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Abstract

Multilingual models often treat language di-
versity as a problem of data imbalance, over-
looking structural variation. We introduce the
Morphological Index (Mol), a typologically
grounded metric that quantifies how strongly
a language relies on surface morphology for
noun classification. Building on Mol, we pro-
pose Mol-MoE, a Mixture of Experts model
that routes inputs based on morphological struc-
ture. Evaluated on 10 Bantu languages—a
large, morphologically rich and underrepre-
sented family—Mol-MoE outperforms strong
baselines, improving Swahili accuracy by 14
points on noun class recognition while main-
taining performance on morphology-rich lan-
guages like Zulu. These findings highlight typo-
logical structure as a practical and interpretable
signal for multilingual model adaptation.

1 Introduction

Multilingual models have largely progressed
through monolithic transformers such as
mBERT (Devlin et al., 2019), XLLM-R (Conneau
et al., 2020), and mT5 (Xue et al., 2021), which
share parameters across typologically diverse
languages. While effective on high-resource
languages, these models often underperform on
African and other low-resource languages—not
solely due to data scarcity, but due to capacity
dilution: the inclusion of typologically distant
languages forces representational resources to be
spread too thin (Conneau et al., 2020).

Recent models like AfriBERTa (Ogueji et al., 2021)
and BantuBERTa (Ogunremi et al., 2023) improve
performance by grouping African languages ge-
nealogically, favoring lineage-based specialization
over one-size-fits-all multilingualism. Yet genetic
ancestry alone is often too coarse to reflect key
functional differences. For example, Swahili and
Zulu are both Bantu languages, but they diverge
in their surface morphological structure. This
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Figure 1: Morphological variation in Bantu lan-
guages. The Morphological Index (Mol) quantifies
noun class prefix richness. Languages above the cut-
off (orange) show stronger morphological marking;
those below (blue) rely more on semantics. This
distinction informs our typology-driven model adap-
tation.

raises a question: What if multilingual models were
grouped not by lineage, but by linguistic structure?
Linguistic typology—the systematic study of struc-
tural variation across the world’s languages (Com-
rie, 1989; Croft, 2003)—offers a more precise lens
for modeling this diversity. Typology has been ex-
plored in prior work (Bender, 2016; O’Horan et al.,
2016; Ponti et al., 2019; Ustiin et al., 2022), but its
role in computational modeling remains underex-
amined.

Bantu languages, comprising over 300 languages
spoken across sub-Saharan Africa (Maho, 1999),
provide a rich testbed due to their typological di-
versity. Bantu grammar is characterized by a noun
class system, where nouns are grouped into 10-20
classes, each marked by a distinct prefix (Guthrie,
1967). While reminiscent of gender systems, Bantu
noun classes encode a broader array of semantic
features, such as animacy, shape, and size.

Critically, the degree to which noun classes are
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marked morphologically varies across Bantu lan-
guages. Some, like Zulu, use long, distinct prefixes
that strongly signal class membership. Others, like
Swahili, use shorter or fewer forms, requiring more
semantic context. This variation affects model be-
havior: transformer models rely more on morphol-
ogy in high-morphology languages, and more on
semantics in lower-morphology languages (§6).

To capture this structural signal, we introduce the
Morphological Index (Mol), a continuous, inter-
pretable metric that quantifies how much a lan-
guage relies on morphology for noun classification
(§2). We then use Mol to guide model adaptation.
Specifically, we design MoI-MoE, a Mixture of
Experts (MoE) model (Jacobs et al., 1991; Shazeer
et al., 2017) in which each expert specializes in
a different morphological regime. A lightweight,
non-learned router uses Mol to select the appropri-
ate expert, enabling typology-driven inference.

Contributions

1. We introduce the Morphological Index (Mol),
a typologically grounded metric that quantifies
a language’s morphological salience, enabling
structure-aware adaptation (§2).

2. We define Noun Class Recognition (NCR) as
a core task for evaluating structural variation,
and release two datasets covering 65K nouns
across 10 Bantu languages, including five with
limited prior NLP coverage (§3, §4). Re-
sources are available at https://github.com/
okalai-ai/moimoe.

3. We develop Mol-MoE, a typology-aware MoE
model that routes inputs by morphological struc-
ture, and show that MoIl-MoE amplifies seman-
tic features in low-morphology languages while
maintaining accuracy in high-morphology ones.

(85).

4. We validate Mol via three independent analy-
ses: (1) correlation with rule-based accuracy
(r = 0.75), (2) interaction with semantic vs.
morphological features (r = —0.736), and (3)
performance of Mol-based expert routing (§6).
Mol complements modular approaches such as
adapters and LoRA (Pfeiffer et al., 2021; Hu et al.,
2022) by offering a typologically grounded cri-
terion for parameter sharing, promoting transfer
among structurally aligned languages and reducing
cross-linguistic interference.

Most prior work treats typology as metadata, via

English Word | Bantu Cognates
S

Sotho: noha, Ndonga: eyoka,
Swahili: nyoka, Zulu: inyoka,
Umbundu: onyoha

snake

b finger

Herero:  ominwe, Ndonga:
omunwe, Shona: munwe

Sotho:  nkwe, Xhosa: in-
gwe, Zulu: ingwe, Kwanyama:
ongwe

d leopard

? kidney Sotho: phio, Kwanyama: ofiyo,

Swabhili: figo, Shona: itsvo

Table 1: Lexical similarity, morphological diver-
gence. Cognates for basic concepts across Bantu
languages often share phonological roots but differ
in noun class morphology, highlighting the need for
structure-aware modeling via Mol.

language vectors or coarse typological features (Lit-
tell et al., 2017; Ustiin et al., 2022); we treat it as
an architectural design principle.

