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Abstract

Designing complex computer-aided design
(CAD) models is often time-consuming due to
challenges such as computational inefficiency
and the difficulty of generating precise models.
We propose a novel language-guided frame-
work for industrial design automation to ad-
dress these issues, integrating large language
models (LLMs) with computer-automated de-
sign (CAutoD).Through this framework, CAD
models are automatically generated from pa-
rameters and appearance descriptions, support-
ing the automation of design tasks during the
detailed CAD design phase. Our approach
introduces three key innovations: (1) a semi-
automated data annotation pipeline that lever-
ages LLMs and vision-language large models
(VLLMs) to generate high-quality parameters
and appearance descriptions; (2) a Transformer-
based CAD generator (TCADGen) that predicts
modeling sequences via dual-channel feature
aggregation; (3) an enhanced CAD modeling
generation model, called CADLLM, that is de-
signed to refine the generated sequences by in-
corporating the confidence scores from TCAD-
Gen. Experimental results demonstrate that
the proposed approach outperforms traditional
methods in both accuracy and efficiency, pro-
viding a powerful tool for automating indus-
trial workflows and generating complex CAD
models from textual prompts. The code is
available at https://jianxliao.github.io/
cadllm-page/

1 Introduction

Computer-aided design (CAD) is important in in-
dustrial design and additive manufacturing. It is a
key tool from the early stages of design to proto-
type production (Marchesi et al., 2021; Rapp et al.,
2021). Computer-Automated Design (CAutoD)
represents an evolution of the traditional CAD by

∗ These authors are equal first authors
† Corresponding authors

integrating automation and machine learning algo-
rithms to assist in the design process (Li, 2022).
With the fast growth of AI, especially large lan-
guage models (LLMs), combining CAD and AI is
becoming a major factor in improving design speed
and creativity (Guo et al., 2022; Dai and Hong,
2024). This development speeds up the design
process and increases the possible uses of CAD
systems, making them more intelligent and person-
alized. In recent years, more research focuses on
combining AI with CAD (Xu et al., 2024a; Wu
et al., 2024). Methods such as generating paramet-
ric CAD models from the textual description and
improving automated design tools with AI are pro-
posed (Yavartanoo et al., 2024). These studies show
that AI in CAD can speed up design and make CAD
tools more flexible and smart. The integration of
AI is pushing CAD towards CAutoD, representing
a shift from the traditional, computer-aided design
to computer-automated design processes.

Most current research on combining LLMs with
CAD focuses on the data synthesis ability of these
models, such as generating design information by
processing large datasets. However, design data
synthesized by LLMs often lacks sufficient accu-
racy (Fan et al., 2025; Wu et al., 2021). Without
parameter review, converting this data into high-
quality, editable CAD models is difficult, espe-
cially in industrial design, where precision is criti-
cal. While current research emphasizes the ability
of LLMs to understand complex problems, their
application in complex CAD tasks still faces sev-
eral challenges (Plaat et al., 2024). First, LLMs
are computationally expensive and inefficient (Luo
et al., 2023). Second, it is difficult for designers
to guide these LLMs to generate reasonable CAD
models using simple language or visual descrip-
tions, limiting their practical use in CAD design.
Despite these challenges, LLMs still have signifi-
cant potential in CAD design and warrant further
research. One promising solution is to combine
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finely tuned small generative models (with fewer
parameters) with large models (with massive pa-
rameters) (Xu et al., 2023). The small generative
models can provide more accurate guidance for
specific tasks, compensating for the limitations of
the large models in detailed reasoning and thus
improving overall accuracy (Chen and Varoquaux,
2024). This approach can enhance the design syn-
thesis capabilities of large models and reduce the
uncertainties that often arise in the reasoning pro-
cess (Fang et al., 2024). Using small models as
auxiliary modules in CAD design can improve the
accuracy and efficiency of design, offering a more
reliable solution for complex tasks.

In this paper, we propose a novel framework, as
shown in Fig. 1, for generating high-quality CAD
modeling sequences, where LLMs generate CAD
operation commands and the corresponding param-
eters to facilitate CAD modeling. Specifically, we
focus on the detailed design phase, where precise
parameter and appearance descriptions are trans-
formed into CAD models without human interven-
tion. Through this automation, our work represents
a significant step toward fully automating the CAD
design process, enhancing both speed and accuracy
in industrial applications, and supporting the vision
of CAutoD. Our approach has three key innova-
tions:

• We propose a semi-automated annotation
pipeline with LLMs and VLLMs, enabling
high-quality CAD description generation
through automated validation and verification.

• We present TCADGen, a Transformer-based
dual-channel architecture for transforming de-
scriptive annotations into CAD commands,
achieving improved sequence accuracy.

• We introduce a CAD-specific LLM enhance-
ment framework, demonstrating its effective-
ness in refining command types and parameter
values for industrial applications.

2 Related Works

Extending the traditional CAD, CAutoD has wit-
nessed significant advancements in recent years
across various industries, including ship design,
architectural design, and mechanical engineer-
ing (Ang et al., 2016; Bye et al., 2017). These
advancements are largely driven by progress in
dataset (Wu et al., 2021; Yavartanoo et al., 2024;

Fan et al., 2025), sequence generation (Yavartanoo
et al., 2024), and large language models (Rapp
et al., 2021). ModelNet is the first large dataset of
3D CAD mesh models (Vishwanath et al., 2009).
However, it does not include modeling process
data. The Fusion 360 Gallery dataset later adds
modeling history and assembly data (Willis et al.,
2021). The Mechanical Components Benchmark
then provides complete modeling histories for me-
chanical parts (Kim et al., 2020). These datasets
focus on geometric features but lack natural lan-
guage descriptions of CAD models. Deep learn-
ing creates new ways to approach CAD modeling.
DeepCAD uses a Transformer model to generate
CAD sequences (Wu et al., 2021). It breaks down
CAD modeling into sketches and extrusion steps.
However, it generates sketches before extrusion pa-
rameters, often creating disconnected sequences.
It also supports only basic modeling operations.
Text2CAD proposes a different approach that gen-
erates CAD sequences from text description and
visual features (Yavartanoo et al., 2024). However,
they do not consider that large models excel in gen-
erative and reasoning abilities to assist in design.

LLMs lead to new CAD modeling methods.
BlenderLLM uses LLMs to generate CAD se-
quences through self-improvement (Du et al.,
2024). It creates the BlendNet dataset and CAD-
Bench for evaluation. However, its sequences lack
geometric constraints, which affect model accu-
racy. Query2CAD uses LLMs to generate CAD
commands and improves designs through itera-
tions (Badagabettu et al., 2024). However, it often
misses steps when handling complex tasks. CAD-
CodeVerify combines vision and language models
to generate and improve CAD code (Alrashedy
et al., 2024). However, the multiple rounds of vi-
sual checking and code fixing needed make it slow
to use. The AutoForma framework (Liao et al.,
2024) , which leverages a large language model-
based multi-agent system for the automated gen-
eration of CAD models. However, the method is
costly and suffers from low generation efficiency.

3 Methodology

3.1 Problem Definition

Given a CAD model’s appearance description text
Tappear ∈ Vappear and its corresponding param-
eter modeling description text Tparam ∈ Vparam,
where Vappear and Vparam represent the vocabulary
for appearance descriptions and parameter descrip-
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Figure 1: The overall framework of automated CAD modeling from text descriptions, leveraging Transformer-based
sequence generation and LLM-driven refinement. The innovations proposed in our work are highlighted in (a), (b),
and (c).

tions respectively. Our goal is to generate a com-
plete CAD Command Sequence(CCS)1. M =
{(c1,p1), (c2,p2), ..., (cN ,pN )}, where ci ∈ C
represents the type of the i-th modeling command,
pi ∈ Rd represents the corresponding parameter
vector in d-dimensional vector space, and C is the
predefined set of CAD commands. This task can
be divided into two stages:

TCADGen Sequence Generation: We define
the TCADGen sequence generation problem as
a mapping from appearance and parameter de-
scriptions to CAD command sequences and their
confidence scores: fTCADGen(Tappear, Tparam) =
(M,S), where Tappear is the appearance descrip-
tion text, Tparam is the parameter description text,
M is the predicted CAD Command Sequence

1An introduction to CCS can be found in Appendix A.1

(CCS), S = s1, s2, ..., sN represents the confi-
dence scores for each command and its parameters,
si = (scmd

i , s
args
i ) represents the confidence scores

for command type and parameters respectively, N
is the total number of commands in the sequence,
scmd
i represents the confidence score for the i-th

command type, and s
args
i represents the confidence

score for the parameters of the i-th command.
CADLLM CCS enhancement: We formu-

late the CADLLM CCS enhancement stage as:
fCADLLM(Tappear, Tparam,M,S) = M∗, where M∗

is the final optimized modeling sequence, fCADLLM
represents the industrial design domain large model
CADLLM. The optimization objective is formu-
lated as follows:

max
M∗

p(M∗|Tappear, Tparam)

s.t. ∀(ci,pi) ∈M∗, ci ∈ C,pi ∈ Rd,
(1)
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Figure 2: LLM-Based Semi-Automated Annotation for CAD Datasets Process. This pipeline primarily generates
appearance and parameter descriptions for CAD datasets, focusing on the Description Generation and Description
Quality Inspection stages.

where M∗ is constrained to be a valid CAD mod-
eling sequence, ci represents the i-th command
type, pi represents the parameters for the i-th com-
mand, C is the set of all valid CAD commands,
d is the dimension of the parameter space, and
p(M|Tappear, Tparam) represents the probability of
generating sequence M∗ given the input descrip-
tions.

