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Abstract

Recent advances in large vision-language mod-
els (LVLMs) have shown promise for embodied
task planning, yet they struggle with fundamen-
tal challenges like dependency constraints and
efficiency. Existing approaches either solely op-
timize action selection or leverage world mod-
els during inference, overlooking the benefits
of learning to model the world as a way to en-
hance planning capabilities. We propose Dual
Preference Optimization (D²PO), a new learn-
ing framework that jointly optimizes state pre-
diction and action selection through preference
learning, enabling LVLMs to understand en-
vironment dynamics for better planning. To
automatically collect trajectories and stepwise
preference data without human annotation, we
introduce a tree search mechanism for exten-
sive exploration via trial-and-error. Extensive
experiments on VoTa-Bench demonstrate that
our D²PO-based method significantly outper-
forms existing methods and GPT-4o when ap-
plied to Qwen2-VL (7B), LLaVA-1.6 (7B), and
LLaMA-3.2 (11B), achieving superior task suc-
cess rates with more efficient execution paths.

1 Introduction

Embodied task planning (Singh et al., 2022; In-
oue and Ohashi, 2022; Mai et al., 2023), which
enables AI systems to perform real-world tasks
through physical interaction, demands both correct-
ness and efficiency. Incorrect or inefficient task
planning not only wastes computational resources
but may also lead to unsafe operations, compro-
mising system usability and reliability in dynamic
environments. Previous LLM-based approaches
rely heavily on environment metadata (Yao et al.,
2022; Sun et al., 2023) or external object detec-
tion models (Singh et al., 2022; Song et al., 2022),
limiting their ability to operate end-to-end in real-
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Figure 1: Overview of D2PO: World modeling enables
better embodied task planning through joint preference
optimization of state prediction and action selection.

world scenarios. Recent advances in Large Vision-
Language Models (LVLMs) (OpenAI, 2024) have
opened new possibilities for embodied intelligence,
yet state-of-the-art LVLMs still struggle with funda-
mental issues such as dependency constraints (plac-
ing objects before picking them up) and inefficient
planning (repeating unnecessary steps). These lim-
itations stem from a critical gap: LVLMs operate
on static snapshots of the environment, lacking the
ability to model the dynamic nature of physical
interactions.

Existing approaches leverage language models
for embodied task planning, including prompt-
based methods (Song et al., 2022; Shin et al., 2024;
Liang et al., 2022), supervised fine-tuning (SFT)
from expert demonstrations (Wu et al., 2023; Chen
et al., 2024b; Jin et al., 2023), and RL-based opti-
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mization (Carta et al., 2023; Yang et al., 2023; Szot
et al., 2023). However, these methods primarily
focus on learning direct mappings from state to ac-
tion, optimizing for what to do without considering
the consequences of these actions. To model envi-
ronment dynamics, some recent methods leverage
LLMs directly as world models through prompting
(Hao et al., 2023; Zhou et al., 2024) to guide the
search path. However, these approaches introduce
additional computational overhead while fail to de-
velop world modeling capabilities during training.
Moreover, embodied task planning involves gen-
erating sequential actions based on environmental
context, often with multiple valid solutions.

Humans possess an internal world model, a cog-
nitive framework constructed in the brain to un-
derstand, predict, and adapt to the external world.
This model is developed through continuous inter-
action with the environment (Johnson-Laird, 1983;
Tolman, 1948; LeCun, 2022). To equip a model
with an internal world model and enable diverse
and multi-solution decision-making, we propose
Dual Preference Optimization (D2PO), a frame-
work that jointly optimizes state imagination (state
prediction) and action selection through prefer-
ence learning, as shown in Fig. 1. Specifically,
D2PO interacts with the environment to predict fu-
ture changes, gradually forming an internal world
model. And inspired by Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), it learns
relative preferences, thus retaining the ability to ex-
plore diverse solutions. (1) State Prediction, where
the model predicts the next state given the cur-
rent state and action, learning the consequences
of actions over time; (2) Action Selection, which
improves the model’s policy ability to choose ap-
propriate actions with reasoning based on the goal
and interaction history. By representing world dy-
namics in natural language, we leverage the prior
knowledge of large language models. More im-
portantly, rather than treating world modeling as
a separate component, our framework uses world
modeling objectives to enhance the policy’s plan-
ning capabilities. Through this dual optimization,
the policy model naturally develops an understand-
ing of world dynamics, leading to more informed
action selection without requiring explicit world
model guidance during inference.

To automatically collect correct trajectories and
stepwise preference data for training, we introduce
a tree search mechanism that systematically ex-
plores action sequences within a simulated envi-

ronment. By combining model evaluations and
environmental feedback, this scalable method can
automatically generate extensive trajectories and
construct preference pairs for both action selec-
tion and state prediction. This approach eliminates
the need for expert demonstrations and preference
annotations, while efficiently gathering diverse em-
bodied interaction experiences.

Extensive experiments on VoTa-Bench, our
vision-enhanced extension of the text-only LoTa-
Bench (designed for LLMs) (Choi et al., 2024),
demonstrate that our method outperforms existing
training approaches across multiple evaluation set-
tings. Our evaluation shows significant improve-
ments in both success rate and planning efficiency,
with our 7B-parameter model surpassing GPT-4o’s
performance on multiple test types, highlighting
the efficacy and potential of our approach.

Our main contributions are as follows:

• We propose to learn world modeling to en-
hance model’s planning abilities through our
novel Dual Preference Optimization (D²PO)
framework, which jointly optimizes state pre-
diction and action selection through prefer-
ence learning, enabling the model to learn ac-
tion consequences while improving planning.

• We introduce a tree search algorithm that auto-
matically collects trajectories and constructs
multimodal stepwise preference data for em-
bodied task planning via trial-and-error, elimi-
nating the need for human annotation.