2 Morphological Index (Mol)

Phonological similarity does not equal structural
similarity. As Table 1 shows, many Bantu lan-
guages share cognates for basic concepts like snake
or finger, yet realize them with different morpho-
logical patterns, especially in their noun class pre-
fixes. These surface overlaps mask variation in
how structure is encoded. This variation is not just
linguistic, it affects how models generalize, and
what features they rely on to make predictions. We
ask: in multilingual models, can linguistic structure
guide model design?

Noun Class Structure and Variation Bantu
nouns consist of a prefix and a stem, as illustrated
in Figure 2. The prefix is a short morpheme that
signals the noun class—a grammatical category
grouping nouns by features such as animacy, size,
or shape. For example, humans typically fall into
Class 1/2 (singular/plural), animals into Class 9/10,
and liquids into Class 5/6. Yet cultural nuance can
override these tendencies: in Umbundu and Zulu,
the words for criminal ' are placed in Class 9, nor-
mally reserved for animals, reflecting a view of
criminals as “lacking humanity” (Buthelezi, 2008).

While the overall structure of noun classes is shared
across Bantu languages, the number of active

!Criminal is ondingavivi in Umbundu , inswelaboya in
Zulu.
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Figure 2: Morphological Index (Mol) in Bantu noun
structure. High-Mol languages like Kwanyama use
longer, distinct prefixes that strongly signal noun class.
Low-Mol languages like Swahili use shorter, reused
prefixes, making classification more reliant on seman-
tics. Some classes are missing entirely in Low-Mol
languages (e.g., Swahili lacks Class 13). Across all lan-
guages, prefixes carry no meaning by themselves, they
derive semantics only in combination with stems.

classes and the distinctiveness of their prefixes vary
considerably. The Bleek-Meinhof system (Bleek,
1851, 1869; Meinhof, 1899, 1932) remains the
most widely used framework, assigning numbered
classes (1-23) to enable cross-linguistic compar-
ison. Most modern Bantu languages use only a
subset (e.g., Swahili: 18, Shona: 20).

Despite this variation, alignment across languages
remains strong. For example, Class 7 in Swahili
(ki-) corresponds to Class 7 in Zulu (isi-), Shona
(chi-), and Kwanyama (oshi-): a pattern reflected
even in the languages’ names: Kiswabhili, IsiZulu,
ChiShona, Oshikwanyama.

Quantifying Morphological Dependence The
Morphological Index (Mol) quantifies how explic-
itly noun class distinctions are marked in a lan-
guage’s surface morphology. High-Mol languages
use longer, more distinctive prefixes that reliably
signal class; Low-Mol languages use shorter or
overlapping prefixes, shifting more of the clas-
sification burden to semantics. Mol captures
this gradient as a continuous score—not a binary
split—offering a fine-grained measure of structural
reliance on morphology. Specifically, Mol is com-
puted as the total number of characters used across
a language’s noun class prefixes:

Mol; = > [p,|

ceCy

Class Swabhili Xhosa
1 m- um-
2 wa- aba-, abe-
3 m- um-
7 ki- isi-
10 N- iiN-, iziN-

Table 2: Sample noun class prefixes for Swahili
and Xhosa. These prefixes determine agreement
across verbs, adjectives, and more, shaping much of
the morphosyntactic structure.

where C; is the set of Bleek-Meinhof noun classes
in language [, and |p,| is the character length of the
prefix for class c.

An alternative formulation is the average prefix

length:
1
vt Z ‘pc|
‘Cl| ceCy

MOI[ =

While more interpretable, the average form is less
effective at separating High- vs. Low-Mol lan-
guages in practice. We use the total length as our
main metric, as it better captures the cumulative
structural signal, a finding supported by empirical
trends in Figure 1 and later analyses (§6).

Mol requires only a list of noun class prefixes,
which are well-documented in grammar books and
comparative studies of Bantu languages (Guthrie,
1967; Maho, 1999). Table 2 presents an abridged
set of prefixes for two languages, illustrating the
basis for computing Mol. Full prefix tables for all
languages in our study are provided in Table 8 in
Appendix A.

Why Mol Matters for NLP Prior typology-
aware NLP methods often ask: What kind of
language is this, in the abstract?—using coarse,
static descriptors like SVO order, agglutinativity,
or noun class presence (Dryer and Haspelmath,
2013; Moran et al., 2014; Hammarstrom et al.,
2015; Lewis et al., 2015; Littell et al., 2017). But
such features are too sparse and high-level to cap-
ture the fine-grained structural variation found even
within language families like Bantu.

Unlike coarse typological metadata in databases
such as WALS (Dryer and Haspelmath, 2013), Mol
derives a language’s structural profile from surface
morphological patterns. Figure 3 shows WALS’
global noun class coverage, with notable concen-
tration in Africa. However, its limited granularity
and sparse coverage for Bantu languages reduce its
practical utility. Mol fills this gap by leveraging re-
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Figure 3: Global distribution of noun class systems.
Derived from WALS (Dryer and Haspelmath, 2013),
darker regions indicate more noun classes. While
these systems are common in Africa, Asia, and the
Americas, WALS provides limited coverage of Bantu
languages, motivating alternatives like Mol.

sources like grammars and dictionaries to produce
a continuous, morphology-grounded metric.

3 Noun Class Recognition (NCR)

In English agreement is mostly governed by num-
ber (e.g., cat is vs. cats are). Bantu languages
encode agreement via noun classes. Thus, predict-
ing the correct class is critical to grammaticality,
making Noun class recognition (NCR) a natural
testbed for structure-sensitive modeling in Bantu
languages.