The proposed framework aims to generate high-
quality CAD modeling sequences through this two-
stage process, where TCADGen generates the ini-
tial modeling sequences and the corresponding con-
fidence assessment, followed by the optimization
and improvement of the sequences in CADLLM.

3.2 Proposed Method

3.2.1 LLM-Based Semi-Automated
Annotation for CAD Datasets

To efficiently create high-quality annotations for
large CAD datasets, we propose a semi-automated
annotation pipeline based on LLMs, utilizing mul-
tiple LLMs in a coordinated workflow. Annotating
the appearance of CAD models requires human-
machine collaboration, while parameter description
annotation can be fully automated. Each annotation
pipeline includes a description generation stage and
a description quality control stage. The process is
described in Fig. 2.

(i). Semi-Automated Appearance Description

Generation
To address the challenge of efficiently labeling

large-scale CAD datasets, we leverage LLMs to
automate parameter descriptions and assist in ap-
pearance annotation. For the description generation
stage, we first sample multiple views of the CAD
model and use a VLLM to generate an appearance
description based on these views. Simultaneously,
point cloud data from the CAD model is processed
by a PointLLM (Xu et al., 2024b) to generate de-
scriptions based on the point cloud. The models
answer key questions regarding the 3D model’s ap-
pearance features, material composition, specific
details, and function.

For the description quality inspection stage, we
use LLM to check the consistency between the
point cloud and multi-view descriptions and point
out conflicts (e.g., one calling it a cylinder, another
a cube). If the point cloud and multi-view descrip-
tions align well, they are merged into a compre-
hensive appearance description; otherwise, manual
annotation is required (our experiments showed
an automatic pass rate of 98.4%, with only a few
samples needing human intervention). The final ap-
pearance description comes from combining both
the automated and manual annotations.

(ii). Automated Parameter Description Gen-
eration

The parameter description is primarily generated
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based on the CCS. For the description generation
stage, annotated CCS parameter data is input into
the LLM along with a predefined prompt template.
The prompt also specifies that descriptions must be
"fluent and instructive paragraphs" detailing each
step of the CAD modeling process and the corre-
sponding parameters.

For the description quality inspection stage, we
validate the accuracy of the generated CCS parame-
ter description by reverse verification. It is deemed
correct if the model can reconstruct the ground
truth CCS from the generated description. The reli-
ability of the description is measured by the longest
common subsequence (LCS) ratio between the gen-
erated CCS and the ground truth CCS. The LCS
metric effectively captures structural similarities
between sequences while allowing for minor vari-
ations, making it well-suited for evaluating CAD
modeling descriptions. To quantify the similarity
between the generated description and the ground
truth, we use the LCSratio:

LCSratio =
len(LCS(g, r))

len(g)
, (2)

where g denotes the ground truth CCS and r rep-
resents the generated CCS. Descriptions with an
LCSratio above 0.9 are accepted, while those with
an LCS ratio below 0.9 are considered low reliabil-
ity and enter a reflection optimization process.

Reflection Optimization Process: For low-
reliability descriptions, we follow a reflection opti-
mization process:

1. Analyze potential issues in the description
generation stage based on ground truth CCS.

2. Generate a new CCS parameter description
based on the model’s reflection feedback from
Step 1.

3. Recheck the newly generated description.

This process repeats until the description reaches
the reliability threshold (i.e., LCSratio ≥ 0.9) or the
maximum retry limit (twice). Note that this process
is fully automated, requiring no human intervention
for parameter description annotation.

3.2.2 TCADGen
We propose a novel CAD model generation frame-
work called TCADGen, which innovatively adopts
a dual-channel Transformer architecture to achieve

an effective fusion of parameter modeling knowl-
edge and visual appearance features, as shown in
Fig. 3.

(i). Dual-Channel Feature Aggregator To fully
preserve both parametric features and appearance
features of the model, we propose a dual-channel
feature aggregator that simultaneously embeds pa-
rameter descriptions and appearance descriptions.
Parameter descriptions contain both basic geomet-
ric operations and specific parameter designs, while
appearance descriptions include model appearance
analysis. Based on DeBerta-Large-v3 (Tran et al.,
2024), we first encode and project the input text
through BERT and linear transformation:

hp = BERT (Tparam)Wp + bp, (3)

ha = BERT (Tappear)Wa + ba, (4)

where Tparam and Tappear are the input parameter
and appearance description texts respectively, dp
and da are the dimensions of parameter and ap-
pearance features, d is the dimension of the shared
semantic space, Wp ∈ Rdp×d and Wa ∈ Rda×d

are projection matrices that map BERT embeddings
into a shared d-dimensional semantic space, and
bp, ba represent bias vectors.

Inspired by capsule networks (Patrick et al.,
2022), we design an adaptive feature fusion mecha-
nism based on dynamic routing to fully utilize the
normalized feature representations:

sj =
∑

i

softmax(Wr[ĥ
i
p; ĥ

j
a])ĥp

iWij, (5)

where ĥp and ĥa denote the normalized representa-
tions of hp and ha respectively, Wr is a learnable
routing weight matrix, i and j correspond to the
subscripts of the feature tokens, [·; ·] represents
feature concatenation, and Wij is the feature trans-
formation matrix between tokens i and j.

The final fused features are obtained through a
weighted combination:

z =
∑

j

αjsj , (6)

where αj represents adaptive weight coefficients
calculated through the attention mechanism and z
is the final fused feature vector.

(ii). CAD Command Sequence Decoder
We then decode the fused feature vector z into

a standardized CAD modeling sequence. We first
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use a multi-head attention mechanism to capture
global dependencies:

Hl = MultiHead(Wl
Q · PE(·),Wl

K · z,Wl
V · z),

(7)
where Hl is the output of the l-th attention layer,
Wl

Q, Wl
K , and Wl

V are learnable query, key, and
value projection matrices respectively, and PE(·)
represents positional encoding. To better capture
the sequential modeling patterns, we further incor-
porate bidirectional LSTM (Greff et al., 2016) into
our architecture:

outt = [LSTM(
−→
h t);LSTM(

←−
h t)], (8)

where outt is the output at time step t,
−→
h t and←−

h t denote the forward and backward hidden states
respectively, and [·; ·] represents concatenation.

For efficient sequence generation, we design
the model to predict the entire CAD modeling se-
quence in parallel:

p(M̂|z,Θ) =

Nc∏

i=1

p(ti, p̂i|z,Θ), (9)

where M̂ represents the predicted CAD modeling
sequence, Θ denotes the model parameters, Nc is
the number of CAD commands in the sequence,
ti represents the command type at position i, and
p̂i represents the predicted parameters for the com-
mand at position i.

3.2.3 LLM-Enhanced CAD Command
Sequence Generation

The results predicted by TCADGen can assist LLM
in generating more accurate CCS. In this paper,
we propose an enhanced CCS generation process
based on large language models, referred to as
CADLLM. This process combines the CCS gen-
erated by TCADGen, prediction confidence infor-
mation, and user-provided description, enabling
the precise generation of CCS through a fine-tuned
large language model.

During the training phase, the fine-tuned model
is trained on 1,000 samples (the choice of dataset
size is explained in the experimental section, RQ3)
that are consistent with the distribution of the
dataset. The task is designed such that the output
of TCADGen (predicted CCS and its confidence)
serves as the query for supervised fine-tuning (SFT)
to generate the correct CCS as the response. By
learning the mapping between CCS and confidence,

CADLLM corrects the errors generated by TCAD-
Gen and produces more accurate CCS.

During the inference phase, CADLLM acts as
the inference model. It takes as input the user’s
parameters, appearance description, CCS generated
by TCADGen based on user requirements, and the
confidence information and outputs the enhanced
CCS data.

4 Experiments

In our experiments, we address three research
questions to evaluate the effectiveness of the pro-
posed methodologies. For a detailed description
of the dataset and parameters, please refer to Ap-
pendix A.2 and A.3.

RQ1: How effective is the proposed LLM-
based semi-automated annotation framework in
improving the quality of annotations for CAD
datasets?

We have proposed a human-machine semi-
automated CAD dataset annotation process that uti-
lizes large models for annotation and verification to
ensure quality. For the parameter description gener-
ation task, both the description generation and de-
scribe quality inspection stages utilize the gemma-
2-27b-it (Google, 2024) model (the reasons for
model selection and parameter description genera-
tion evaluation are provided in Appendix A.6). The
reflection optimization process uses the gemma-
2-27b-it model. For the appearance description
generation task, the VLLM used for the descrip-
tion generation stage is the Llama-3.2-11B-Vision-
Instruct (Meta, 2024) model, while the point cloud
model uses PointLLM (Xu et al., 2024b). The de-
scription quality inspection stage also utilizes the
gemma-2-27b-it model.

The experimental results demonstrate that this
framework significantly improves annotation qual-
ity over the Text2CAD baseline (Khan, 2025)
across most evaluation metrics.The experimental
results are presented in Table 1, with the TCADGen
(Text2CAD-dataset) row displaying the correspond-
ing results. For overall performance, command
line accuracy improves from 0.804 to 0.890, an
increase of about 8.6 percentage points. The frame-
work shows enhanced performance on commands
such as Arc, Circle, and Extrude. Notably, the
AUC-F1 score for Circle operations increases from
0.731 to 0.771, reflecting improved annotation ca-
pability for circular geometric elements. However,
performance on complex operations, such as Ex-
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Figure 3: Transformer-based CAD Generator (TCADGen).

