44.6 47.3 17.2
Open-source Multi-image MLLMs
Mantis (2024) 50.2 55.4 21.2
Idefics2-I (2024) 48.3 50.4 21.8
mPLUG-Owl3 (2024) 55.3 60.1 23.4
Our VKC-MIR (using mPLUG-Owl3 (8B))
VKC-MIR 58.9 64.8 25.1

Table 1: VQA scores of different methods. We reproduced all
other methods based on their released codes. The best/second-
best result is highlighted in bold/underlined respectively.

Model Base +SG +CAP +VKC
open-source single-image MLLMs

Qwen-VL-Chat 49.4 50.8 50.4 52.0
mPLUG-Owl 47.8 48.6 48.9 50.2
LLaVA-1.5 44.6 46.5 45.0 46.8

open-source multi-image MLLMs
Mantis 50.2 51.9 51.3 52.7
Idefics2-I 48.3 49.3 48.9 50.4
mPLUG-Owl3 55.3 56.4 56.5 58.9

Table 2: Performance comparisons of distinct MLLMs, pro-
vided scene graphs (SG), image captions (CAP), and our VKC.
The best/second-best result is highlighted in bold/underlined.

VKC can be applicable in various models
and bring performance advantages against im-
age captions and scene graphs. Concretely,
we implement VKC-MIR via using three single-
image MLLMs (Qwen-VL-Chat, mPLUG-Owl,
LLaVA-1.5) and three multi-image MLLMs (Man-
tis, Idefics2-I, mPLUG-Owl3), respectively. In Ta-
ble 2, we report the implementation results (VKC)
using different models and also compare with their
benchmark results (Base) and enhanced results
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with the given scene graphs (SG) or image captions
(CAP) on the A-OKVQA dataset. As mentioned
above, we use HiKER-SGG to generate SG and
BLIP-2 to generate CAP for different models. Fol-
lowing (Chen et al., 2024b), we append SG/CAP
at the end of the question text. From Table 2, we
observe that: (1) For each MLLM, the “VKC” re-
sult is consistently better than the corresponding
“Base” result, validating the adaptability and model-
agnosticism of our framework; (2) Due to better
capturing internal and external information, our
VKC outperforms both CAP and SG; (3) As indi-
cated by the “VKC” column, our VKC-MIR with
mPLUG-Owl3 performs the best, showing the ben-
efits of using mPLUG-Owl3 as our default MLLM.

5.2 Ablation Studies

To verify the contribution of key components, we
examine six ablation variants. (i) Only MIR: we
use the MIR model to solve the original task; (ii)
GS + MIR: we only generate scene graphs (a col-
lection of textual triples) to enhance the input of
MIR; (iii) Ke + MIR: we only generate external
knowledge in the form of textual triples to enhance
the input of MIR; (iv) GS + Ke + MIR: we gener-
ate both scene graphs and external knowledge to
enhance the input of MIR; (v) (GS → VS) + MIR:
we construct scene graphs and then visualize them
to images (the initial VKC) to enhance the input
of MIR; (vi) (GS → VS) + Ke (T2I) + MIR: we
implement all stages of VKC-MIR, thus generat-
ing our final model. Through the results in Table
3, we observe that: (1) Using GS solely achieves
better results than using Ke solely. However, us-
ing them jointly (GS + Ke) can further improve
the model’s performance. (2) Converting GS into
images (GS → VS) leads to performance gains
compared to using GS itself. This benefits from
the multi-image abilities of MLLMs. (3) Our final
(full) model achieves the best results compared to
all tested variants, showing that each component
contributes uniquely to the overall performance.

Methods A-OKVQA OK-VQA InfoSeek
VKC-MIR (full) 58.9 64.8 25.1
Ablation variants (generated by gradually adding components)
- only MIR model 55.3 60.1 23.4
- GS + MIR 56.4 62.3 23.9
- Ke + MIR 56.0 61.9 23.6
- GS + Ke + MIR 57.3 63.5 24.1
- (GS → VS) + MIR 57.7 63.8 24.3
- (GS → VS) + Ke (T2I) + MIR 58.9 64.8 25.1

Table 3: Ablation studies. (GS → VS) denotes that scene
graph (GS) is converted to scene image (VS) by graphviz. Ke

(T2I) denotes that Ke is added to VS through Text-to-Image.