We define NCR as a classification task:

f(n) = ¢,

where f maps a noun n to its correct class ¢, drawn
from a language-specific inventory.

ceC

NCR is not just a linguistic curiosity; it has con-
crete value for NLP tasks such as POS tagging, de-
pendency parsing, and text generation. To demon-
strate its syntactic relevance, we integrate NCR into
Swahili POS tagging by replacing the generic “NP”
tag with class-specific labels (e.g., “NP.1”, “NP.2”)
using the MasakhaPOS dataset (Dione et al., 2023),
in our experiments. This enables models to learn
agreement patterns that hinge on noun class iden-
tity.
To illustrate why agreement matters, consider
Kwanyama, a Bantu language spoken in Namibia
and Angola. In this language, the verb “eat” (lya)
21 ike POS tags in English dictionaries, noun classes can
be assigned in isolation (NCR without sentence context), and
many Bantu dictionaries include such labels. However, just
as with POS tagging, context often disambiguates class mem-

bership. In this paper, we focus on the context-free setting,
while demonstrating a contextualized variant via Swahili POS

tagging.

DictionaryNCR WikiNCR
Train Val. Test

Swahili (swa) 20,603 626 1,500 1,297
Ndonga (ndo) 14,705 362 1,500 -
Xhosa (xho) 8,737 204 1,000 898
Zulu (zul) 3,303 123 700 502
Luganda (lug) 3,067 117 700 -
Shona (sna) 2,457 130 700 -
Kwanyama (kua) 958 82 300 -
Umbundu (umb) 616 54 300 -
Total | 54446 1,698 6,700 2,697
Herero (her) - - 403 -
Sotho (sot) — - 284 -

Table 3: DictionaryNCR and WikiNCR dataset
statistics. Each language name is followed by its
ISO 639-3 code. DictionaryNCR is used for model
training and development; WikiNCR derived from
Wiktionary, is used for out-of-domain evaluation.

must agree with the noun class of its subject. The
prefix governs both the noun form and the appro-
priate verb conjugation:

* omunhu (NP.1) okwa lya — the person ate
* ovanhu (NP.2) ova lya — the people ate
* oshikombo (NP.7) osha lya — the goat ate

These patterns are not idiosyncratic—they are core
to Bantu grammar. By modeling NCR as a pre-
diction task, we enable models to capture such
structure-sensitive dependencies, improving syn-
tactic accuracy in downstream tasks.

Finally, during dataset construction, we observed
that some Bantu dictionaries lack noun class labels.
NCR models offer a scalable way to fill this gap,
assisting both NLP applications and lexicographic
annotation efforts.

4 Datasets

Existing computational resources for Bantu noun
class systems are sparse. Prior work has oper-
ated with fewer than 100 annotated examples per
language (Byamugisha et al., 2018). To support
large-scale evaluation and typologically informed
modeling, we construct two datasets for noun
class recognition (NCR). Each entry includes a
Bantu noun, its class label, an English gloss, and
a GPT-4-expanded definition. DictionaryNCR
(63K nouns, 10 languages) is our primary dataset,
WikiNCR (2.6K nouns, 3 languages) serves as an
out-of-domain test set for evaluating generalization.
Dataset statistics are summarized in Table 3.
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DictionaryNCR This dataset is built from bilin-
gual dictionaries and grammar books obtained via
Google Books,” the Library of Congress,* and uni-
versity archives, and online sources. Most sources
were scanned or in PDF form, requiring OCR (via
MathPix) followed by parsing and structuring via
GPT-4. Manual inspection of 200 samples across
two languages revealed no hallucinated content.

We distinguish two source types (see Figure 4):

* Type 1 (Explicit class labels): Dictionaries for
Swabhili, Kwanyama, Shona, Luganda, and Sotho
explicitly annotate noun classes. These entries
(31,524 of 62,844) required only extraction and
formatting.

* Type 2 (Inferred class labels): Type 2 sources,
provide nouns labeled with prefixes, but lack ex-
plicit class labels. This was the case for Ndonga,
Umbundu, Xhosa, Zulu, and Herero. For these
languages, we inferred class labels from prefixes
using grammar-derived mappings. Ambiguous
cases were resolved heuristically via prefix pat-
terns and glosses.

WikiNCR This dataset is sourced from
Wiktionary,’ where  certain  languages
provide explicit noun class labels (e.g.,

https://en.wiktionary.org/wiki/Category:
Swahili_nouns_by_class). These HTML
entries were parsed using BeautifulSoup. While
Wiktionary coverage is limited, this dataset offers
a complementary testbed for out-of-domain
evaluation, a key challenge in robust NLP (Jia and
Liang, 2017; Ribeiro et al., 2020).

Noun class distributions are shown in Table 9 for
DictionaryNCR, and in Table 10 for WikiNCR,
Appendix A.

5 Methodology

We build a multilingual model for Noun Class
Recognition (NCR) that puts Mol to work—not
just as a typological insight, but as a design princi-
ple. Our architecture draws on two key signals that
shape Bantu noun systems: morphology (prefix
patterns) and semantics (conceptual meaning).

Morphological Features: Subword Tokens
Morphology offers powerful features for noun class
prediction, so much so that no Bantu grammar

3https ://books.google.com/
4https://www. loc.gov/
Shttps://www.wiktionary.org/

I —
epaya n LL 5/6 belt. >
epele n HH 5 rot, degeneration.
epemba n HH 5 season of falling leaves.

epena n HH 5 dancing festival.
ependa n LL 5/6 hero.

Laxovwr (Isi or Ise), n. Straggler, returning after a
disastrous failure ; used adverbially.

Laxca (1), n. Sun; sun's light or heat ; day of sun-
light ;* a handsome person.

Figure 4: Sources of noun class annotations used
to create the DictionaryNCR dataset. (Top) Type
1 sources, such as this Kwanyama grammar book,
explicitly list noun classes. (Bottom) Type 2 sources,
like this Zulu dictionary sourced from Google Books,
provide nouns labeled with prefixes, but lack explicit
class labels.

book is complete without a table of noun class
prefixes. These prefixes act as morphosyntactic
markers of class membership, yet their surface
forms differ widely across languages (see Table 8 in
Appendix A). Instead of hand-coding prefix rules,
we rely on SentencePiece tokenization (Kudo and
Richardson, 2018), enabling the model to discover
subword patterns that correlate with noun classes,
no explicit supervision needed.