Models Avg Command Each Command
Line Arc Circle Extrude

ACC F1 AUC AUC F1 AUC F1 AUC F1 AUC F1
DeepCAD 0.571 0.606 0.747 0.648 0.797 0.540 0.588 0.587 0.551 0.616 0.615
Text2CAD 0.840 0.722 0.819 0.763 0.904 0.584 0.601 0.751 0.701 0.772 0.705
BERT fine-tuned w/o 0.807 0.731 0.828 0.760 0.937 0.637 0.690 0.757 0.690 0.711 0.622
Dual-channel w/o 0.847 0.769 0.850 0.791 0.945 0.668 0.523 0.802 0.762 0.746 0.684
TCADGen(Text2CAD-dataset) 0.804 0.731 0.822 0.760 0.920 0.613 0.590 0.780 0.731 0.795 0.767
TCADGen 0.890 0.771 0.854 0.808 0.950 0.682 0.642 0.837 0.771 0.781 0.746
TCADGen+CADLLM (Ours) 0.966 0.947 0.962 0.957 0.979 0.925 0.924 0.959 0.960 0.942 0.946

Table 1: Comparison of different models and datasets for CAD command prediction. The Average Command
section shows the overall performance metrics, while the Per Command section shows detailed AUC and F1 scores
for a specific command type. Bold numbers indicate the best performance.

trude, shows a slight decrease from 0.767 to 0.746,
suggesting areas for further improvement.

Figure 4: Distribution of LCSratio scores before and after
the Reflection Optimization Process.

Additionally, we assess the reflection optimiza-
tion process for enhancing CCS parameter descrip-
tions with low quality (LCSratio < 0.9). This pro-
cess, which includes error analysis, reflective feed-
back, and re-evaluation, shows a significant in-
crease in confidence scores (t = −137.76, p <
0.001), confirming its effectiveness. Histogram
and Kernel Density Estimate (KDE) analyses (see
Fig. 4) reveal that after optimization, LCSratio
scores cluster near 1.0, indicating improved relia-
bility and consistency.

RQ2: How well does TCADGen perform in

Figure 5: The impact of data size on CADLLM per-
formance. As the data size increases from 0 to 1000
samples.

translating the human modeling language into
standard CAD command sequences?

As shown in Table 1, the experimental results
demonstrate that TCADGen significantly outper-
forms existing methods in generating CAD mod-
eling sequences. Compared to the DeepCAD
baseline, TCADGen achieves a 31.8 percentage
point improvement in average command accuracy
and surpasses DeepCAD in overall performance
metrics, with an F1 score of 0.771 and AUC of
0.854. Additionally, in comparison to Text2CAD,
TCADGen shows a 5 percentage point improve-
ment in average command accuracy and demon-
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Input Model Acc. Avg LCSratio

Parameter Description and
Appearance Description

GPT-4o(prompt) 0.617 0.977
Llama 3.2 3B(prompt) 0.328 0.688

Llama 3.2 3B(SFT) 0.621 0.883

Transformer-based Prediction
of CCS and CCS Confidence

GPT-4o(prompt) + TCADGen 0.670 0.947
Claude-3.5(prompt) + TCADGen 0.812 0.963

Llama 3.2 3B(prompt) + TCADGen 0.328 0.683
CADLLM + DeepCAD 0.677 0.978
CADLLM + Text2CAD 0.710 0.974

CADLLM + TCADGen(ours) 0.864 0.983

Table 2: Performance comparison of different methods for CAD command sequence generation. Our proposed
CADLLM + TCADGen achieves the best performance in both accuracy and average LCSratio.

Method Model CD↓ MMD↓ JSD↓

Transformer-based

DeepCAD 169.93 31.91 45.03
Text2CAD 142.83 28.98 40.23

CAD Translator - 2.94 10.92
TCADGen 120.99 21.36 35.25

LLM-based

CADFusion 45.67 3.49 17.11
DeepCAD+CADLLM 4.25 (↓ 165.68) 3.13 (↓ 28.78) 8.58 (↓ 36.45)
Text2CAD+CADLLM 4.31 (↓ 138.52) 3.12 (↓ 25.86) 8.42 (↓ 31.81)

TCADGen+CADLLM(ours) 3.12 (↓ 117.87) 2.78(↓ 18.58) 8.38 (↓ 26.87)

Table 3: Quantitative comparison of Chamfer Distance (CD), Minimum Matching Distance (MMD), and Jensen-
Shannon Divergence (JSD) metrics, where lower values indicate better performance (↓).

strates better performance for complex modeling
commands, such as Line (AUC from 0.648 to
0.808), Arc (AUC from 0.540 to 0.682), and Cir-
cle (AUC from 0.587 to 0.837). The ablation
studies further validate this effectiveness, show-
ing that removing CAD-specific BERT fine-tuning
leads to a 4 percentage points drop in performance,
while the dual-channel architecture significantly
improves complex command generation, e.g., Ex-
trude (F1 = 0.7457), indicating better distribution
alignment and semantic consistency with ground
truth commands.

RQ3: How effective are LLM in correct-
ing TCADGen-generated CAD command se-
quences?

We compare two methods of using LLMs to
generate CCS: one that directly generates CCS us-
ing parameter and appearance descriptions and the
other that combines transformer-based predictions
with CCS confidence scores. Even with fine-tuning,
the direct description method, such as Llama 3.2
3B with prompt or LoRA, performs worse than the
Transformer-based approach. For example, Llama
achieves 32.8% accuracy (LCSratio 0.6881), while
GPT-4o with predictions and confidence improves
to 67.0% accuracy (LCSratio 0.9477). The opti-
mal method, CADLLM + TCADGen, achieves
86.4% accuracy and LCSratio of 0.983, demonstrat-
ing that combining Transformer predictions with
confidence scores is significantly more effective

than direct generation from descriptions.
The evaluation results are presented in Table 3

for model generation quality. Among Transformer-
based methods, TCADGen achieves the best perfor-
mance, with a Chamfer Distance (CD) of 120.99,
Minimum Matching Distance (MMD) of 21.36,
and Jensen-Shannon Divergence (JSD) of 35.25.
In comparison, CAD Translator (Li et al., 2024),
which employs a one-stage framework, shows in-
ferior performance, with a CD of 142.83. The in-
troduction of CADLLM significantly enhances the
performance of Transformer-based models. Specif-
ically, TCADGen+CADLLM (ours) achieves a CD
of 4.52 (↓116.47), MMD of 2.78 (↓18.17), and JSD
of 8.38 (↓26.57). Meanwhile, CADFusion (Wang
et al., 2025), which utilizes a two-stage training
process with LLaMA-3-8b-Instruct, demonstrates
lower accuracy, with a CD of 45.67. In contrast,
our approach, which employs the smaller LLaMA-
3.2-3b-Instruct model, outperforms both CADFu-
sion and CAD Translator in all key metrics, further
highlighting the effectiveness of CADLLM.

Our experimental results show that increasing
the fine-tuning data size (from 0 to 1000 samples)
leads to substantial performance improvements in
CADLLM (Fig. 5, Table 10). Specifically, CCS
accuracy improves from 16.0% to 86.4%, while
LCSratio increases from 0.622 to 0.983. The per-
formance improves only slightly after 500 samples,
showing that 1000 samples achieve the best model
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performance and training cost balance.

5 Conclusion

This paper proposes a CAutoD framework that
combines LLMs with domain-specific CAD
parametrization to generate CAD models from user
descriptions in the detailed design phase. We have
demonstrated that, owing to the key innovations
such as a semi-automated data annotation pipeline,
TCAD-Gen, and LLM-assisted enhancement, the
framework has significantly outperformed the ex-
isting methods in CAD modeling sequence genera-
tion accuracy and efficiency, making it a valuable
tool for generating precise CAD models from tex-
tual prompts. Future work will focus on scaling
the framework and exploring its applications in
broader industrial design scenarios.

Limitations

Our framework demonstrates promising results in
generating CAD modeling sequences, but several
challenges remain. The semi-automatic data an-
notation process is resource-intensive, requiring a
large number of LLM calls and manual verifica-
tion for quality control. While automation reduces
human effort, inconsistencies between multi-view
descriptions and point cloud representations still
require intervention, limiting scalability for large
datasets.

The imbalance in command distributions affects
model robustness, as certain operations, such as
"Line," appear significantly more often than oth-
ers like "Arc." This bias in training data leads to
better performance on frequent commands while
limiting generalization to complex 3D geometries
that require underrepresented operations.

While the framework effectively generates and
optimizes CAD sequences, it does not explicitly
incorporate geometric constraints or structural rea-
soning, resulting in syntactically correct sequences
that may not always align with practical design re-
quirements. Future work could explore integrating
geometric priors and constraint-aware learning to
improve the reliability and applicability of auto-
mated CAD modeling.

Our framework focuses on the detailed design
process during the CAD design phase and does
not provide adequate support for the conceptual
design phase, where parameter descriptions may
be incomplete or vague.
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A Appendix

A.1 CAD Command Sequence
In the CAD modeling task proposed in this pa-
per, we adopt a command sequence representation
based on sketch-extrusion, and the generated se-
quence is referred to as the CAD Command Se-
quence (CCS). The CCS example is shown in
Fig. 6, and the detailed CCS parameters are pre-
sented in Table 4.