5.3 Qualitative Results

We provide a qualitative comparison of VKC with
common categories of image information in Fig.3.
For fair comparisons, we uniformly use mPLUG-
Owl3 to address enhanced inputs in various cases.
Observed from Fig.3, CAP generates a summarized
description about the image, while lacking enough
attention to key visual concepts (e.g., “lamp” in
Case 1) that are semantically important to the ques-
tion. In contrast, SG captures the essential spatial
relation between visual concepts (e.g., “<lamp, be-
side, picture>”), but it still gets confused due to the
lack of fine-grained information that matches the
visual content. Compared with them, our VKC not
only adaptively attends to visual concepts which
are semantically important to the question but also
captures a trace of knowledge clues (e.g., “Yao
Ming” (Entity 1) -> “Tracy Mcgrady” (Entity 2)
-> “Houston Rockets” (guided by Relation “played
for”) in Case 2) during answer prediction.

6 Discussions

6.1 Comparisons with Closed-source MLLMs

We compare with mainstream large-scale closed-
source MLLMs (e.g., GPT-4o). We perform this
experiment on the val/test sets of the A-OKVQA
dataset. For more comparisons, we also show the
results of our default MIR model, mPLUG-Owl3.
Observed from Fig.4, GPT-4o performs better than
mPLUG-Owl3. However, our method, which gen-
erates VKC as an assisted visual input to mPLUG-
Owl3, can surpass GPT-4o in the datasets studied.

6.2 Using Distinct LLMs as a Domain Expert

We present the results of using different LLMs
as a domain expert during knowledge generation.
Specifically, we consider two new options: (i)
Llama2-70B (Touvron et al., 2023), which is an
open-source LLM with size similar to OPT-66B,
and (ii) GPT3-175B (Brown et al., 2020), which
is a closed-source LLM of larger scale. We call
the APIs to GPT3. As Table 4 shows, our VKC-
MIR using OPT-66B can achieve the final results
on a par with those obtained by using GPT3. How-
ever, our applications with OPT-66B enjoy extra
advantages, e.g., free of charge and easy to deploy.

LLMs as domain expert A-OKVQA OK-VQA InfoSeek
OPT-66B 58.9 64.8 25.1
Llama2-70B 58.0 63.9 24.7
GPT3-175B 58.7 65.1 25.1

Table 4: Results of using different LLMs.
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Figure 3: Qualitative results of using our VKC and other information categories such as image captions (TC ) and scene graphs
(GS). Our method also enjoys better interpretability by providing a trace of knowledge clues with related visual concepts.

Figure 4: Comparisons with GPT-4o on the A-OKVQA.

6.3 The Effectiveness of Verifier and Ranker

In the second stage, we filter the generated knowl-
edge candidates using a knowledge verifier and
then rank the verified candidates using a knowl-
edge ranker. To validate their effectiveness, we
perform more fine-grained ablation studies, e.g.,
canceling one of these two components (w/o Veri-
fier or Ranker). In particular, canceling the ranker
indicates that the candidates are randomly selected.
As shown in Table 5, our model performs best by
jointly using the knowledge verifier and ranker, fur-
ther validating the necessity of introducing these
steps in our knowledge generation stage.

Method A-OKVQA OK-VQA InfoSeek
VKC-MIR with Verifier + Ranker 58.9 64.8 25.1
VKC-MIR w/o Verifier 58.4 64.5 24.7
VKC-MIR w/o Ranker 58.1 64.3 24.5

Table 5: Results of using or canceling the verifier/ranker.