Semantic Features: English Glosses Bantu
noun classes exhibit broad semantic regularities:
humans often fall into Class 1/2, plants into Class
3/4, and large animals into Class 9/10 (see Table 4).
While these patterns are well-documented, their
predictive utility has rarely been quantified at scale.
But how do we put meaning to work in languages
where the model has limited—or no—pretraining
exposure? Large language models do encode se-
mantic knowledge, but their coverage of Bantu
languages is sparse. Feeding Bantu nouns directly
into such models yields poor representations. To
bridge this gap, we pair each Bantu noun with its
English gloss during training, allowing the model
to ground predictions in a shared semantic space
through pretrained English embeddings. This not
only enhances generalization, but also allows us to
empirically test when and where semantic features
truly matter.

Supervised Fine-Tuning To train our model to
predict noun classes using both morphological and
semantic features, we fine-tune mT5-XL (3.7B pa-
rameters) on paired Bantu nouns and their English
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Class Generalized Semantics
172 Humans
3/4 Plants, trees
5/6 Paired objects, liquids, masses
7/8 Inanimates, diminutives
9/10 Animals, some inanimates
14 Abstracts, mass nouns
15 Infinitives
16-18 Locatives

Table 4: Semantics in Bantu noun classification.
Many noun classes map to broad semantic categories.
This mapping supports the use of English glosses as
a semantic proxy in our model. See full list in Table 7
(Appendix A).

glosses. The prompt takes the form: Given the
Bantu noun [X] whose English meaning is [Y], pre-
dict its noun class, where [X] is the noun and [Y] is
its English gloss with an expanded definition. This
setup allows the model to align surface form with
meaning in a controlled way.

Interestingly, we found that specifying the Bantu
language in the prompt hurt performance. Possibly
because it causes the model to overfit to surface
features, rather than generalizing across typolog-
ically similar languages. The model is trained to
predict a noun class label (e.g., "1", "15") using a
standard sequence-to-sequence loss:

|y]

Lsrr(f(),y;0) = =Y log P(yx | y<k, f(2);6)

k=1

where 0 are model parameters and y; denotes the
k-th output token.

To prevent overfitting to high-resource languages,
we apply balanced language sampling during train-
ing (see Appendix B).

Mol-MoE: Typology-Driven Adaptation via Ex-
perts Mol serves not only as a diagnostic sig-
nal, but as a structural guide for model design.
We introduce MolI-MoE, a Mixture of Experts
(MoE) model (Jacobs et al., 1991; Shazeer et al.,
2017), in which each expert is specialized for a
distinct morphological regime. A lightweight, non-
parametric router uses Mol scores to assign each
input to the most appropriate expert, enabling dy-
namic, structure-aware adaptation at inference time
(Figure 5).

We define two experts:

* High-Mol Expert: For languages where sub-
word token patterns, approximating prefixes and
stems, provide strong morphological features.

Figure 5: MoI-MoE: Typology-Aware Expert Rout-
ing for NCR. Mol routes inputs to specialized ex-
perts: morphology-driven or semantics-driven.

* Low-Mol Expert: For languages where prefix
forms are less informative and semantic context
plays a greater role.

Unlike traditional language-specific routing, Mol-
based routing generalizes across structurally simi-
lar languages, even when they differ in vocabulary
and share few subword tokens.

6 Experiments

Our experiments evaluate Mol as both a predictive
measure of typological variation, and a structural
signal for guiding model adaptation. We fine-tune
mT5-XL (3.7B parameters) using a learning rate of
5 x 1075, batch size of 16, and mixed-precision
(FP16) training. All experiments are run on four
NVIDIA A40 GPUs and complete within 5 hours.

To separate High- and Low-Mol languages, we
apply a Mol cutoff of 50.0 based on validation
data.

We compare a range of models: a rule-based classi-
fier (RULES) using fixed prefix-to-class mappings;
a no-subword model (VOCAB) trained on full to-
kens; a PMASK variant where prefixes are masked
to probe reliance on morphology; a semantics-
only model (SEM) using English glosses as input
but no Bantu words; a morphology-only model
(MORPH) using Bantu words without English
glosses; and the full model (NCR-6)) trained with
both morphology and semantics. In addition, we
evaluate two MoE architectures: TO-MoE, with
routing based on token overlap between languages,
and our proposed MoI-MoE, which uses Mol as a
typologically informed routing signal.
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Languages

Avg
Kwanyama Luganda Ndonga Shona Swahili Umbundu Xhosa  Zulu ‘

Rule-Based RULES 86.33 45.13 90.33 5429  48.73 87.50 7522 80.00 ‘ 71.20
VOCAB 29.00 23.12 24.11 28.86 24.68 21.50 2256  19.25 | 24.13
PMASK 33.33 54.10 20.12 21.32 31.29 22.18 50.00 44.51 | 34.61
SEM 39.33 36.77 62.82 38.76 63.34 30.33 4234 48.07 | 45.22
MORPH 94.67 71.70 96.62 88.84 80.07 84.98 88.25 9278 | 87.99
NCR-0q 91.33 80.29 95.40 95.14 93.27 88.00 87.32  88.57 | 89.91
A SEM -3.34 2.59 -1.38 6.30 13.20 3.02 -093 421 1.92
TO-MoE (t.r.) 95.00 46.91 90.58 45.49 94.13 87.37 86.80 92.48 | 79.8
Mol-MoE 95.00 84.57 97.37 95.57  94.80 87.37 88.67 92.48 | 92.00

Table 5: Accuracy on Bantu Noun Class Recognition (NCR) across eight languages. MoI-MoE outperforms
all baselines. ASEM shows the performance gap between a morphology-only model (MORPH) and the full
model (NCR-6)), capturing the added value of semantic features. TO-MoE uses a token-overlap-based router;

Mol-MoE routes by Mol.
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Figure 6: Correlation between Mol and rule-based
accuracy. High-Mol languages (blue dots) show
stronger rule-based NCR (orange dots). Pearson
r = 0.75 indicates a strong positive correlation.