The sequence consists of two-dimensional
sketch commands and three-dimensional extru-
sion commands. Specifically, the two-dimensional
sketch section begins with the tag <SOL>, represent-
ing the start of a closed contour. Each contour can
be constructed using three basic curve commands:

• The Line command determines the direction
and length of the straight line by specifying
the endpoint coordinates (x, y);

• The Arc command requires the endpoint co-
ordinates (x, y), sweep angle α, and direction
flag f to define the shape and direction of the
arc;

• The Circle command creates a complete cir-
cular contour by specifying the center coordi-
nates (x, y) and radius r.

Once the two-dimensional sketch is completed,
the Extrude command E transforms it into a three-
dimensional solid. This command includes several
key parameters:

• The spatial orientation of the sketch plane is
determined by the Euler angles (θ, ϕ, γ);

• The translation vector (px, py, pz) specifies
the position of the origin of the sketch plane;

• The scaling factor s controls the size of the
contour;

• The bidirectional extrusion distances (e1, e2)
determine the thickness of the solid;

• The Boolean operation type b is used to spec-
ify the interaction with existing geometry,
which can be a new entity, union, subtraction,
or intersection operation;

• The extrusion type u specifies the extrusion
method, including unidirectional, symmetric,
or bidirectional extrusion.

The CAD sequence can be modeled by creating
two-dimensional sketches and repeatedly applying
extrusion commands.

A.2 Dataset
The DeepCAD dataset (Wu et al., 2021), derived
from the ABC dataset (Koch et al., 2019), is a
large-scale collection of 178,000 parametric CAD
models designed for CAD model generation and re-
construction. Unlike other datasets, such as Fusion
360 (Willis et al., 2021) with only 8,000 instances,
DeepCAD includes sketch-extrusion sequences, en-
abling models to learn procedural modeling behav-
iors rather than static geometry. Its extensive cross-
industry coverage ensures strong generalization to
external datasets, reducing concerns about overfit-
ting. For this study, DeepCAD was preprocessed to
ensure consistency, remove incomplete instances,
and improve training efficiency. The correspond-
ing STL file was generated for each sample based
on the original model information provided in the
dataset’s JSON files. Simultaneously, the CCS de-
scriptions were extracted from the JSON files. The
generated STL files were then sampled from nine
different viewpoints to produce multi-view images.
Additionally, point sampling was performed files,
generating point cloud files containing 8,000 points.
The subsequent training and validation phases in-
cluded only those samples for which the STL files,
multi-view images, and point cloud files were suc-
cessfully generated. The final dataset used in this
experiment consisted of 155,503 training samples
and 5,647 test samples.

A.3 Parameter Setting
We use two main parts in our system: a TCADGen
model and a fine-tuned LLM(CADLLM).

For TCADGen, we build a simple Transformer
decoder. It has 4 layers and 8 attention heads in
each layer. The model’s base size is dmodel = 256,
and it can handle sequences up to 300 tokens. The
argument size is 256, and the feedforward lay-
ers are 512 units wide. We use a dropout of 0.1
throughout the model to avoid overfitting. We
trained the model using a single A6000 GPU for 24
hours. The inference of 5,647 data samples takes
240 seconds.

For the LLM part, Our system uses two main
parts and fine-tune it using LoRA, leveraging the
LlamaFactory framework (Zheng et al., 2024) for
fine-tuning. We set the basic batch size to 1 and
use gradient accumulation for 8 steps. This gives
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Figure 6: Illustration of the CAD Command Sequence (CCS) representation. The process shows two sketch-
extrusion operations: (1) creating a base by sketching a rectangle using Line commands with specified coordinates,
followed by an extrusion operation to form a 3D block; (2) adding a circular hole by sketching a circle and applying
a cut extrusion operation.

us an effective batch size of 8. We use a learning
rate of 1e−4 with cosine decay and 10% warmup
steps. We train the model for 3 epochs with BF16
precision. This helps us save memory and train
faster. The model can take inputs up to 4096 to-
kens long. We check the model’s performance
every 500 step using 20% of our data as a valida-
tion set. We save the model version that performs
best. We trained and performed inference using a
single A6000 GPU. The training duration was 2
hours. For inference, we utilized the vllm frame-
work (Kwon et al., 2023) with a concurrency of 2.
Inference of 5,647 test samples took 1.5 hours

A.4 Application of the Framework for
Motorcycle Frame Model Generation

In this work, we propose a framework aimed at de-
tailed CAD design, where both the parameters and
the full specifications of the model are predefined.
The framework generates individual components
of the motorcycle frame, which are then manually
assembled to produce the final CAD model. Specif-
ically, the proposed framework facilitates the rapid
generation of parts that conform to the specified
requirements, based on textual descriptions of both
appearance and parameters. The generated models
are presented in Fig. 7.

A.5 Examples of annotation processes

A.5.1 Parameter Description Labeling
Process

Figure 8 shows the Parameter Description Labeling
Process.Table 5 shows the parameter descriptions
generated by the annotation process proposed in
this paper, where LCSratio refers to the comparison
between the CCS generated by the large language
model in the description quality control stage and
the ground truth. When the LCSratio of a descrip-
tion (e.g., No.00159955) is greater than 0.9, it indi-
cates that the parameter description is successfully
synthesized and can be adopted. If the LCSratio
is below 0.9 (e.g., No.00262583), the description
enters the subsequent reflection and optimization
process.

Reflection Optimization Process The original
CCS and the optimized descriptions are shown in
Table 6. The reflection optimization process is de-
tailed in Table 7, where, shows the original CCS
and optimized descriptions after two rounds of op-
timization, the description of the generated param-
eters achieves an LCSratio of 1.

A.5.2 Appearance Description Annotation
The examples of appearance description generation
are shown in Table 8. For each data sample, in
the description generation stage, both multi-view
descriptions (generated by the VLLM) and point
cloud descriptions (generated by the point-cloud-
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Begin with SOL command at
coordinates (50, 50) to start the 2D

profile. Create a line using L command
to point (200, 200), establishing the

diagonal orientation.....

 create a curved pipe with rounded
corners and uniform thickness.Starting
with SOL command, create an arc with
endpoint (144, 112), sweep angle 64
degrees and counter-clockwise flag

(f=1), followed by a line to (207, 112).
Continue with an arc to (223, 128)
using sweep angle 64 degrees and
counter-clockwise direction (f=1),...

create a cylindrical tube with uniform wall
thickness. Starting with SOL command,
create a circle R with center coordinates

(128, 128) and radius 64 to form the outer
circle, then create another circle with the
same center coordinates (128, 128) but

with radius 48 to create the inner hollow
section. The profile is extruded using the E

command with orientation angles θ=0,
φ=0, γ=0,....

simple cylindrical rod with a diagonal
orientation and uniform diameter.

Starting with SOL command, create a
circle R with center coordinates (128,
128) and radius 32 to form the cross-

sectional profile. The profile is extruded
using the E command with orientation

angles θ=45, φ=0, γ=0...

create an angled rod with two straight
sections connected at a fixed angle.

Starting with SOL command, create a circle
R with center coordinates (128, 128) and

radius 16 to form the cross-sectional
profile...

create a long rectangular frame with a
center support beam. Starting with

SOL command, create a rectangle by
drawing four lines: first L to (240, 32),
then L to (240, 64), followed by L to

(16, 64), and L back to (16, 32) to
close the outer frame shape. Then

add a vertical line L from (128, 32) to
(128, 64) to create the center

support...

L-shaped rod with a smooth curved
corner connection. Starting with SOL

command, create a circle R with center
coordinates (128, 128) and radius 16

to form the cross-sectional profile. The
profile is first extruded using the E
command with orientation angles

θ=90, φ=0, γ=0, origin coordinates
px=0, py=0, pz=0, scale factor s=1,

extrusion distances e1=150 and e2=0,
utilizing NewBodyFeatureOperation

for parameter b and
OneSideFeatureExtentType for

parameter u for the vertical section.

Assembly
(manually)

Figure 7: The motorcycle frame design process: Parts generated using our framework are manually assembled to
create the final frame. The figure shows the individual components and their integration into the complete design.

based large language model) are produced simulta-
neously. The two descriptions are verified using a
large language model in the description quality con-
trol stage. For example, in sample No. 00247561,
the multi-view and point cloud descriptions were
inconsistent, and the model’s output was flagged
as False. This sample was then sent for manual
annotation. In contrast, for sample No. 00041425,
the multi-view and point cloud descriptions were
consistent, and the model’s output was True, allow-
ing for generating a unified description based on
both representations.

A.5.3 LLMCAD Enhancement
Figure 9 shows the final CCS generated by the
CADLLM based on the TCADGen CCS output
and confidence output. The red and green areas
highlight the modified sections, which correspond
to the parts where the confidence prediction was
lower. This demonstrates that the CAD LLM task
involves generating a new, correct CCS based on
the existing parameter descriptions, considering
the confidence levels and the TCADGen output. In
this example, the CCS output from the CAD LLM
exactly matches the ground truth.

A.6 The Ability of LLMs to Generate
Parameter Descriptions

To assess the ability of LLMs in generating CAD
modeling descriptions, we introduce a two-phase
evaluation framework consisting of forward genera-

tion and backward validation. We evaluate a test set
of 1000 samples that reflect the natural distribution
of our dataset. LLMs generate CCS descriptions
based on given prompts in the forward generation
phase. The backward validation phase employs dif-
ferent LLMs to verify these generated descriptions.