6.4 Super-parameter Test
In the third stage, we design an iterative pro-
cess to gradually add the selected knowledge
items to VKC. Specifically, we introduce two con-
trol variables: (i) the total number of knowledge
triples #Ke added into VKC; and (ii) the number
of knowledge triples #Kei added in each itera-
tion. We compare the final results of using differ-
ent quantities of these two variables, e.g., given
#Ke ∈ {4, 8, 16, 32} and #Kei ∈ {1, 2, 4, 8, 16}
(#Kei ≤ #Ke). In Table 6, we find that: (1)
Under the settings of #Kei=1/2/4, the model’s per-
formance first rises and then drops if we introduce
more and more knowledge (possibly sparse or ir-
relevant); (2) Under the settings of #Kei=8/16,
the model’s performance continuously increases as
#Ke grows, but their final results are inferior to
those produced by setting a smaller value to #Kei

(e.g., 1/2/4); (3) The best setting is considered as
<#Ke=16, #Kei=1>, since we observe a highest
accuracy 64.8%. These results show that we should
add one new item each time, which is better than
adding multiple items at the same time (possibly
generating bad objects, as exemplified in Fig.5).

Parameters #Kei=1 #Kei=2 #Kei=4 #Kei=8 #Kei=16
#Ke = 4 60.5 60.3 60.1 - -
#Ke = 8 62.5 62.2 61.5 59.8 -
#Ke = 16 64.8 64.1 63.7 60.8 60.4
#Ke = 32 63.9 63.4 62.0 61.2 60.6

Table 6: Parameter tests on the OK-VQA dataset.
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6.5 Qualitative Analysis on VKC Quality
We provide a qualitative comparison of two similar
VKCs generated by assigning the same value to
#Ke but different values to #Kei , given all other
configurations are equal. As shown in Fig.5, refer-
ring to the left VKC, we find editing errors in the
right VKC, such as missing relation annotations
(e.g., “played for”) and overlapping object boxes
(e.g., “2.26 metres” and “Beijing”). This case pro-
vides explanations for the insights from Table 6.

Figure 5: Comparisons of similar VKCs (Left: #Kei = 1;
Right: #Kei = 8. Both: #Ke = 8). Compared to the left
VKC, we observe undesired editing effects including missing
relation annotations (e.g., “played for”) and overlapping object
boxes (e.g., “2.26 metres tall” and “Beijing”) in the right VKC.

6.6 The Necessity of Knowledge Images
To validate the necessity of knowledge images, we
compare the results between generating VKC in the
form of an image (which we call VKC-image) and
converting all knowledge items in VKC back to
textual triples (which we call VKC-triple). In Table
7, we observe that VKC-image outperforms VKC-
triple in all datasets, suggesting the benefits of pre-
senting vision knowledge in the form of images.
Furthermore, we explore the impact of varying the
number of VKCs (i.e., using multiple images or a
single image) and find that: If knowledge triples
are used to generate multiple VKCs, the model will
perform worse instead. See Appendix E for details.

Knowledge Form A-OKVQA OK-VQA InfoSeek
VKC-triple 57.3 63.5 24.1
VKC-image 58.9 64.8 25.1

Table 7: Comparison of VKC presented in triples/image.

6.7 Results on Multi-image Tasks
To explore multi-image applications of our pro-
posal, we conduct additional experiments on four
multi-image datasets released by MIBench (Liu
et al., 2024d): (1) Subtle Difference (SD) task ex-
amines the model’s ability to perceive subtle differ-
ences between similar images; (2) Visual Referring
(VRef) task evaluates whether the model can uti-
lize the referring information provided by input
images to comprehend the relationships between

different objects; (3) Vision-linked Textual Knowl-
edge (VTK) task queries background knowledge
that encompasses images and corresponding text
which are possibly retrieved from a knowledge base
(e.g., Wikipedia); (4) Text-linked Visual Knowl-
edge (TVK) task needs the model to link the ques-
tion to the relevant text, and extract visual infor-
mation from the corresponding image. The results
in Table 8 show that VKC-MIR can consistently
outperform other MLLMs in various multi-image
scenarios. In particular, in two knowledge-seeking
tasks VTK and TVK, VKC-MIR achieves signifi-
cant improvements compared to the others, due to
its exploration of relevant external knowledge.