6.1 Main Results

Table 5 reports accuracy on the NCR task across
eight Bantu languages. With 22 noun classes, ran-
dom accuracy is just 4.5%. Mol-MoE achieves
the highest overall performance (92.0%), outper-
forming both the token-overlap MoE baseline (TO-
MoE: 79.8%) and a monolithic multilingual model
(89.91%). Crucially, Mol-based routing enables tar-
geted integration of semantic features in low-Mol
languages. On Swahili, a structurally light lan-
guage, Mol-MoE improves over the morphology-
only model by +14.7 points (94.80% vs. 80.07%).
On Zulu, a high-Mol language, the models perform
nearly identically (92.48% vs. 92.78%), suggesting
that rich morphological features alone are suffi-
cient.

In what follows, we analyze the Mol signal in de-
tail, addressing three key questions: (i) Does Mol

@ Swanil —— Trend line

Pearson r = -0.736 ~1 std. dev.
10 @ Low Mol
@ High Mol

@ Umbundu

@ Xhosa

ASEM (NCR - MORPH)

©Kwanyama

40 50 60 70 80
Morphological Index (Mol)

Figure 7: Correlation between Mol and ASEM.
High-Mol languages rely less on semantic features
(lower ASEM). Blue dots indicate Low-Mol lan-
guages, orange dots indicate High-Mol. Pearson
r = —0.74 reflects a strong negative correlation,
showing that as morphological richness increases,
the benefit of adding semantics decreases.

predict the effectiveness of rule-based classifiers?
(i1) Does it capture where semantic features supple-
ment morphological ones? (iii) Can it guide expert
routing in a mixture-of-experts model?

6.1.1 Analysis #1: Rule-Based Accuracy
Tracks Mol

If Mol captures morphological salience, then
rule-based classifiers, relying purely on prefixes,
should perform better in High-Mol languages. Fig-
ure 6 confirms this: rule-based accuracy correlates
strongly with Mol (r = 0.75), suggesting that in
languages with richer morphology, morphology
alone is often sufficient for accurate classification.
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6.1.2 Analysis #2: Semantic Gain Tracks
Morphological Weakness

If morphology is weak, semantics must carry some
of the load. To test this, we measure ASEM—the
accuracy gain from adding semantic features to a
morphology-only model:

ASEM = Accner-9, — ACCMORPH

As shown in Figure 7, ASEM is negatively cor-
related with Mol (r = —0.736): High-Mol lan-
guages (e.g., Ndonga, Zulu) show little to no ben-
efit from semantics, while Low-Mol languages
(e.g., Swahili) rely on them heavily. This pattern
strengthens the case for Mol as a structural sig-
nal that captures where meaning must supplement
form.

6.1.3 Analysis #3: Typological-Guided
Adaptation

If Mol captures typologically meaningful distinc-
tions, it should support effective expert selection
in Mixture-of-Experts (MoE) models. MoI-MoE
achieves the highest overall accuracy (92%), sig-
nificantly outperforming TO-MoE (80%), which
relies on token overlap for routing. TO-MoE mis-
routes languages with shared morphology but low
lexical similarity. In contrast, Mol enables High-
Mol languages to benefit from morphology-driven
processing, while Low-Mol languages are routed
to experts that integrate semantic features.

6.1.4 Main Results Summary

Together, the three core analyses: (i) rule-based
accuracy, (ii) morphology vs. semantics sensitivity,
and (iii) Mol-guided expert routing, offer converg-
ing evidence that Mol is a robust, linguistically
grounded measure of structural variation in Bantu
languages, with clear utility for model adaptation.

6.2 Ablating Morphology

Mol measures structural reliance on morphology,
but which morphological signals are actually used
by the model? We probe this by ablating key com-
ponents: subword tokenization and noun class pre-
fixes. Without subword tokenization, (VOCAB),
the model is forced to operate on full words. Per-
formance drops across the board (average 24.13%
vs 87.99%), confirming that segmenting words into
morpheme-like units is essential for learning mor-
phological distinctions. Masking noun class pre-
fixes (PMASK) also causes substantial degradation

(34.61% vs 87.99%). This confirms that prefixes
are not only essential to model predictions but also
justify their centrality in Mol computation.

6.3 Probing the Mol Signal

While Mol is a continuous, data-driven metric, one
might ask whether it merely recovers familiar lin-
guistic features, such as, the presence of augments.
Augments are vowel-like morphemes (Blois, 1970;
Van der Wal and Lusekelo, 2022) that precede the
noun class prefix in some Bantu languages (e.g.,
Zulu’s umu-, where u- is the augment and mu- the
prefix). They are common in High-Mol languages
and largely absent in Low-Mol ones, making them
a plausible driver of Mol values.

To test this, we recomputed the correlations in Fig-
ure 6 and Figure 7 after removing augment seg-
ments from all prefixes. While the correlations
weakened, they did not collapse—indicating that
Mol captures structural variation beyond just aug-
ment presence. Model performance using this “aug-
mentless” Mol also remained high (91.11%), only
slightly below the original 92%. This suggests that
while augments are a key component, Mol encodes
a broader typological signal.

6.4 Error Analysis

Mol-MoE performs strongly, with over 90% accu-
racy on several languages, but where do the remain-
ing errors come from? Table 6 shows they are not
random: they track structural ambiguity.