We define four evaluation criteria based on
LCSratio:

1. Exact matches: LCSratio = 1

2. High-quality matches: LCSratio ≥ 0.98

3. Acceptable matches: LCSratio ≥ 0.9

4. Mean LCSratio across all test samples

The proportions for each criterion are computed
as follows:

Proportioncriterion =
count(LCSratio ≥ criterion)

N
,

(10)

where N is the total number of samples, and
LCS(i)

ratio is the LCSratio for the i-th sample.The av-
erage LCSratio is calculated as:

Average LCSratio =
1

N

N∑

i=1

LCS(i)
ratio, (11)
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CCS

Parameter Description
Generation Prompt

Gemma-2-27B-IT CCS Description

Parameter Description
Verification Prompt

Gemma-2-27B-
IT

Generated CCS

Similarity Check

Parameter
Description

Reflectionregenerate

Stage 1: Description Generation Stage 2: Describe Quality Inspection 

LCS  ≥ratio 0.9

LCS  <ratio 0.9

Reflection Optimization Process

Figure 8: Parameter Description Annotation Process Flow.

<SOL>
<Line>: x=223, y=128
<Line>: x=223, y=223
<Line>: x=128, y=223
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=128, py=128, pz=128, s=96, e1=130, e2=128,
b=NewBodyFeatureOperation, u=OneSideFeatureExtentType
<SOL>
<Line>: x=223, y=128
<Line>: x=223, y=223
<Line>: x=128, y=223
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=128, py=128, pz=128, s=96, e1=224, e2=128,
b=JoinFeatureOperation, u=OneSideFeatureExtentType
<SOL>
<Line>: x=223, y=128
<Line>: x=223, y=223
<Line>: x=128, y=223
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=128, py=32, pz=128, s=96, e1=132, e2=128,
b=JoinFeatureOperation, u=OneSideFeatureExtentType

<SOL>
<Line>: x=138, y=128
<Line>: x=138, y=223
<Line>: x=128, y=223
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=128, py=48, pz=128, s=80, e1=208, e2=128,
b=NewBodyFeatureOperation, u=OneSideFeatureExtentType
<SOL>
<Line>: x=223, y=128
<Line>: x=223, y=138
<Line>: x=128, y=138
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=136, py=48, pz=128, s=80, e1=208, e2=128,
b=NewBodyFeatureOperation, u=OneSideFeatureExtentType
<SOL>
<Line>: x=223, y=128
<Line>: x=223, y=138
<Line>: x=128, y=138
<Line>: x=128, y=128
<Extrude>: θ=128, φ=128, γ=128, px=136, py=120, pz=128, s=80, e1=208, e2=128,
b=NewBodyFeatureOperation, u=OneSideFeatureExtentType

<SOL> 1.00
<Line> 0.99: x=0.41, y=0.94
<Line> 0.99: x=0.39, y=0.55
<Line> 0.99: x=0.77, y=0.53
<Line> 0.86: x=0.91, y=0.89
<Extrude> 0.64: θ=0.99, φ=1.00, γ=0.99, px=0.42, py=0.28, pz=0.98, s=0.23, e1=0.09,
e2=0.99, b=0.98, u=0.88
<SOL> 0.80
<Line> 0.84: x=0.45, y=0.88
<Line> 0.94: x=0.39, y=0.56
<Line> 0.86: x=0.73, y=0.55
<Line> 0.88: x=0.83, y=0.75
<Extrude> 0.69: θ=0.98, φ=1.00, γ=0.98, px=0.15, py=0.15, pz=0.79, s=0.10, e1=0.07,
e2=0.99, b=0.63, u=0.90
<SOL> 0.64
<Line> 0.82: x=0.46, y=0.85
<Line> 0.81: x=0.36, y=0.54
<Line> 0.90: x=0.71, y=0.42
<Line> 0.82: x=0.68, y=0.61
<Extrude> 0.63: θ=0.94, φ=1.00, γ=0.94, px=0.13, py=0.11, pz=0.73, s=0.09, e1=0.10,
e2=0.98, b=0.62, u=0.90

CADLLM

TCADGen output
CCS

TCADGen output
CCS Confidence

CAD Model

CADLLM
output

Figure 9: Final CCS generated by CAD LLM using TCADGen CCS output and confidence, with red and green
areas indicating modified sections.
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We present the raw evaluation data in Table 11.
Table 12 summarizes the results for the Best Re-
verse Validation Model, where the model with the
highest proportion of LCS Greater than 0.9 for each
forward generation model is selected as the Best
Reverse Validation Model. The results show strong
performance from both closed-source and open-
source models. In forward generation, Gemini-1.5-
Pro and GPT-4o achieve LCSratio values above
93.9%. Among open-source models, Meta-Llama-
3.1-70B-Instruct-Turbo and Meta-Llama-3.1-405B-
Instruct-Turbo perform well. Notably, Gemini-
2-27B-IT shows competitive results despite its
smaller size. For backward validation, we define
the Best Reverse Model as the one that most fre-
quently achieves LCSratio > 0.9. Gemini-2-27B-
IT is the most reliable model for this validation
task, demonstrating its effectiveness in accurately
verifying CCS descriptions.

A.7 Prompts Used in Experiments
Table 13 presents all the prompt templates used in
this experiment.
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Command Parameter Value Range Description

<SOL> ∅ - Contour Start Marker

Line x [0, 255] End point x coordinate of the line segment

y [0, 255] End point y coordinate of the line segment

Arc x [0, 255] End point x coordinate of the arc

y [0, 255] End point y coordinate of the arc

α [0, 255] Sweep angle of the arc

f {0, 1} Counterclockwise direction flag

Circle x [0, 255] Center x coordinate of the circle

y [0, 255] Center y coordinate of the circle

r [0, 255] Radius of the circle

Extrude θ [0, 255] Rotation angle around the x-axis of the sketch
plane

ϕ [0, 255] Rotation angle around the y-axis of the sketch
plane

γ [0, 255] Rotation angle around the z-axis of the sketch
plane

px [0, 255] x-coordinate of the sketch plane origin

py [0, 255] y-coordinate of the sketch plane origin

pz [0, 255] z-coordinate of the sketch plane origin

s [0, 255] Scaling factor for the sketch contour

e1 [0, 255] Positive direction extrusion distance

e2 [0, 255] Negative direction extrusion distance

b {7, 8, 9, 10} Boolean operation type:

7: NewBodyFeatureOperation

8: JoinFeatureOperation

9: CutFeatureOperation

10: IntersectFeatureOperation

u {1, 2, 3} Extrusion type:

1: OneSideFeatureExtentType

2: SymmetricFeatureExtentType

3: TwoSidesFeatureExtentType

<EOS> ∅ - Sequence End Marker

Table 4: CAD Command Sequence (CCS) Parameters.
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ID Generated
Parameter Description LCSratio Model Visualization

00159955

The sequence begins with creating two concentric circles to
define the initial 2D closed curve. The first circle is centered at
coordinates (176, 128) with a radius of 47, and the second circle,
also centered at the same point, has a smaller radius of 40. This

closed curve is then extruded with the extrusion parameters
θ=128, φ=128, and γ=128, indicating the orientation of the

sketch plane. The sketch plane’s origin is set at (70, 128, 128),
and a scale factor of 115 is applied to adjust the profile size. The
extrusion distances are set to e1=142 and e2=128, specifying

how far the shape extends in the extrusion direction. The
operation type for the extrusion is

"NewBodyFeatureOperation," meaning a new body is created as
a result. The extrusion direction is one-sided, indicated by the
parameter u=OneSideFeatureExtentType, ensuring the shape is

extruded in one direction.
Next, a new 2D closed curve is created with a combination of

lines and arcs. Starting from the point (140, 128), a line is
drawn to (195, 128), followed by an arc that sweeps

counter-clockwise from (195, 128) to (195, 223) with a sweep
angle α=128. A series of lines are then drawn to complete the
curve, and two circles are added at the coordinates (128, 140)
and (128, 211), each with a radius of 6. These circles are also

extruded using the parameters θ=128, φ=128, and γ=128, with
the origin set at (46, 70, 128) and a scale factor of 115. The

extrusion distances are e1=142 and e2=128, with a
"JoinFeatureOperation" applied to merge this new feature with

the existing body. The extrusion is performed in a one-sided
direction, ensuring the shape extends only in one direction...

0.99

00262583

The modeling process begins with the creation of two circles,
both centered at (176, 128) with a radius of 48. The first circle is
extruded into a 3D feature with an extrusion direction defined
by the parameters θ=128, φ=128, and γ=128, and the origin

placed at (56, 170, 128). The extrusion uses a scale factor of 12
and extends by 176 units in the first phase and 128 units in the
second, creating a new body i, extendingion. The second circle
is then extruded using similar parameters, but the origin shifts to

(188, 86, 128), and a "JoinFeatureOperation" is applied to
merge the extrusion with the existing feature.

Next, a more complex 2D closed curve is created using arcs and
lines. The curve is defined with specific arc directions and

sweep angles, forming a polygon that closes at the starting point.
A circle with a radius of 4 is defined at (132, 128) and extruded
using the same extrusion parameters, extending the shape into

3D...

0.74

Table 5: Examples of parameter description generation.