• We demonstrate that auxiliary world model-
ing objectives significantly improve embod-
ied task planning with extensive experiments
on VoTa-Bench. Our 7B-parameter model
achieves a relative improvement of 31.4% and
33.0% in success rate and planning efficiency
respectively compared to SFT baselines.

2 Relate Work

2.1 Embodied Task Planning
Embodied task planning is a key component of
Embodied AI, enabling agents to perform com-
plex tasks within dynamic and physical environ-
ments. Early LLM-based methods (Yao et al., 2022;
Sun et al., 2023; Zhao et al., 2023) rely purely on
textual metadata from the environment, making
them struggle to adapt to the unpredictable and
dynamic nature of real-world settings. Later ap-
proaches (Singh et al., 2022; Song et al., 2022;
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Shin et al., 2024; Yang et al., 2024; Zhao et al.,
2024; Shirai et al., 2023) introduce cascaded vi-
sual processing through external models. However,
these multi-stage pipelines increase system com-
plexity and potential error propagation. Notably,
existing methods (Pashevich et al., 2021; Inoue and
Ohashi, 2022; Lu et al., 2023; Chen et al., 2024b;
Zhao et al., 2024) also heavily rely on manual step-
by-step instructions. In contrast, we propose an
end-to-end approach using a single VLM for both
direct visual processing and autonomous planning,
despite the increased modeling challenges.

Methodologically, several recent works have ex-
plored diverse prompting strategies (Song et al.,
2022; Shin et al., 2024; Liang et al., 2022) and
multi-agent frameworks with specialized roles
(Zhang et al., 2023; Mai et al., 2023; Wang et al.,
2024d). SFT-based approaches learn from expert
demonstrations using human or language model
annotated data (Wu et al., 2023; Chen et al., 2024b;
Jin et al., 2023), or collect training data through
actor-critic simulation (Li et al., 2024). Recent
works explore PPO-based optimization using de-
signed reward templates (Carta et al., 2023) or
optimizing through environment interaction fea-
sibility (Yang et al., 2023; Szot et al., 2023) These
RL-based methods require designed reward or train-
ing separate reward models. Direct preference op-
timization (DPO) (Rafailov et al., 2023), as an
implicit reward modeling approach, has shown
promise in LLM planning (Song et al., 2024; Zhao
et al., 2024). Different from existing approaches
focusing on optimizing action selection alone, we
propose to leverage DPO for joint optimization of
state prediction and action selection in LVLMs.

2.2 World Model
World model is a computational framework that
predicts future states based on current states and ac-
tions, enabling decision-making through simulated
outcomes (Sutton, 1990). Traditional approaches
based on recurrent state space models (RSSM) for
low-level control, focus on learning state transitions
in a latent space rather than language modeling and
rely on handcrafted reward functions (Hafner et al.,
2019, 2020; Wu et al., 2022; Hafner et al., 2023).
Recent advancements have explored integrating
LLMs to leverage prior knowledge, with some us-
ing LLMs to generate symbolic plans or code to
modeling world (Guan et al., 2023; Dainese et al.,
2024), and others using text prompting (Hao et al.,
2023; Zhou et al., 2024). However, these methods

mainly utilize world modeling during inference,
without incorporating it into the training process.
In contrast, our approach jointly optimizes state
prediction and action selection with DPO during
training stage, learning world modeling capabilities
that enhance the model’s planning abilities.

2.3 Direct Preference Optimization

In the realm of preference-based learning, Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) offers a powerful framework for language
model alignment without requiring explicit reward
modeling. Recent work has extended DPO to multi-
modal settings in understanding or reasoning tasks
(Yu et al., 2023; Wang et al., 2024a; Xie et al., 2024;
Wang et al., 2024c; Fu et al., 2025). However, em-
bodied task planning differs from these tasks as it
requires interaction with real-world environments,
closed-loop adaptation to current states, and long-
horizon planning. Recent work like ETO (Song
et al., 2024) applied DPO in LLM-based embodied
planning but primarily focused on action optimiza-
tion without considering state prediction or visual
inputs. In contrast, our work combines LVLMs
with DPO to jointly optimize state prediction and
action selection, leveraging world modeling to en-
hance the agent’s planning capabilities in dynamic,
interactive settings.

3 Method

3.1 Task Formulation

We model the embodied task planning problem
as a Partially Observable Markov Decision Pro-
cess (POMDP), where the agent operates in a par-
tially observable environment and generates actions
based on multimodal feedback. The POMDP is de-
fined by the tuple (S,A,O, T ,M,R, γ), where S
is the state space, A is the action space, O is the
observation space, T : S×A → S is the transition
function (st = T (st−1, at)), M : S → O is the
observation function provided by the simulation
environment, R : S × A → [0, 1] is the reward
function, and γ is the constant discount factor. Due
to partial observability, the agent cannot directly ac-
cess the complete state st ∈ S , but instead receives
first-person visual observations ot = M(st) ∈ O
from the environment.

Given a task goal g ∈ G, where G is the space
of natural language task instructions, the agent in-
teracts with the environment through a sequential
planing process. At each time step t, the agent re-

21520



ceives an observation ot ∈ O from the simulation
environment and maintains a history of past ob-
servations and actions ht = (o0, a1, o1, ..., at, ot).
Based on this history and the task goal, the agent’s
policy πθ generates an action at+1 ∼ πθ(·|g, ht),
where the policy πθ : G × H → A maps the cur-
rent history ht and goal g to a distribution over the
action space A.

Through this interaction process, a trajectory
is formed as e = (g, o0, a1, o1, ..., on−1, an, on),
where n is the length of the trajectory, and each
observation ot is provided by the environment after
executing action at. The task is considered success-
fully completed if the final state satisfies the goal
condition, with the reward defined as r(e) = 1 if
the goal condition is satisfied and 0 otherwise.