Methods SD VRef VTK TVK
open-source single-image MLLMs

Qwen-VL-Chat 22.5 16.3 22.9 18.1
mPLUG-Owl 4.0 21.7 14.9 20.6
LLaVA-1.5 14.9 24.1 16.7 26.3

open-source multi-image MLLMs
Mantis 54.1 37.6 26.4 41.7
Idefics2 49.7 32.6 25.6 39.0
mPLUG-Owl3 70.1 33.0 31.1 48.8
VKC-MIR (ours) 72.5 42.6 40.7 55.2

Table 8: Results of different methods in multi-image tasks.

7 Conclusions

Our work tackles the task of VQA which requires
external knowledge beyond the information visible
in the image, referred to as the KB-VR task. We
propose the novel concept, Visual Knowledge Card
(VKC), which is essentially a process that creates
a new image by editing the scene graph (based on
visual entities detected from the input image) with
external knowledge obtained from LLM (consid-
ered as a domain expert). This new edited image,
along with the original image and the question, is
posed to MLLM which can take multiple images as
input to produce the answer. Our proposed pipeline
VKC-MIR achieves state-of-the-art results on the
three KB-VR benchmarks (A-OKVQA, OK-VQA,
and InfoSeek) and outperforms a variety of existing
approaches, including multimodal methods, LLM-
based approaches, and MLLMs, by a good margin.
Future work includes: (i) We will extend our ap-
proach to other categories of vision-language tasks
such as visual dialog (Liu et al., 2024a), which re-
quires an agent to answer consecutive questions
based on both visual content and dialogue history.
(ii) We will explore more advances in the genera-
tion task at each stage to further improve the per-
formance of our proposed pipeline.
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Limitations

We summarize the limitations of this paper here.
First, although we have taken measures to generate
a wide range of knowledge tuples using the LLM,
the level of generated tuples is still constrained.
For example, relevant knowledge of “unseen enti-
ties”, not detected from the original image, cannot
be generated in our current algorithm yet. There-
fore, we consider to introduce a new knowledge
component, the level counter, which can record the
level of knowledge tuples and thus decide the di-
rection of generation. Specifically, the LLM takes
new entities from each generated triple for this
level as input and then proceeds to generate the
next-level triples until a preset maximum level is
achieved. Second, in essence, our concept VKC
can be applied to a visual task that incorporates any
number of input images. Real-world multimedia
information, such as web pages and social media,
generally contains multiple images and correspond-
ing text in interleaved forms. Therefore, multi-
image scenarios have greater practical value than
single-image scenarios. In the future, we consider
building a novel benchmark that incorporates both
single-image tasks and multi-image tasks, offering
a comprehensive evaluation platform to measure
the performance of our VKC-assisted models in
various visual reasoning scenarios.
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A Details of Experimental Datasets

OK-VQA (Marino et al., 2019) includes more
than 14,000 questions that require reasoning or
external knowledge to answer. The knowledge
of OK-VQA covers a variety of knowledge cat-
egories such as science & technology, history, and
sports. OK-VQA has 12,591 unique questions out
of 14,055 total and 7,178 unique question words.
Their images come from the COCO image dataset,
so the dataset contains the same basic distribution
of images. Augmented OK-VQA (A-OKVQA)
(Schwenk et al., 2022) is composed of a diverse
set of about 25K questions that require a broad
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base of common sense and world knowledge to an-
swer. It provides multiple-choice as well as direct
answer evaluation settings. There are 3 rationales
associated to each question in the train set provid-
ing the explanation/knowledge for answering the
question. The A-OKVQA dataset contains 24,903
(Question + Answer + Rationale) triplets in 17.1K
(train) / 1.1K (val) / 6.7K (test) splits. InfoSeek
(Chen et al., 2023) is tailored to incorporate infor-
mation seeking questions that cannot be answered
by common sense knowledge alone. The task tests
the model’s skill to discover knowledge in different
specialized fields from images, providing in-depth
knowledge and solving relevant practical problems.
InfoSeek dataset contains 1.35 million samples.