Original CCS Generated Parameter Description LCSratio

<SOL> First, draw an arc with an end-point at x=144, y=112,

0.675

<Arc>: x=144, y=112, α=64, f=1 a sweep angle of 64 degrees, and a counter-clockwise
<Line>: x=207, y=112 direction. Then, draw a line to x=207, y=112,
<Arc>: x=223, y=128, α=64, f=1 followed by an arc to x=223, y=128 with a sweep
<Line>: x=223, y=204 angle of 64 degrees and a counter-clockwise direction.
<Arc>: x=207, y=220, α=64, f=1 Next, draw a line to x=223, y=204, an arc to
<Line>: x=144, y=220 x=207, y=220 with a sweep angle of 64 degrees
<Arc>: x=128, y=204, α=64, f=1 and a counter-clockwise direction, a line to
<Line>: x=128, y=128 x=144, y=220, and an arc to x=128, y=204 with
<SOL> a sweep angle of 64 degrees and a counter-clockwise
<Arc>: x=144, y=114, α=64, f=1 direction. Finally, draw a line to x=128, y=128.
<Line>: x=207, y=114 Repeat the same sequence starting with an arc with
<Arc>: x=220, y=128, α=64, f=1 an end-point at x=144, y=114, a sweep angle of
<Line>: x=220, y=190 64 degrees, and a counter-clockwise direction. Then,
<Arc>: x=207, y=204, α=64, f=1 extrude the 2D sketch by 148 units in the direction
<Line>: x=144, y=204 specified by θ=192, φ=64, γ=192, originating at
<Arc>: x=131, y=190, α=64, f=1 px=105, py=121, pz=40, and scaling the profile
<Line>: x=131, y=128 by a factor of 46. The extrusion will extend
<Extrude>: θ=192, φ=64, γ=192, px=105, py=121, pz=40,
s=46, e1=148, e2=128, b=NewBodyFeatureOperation,
u=OneSideFeatureExtentType

for a distance of 128 units in the direction given by u=OneSideFeatureExtentType
and will be treated as a NewBodyFeatureOperation.

Table 6: The original CCS and the first generated descriptions.
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Round Reflection Output Optimization Output LCSratio

1 Generated vs. Real CCS Differences:
1. Arc End Points: Generated CCS ends at x = 223, y = 130; real
CCS at x = 220, y = 128.
2. Line End Points: Generated CCS ends at x = 207, y = 114; real
CCS at x = 207, y = 112.
3. Extra Commands: Real CCS includes a line to
x = 220, y = 190; generated CCS specifies x = 223, y = 204.
4. Arc Variation: Generated CCS ends an arc at x = 207, y = 222;
real CCS at x = 207, y = 204.
5. Missing Variables: Generated CCS omits e2 (128 in real CCS).

Problems in Parametric Description:
1. Ambiguous Arcs: Incomplete parameters cause endpoint
inconsistencies.
2. Unclear Pathing: Lacks instructions for connecting arcs and lines or
closing loops.
3. Rotation Inconsistencies: Arc rotation directions are unclear.
4. Missing Line Dimensions: No explicit dimensions for connecting
lines.
5. Undefined Parameters: e2 is missing from the description.

Improvement Suggestions:
1. Define arcs explicitly with endpoints, radii, and centers.
2. Clarify pathing, including connection rules and loop closures.
3. Standardize rotation directions.
4. Specify line dimensions clearly.
5. Define all variables, including e2.
6. Add visual references to support the description.

First, draw an arc with an end-point at x = 144, y = 112, a sweep
angle of 64 degrees, and a counter-clockwise direction. Then, draw a
line to x = 207, y = 112, followed by an arc to
x = 220, y = 128 with a sweep angle of 64 degrees and a
counter-clockwise direction. Next, draw a line to
x = 220, y = 190, an arc to x = 207, y = 204 with a sweep
angle of 64 degrees and a counter-clockwise direction, a line to
x = 144, y = 204, and an arc to x = 131, y = 190 with a sweep
angle of 64 degrees and a counter-clockwise direction. Finally, draw a
line to x = 131, y = 128.
Repeat the same sequence starting with an arc with an end-point at
x = 144, y = 114, a sweep angle of 64 degrees, and a
counter-clockwise direction. Then, draw a line to
x = 207, y = 114, followed by an arc to x = 220, y = 128 with
a sweep angle of 64 degrees and a counter-clockwise direction. Next,
draw a line to x = 220, y = 190, an arc to x = 207, y = 204
with a sweep angle of 64 degrees and a counter-clockwise direction, a
line to x = 144, y = 204, and an arc to x = 131, y = 190 with
a sweep angle of 64 degrees and a counter-clockwise direction.
Finally, draw a line to x = 131, y = 128.
Then, extrude the 2D sketch by 148 units in the direction specified by
θ = 192, ϕ = 64, γ = 192, originating at px = 105, py = 121,
pz = 40, and scaling the profile by a factor of 46. The extrusion will
extend for a distance of 128 units in the direction given by
u=OneSideFeatureExtentType and be treated as a
NewBodyFeatureOperation.

0.737

2 Generated vs. Real CCS Differences:
1. Arc Direction: Generated CCS uses f = −1 (clockwise), real
CCS uses f = 1 (counter-clockwise).
2. Arc Endpoint Discrepancy: Generated CCS ends at
x = 220, y = 128, real CCS at x = 223, y = 128.
3. Line Mismatch: Generated CCS connects to x = 220, y = 190,
real CCS to x = 223, y = 204.
4. Arc Endpoint Discrepancy: Later arcs end at x = 207, y = 220,
instead of x = 207, y = 204.
5. Fewer Commands: Generated CCS omits lines and arcs.
6. Extrusion Parameters: Generated CCS uses e1 = 0 and omits e2;
real CCS uses e1 = 148 and e2 = 128.

Problems in CAD Parametric Description:
1. Unclear Arc Directions: f not explicitly defined.
2. Ambiguous Arc Coordinates: Lack of precise endpoint
relationships.
3. Endpoint Proximity Issues: Close arc endpoints cause confusion.
4. Incomplete Extrusion Definitions: e1 and e2 inadequately
described.

Suggestions for Improvement:
1. Define arc directions explicitly.
2. Derive arc endpoints explicitly from previous commands.
3. Implement validation checks for consistency.
4. Provide clear extrusion parameter definitions.
5. Ensure sequential coherence in parametric commands.

First, draw an arc with an end-point at x = 144, y = 112, a sweep
angle of 64 degrees, and a counter-clockwise direction (f = 1).
Then, draw a line to x = 207, y = 112. Next, draw an arc to
x = 223, y = 128 with a sweep angle of 64 degrees and a
counter-clockwise direction (f = 1). Draw a line to
x = 223, y = 204. Then, draw an arc to x = 207, y = 220 with
a sweep angle of 64 degrees and a counter-clockwise direction
(f = 1). After that, draw a line to x = 144, y = 220. Then, draw
an arc to x = 128, y = 204 with a sweep angle of 64 degrees and a
counter-clockwise direction (f = 1). Finally, draw a line to
x = 128, y = 128.
Repeat the same sequence starting with an arc with an end-point at
x = 144, y = 114, a sweep angle of 64 degrees, and a
counter-clockwise direction (f = 1). Then, draw a line to
x = 207, y = 114. Next, draw an arc to x = 220, y = 128 with
a sweep angle of 64 degrees and a counter-clockwise direction
(f = 1). After that, draw a line to x = 220, y = 190. Then, draw
an arc to x = 207, y = 204 with a sweep angle of 64 degrees and a
counter-clockwise direction (f = 1). Draw a line to
x = 144, y = 204. Next, draw an arc to x = 131, y = 190 with
a sweep angle of 64 degrees and a counter-clockwise direction
(f = 1). Finally, draw a line to x = 131, y = 128.
Then, extrude the 2D sketch by 148 units in the direction specified by
θ = 192, ϕ = 64, γ = 192, originating at px = 105, py = 121,
pz = 40, and scaling the profile by a factor of 46. The extrusion will
extend for a distance of 128 units in the direction given by
u=OneSideFeatureExtentType and will be treated as a
NewBodyFeatureOperation with parameters e1 = 148 and
e2 = 128.

1.000

Table 7: Multiple-round Reflection and Optimization Results for CCS Generation.
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Model Visualization Point Cloud Description Multi-View Description LLM Determination Comprehensive Description

The point cloud represents a
3D model of an engine,
exhibiting intricate details. It
includes components such as
cylinders, connectors, and
automotive parts, though the
specific engine type is not
identified. The model is likely
intended for educational or
demonstration purposes in
mechanics or engineering.

The object is cube-shaped with
a ladder on its top surface. It
consists of a large cube, four
smaller L-shaped protrusions
on one side, and a ladder
structure. The geometric form
is simple, with clearly defined
edges and shapes, which could
be a building block or part of a
larger assembly.

FALSE (Manually
Annotated)

This 3D object has a cubic
form with a ladder attached to
its upper surface. It consists of
a main cube, four smaller
L-shaped protrusions, and a
ladder-like structure.

The 3D point cloud represents
a square box with a closed and
smooth surface, suggesting it
could be a container or storage
object. Its shape implies
various uses, such as storing
small items or being a building
block. The lack of overall
context makes its practical use
unclear, but it may be intended
for architectural modeling,
digital art, or advanced
mathematical modeling.

The 3D model appears as a
cube with a cylindrical
protrusion on one side,
featuring a curved top and a
flat bottom. The model has a
cube base, a cylindrical body,
and a curved top. The smooth
surface and tapering
cylindrical body suggest the
model could serve as a
container or vessel.