3.2 Data Exploration via Step-wise Tree
Search

Previous training methods often rely on costly hu-
man expert annotations or GPT-4o-generated la-
bels, which can be both time-consuming and lim-
ited in diversity. To address these challenges, we
introduce a novel tree search framework for em-
bodied task planning that explores the action space
step-by-step with environment interaction, elimi-
nating the need for human expert annotation.

Our framework consists of three components:
action sampling and evaluation, iterative tree ex-
pansion, and trajectory validation and backtracking.
First, we sample and evaluate potential actions at
each state using a hybrid scoring mechanism. Then,
we iteratively expand the search tree by selecting
and exploring promising nodes at each level, fol-
lowing a breadth-first strategy. Once a goal state
is reached, we backtrack through the trajectory to
create preference pairs for dual optimization of ac-
tion selection and state prediction. More detailed
implementation is provided in the appendix B.

Action Sampling and Evaluation At each se-
lected state node st, we sample multiple potential
actions a(i)t i=1...K using a base policy model. Ac-
tions are evaluated through a hybrid scoring mecha-
nism combining two components: a process reward
score r

(i)
proc from GPT-4o, which evaluates how ac-

tions contribute to goal completion based on the
history according to a score-based prompt, and a
binary environmental feasibility score r

(i)
env indicat-

ing action executability (1 if executable, 0 if not).
These scores are normalized and combined with
equal weights into r

(i)
total = αr

(i)
proc + (1 − α)r

(i)
env

where α = 0.5, guiding exploration towards both
goal-oriented and executable trajectories.

Iterative Tree Expansion Following a breadth-
first strategy, actions with high scores r

(i)
total ≥ τ

(where τ is a predefined threshold) are selected
for expansion. The states after selected actions
execution in the environment form the next level of
exploration. This step-by-step expansion ensures
extensive exploration of promising solution paths at
each depth while maintaining physical feasibility.

Trajectory Validation and Backtracking Upon
reaching a goal state, we extract the trajec-
tory by backtracking and constructing prefer-
ence pairs for both action selection and state
prediction. At each step st−1 → at in a
successful trajectory, where visual observations
ot−1 = M(st−1) represent the agent’s first-
person view of states as input, we generate two
types of preference pairs. For action selec-
tion, we obtain (g, a<t, o<t, r

w
t , a

w
t , r

j
t , a

j
t j∈N (t)),

where (rwt , a
w
t ) represents the chosen reasoning-

action pair and rjt , a
j
t j∈N (t) are alternatives from

sibling nodes. For state prediction, we extract
(st−1, at, s

w
t , s

j
t j∈N (t)), where swt represents the

state description that would result from executing
action awt , and sjt j∈N (t) are the corresponding state
descriptions from alternative actions.

3.3 Dual Preference Optimization (D2PO)
Framework

We propose the Dual Preference Optimization
(D2PO) framework, building upon Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023).
The core idea of DPO is to directly optimize the
model using preference pairs {yw, yl}, where the
optimization objective encourages the model to as-
sign a higher probability to preferred responses
p(yw ≻ yl) while maintaining proximity to a refer-
ence model, without additional reward model.

We extend this preference learning framework
to embodied task planning by simultaneously opti-
mizing two critical aspects: action selection and
state prediction. The action selection optimization
focuses on enhancing the policy model, enabling
the agent to choose the most appropriate action
based on the current state, history, and task instruc-
tion. Meanwhile, the state prediction optimization
targets the world modeling, which learns to pre-
dict the next state resulting from the current state
and action. This dual optimization approach en-
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Figure 2: Our method consists of two dimensions: (1) Data Exploration via Step-wise Tree Search (Sec 3.2), which
collects preference data through sampling and selecting potential actions, iterative tree expansion, and trajectory
backtracking; (2) Dual Preference Optimization (D2PO) framework (Sec 3.3) that leverages the collected preference
pairs to jointly optimize action selection and state prediction.

hances the agent’s understanding of environment
dynamics, leading to better planning performance.

Action Selection Given context (g, a<t, o<t), we
optimize the probability of selecting preferred
reasoning-action pairs (rwt , a

w
t ) over rejected pairs

(rlt, a
l
t):

Laction(πθ;πref) = −E(g,a<t,o<t,rwt ,awt ,rlt,a
l
t)∼D

[
log σ

(
β log

πθ(r
w
t , a

w
t |g, a<t, o<t)

πref(rwt , a
w
t |g, a<t, o<t)

)
− β log

πθ(r
l
t, a

l
t|g, a<t, o<t)

πref(rlt, a
l
t|g, a<t, o<t)

)]
.

(1)

State Prediction Given state-action pairs
(st−1, at), we optimize the prediction of preferred
outcome states swt after executing action at over
rejected states slt. The states are represented as
descriptions that capture key object properties,
spatial relationships, and agent status (e.g., “the
plate is on the table, and the agent is holding the
cup”). This optimization enables the model to
learn the dynamic state changes induced by actions.
Formally, the state prediction objective is:

Lstate(πθ;πref) = −E(at,st−1,swt ,slt)∼D
[
log σ

(
β log

πθ(s
w
t |st−1, at)

πref(swt |st−1, at)

)
− β log

πθ(s
l
t|st−1, at)

πref(slt|st−1, at)

)]
.

(2)
Finally, we combine both objectives in a joint

optimization problem. The total loss is a weighted
sum of the action selection and state prediction
losses, with the objective function defined as:

Ltotal = Laction(πθ;πref) + λLstate(πθ;πref),

where λ is a hyperparameter controlling the balance
between the two optimization objectives.

4 Experiment

4.1 Experimental Settings
4.1.1 VoTa-Bench
Dataset Our evaluation is based on the LoTa-Bench
(Choi et al., 2024), which leverages the AI2-THOR
(Kolve et al., 2017) simulation environment and
repurposes data from ALFRED (Shridhar et al.,
2019). Unlike ALFRED, which provides both task-
and step-level instructions for translating detailed
step-by-step guidance into robot actions, LoTa-
Bench focuses on high-level task planning using
only task-level instructions.