B Details of Compared Methods

In Visual Reasoning (VR), numerous methods
have been proposed to improve the performance
of models in understanding and predicting ques-
tions related to visual content. LXMERT (Tan and
Bansal, 2019) was a foundational model that em-
ployed a transformer-based architecture to encode
visual and textual information. KRISP (Marino
et al., 2021) improved LXMERT capabilities
by integrating implicit and symbolic knowledge.
MAVEx (Wu et al., 2022) introduced a multi-modal
answer validation approach for KB-VR. GPV-2
(Kamath et al., 2022) leveraged web-supervised
concept expansion to enhance general-purpose vi-
sion models. UnifER (Guo et al., 2022) presented
a unified end-to-end retriever-reader framework for
KB-VR. Recently, integrating LLMs has signif-
icantly advanced state-of-the-art methods. PICa
(Yang et al., 2022) incorporated LLMs into VQA,
using GPT-3 for few-shot learning. Prophet (Shao
et al., 2023) further refined the use of GPT-3 by
prompting with answer heuristics. VCTP (Chen
et al., 2024b) introduced Visual CoT Prompting,
which enhances KB-VR by guiding the model
through a step-by-step reasoning process.

Multimodal Large Language Models
(MLLMs) have been used in reasoning for
vision-language tasks. On the one hand, recent
studies have expanded the capabilities of LLMs
to encompass multimodal contexts (Ye et al.,
2024; Dai et al., 2023). Some research has
delved into the enhancement of MLLMs with
multi-image comprehension skills (Jiang et al.,
2024; Laurençon et al., 2024). On the other hand,
advanced diffusion models excel in generating

high-quality images from textual prompts (Brooks
et al., 2023; Rombach et al., 2022), while achieving
the desired semantic content often necessitates
multiple iterative attempts. Researchers are
leveraging LLMs to enrich input prompts with
contextual knowledge to enhance control over
image generation.

C Details of Prompt Template Pkg

In Stage-2, we employ the open source OPT-66B to
generate domain knowledge Dm/D<m,i> about an
entity Nm/entity pair NN<m,i>. Meanwhile, we
follow (Chen et al., 2024a) to retrieve relevant triple
examples Tm/T<m,i> from DBpedia for few-shot
prompting to facilitate better knowledge genera-
tion. Thus, the prompt template Pkg is composed
of Dm/D<m,i>, Tm/T<m,i>, and task description.
Following this, we exhibit a detailed example in
Fig.6, e.g., obtaining the attribute knowledge of a
specific entity “Yao Ming”.

Input:

Domain knowledge from LLM:

<Yao Ming>, born on September 12, 1980, in Shanghai, 

China, is a retired Chinese professional basketball player 

who played for the Houston Rockets of the NBA. He is 

considered one of the greatest centers of all time and has 

been inducted into the Naismith Memorial Basketball 

Hall of Fame. He stands at 7 feet 6 inches (2.26 meters) 

tall, which was a significant factor in his success as a 

basketball player.

Examples from Retriever : 

[Yao Ming |  birth date | September 12, 1980]

[Yao Ming  | birth place  | Shanghai, China]

[Yao Ming |  height  |  2.26 meters]

Instruction: Given the tuple examples that have been 

provided, extract the most significant triples (no more 

than <five>) related to <Yao Ming> from the above text.

Output: 

[Yao Ming  |  nationality  |  Chinese]

[Yao Ming  |  sport  |  basketball]

[Yao Ming  |  position  |  center]

[Yao Ming  |  height  |  2.26 meters]

[Yao Ming  |  former team  |  Houston Rockets]

Figure 6: Prompting examples for Pkg .