TRUE (Large Model
Annotation)

The 3D model has a square
box (cube) as the base. One
side of the cube has a
cylindrical protrusion with a
curved top and flat bottom.
The cylindrical body tapers
subtly towards the curved top.

Table 8: Point Cloud and Multi-View Descriptions with Model Determinations and Comprehensive Analysis.

Models
Generated Results

00001213 00004252 00005341 00012350 00016271

DeepCAD

Text2CAD

TCADGen+CADLLM

Ground Truth

Table 9: CAD model effects generated by different methods.

Data Command Prediction Param Command-Type Performance CCS
Size ACC F1 AUC ACC Line Arc Circle Extrude Accuracy Avg LCSratio

0 0.532 0.769 0.851 0.566 0.939 0.564 0.756 0.675 0.160 0.622
100 0.849 0.818 0.871 0.924 0.928 0.678 0.814 0.788 0.567 0.912
500 0.932 0.907 0.934 0.970 0.931 0.855 0.907 0.900 0.789 0.972
1000 0.966 0.947 0.962 0.983 0.979 0.924 0.960 0.946 0.864 0.983

Table 10: Performance analysis across different training data sizes.
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Forward Generation Models
Reverse Verification Models Similarity GPT-4o-mini Gemini-1.5-Flash Google_Gemma-2-27B-it Google_Gemma-2-9B-it Meta-Llama-3.1-70B Meta-Llama-3.1-405B Qwen2.5-72B

claude-3-5-haiku-20241022 1 0.2 0.16 0.36 0.08 0.24 0.24 0.24
0.98 0.44 0.36 0.52 0.36 0.52 0.56 0.52
0.9 0.68 0.64 0.80 0.56 0.84 0.76 0.80

Average 0.905 0.866 0.932 0.829 0.927 0.938 0.929

claude-3-5-sonnet-20241022 1 0.24 0.24 0.32 0.12 0.32 0.24 0.24
0.98 0.52 0.76 0.84 0.48 0.68 0.80 0.80
0.9 0.76 0.84 0.88 0.68 0.80 0.84 0.88

Average 0.896 0.939 0.942 0.841 0.937 0.932 0.943

ERNIE-4.0-8K-Latest 1 0.385 0.346 0.346 0.038 0.346 0.385 0.346
0.98 0.577 0.615 0.538 0.346 0.577 0.615 0.615
0.9 0.769 0.846 0.731 0.731 0.846 0.808 0.846

Average 0.9 0.918 0.915 0.877 0.929 0.935 0.933

ERNIE-Speed-8K 1 0.141 0.141 0.051 0.0 0.141 0.15 0.141
0.98 0.224 0.229 0.103 0.206 0.235 0.245 0.235
0.9 0.418 0.424 0.462 0.412 0.412 0.449 0.418

Average 0.661 0.669 0.672 0.632 0.67 0.684 0.669

gemini-1.5-flash 1 0.373 0.363 0.43 0.13 0.397 0.404 0.417
0.98 0.573 0.633 0.717 0.53 0.627 0.68 0.65
0.9 0.817 0.807 0.883 0.763 0.843 0.859 0.853

Average 0.929 0.937 0.95 0.905 0.939 0.945 0.944

gemini-1.5-pro 1 0.333 0.45 0.487 0.067 0.453 0.429 0.4
0.98 0.56 0.743 0.807 0.472 0.71 0.751 0.687
0.9 0.867 0.883 0.947 0.829 0.887 0.87 0.92

Average 0.942 0.956 0.973 0.928 0.955 0.953 0.964

gemma-2-27b-it 1 0.217 0.19 0.253 0.027 0.27 0.282 0.2
0.98 0.413 0.463 0.563 0.387 0.487 0.533 0.43
0.9 0.787 0.787 0.877 0.78 0.82 0.861 0.823

Average 0.912 0.923 0.947 0.9 0.929 0.948 0.932

gemma-2-9b-it 1 0.397 0.387 0.407 0.053 0.4 0.41 0.415
0.98 0.647 0.667 0.677 0.62 0.687 0.68 0.682
0.9 0.78 0.8 0.797 0.773 0.787 0.782 0.793

Average 0.902 0.91 0.914 0.898 0.908 0.911 0.909

gpt-4o 1 0.435 0.421 0.462 0.1 0.472 0.43 0.442
0.98 0.736 0.773 0.773 0.589 0.783 0.795 0.757
0.9 0.87 0.916 0.9 0.86 0.9 0.93 0.899

Average 0.951 0.964 0.962 0.939 0.963 0.971 0.957

gpt-4o-mini 1 0.453 0.403 0.44 0.123 0.463 0.452 0.477
0.98 0.677 0.697 0.71 0.667 0.723 0.756 0.707
0.9 0.813 0.837 0.857 0.82 0.867 0.87 0.86

Average 0.933 0.946 0.949 0.932 0.944 0.954 0.946

Llama-3.1-405B-Instruct 1 0.457 0.496 0.558 0.068 0.568 0.517 0.565
0.98 0.662 0.766 0.856 0.522 0.827 0.779 0.809
0.9 0.856 0.874 0.939 0.802 0.928 0.858 0.921

Average 0.943 0.967 0.976 0.923 0.968 0.959 0.971

Llama-3.1-70B-Instruct 1 0.534 0.605 0.611 0.071 0.639 0.605 0.642
0.98 0.726 0.838 0.841 0.541 0.845 0.855 0.831
0.9 0.902 0.943 0.946 0.841 0.912 0.924 0.936

Average 0.963 0.979 0.981 0.941 0.972 0.969 0.978

Qwen2.5-72B-Instruct-Turbo 1 0.25 0.31 0.323 0.017 0.363 0.283 0.29
0.98 0.45 0.59 0.613 0.33 0.637 0.595 0.573
0.9 0.78 0.823 0.817 0.687 0.85 0.848 0.81

Average 0.912 0.936 0.942 0.883 0.947 0.946 0.935

Table 11: Proportions of results generated by the forward generation model with LCSratio values of 1, 0.98, and 0.9,
as well as the average LCSratio for the backward validation model, which verifies the generated CCS descriptions.

Forward Model Best Reverse Model Proportion of LCS Greater than 0.9

gemini-1.5-pro gemma-2-27b-it 0.947
Llama-3.1-70B-Instruct-Turbo gemma-2-27b-it 0.946
Llama-3.1-405B-Instruct-Turbo gemma-2-27b-it 0.939
gpt-4o Llama-3.1-405B-Instruct 0.930
ERNIE-3.5-8K gemini-1.5-flash 0.906
gemini-1.5-flash gemma-2-27b-it 0.883
claude-3-5-sonnet-20241022 gemma-2-27b-it 0.880
gemma-2-27b-it gemma-2-27b-it 0.877
gpt-4o-mini Llama-3.1-405B-Instruct 0.870
Qwen2.5-72B-Instruct-Turbo Llama-3.1-70B-Instruct 0.850
ERNIE-4.0-8K-Latest gemini-1.5-flash 0.846
claude-3-5-haiku-20241022 Llama-3.1-70B-Instruct 0.840
ERNIE-4.0-Turbo-8K gemma-2-27b-it 0.827
gemma-2-9b-it gemini-1.5-flash 0.800
ERNIE-Speed-8K gemma-2-27b-it 0.462

Table 12: Proportion of LCS Greater than 0.9 for Different Forward and Reverse Models in the Two-Phase Evaluation
Framework.

21740



Table 13: Prompts Used in Experiments

Process
Name

Prompt

Multi-view
analysis

You are an experienced CAD engineer tasked with providing natural language de-
scriptions of design objects based on images. Your goal is to create clear, specific
descriptions for junior designers to understand and model, focusing on shape features,
structural elements, and spatial relationships.
You will be given an image. Your task is to analyze this description and generate four
concise sentences that describe:

1. What the 3D model looks like

2. What it is composed of

3. Its appearance

4. What it can do or its purpose

Follow these guidelines when generating your description:

• Focus on the most important and distinctive features of the object

• Use clear and specific language to describe shapes, structures, and spatial relation-
ships

• Avoid using phrases like “this multi-view image shows” or “distinct views” or
explaining the image itself

• Do not include any explanations or additional commentary

• Do not describe the color, metallic sheen, or use words like “blue”, “shadow”,
“transparent”, “metal”, “plastic”, “image”, “black”, “grey”, “CAD model”, “ab-
stract”, “orange”, “purple”, “golden”, “smooth”, or “green”

Present your four sentences in the following format:

• Sentence describing what the 3D model looks like

• Sentence describing what it is composed of

• Sentence describing its appearance

• Sentence describing what it can do or its purpose

Ensure that each sentence is concise, clear, and adheres to the abovementioned guide-
lines.

Continued on next page
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Table 13 – continued from previous page
Process
Name

Prompt

Point cloud
analysis

You will be analyzing a 3D point cloud to describe its geometric structure. Your task
is to generate four precise sentences, each focusing on a different aspect of the object
represented by the point cloud:

1. Overall Shape

2. Components

3. Structural Details

4. Function

For each aspect, follow these specific guidelines:

• Overall Shape: Describe the basic geometric form and approximate dimensions.
Focus on the general shape and proportions.

• Components: List the main structural elements and their spatial relationships.
Identify distinct parts and how they connect or relate to each other.

• Structural Details: Describe key geometric features, patterns, and surface char-
acteristics. Focus on form rather than color or texture.

• Function: State the most likely practical purpose based purely on the form and
structure. Make an educated guess about the object’s intended use.