In this work, we extend LoTa-Bench to create a
new multimodal benchmark, VoTa-Bench, to bet-
ter support LVLMs. (1) Unlike the original LoTa-
Bench, which relies on textual descriptions, VoTa-
Bench incorporates egocentric visual information
as both the initial state and the observation after
each operation, requiring the model to effectively
process visual inputs. (2) For evaluation, we do not
rely on executable skills and logits computation;
instead, we adopt an open-domain generation ap-
proach, which may result in the model generating
non-executable skills. (3) The original dataset’s en-
vironments were same to the training environment
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(seen scene). We expanded the dataset by adding
new unseen environments to test the model’s gen-
eralization, resulting in 549 seen test samples and
646 unseen test samples, covering 108 objects and
120 scenes. More details about VoTa-Bench are in
Appendix A.

4.1.2 Baselines
Our evaluation includes the zero-shot performance
of several leading LVLMs, such as GPT-4o, GPT-
4o-mini (OpenAI, 2024), Gemini-1.5-Pro (Reid
et al., 2024), Qwen2-VL-72B (Wang et al., 2024b)
and LLaVA-1.6-34B (Liu et al., 2024).

Additionally, we validate our approach on
Qwen2-VL-7B (Wang et al., 2024b), LLaVA-
1.6-7B (Liu et al., 2024), and Llama-3.2-Vision-
11B (Meta, 2024). The compared methods are as
follows: (1) In-Context Learning: We provide 5-
shot examples to prompt the model for generation.
(2) SFT: We fine-tune the models using our col-
lected dataset. (3) DPO: We optimize the models
using our collected action selection data. Notably,
the DPO data is collected by us and focuses solely
on action selection optimization, serving as an ab-
lation of our D2PO method. (4) D2PO (Ours): We
propose a dual preference optimization approach,
leveraging both action selection and state predic-
tion data for enhanced performance.

4.1.3 Evaluation Metrics
Success Rate (SR) The Success Rate (SR) mea-
sures task completion by verifying if the final state
of the environment, including object states and po-
sitions, satisfies the task’s goal conditions. For
example, in the task “Place a cold apple on the din-
ner table,” success is achieved only if the apple is
chilled and located on the dinner table.

Path-Length Weighted Success Rate (PL) We
introduce the Path-Length Weighted Success Rate
(PL) (Shridhar et al., 2019) to evaluate efficiency,
which adjusts SR by comparing the model’s step
sequence length to the expert demonstration. The
PL score is calculated as:

PL = SR × L∗

max(L∗, L̂)
,

where L∗ is the expert’s trajectory length, and
L̂ is the model’s trajectory length. This penalizes
models that take longer than the expert, ensuring
both task success and efficiency are considered. For
instance, a model takes twice as long as the expert
receives half the credit.

4.1.4 Implementation Details

For the models Qwen2-VL-7B, LLaVA-1.6-7B,
and Llama-3.2-Vision-11B, we adopt the same
training protocol. We use full-parameter tuning,
first performing SFT for 3 epochs, using a learning
rate of 3e−5 and a batch size of 32. Following SFT,
we conduct D2PO for 1 epoch, with a learning rate
of 5e−7 and a batch size of 32. In the D2PO loss
function, we set the balancing parameter λ = 1 to
equally weigh the contributions of action selection
and state prediction. The DPO implementation is
kept identical to the D2PO setup. Our training data
consists of 4.5k SFT samples and 15k DPO sam-
ples. Due to the inherent properties of VLMs, we
use images as state inputs and text descriptions as
outputs for state prediction. The maximum number
of steps is set to 25 and the temperature is set to 0
during evaluation.

4.2 Main Results

Our experimental results highlight the substantial
advantages of the Dual Preference Optimization
(D2PO) framework over existing baselines. Results
are shown in Tab. 1, and we summarize the key
findings as follows:

World Modeling Enhances Planning Perfor-
mance: The consistent superiority of D2PO over
standard DPO (average +9.84% SR across mod-
els) validates our core hypothesis - incorporating
world modeling objectives significantly enhances
the model’s planning capabilities.

Learning from Mistakes: The performance
gains of DPO and D²PO over SFT (average rel-
ative improvements of 15.95% and 27.29% in SR
across models) underscore the value of learning
from both successful and unsuccessful exploration.
While SFT relies solely on successful trajectories,
DPO and D2PO additionally utilize suboptimal or
failed attempts, enabling the model to learn not just
what to do but also what not to do. This mirrors hu-
man learning, where mistakes often provide critical
insights into task dynamics and constraints.

Surpassing Process Reward Model through
Environment Exploration: Our D2PO framework,
with a 7B model, Qwen2-VL-7B outperforms GPT-
4o (only 14.39% SR) by 43.72 points in SR, despite
GPT-4o serving as the process reward model. This
reveals how our framework effectively combines
process guidance from larger models with envi-
ronmental feedback to develop superior planning
capabilities, even when the process reward model’s
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Figure 3: Impact of data scale on performance (SR).

direct performance on the task is limited.
Efficiency Gains from World Model Under-

standing: The improved path-length weighted
success rate (PL) metrics across all tasks (aver-
age +11.35% compared to DPO) indicate that our
model develops physics-aware planning capabili-
ties. Even more, in some tasks, while DPO and
D2PO achieve similar SR, D2PO increases the PL,
showing more efficient action sequencing through
anticipated state transitions.

4.3 Generalization: Unseen Scene

We further evaluated the generalization capabili-
ties of our model by testing it on unseen scenes
that were not part of the training environment. As
shown in Tab. 2, we observe that our method con-
sistently outperforms baseline methods in both suc-
cess rate (SR) and path-length weighted success
rate (PL), with average relative improvements of
7.17% and 8.58% respectively across different mod-
els compared to DPO. These results demonstrate
that incorporating world modeling objectives en-
hances the model’s planning capabilities and gen-
eralization to novel environments.