In High-Mol languages, a leading cause of the
remaining errors (58%) is overlapping prefixes.
Zulu’s um(u)- marks both Class 1 (humans) and
Class 3 (trees). These overlaps are less disruptive
in Low-Mol languages where the semantics-aware
expert can disambiguate. Yet, reintroducing se-
mantic features into High-Mol languages tends to
degrade performance, a future approach may re-
quire selective integration of semantics. In Low-
Mol languages, errors are more semantically driven.
For example, in Swahili, a common confusion is
between Class 9 (animals) and Class 5 (miscella-
neous), due to the ambiguous nasal (zero) prefix
in Class 9. In both settings, the nature of the error
reflects the underlying structure, further providing
interpretability to the Mol-guided approach.

6.5 Generalization and Broader Utility

To understand the robustness and applicability of
Mol-guided modeling, we evaluate its performance
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Lang. ‘ True — Pred. ‘ Err. ‘ Cause

Zulu 1—3 58.1% | Shared prefix
Ndonga 9—7 26.8% | Mistokenization
Swahili 9—5 14.3% | Nasal (zero) prefix

Table 6: Representative NCR errors, grouped by
likely structural cause.

under domain shift, in zero-shot settings, and in a
downstream syntactic task.

Cross-Dataset Evaluation First, cross-dataset
evaluation shows that models trained on Dictio-
naryNCR experience a notable drop when tested
on WikiNCR: Swabhili falls from 94.8% to 75.1%,
Xhosa from 88.7% to 78.3%, and Zulu from 92.5%
to 76.1%. This reflects overfitting to dictionary-
style input. Unlike DictionaryNCR, WikiNCR in-
cludes more everyday terms, proper names, and
locatives (Classes 16—18), which are underrepre-
sented in grammar books but common in natural
usage. These results mirror broader trends in NLP,
where cross-domain generalization remains a per-
sistent challenge.

Zero-Shot Generalization Second, Mol-based
routing improves zero-shot generalization to un-
seen languages in comparison to the monolithic
NCR model. Herero achieves 74.1% accuracy
from Mol-MoE (vs. 71.9% monolithic NCR) po-
tentially due to high subword overlap with training
languages(see Figure 9), while Sotho has 60.6%
(vs. 52.11% monolithic NCR) despite limited lexi-
cal similarity (Figure 9). Full results are provided
in Appendix D.

Downstream Tasks Finally, noun class distinc-
tions extend beyond NCR. We integrate NCR into
Swahili POS tagging. Fine-tuning AfroXLMR-
large(Alabi et al., 2022), which holds the best per-
formance on MasakhaPOS(Dione et al., 2023), on
an NCR expanded tagset results in only a 1.0%
drop in accuracy ( 93.5% — 91.7% ). Given
the small dataset size ( 800 sentences), this per-
formance drop is expected, as models struggle to
generalize over a more granular tagset with limited
supervision. See Appendix E for details.

7 Related Work

Bantu noun class systems are well-studied in lin-
guistics (Guthrie, 1967; Maho, 1999), but compu-

tational approaches remain limited. Prior work
focuses on rule-based pluralization (Byamugisha
et al., 2018) and heuristics (Reid et al., 2021), often
lacking scale or reusability.

Typological Features in Multilingual Model
Several typology-aware approaches rely on
databases like WALS (Dryer and Haspelmath,
2013), PHOIBLE (Moran et al., 2014), Glot-
tolog (Hammarstrom et al., 2015), and Ethno-
logue (Lewis et al., 2015), which provide language-
level features such as word order, phoneme inven-
tories, or case marking. Tools like lang2vec (Littell
et al., 2017) package these into language vectors
that can be used to guide parameter sharing, adapter
conditioning, or zero-shot inference. However,
these features are often too coarse, and sparsely
populated to distinguish typologically similar lan-
guages such as Bantu languages.

Mixture of Experts: From Scale to Structure
Mixture of Experts (MoE) models scale transform-
ers via sparse activation, routing each input to a
subset of experts (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022). While effective
for efficiency, these models rarely incorporate lin-
guistic structure; routing is typically learned via
token-level gating without typological grounding.
Our Mol-MoE model introduces a typologically
interpretable routing mechanism based on Mol,
bridging structural variation and expert selection to
improve multilingual generalization.

8 Conclusion

We introduce the Morphological Index (Mol), a ty-
pologically grounded metric that captures structural
variation in Bantu languages. By linking linguistic
structure to transformer model behavior, Mol en-
ables interpretable, morphology-aware adaptation.
Our Mol-MoE model outperforms monolithic and
token overlap-based baselines on noun class recog-
nition, demonstrating that structural typology can
serve as an effective basis for model design. While
our focus is on Bantu, this work points toward a
broader approach: one where multilingual NLP is
informed not only by token overlap or genetic lin-
eage, but by the structural logic that shapes human
language.
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Limitations

Our Mixture of Experts (MoE) model improves
performance by adapting to linguistic typology, but
it relies on hard routing based on Mol, which may
not fully account for intermediate cases. A soft
routing strategy could enhance flexibility. Addi-
tionally, our datasets, while large, cover only 10
Bantu languages out of over 500. Expanding to
more languages remains crucial but challenging
due to limited digital resources and scarce struc-
tured annotations. Addressing this gap will re-
quire community-driven data collection, language
archives, and corpus-based approaches beyond
dictionary-derived data.

While Mol provides a useful typological signal, it
simplifies linguistic variation by focusing solely on
noun class prefix statistics. Some Bantu languages
exhibit irregular noun class behavior due to phono-
logical changes, loanwords, or diachronic shifts
that Mol does not capture.

Beyond noun class recognition, can Mol guide
other NLP tasks such as language modeling, pars-
ing, or machine translation? These open questions
were not explored in this work but present promis-
ing directions for future research.