Important guidelines:

• Be specific and detailed in your descriptions.

• Avoid any mention of colors, materials, or textures that cannot be definitively
determined from point cloud data alone.

• Focus solely on geometry, form, and function.

• Use precise language and, where appropriate, include approximate measurements
or proportions.

Keep descriptions focused on geometry, form, and function. Avoid any references to
color, material, or texture that cannot be definitively determined from point cloud data
alone. Write your analysis in four separate sentences, one for each aspect. Do not label
or number the sentences. Ensure that each sentence flows naturally into the next.

Continued on next page
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Table 13 – continued from previous page
Process
Name

Prompt

Appearance
description
generation

and
verification

You are a parameter in analyzing and describing 3D models based on point cloud data
and multiple perspective descriptions. Your task is to analyze the compatibility between
two descriptions and provide a synthesized description when they share fundamental
geometric characteristics.
You will be given two input descriptions:

• {POINT_CLOUD_DESCRIPTION}

• {MULTIPLE_PERSPECTIVES_DESCRIPTION}

Analyze these descriptions according to the following criteria:

1. Core Analysis Approach:

• Extract basic geometric forms (shapes, volumes, structures)
• Look for ANY potential geometric compatibility
• Focus on finding similarities rather than differences
• Consider different ways of describing the same geometric concept
• Default to finding compatibility unless clearly contradictory

2. Ignore Non-Essential Elements:

• Color and material properties
• Surface textures and finishes
• Intended purpose or function
• Aesthetic qualities
• Subjective interpretations

Continued on next page
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Table 13 – continued from previous page
Process
Name

Prompt

Parameter
description
generation

You are a parameter in CAD command descriptions. Your task is to describe a provided
CAD command sequence based on specific requirements. Follow these instructions
carefully:
First, familiarize yourself with these key terms and commands:

• 〈SOL〉: Denotes the start of a 2D closed curve. All commands prior to the Extrude
command belong to this 2D curve.

• L (Line): x, y—Coordinates of the line’s end-point, defining direction and length
in the plane.

• A (Arc): x, y—Coordinates of the arc’s end-point; α—Sweep angle, indicating
arc curvature; f—Counter-clockwise flag, specifying arc direction.

• R (Circle): x, y—Center coordinates of the circle; r—Radius, specifying circle
size.

• E (Extrude): θ, ϕ, γ—Orientation of the sketch plane, defining its rotation and
direction; px, py, pz—Origin of the sketch plane in 3D space; s—Scale factor,
adjusting profile size; e1, e2—Extrude distances; b—Boolean operation type;
u—Extrude direction.

Now, describe this CAD command sequence following these guidelines:

1. Only output command descriptions—no additional content or explanations.

2. Include each command, its parameters, and reflect the order of execution in your
description.

3. Describe how the Extrude command and its parameters transform the 2D curve
into a 3D model.

4. For the Extrude command, fully output the parameters b and u without changing
them. Parameter b can be “NewBodyFeatureOperation”, “JoinFeatureOpera-
tion”, “CutFeatureOperation”, or “IntersectFeatureOperation”. Parameter u can
be “OneSideFeatureExtentType”, “SymmetricFeatureExtentType”, or “TwoSides-
FThe parameterentType”.

5. Do not change any parameter values in your description.

6. Form a single, cohesive paragraph of CAD modeling guidance. Describe the
sequence in natural language, including every parameter without omission.

Here is the CAD command sequence you need to describe:

• {CAD_COMMAND_SEQUENCE}

Your output should be a flowing, descriptive paragraph that guides the reader through
the CAD modeling process, detailing each step and parameter in the order they appear
in the command sequence. Do not use bullet points or numbered lists. Ensure your
description is comprehensive, covering all aspects of the provided sequence.

Continued on next page

21744



Table 13 – continued from previous page
Process
Name

Prompt

Parameter
description
verification

You are tasked with converting a CAD command description into a precise CAD
operation sequence. Follow these instructions carefully:

1. Read the description carefully and identify the CAD operations mentioned.
These may include creating lines, arcs, circles, and performing extrude operations.

2. Convert each identified operation into the corresponding CAD command
format as follows:

• To start a new sketch:
– <SOL>

• For a line:
– <Line>: x=<xValue>, y=<yValue>

• For an arc:
– <Arc>: x=<xValue>, y=<yValue>, α=<alphaValue>, f=<fValue>

• For a circle:
– <Circle>: x=<xValue>, y=<yValue>, r=<radiusValue>

• For an extrude operation:
– <Extrude>: θ=<thetaValue>, φ=<phiValue>, γ=<gammaValue>,

px=<pxValue>, py=<pyValue>, pz=<pzValue>, s=<sValue>,
e1=<e1Value>, e2=<e2Value>, b=<extrudeOperation>, u=<extentType>

3. Arrange the converted operations in the sequence they appear in the descrip-
tion. Start each new sketch with <SOL>.

4. After converting all operations, end the CAD operation sequence with:

• <EOS>

5. Ensure that you only output the CAD operation sequence without any additional
explanations or comments.

6. If any information is missing or unclear in the description, use reasonable default
values or omit the parameter.

7. Remember:

• There should be only one <SOL> tag per sketch.
• <EOS> marks the end of the entire CAD operation sequence.
• Do not include any text or explanations outside of the specified command

formats.

8. You will be given a CAD command description in the following format:

• {CAD_COMMAND_DESCRIPTION}

Output the resulting CAD operation sequence exactly as specified, with no addi-
tional commentary.

Continued on next page
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Table 13 – continued from previous page
Process
Name

Prompt

Reflection
on parameter
description

issues

You are a CAD parametric description analysis parameter. Your task is to analyze the
differences between a generated CAD Command Sequence (CCS) and a real CCS,
identify problems in the CAD parametric description, and provide suggestions for
improvement. 1. CAD parametric description:

• {CAD_DESCRIPTION}

2. Generated CCS based on the CAD description:

• {GENERATED_CCS}

1. Differences between generated and real CCS:

• Missing commands in the generated CCS: [List any specific commands present in
the real CCS but missing in the generated one.]

• Extra commands in the generated CCS: [List any commands that appear in the
generated CCS but are not in the real CCS.]

• Differences in command parameters or order: [List and describe any differences
in parameters or the order of commands.]

2. Problems in the CAD parametric description:

• Missing information: [Discuss any information that is not clearly stated in the
CAD parametric description, which may have led to missing or t commands.]

• Incorrect specifications: [Identify any specifications that are inaccurate or poten-
tially lead to errors in the generated CCS.]

• inaccurate specifications [Highlight any parts of the CAD description that are
ambiguous and could be interpreted in multiple ways.

3. Improvement suggestions:

• Clarify any ambiguous descriptions by providing more specific and detailed
parameters.

• Ensure that all necessary information for each command is provided to avoid
missing commands or incomplete sequences.

• Double-check the order of commands in the CAD description to match the ex-
pected sequence for correct execution.

• Review the parameter specifications to ensure they are accurate and precise,
avoiding potential discrepancies.

Continued on next page
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Process
Name

Prompt

Parameter
Description
Regenera-

tion

You are a CAD parametric description modification parameter. Your task is to analyze
and modify a given CAD parametric description to make it more accurate, complete,
and unambiguous based on a real CCS sequence and a provided opinion. Follow these
steps:

1. Review the provided CAD parametric description:

• {CAD_DESCRIPTION}

2. Examine the real CCS sequence:

• {REAL_CCS}

3. Consider the provided opinion:

• {OPINION}

4. Familiarize yourself with these key terms and commands in the CCS:

• 〈SOL〉: Start of a 2D closed curve
• L (Line): x, y - Coordinates of the line’s end-point
• A (Arc): x, y - Coordinates of the arc’s end-point; α - Sweep angle; f -

Counter-clockwise flag
• R (Circle): x, y - Center coordinates; r - Radius
• E (Extrude): θ, ϕ, γ - Orientation of the sketch plane; px, py, pz - Origin

of the sketch plane; s - Scale factor; e1, e2 - Extrude distances; b - Boolean
operation type; u - Extrude direction

5. Pay special attention to the Extrude command parameters:

• Parameter b: "NewBodyFeatureOperation", "JoinFeatureOperation", "Cut-
FeatureOperation", or "IntersectFeatureOperation"

• Parameter u: "OneSideFeatureExtentType", "SymmetricFeatureExtent-
Type", or "TwoSidesFeatureExtentType"

6. Analyze the differences between the CAD description and the real CCS.

7. Based on your analysis, modify the CAD parametric description to address
any issues found.

8. Output CAD parametric description ONLY!!!

Continued on next page
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Process
Name

Prompt

LLMCAD
Enhanced

CCS

You are a CAD sequence generation parameter. Your task is to generate a correct CAD
Command Sequence (CCS) based on a CAD description, existing CCS, and confidence
levels. Follow these instructions carefully:
Now, consider the following CAD description: {CAD_DESCRIPTION}
Here is the existing CCS and its associated confidence levels: {EXISTING_CCS}
{CONFIDENCE}
Analyze the confidence levels provided. Pay special attention to parameters with
confidence levels below 0.98, as these should be the focus of your modifications. Based
on the CAD description and the confidence levels, generate a new CCS. Modify the
existing CCS to align with the description, focusing on adjusting parameters with low
confidence levels. Ensure that the new CCS accurately represents the described CAD
operations.
Output the new CCS without any explanations or additional comments.
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