5 Further Analysis

5.1 Data Scale

To investigate the impact of the data scale on per-
formance, we varied the SFT data from 2K to 15K
samples (with corresponding DPO data from 6K to
50K). Our results in Fig. 3 show that D2PO consis-
tently outperforms baselines across all data scales,
achieving an average improvement of 5-15% in
success rate (SR) over SFT.

As the data size increases, we observed a non-
monotonic trend in D2PO’s performance: initial
improvements followed by plateauing or slight de-
cline at larger scales. This phenomenon likely
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Figure 4: Impact of model scale on performance (SR).

stems from the shared source with SFT data, where
simply increasing DPO data may lead to overfitting.
This highlights the importance of data quality and
diversity for model generalization.

5.2 Model Scale

We further examined the effect of model scale on
performance by conducting experiments with mod-
els of varying sizes, ranging from 2B to 72B param-
eters. As shown in Fig. 4, performance improves
as the model scale increases. Notably, D2PO con-
sistently outperforms SFT across all model sizes,
with both methods benefiting from larger model
capacities. On the largest models (Qwen 72B and
LLaVA 13B), D2PO achieves approximately 30%
improvement in SR over baselines.

5.3 Action-conditioned v.s. Goal-directed
World Modeling

Inspired by recent advances in video prediction
(Ren et al., 2025) that demonstrate the potential of
learning world dynamics without explicit actions,
we investigate two distinct approaches to world
modeling. The conventional action-conditioned
world model learns to predict the next state based
on the current state and action (π(st|st−1, at)),
while the goal-directed world model directly imag-
ines future states from history ht−1 and goal condi-
tions (π(st|g, ht−1)).

Our empirical analysis in Fig. 5 reveals that
while the action-conditioned model achieves a
higher success rate on seen scenarios, the goal-
directed model demonstrates superior generaliza-
tion to unseen scenarios. This suggests a funda-
mental trade-off: explicit action supervision helps
anchor predictions in familiar contexts, but remov-
ing such constraints enhances the model’s imagi-
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Examine&Light Pick&Place Stack&Place Clean&Place Heat&Place Cool&Place Overall

SR PL SR PL SR PL SR PL SR PL SR PL SR PL

GPT-4o 33.33 23.37 51.19 36.27 0.00 0.00 0.00 0.00 8.41 6.55 2.38 2.02 14.39 10.37
+ ICL 41.67 30.60 64.29 45.95 4.17 1.31 1.79 1.79 24.30 23.81 11.90 11.39 23.50 18.78
GPT-4o-mini 22.22 10.88 14.29 8.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.10 2.68
Gemini-1.5-pro 34.72 29.38 27.38 12.07 0.00 0.00 0.00 0.00 7.48 7.37 3.17 1.72 10.93 6.81
Qwen2-VL (72B) 34.72 21.62 39.29 21.81 0.00 0.00 0.00 0.00 3.97 3.47 0.79 0.56 11.66 7.10
LLaVA-1.6 (34B) 12.50 2.09 7.14 2.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.73 0.68

Qwen2-VL (7B) 26.39 8.55 14.29 8.22 2.08 0.60 0.00 0.00 0.00 0.00 0.00 0.00 5.83 2.46
+ ICL 25.00 9.25 21.43 12.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.56 3.14
+ SFT 70.83 55.24 69.05 57.74 6.25 5.38 26.79 26.04 58.88 58.34 31.75 31.11 44.63 40.33
+ DPO 72.22 56.67 80.95 66.30 10.42 8.47 44.64 44.64 60.75 60.75 44.44 44.04 53.92 49.37
+ D2PO 84.72 66.67 84.52 71.27 12.50 10.23 48.21 48.21 66.36 66.36 44.44 44.33 58.11 53.33

LLaVA-1.6 (7B) 4.17 0.67 7.14 1.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.64 0.26
+ ICL 1.39 0.22 4.76 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.15
+ SFT 56.94 45.37 63.10 51.65 12.50 9.81 31.25 31.18 50.47 50.08 30.16 29.34 41.35 37.56
+ DPO 66.67 45.77 72.62 59.17 20.83 18.20 44.64 44.64 44.86 44.86 43.65 43.07 49.54 44.38
+ D2PO 69.44 52.60 78.57 65.48 22.92 19.60 47.32 47.32 60.75 60.41 44.44 44.33 54.83 50.23

LLaMA-3.2 (11B) 12.50 2.00 4.76 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.37 0.39
+ ICL 8.33 1.33 3.57 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.64 0.26
+ SFT 58.33 44.13 72.62 47.04 8.33 6.69 30.36 26.03 46.73 46.73 35.71 31.98 42.99 35.33
+ DPO 76.39 59.31 78.57 62.61 12.50 9.97 29.46 25.47 43.93 43.35 36.51 34.24 46.08 39.73
+ D2PO 76.39 59.63 88.10 71.32 14.58 12.19 38.39 32.97 48.60 48.26 39.68 38.80 51.18 44.84

Table 1: Performance of D²PO and baselines on VoTa-Bench (Seen). Bold values indicate the highest performance
within the same model, and our method (D²PO), including its ablation (DPO), are highlighted in green .