However, we focused on Transformer-based mod-
els due to their current popularity and effectiveness
in NLP tasks. Future work should explore the ap-
plicability of Mol to other architectures and tasks.

Potential Risks

Our work carries risks related to linguistic repre-
sentation. We analyze structural variation across
10 Bantu languages, but there are over 500, and our
findings may not generalize universally. Although
the Morphological Index (Mol) improves model
adaptability, rigid typological categorizations could
oversimplify linguistic diversity particularly in lan-
guages with irregular noun class behavior or di-
achronic shifts.
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A Noun Classes and Datasets - Additional
Details

Class | Generalized Semantics

1 Singular for humans

la Kinship terms, personified beings

2 Plural of Class 1, honorific forms

2xX Plural of Class 1a, polite forms

3 Trees, plants, certain inanimates

4 Plural of Class 3

5 Paired objects, augmentatives, miscella-
neous

6 Liquids, masses, collectives, plural for
Classes 5,9, 11, 14, and 15

7 Inanimates, styles, diminutives, augmenta-
tives

8 Plural of Class 7

Animals, certain inanimate objects

10 Plural of Classes 9 and 11
11 Long/thin objects, abstracts

12 Diminutives
13 Plural of Class 12
14 Abstracts, mass nouns

15 Infinitives (verbal nouns)

16 | Locatives (near, specific places)

17 Locatives (general, distant)

18 Locatives (interior, enclosed)

19 Diminutives, small objects

20 Augmentatives, diminutives

21 Pejoratives, augmentatives
22 Plural of Class 20

23 Locatives (unspecified category)

Table 7: Generalized semantic roles of Bantu noun
classes. Most languages use a subset of 11 to 20 noun
classes. From (Maho, 1999).
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Noun Class Languages
Sotho Herero Umbundu Zulu Kwanyama Swabhili Shona Xhosa Ndonga Luganda
1 [ mo- omu- [ omu-, u-, 0- um(u)- [ omu- m- [ mu um- omu- mu-
la 0 0 - u- 0 N/A 0 u- 0 N/A
2 [ ba- ova- [ oma-, ova-, a- | aba-, abe- [ ova- wa- [ va aba-, abe- aa- ba-
2a bo- 00- - o- 00- N/A va-,vana-,a- 00- 00- N/A
3 mo- omu u: um(u)- omu- m- mu um- omu- mu-
4 me- omi- ovi- imi- omi- mi- mi imi- omi- mi-
5 le- e- e- i-, ili- e- ji- i i-, ili- e- li-
6 ma- oma- a-, ova ama: oma ma- ma ama-, ame- oma- ma-
7 se- otji- oci- isi- oshi- ki- chi is(i)- oshi- ki-
8 di- ovi- ovi- izi- oi- vi- zvi iz-, iz(i)- ii- bi-
9 0 o- o-, 0 in- o- N- i iN- o- n-
0 di 0z0(N) *olo(N) izin- Cee N | di iN-, iziN- 00- n-
11 N/A oru- olu- u-, ulu- olu- u- ru u-, ulu-, ulw-, olu- lu-
ul-
12 N/A oka- oka- N/A oka- N/A ka N/A oka- ka-
13 N/A otu- otu- N/A N/A N/A tu N/A omalu- tu-
14 bo- ou- - ubu- ou- u- u ubu-, ub-, uty-  uu- bu-
15 ho- oku- oku- uku- oku- ku- ku uku- oku- ku-
16 0 pu- pa- N/A po- -ni / pa- pa N/A po-, pu- wa-
17 ho- ku- ko- uku- ko- -ni / ku- ku N/A ko-, ku- ku-
18 | mo- mu- | vu- N/A | mo- -ni/ m- | mu N/A mo-, mu- mu-
19 N/A N/A N/A N/A N/A N/A svi N/A N/A N/A
20  NA ku- N/A N/A N/A N/A N/A N/A N/A qu-
21 N/A N/A N/A N/A N/A N/A zi N/A N/A N/A
2 NA N/A N/A N/A N/A N/A N/A N/A N/A ga-
23 N/A N/A N/A N/A N/A N/A N/A N/A N/A e-

Table 8: Noun class prefixes for the 10 Bantu languages in our study. While prefixes facilitate noun classification,
they are not directly given to the model, which must learn their patterns via subword tokenization. We compute
the Morphological Index (Mol) using Classes 1-15, represent core grammatical distinctions; higher classes (e.g.,
16—18) are typically locative and less consistent across languages. Prefix tables were derived from grammars and
dictionaries.

Class | Herero Kwanyama Luganda Ndonga Shona Sotho Swahili Umbundu Xhosa Zulu

1 48 156 858 1045 454 58 1228 27 691 696
2 5 6 22 1216 0 0 1150 0 27 5
3 35 54 293 419 1024 30 1063 88 1177 52
4 2 0 13 426 6 0 1128 13 21 24
5 45 408 238 2527 0 84 2779 244 2834 822
6 34 31 52 2431 531 16 3289 0 174 88
7 40 163 660 1153 1254 60 1298 245 1164 866
8 9 32 109 1327 0 2 1263 0 38 32
9 72 264 927 2296 23 302 4090 201 845 666
10 0 24 34 1961 2 10 3977 15 3 20
11 27 0 50 175 0 0 532 96 1184 13
12 17 91 265 524 109 0 1 32 0 0
13 0 0 2 72 0 0 0 7 0 0
14 50 111 232 982 0 6 901 0 502 220
15 19 0 104 13 2 0 14 2 969 622
16 0 0 16 0 0 0 2 0 0 0
17 0 0 1 0 5 0 14 0

18 0 0 1 0 5 0 0 0 0 0
19 0 0 0 0 1 0 0 0 0 0
20 0 0 1 0 0 0 0 0 0 0
22 0 0 3 0 0 0 0 0 0 0
23 0 0 2 0 0 0 0 0 0 0