D Exploring Knowledge Conflicts

It is possible to introduce contradictory knowledge
during our knowledge image generation. For in-
stance, the NBA player Mcgrady played for differ-
ent teams at different time periods (e.g., Orlando
Magic (2000-2004) and Houston Rockets (2004-
2010)). To this end, we explore a two-step valida-
tion approach to better address contradictory knowl-
edge. In the first step, we still use the knowledge
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verifier introduced in the main text. The verifier is
rule-based and parameter-free, enabling efficient
error detection and correction. We use the veri-
fier to check basic contradictory knowledge (BCK).
Thus, we name the verifier, Rule-Based Validator
for BCK (RV-BCK).

However, when facing conflicting tuples such as
<Mcgrady, played for, Houston Rockets> and <Mc-
grady, played for, Orlando Magic>, RV-BCK fails
to work, because both knowledge items are cor-
rect historical facts. Therefore, in the second step,
we employ an MLLM (e.g., mPLUG-Owl3) as a
specific verifier of historical contradictory knowl-
edge (HCK). We name the second verifier, MLLM-
Based Validator for HCK (MV-HCK). Specifically,
we feed the collection of knowledge tuples gener-
ated by the LLM, accompanied by the given image
and the query question, as input to the MLLM. We
require the MLLM to determine whether a specific
knowledge tuple belongs to a past or current fact,
conditioned on the given image and question. We
try to use guiding prompts, such as “Focus on the
given image and question...”. Through initial exper-
iments, we observe that MV-HCK can play an aux-
iliary role to RV-BCK. For instance, the knowledge
tuple <Mcgrady, played for, Orlando Magic> can
be kicked out through MV-HCK, as it is a past fact
and not matched with the current question. We ex-
amine this on three datasets. The results in Table 9
show that the two-step validation method (RV-BCK
+ MV-HCK) can further enhance the performance
of VKC-MIR.

Methods A-OKVQA OK-VQA InfoSeek
VKC-MIR 58.4 64.5 24.7
VKC-MIR with RV-BCK 58.9 64.8 25.1
VKC-MIR with RV-BCK + MV-HCK 59.3 65.2 25.3

Table 9: Results of the two-step knowledge validation.

E The Impact of Varied Number of VKCs

We compare the effectiveness of multiple images
and a single image to explore the impact of vary-
ing the number of knowledge images in this task.
Specifically, given #Ke = 16, we generate VKC by
varying the number of images: (i) VKC(1), with all
triples integrated into a single VKC; (ii) VKC(2),
with the first eight triples integrated into the first
VKC and the last eight triples integrated into the
second VKC; (iii) VKC(4), with every four triples
sequentially integrated into a new VKC. We per-
form this experiment on all three datasets. The
results in Table 10 show that VKC(2) achieves a

minor improvement compared to VKC(1), while
VKC(4) shows a performance drop. This indicates
that all knowledge terms should be added into a
single image, ensuring the integrity of the informa-
tion.

VKC Number Test A-OKVQA OK-VQA InfoSeek
VKC(1) 58.4 64.5 24.7
VKC(2) 58.7 64.5 24.9
VKC(4) 58.1 64.2 24.3

Table 10: Comparison of the varied number of images.

F Multi-modal Knowledge Graph

MMKG (Peng et al., 2023; Buehler, 2024) can
be expressed with text, images, video, audio, etc.,
extracting a variety of knowledge of modal enti-
ties such as elements, association of elements, and
alignment. In essence, it is a relational data con-
nection mode in the form of a semantic network
(Lee et al., 2024). For instance, TMMKG (Li et al.,
2025) generates a multi-modal temporal knowledge
graph for link prediction. UKnow (Gong et al.,
2024) introduces the unified Knowledge Protocol
with MMKG datasets for reasoning and vision-
language pre-training. Two key distinctions be-
tween MMKG and our VKC are: (i) MMKG is
normally a super-size graph structure, incorporat-
ing multi-modal knowledge regarding a specific
domain, while our VKC is a small-size realistic
image generated to enhance the original task, incor-
porating internal visual knowledge that represents
entity association and external world knowledge
that details visual concepts; (ii) MMKG allows for
a diverse range of multi-modal data (text, image,
video, audio), while our VKC only allows for text
and image (e.g., entity region images).
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