Examine&Light Pick&Place Stack&Place Clean&Place Heat&Place Cool&Place Overall

SR PL SR PL SR PL SR PL SR PL SR PL SR PL

Qwen2-VL (7B) 25.53 9.34 15.79 9.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.43 3.18
+ ICL 26.95 12.20 3.95 1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.35 2.86
+ SFT 68.79 56.93 52.63 44.46 4.29 2.61 43.36 43.37 62.50 62.29 49.54 47.38 50.77 46.70
+ DPO 73.76 60.17 53.95 46.95 7.14 5.15 52.21 52.21 66.18 66.18 66.97 66.97 57.59 53.65
+ D2PO 77.30 62.67 56.58 49.56 11.43 8.66 55.75 55.75 72.79 72.79 68.81 68.51 61.46 57.16

LLaVA-1.6 (7B) 4.26 0.77 6.58 1.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.30
+ ICL 2.84 0.45 2.63 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.23
+ SFT 64.54 52.41 57.89 51.39 4.29 3.00 42.48 41.61 56.62 56.16 44.04 43.51 48.14 44.33
+ DPO 75.89 51.53 60.53 45.25 7.14 4.62 56.64 56.21 65.44 64.61 63.30 63.12 58.82 51.23
+ D2PO 77.30 58.98 60.53 49.30 14.29 10.38 60.18 60.18 69.12 68.90 65.14 64.46 61.61 55.78

LLaMA-3.2 (11B) 12.06 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.63 0.46
+ ICL 9.22 1.48 5.26 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.63 0.42
+ SFT 70.92 58.75 53.95 46.25 7.14 4.61 51.33 50.02 47.06 46.85 52.29 50.81 50.31 46.02
+ DPO 74.47 61.40 64.47 54.16 7.14 5.63 45.13 43.76 51.47 50.33 53.21 51.41 52.32 47.39
+ D2PO 82.27 66.47 64.47 55.34 7.14 5.69 53.10 51.52 58.09 57.59 57.80 55.79 57.59 52.27

Table 2: Generalization performance on VoTa-Bench (Unseen). Bold values indicate the highest performance within
the same model, and our method (D²PO), including its ablation (DPO), are highlighted in green .

native capacity, leading to more flexible dynamics
learning that better generalizes to novel situations.

5.4 Error Analysis

Through analyzing error cases of Qwen2-VL-7B
in seen scenarios, we found that our method sig-
nificantly reduced dependency error (212 → 141),
affordance error (144 → 128), and inefficient Error
(141 → 78). Details are provided in Appendix C.

5.5 Case Study

To better understand our approach’s advantages in
handling dependency constraints and efficiency, we
conduct detailed case studies in Appendix D.

6 Conclusion

Embodied task planning requires AI systems to un-
derstand environment dynamics for effective physi-
cal interactions, yet existing approaches primarily
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Figure 5: Success rates (SR) of action-conditioned and
goal-directed world models across seen and unseen sce-
narios.

focus on direct state-to-action mapping without
considering action consequences. In this paper, we
propose to learn world modeling to enhance the
model’s planning capability through the Dual Pref-
erence Optimization (D2PO), a new framework that
jointly optimizes state prediction and action selec-
tion through preference learning. To automatically
construct stepwise preference data for training, we
also introduced a tree search mechanism, enabling
systematic exploration and embodied experience
accumulation in simulated environments. Exten-
sive experiments on our proposed VoTa-Bench
demonstrate that our 7B parameter model signifi-
cantly outperforms existing approaches, including
GPT-4o, across various evaluation metrics. These
results validate that incorporating world modeling
helps the model better understand environment dy-
namics, leading to improved planning capabilities.

Limitation

Sim-to-Real Gap Similar to others in embodied
task planning, our current training and evaluation
are conducted in the AI2-THOR simulation envi-
ronment, which may not fully capture the complex-
ity and uncertainty of real-world scenarios, and
may lead to the sim-to-real gap. Nevertheless, our
learning algorithm is designed to be environment-
agnostic and independent of simulation metadata,
enabling potential deployment and optimization in
real-world settings. Additionally, existing research
efforts are actively exploring methods to bridge
this gap, which could further facilitate real-world
applications.

Data Collection Efficiency Given the current
limitations in multimodal language models’ cri-
tique capabilities (Chen et al., 2024a), our data col-

lection pipeline utilizes GPT-4o as the judge model
for process rewarding, which requires additional
computational resources. As vision-language mod-
els continue to advance rapidly, and with future ex-
ploration of embodied self-rewarding mechanisms,
we believe these computational costs will be sig-
nificantly reduced, making the framework more
scalable for practical applications.

Ethics Statement

Our research aims to develop robots that serve as as-
sistive tools to augment human capabilities in daily
tasks rather than replacing human workers, creating
new opportunities for human-AI collaboration in
household scenarios. To ensure responsible devel-
opment and prioritize user safety, we advocate for
implementing comprehensive safety protocols and
monitoring mechanisms before deploying similar
systems in real-world environments, particularly
when handling potentially hazardous appliances.
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A VoTa-Bench

A.1 Task Formulation and Comparison

Task Formulation VoTa-Bench is designed as
a closed-loop task planning framework. For each
task sample, the framework consists of a natural
language goal, an initial environment state detail-
ing object locations and states (which are used to
initialize the simulator), and a goal condition speci-
fying the criteria for task completion.

The task execution follows an interactive closed-
loop process. Initially, the model receives a goal
instruction along with an egocentric view of the en-
vironment state. Based on these inputs, the model
begins its planning process. At each step, the model
plans only the next action, which is then executed
in the simulation environment. The environment
provides feedback including both the action exe-
cution status (success or failure) and an updated
egocentric view of the new state. The model in-
corporates this feedback to plan its next step. This
interactive process continues until either the model
signals completion by outputting a “done” action
or reaches the maximum allowed steps (25).