Table 9: Noun class distribution across 10 Bantu languages in the DictionaryNCR dataset. Higher-numbered classes
are not present in all languages and, even when present, they tend to be rare.
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Noun Class \ Swahili Xhosa Zulu
1 205 105 95
3 198 147 84
4 1 2 0
5 124 137 79
6 194 5 7
7 197 156 77
8 11 0 0
9 133 158 70
10 8 0 0
11 223 109 41
14 0 63 29
15 0 15 16
16 3 0 0
17 0 1 4

Table 10: Noun class distribution in the WikiNCR

dataset.
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B Methodology - Additional Details

Balanced Language Sampling The languages
in our datasets differ widely in data availability,
risking overfitting to high-resource languages like
Swahili while underperforming on low-resource
ones. To mitigate data imbalance, we applied a bal-
anced sampling strategy following prior work on
multilingual training (Conneau and Lample, 2019;
Xue et al., 2021), adjusting language contributions
during training:
G = fi = where p; = SN, Tepresents
raw data proportions. Lower « values boost low-
resource languages. We set o = (.7, which pro-
vided a good balance across languages. Figure 8
in Appendix A visualizes the effect of different o

values on the DictionaryNCR dataset.
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Figure 8: the behavior of the sampling strategy for dif-
ferent values of a on our DictionaryNCR dataset.

C Experiments: Token Overlap Matrix

Figure 9 shows the subword and full-token over-
lap matrices across the 10 Bantu languages in our
study, as well as English. The subword matrix was
used to inform the design of the TO-Mol baseline,
which groups languages based on lexical similarity.
The subword overlap reveals considerable but un-
even token sharing among Bantu languages, while
English remains highly divergent. The full-token
overlap matrix shows substantially lower overlap
overall, which shows that the languages generally
do not share many full tokens.

D Experiments: Zero-Shot Inference

We further evaluate generalization to languages
unseen during training. Table 11 shows that Mol-
MOoE outperforms the monolithic NCR model in

zero-shot settings, correctly routing Low-Mol lan-
guages (e.g., Sotho) and High-Mol ones (e.g.,
Herero) to the appropriate expert.

While absolute performance is modest, Mol-based
routing improves accuracy in both cases. Herero
benefits from substantial subword overlap with
training languages, while Sotho’s lower overlap
(Figure 9) limits transfer. This highlights a lim-
itation of token-overlap approaches: structurally
similar but lexically divergent languages are often
misrouted. Mol, by contrast, captures structural
similarity directly—providing a principled way to
enable generalization even when surface forms dif-
fer.

Methods | NCR MoE
Sotho 52.11 60.56
Herero 71.90 74.12

Table 11: Zero-Shot NCR results

E Experiments: A Preliminary Study on
POS Tagging

Noun class distinctions are not limited to noun
categorization—they also drive morphosyntactic
agreement across verbs, adjectives, and pronouns.
To explore this, we adapt the Swahili POS tagging
dataset from Dione et al. (2023) by replacing the
generic “NP” tag with class-specific labels (e.g.,
NP1, NP2, etc.).

Table 12 shows that fine-tuning AfroXLMR-large
on this expanded tagset yields only a modest per-
formance drop (from 93.5% to 91.7%), despite
the increased label granularity and limited train-
ing data (800 sentences). This suggests that fine-
grained noun class information can be integrated
into downstream syntactic tasks without substan-
tially sacrificing performance—opening the door
to richer agreement modeling in African NLP.

Model UD | UD+NC
CRF 89.3 -
mBERT 92.0 -
XLM-R-large 93.2 -
AfroXLMR-large | 93.2 -
Ours | 935 | 917

Table 12: Swahili POS tagging accuracy with and with-
out noun class (NC) tags. UD: standard tagset. UD+NC:
extended tagset with fine-grained noun classes.
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Figure 9: Left: Subword token overlap across Bantu languages and English, where lighter colors indicate greater
overlap and darker colors highlight linguistic divergence. Bantu languages exhibit significant but uneven subword
overlap, while English shows minimal overlap with Bantu languages. Right: Full-token overlap matrix, showing
reduced overlap which, as shown in our experiments, results in significant performance drops in noun class

prediction.
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Figure 10: Data scaling trends for Swahili and Ndonga.

F Experiments: Scaling Data and Model
Size

Data Scaling We analyze NCR scaling trends
by evaluating accuracy growth in Swahili (Low-
Mol) and Ndonga (High-Mol), the two most well-
represented languages in our dataset. Figure 10
shows distinct learning curves: Ndonga reaches
90% accuracy with approximately 4K examples,
while Swahili requires over 10K. Both follow log
and power-law trends, demonstrating diminishing
returns as data increases.

Final accuracy converges at 92-93%, but mul-

tilingual models achieve higher scores, suggest-
ing that cross-linguistic transfer further enhances
NCR. However, additional scaling experiments
(Figure 11) are constrained by limited data.

Model Scaling To assess the impact of model
size, we compare performance across different mT5
variants. Accuracy improves from 62.2% with
mT5-Small to 92.0% with mT5-XL, demonstrating
clear benefits from larger model capacity. However,
gains diminish beyond mT5-Base, with only a 3%
increase from mT5-Large to mT5-XL, suggesting
diminishing returns at larger scales.
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Scaling Laws for NCR: Shona, Luganda, Zulu, Xhosa
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Figure 11: Data scaling analysis for the DictionaryNCR dataset across Bantu languages

While further scaling could improve performance,
our results highlight that structural priors, such as
the Morphological Index (Mol) in Mol-MoE, offer
an alternative path to efficiency. Instead of rely-
ing solely on larger models, integrating linguistic
knowledge allows NCR to generalize effectively
even at moderate scales (3.7B parameters).
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