LoTa-Bench vs. ALFRED Our VoTa-Bench is
based on Lota-bench. Although both LoTa-Bench
and ALFRED are based on the AI2Thor simulation
environment, they represent different approaches
to embodied task evaluation. LoTa-Bench focuses
specifically on assessing LLM’s planning capabil-
ities, providing a low-level controller to handle
the execution of language actions in the simula-
tion environment. In contrast, ALFRED evaluates
models’ overall performance, including low-level
action execution, without decoupling task success
metrics. This distinction is particularly relevant in
modern hierarchical systems where LLMs serve
as the embodied brain for task planning, while
separate action models handle low-level execution.
LoTa-Bench effectively isolates and measures the
model’s planning ability specifically. Furthermore,
LoTa-Bench implements more fine-grained step de-
composition, breaking tasks into simple, executable
actions, compared to ALFRED’s higher-level plan-
ning approach (Fig. 6). Another key difference
lies in the instruction format: while ALFRED pro-
vides human-written step-by-step instructions to
guide task planning, LoTa-Bench presents a greater
challenge by providing only goal instructions.
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1. Find CounterTop 2. Pickup Tomato 3. Find Fridge 4. Cool Tomato 5. Find Sink 6. PutDown Tomato

1. Find Tomato 2. Pickup Tomato 3. Find Fridge

11. Find Sink 12. PutDown Tomato

4. Open Fridge 5. PutDown Tomato 6. Close Fridge

7. Open Fridge 8. Find Tomato 9. Pickup Tomato 10. Close Fridge

VoTa-Bench  (ours)

Goal Instruction: Place a cold tomato in the sink

LoTa-Bench  [ICLR’24]

Goal Instruction: Place a cold tomato in the sink

ALFRED [CVPR’20]
Goal Instruction: Place a cold tomato in the sink
Step-by-step Instruction:
1. turn to the left and take a few steps and turn to the right and go to the counter
2. pick up the tomato from the counter top
3. turn to the right twice and go to the front of the refrigerator and turn to the left and go to the refrigerator
4. open the refrigerator door and put the tomato on the bottom right shelf and close the door and wait and open the door and pick up the 
tomato and close the refrigerator door
5. turn to the left and go to the counter and turn to the right facing the sink",
6. put the tomato in the sink"

(a) ALFRED (high-level planning) (Shridhar et al., 2019)1. Find CounterTop 2. Pickup Tomato 3. Find Fridge 4. Cool Tomato 5. Find Sink 6. PutDown Tomato

1. Find Tomato 2. Pickup Tomato 3. Find Fridge

11. Find Sink 12. PutDown Tomato

4. Open Fridge 5. PutDown Tomato 6. Close Fridge

7. Open Fridge 8. Find Tomato 9. Pickup Tomato 10. Close Fridge

VoTa-Bench  (ours)

Goal Instruction: Place a cold tomato in the sink

1. Find Tomato 2. Pickup Tomato 3. Find Fridge

11. Find Sink 12. PutDown Tomato

4. Open Fridge 5. PutDown Tomato 6. Close Fridge

7. Open Fridge 8. Find Tomato 9. Pickup Tomato 10. Close Fridge

LoTa-Bench  [ICLR’24]

Goal Instruction: Place a cold tomato in the sink

(b) LoTa-Bench (Choi et al., 2024)

1. Find CounterTop 2. Pickup Tomato 3. Find Fridge 4. Cool Tomato 5. Find Sink 6. PutDown Tomato

1. Find Tomato 2. Pickup Tomato 3. Find Fridge

11. Find Sink 12. PutDown Tomato

4. Open Fridge 5. PutDown Tomato 6. Close Fridge

7. Open Fridge 8. Find Tomato 9. Pickup Tomato 10. Close Fridge

VoTa-Bench  (ours)

Goal Instruction: Place a cold tomato in the sink

1. Find Tomato 2. Pickup Tomato 3. Find Fridge

11. Find Sink 12. PutDown Tomato

4. Open Fridge 5. PutDown Tomato 6. Close Fridge

7. Open Fridge 8. Find Tomato 9. Pickup Tomato 10. Close Fridge

LoTa-Bench  [ICLR’24]

Goal Instruction: Place a cold tomato in the sink

(c) VoTa-Bench (ours)

Figure 6: Comparison of ALFRED, LoTa-Bench, and VoTa-Bench in the task “Place a cold tomato in the sink”. (a)
ALFRED emphasizes high-level task planning with human-written step-by-step instructions, breaking the task into
subgoals like “Cool Tomato” (step 4). (b) LoTa-Bench provides only goal instructions and decomposes tasks into
fine-grained low-level actions (e.g., “Open Fridge”, “PutDown Tomato”, etc.; steps 4–10) but lacks guidance from
visual input, relying on predefined executable actions, choosing actions based on maximum logits to ensure they
are valid in the simulation. (c) VoTa-Bench extends LoTa-Bench by incorporating egocentric visual observations,
requiring models to generate open-domain actions based on visual information to handle both seen and unseen
environments.

A.2 Data Statics
A.2.1 Tasks
Following the design of LoTa-Bench, VoTa-Bench
incorporates 6 task types: Examine & Light, Pick &
Place, Stack & Place, Clean & Place, Heat & Place,
and Cool & Place. Compared to LoTa-Bench’s 208
samples, we expanded the dataset to 549 samples
in seen environments and further added 646 sam-

ples in unseen environments. The average action
sequence length varies across different task types,
ranging from 4.00 steps for simple examination
tasks to 18.35 steps for more complex operations
like Heat & Place, with an overall average of 11.85
steps in seen environments and 10.90 steps in un-
seen environments. More details is shown in Tab. 3.
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Task Type Seen Unseen Sample InstructionNum Avg Length Num Avg Length

Examine & Light 72 4.00 141 4.34 Examine a vase under a tall lamp
Pick & Place 84 4.46 77 5.70 Put pencil on bureau top
Stack & Place 48 10.60 70 8.49 Put a pot with a sponge in it in the sink.
Clean & Place 112 12.66 113 12.88 Put a cleaned washcloth away in a cabinet.
Heat & Place 107 18.35 136 17.38 To heat a potato slice and put it on the table by the spoon.
Cool & Place 126 15.48 109 14.48 Chill a knife and place a chilled slice of lettuce in a sink.

Total 549 11.85 646 10.90

Table 3: Distribution of task types in VoTa-Bench. The dataset is divided into seen and unseen environments, with
statistics showing the number of samples (Num) and average action sequence length (Avg Length) for each task
type. Example instructions are provided to illustrate typical tasks.

(a) Seen Scene

(b) Unseen Scene

Figure 7: Examples of seen and unseen scenes.

A.2.2 Actions
Based on the AI2-THOR simulator, VoTa-Bench
supports eight fundamental actions that can be com-
bined to accomplish the above tasks:

• Find(<object>): A navigation action that en-
ables the agent to locate and approach a spe-
cific object. The agent needs to identify and
move to the target object’s location before any
interaction can occur.

• PickUp(<object>): Allows the agent to grasp
and lift an object. The precondition is that the
agent must be within the interaction range of
the object and not currently holding anything.

The effect is that the agent holds the specified
object.

• PutDown(<object>): Places a held object onto
the last visited receptacle. The agent must be
holding the object and within range of the
receptacle.

• Open(<object>): Opens containers such as
cabinets, drawers, or appliances. The agent
must be within the interaction range of the
target object.

• Close(<object>): Closes previously opened
containers. Similar to Open, requires the
agent to be within the interaction range.

• TurnOn(<object>): Activates objects like
lights or appliances. The agent must be within
the interaction range of the target object.

• TurnOff(<object>): Deactivates previously
turned on objects. Requires the agent to be
within interaction range.

• Slice(<object>): Allows the agent to cut or
slice certain objects. The agent must be hold-
ing an appropriate cutting tool and be within
range of the target object.

Each action can only be executed when its pre-
conditions are met, ensuring realistic interaction
sequences. For example, interaction actions like
“PickUp” can only be executed when the distance
between the agent and the target object is within a
predefined threshold. If the target object is not
within visual range, the agent needs to use the
“Find” action first to locate and approach the object
before interaction.
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A.2.3 Scene
VoTa-Bench environments are based on the AI2-
THOR simulation platform, covering four indoor
scenes: Kitchen, Living Room, Bedroom, and Bath-
room. We extend LoTa-Bench by introducing un-
seen scenes for testing generalization capability.

• Seen Scene: These household environments
share identical layouts with the training set.
Object positions are randomly initialized ac-
cording to pre-defined commonsense distribu-
tions in AI2-THOR.

• Unseen Scene: These household environ-
ments feature different layouts from the train-
ing set. Object positions are randomly initial-
ized according to pre-defined commonsense
distributions in AI2-THOR.

Fig. 7 shows examples of layouts in our seen and
unseen environments.

A.3 License Statement
This work builds upon ALFRED (MIT License),
AI2-THOR (Apache-2.0), and LoTa-Bench (CC
BY 4.0). All modifications and derived work com-
ply with their respective licenses.

B Details of Preference Data

B.1 Data Construction Details
Our task instructions are sampled from the AL-
FRED dataset’s training set. This process can
be automated through defining formal goal con-
ditions (including object relationships like <ob-
ject> on <object> and object states like “heated”),
which, combined with instruction generation ca-
pabilities of large language models, enables auto-
mated construction of large-scale instruction-goal
paired datasets.

We use the Qwen2-VL-7B as the policy model
for data collection with a temperature setting of
0.8, and GPT-4o (temperature = 0) is utilized as the
process reward model to assess action quality (0-5).
Environmental feasibility is determined through
binary scoring (0/1), indicating whether an action
can be physically executed in the environment. To
ensure balanced consideration of both aspects, we
normalize the environmental score to a 0-5 scale
before averaging it with the semantic score.

Our tree search implementation employs several
key parameters to maintain efficiency while ensur-
ing thorough exploration. The selection threshold

τ is set to 3.75, which creates a strict filtering mech-
anism: actions must be both environmentally fea-
sible and semantically meaningful to be selected
for expansion. This threshold effectively filters out
non-executable actions (environmental score = 0)
and executable actions with low semantic scores
(< 2). To manage computational resources and
maintain search efficiency, we sample 5 candidate
actions for each state and set a maximum search
depth of 25 steps. These parameters were deter-
mined through empirical testing to balance between
exploration breadth and computational feasibility.

The hybrid scoring mechanism integrates both
semantic and environmental feasibility assessments.
For semantic evaluation, we employ GPT-4o to
assess how effectively each step contributes to task
completion, using a 5-point scale rating prompt
(detailed in Appendix E).

B.2 Data Sample
For each step in the correct trajectory, we can con-
struct preference pairs for both action selection and
state prediction. For action selection, the action
from the correct trajectory serves as the “chosen”
action, while other actions at the same step serve
as “reject” actions. Since there may be multiple
incorrect actions when using tree-search methods,
the number of DPO samples exceeds the number
of SFT samples. The example of action selection
is as follows:

Input:
<image>
Please generate the plan for the next step based on the given Goal, Previous
Steps, and Images. The plan should select one action and one object from
the provided list.

### Goal: Place a cooked apple inside the fridge.
### Previous Steps:
#Step 1: find apple (this action success)
#Step 2: pick up apple (this action success)
#Step 3: find microwave (this action success)
### Action List: [’find’, ’pick up’, ’put down’, ’open’, ’close’, ’slice’, ’turn
on’, ’turn off’, ’done’]

Generate the next step in the format:
Reasoning:
Action:
Object:

Chosen Output:
Reasoning: To cook the apple, it needs to be placed inside the microwave.
After that, it can be cooled in the fridge.
Action: open
Object: microwave

Rejected Output:
Reasoning: The user needs to put the cooked apple inside the fridge. The
apple has already been found and picked up in the previous steps. The next
step requires finding the fridge.
Action: find
Object: fridge

For state prediction, given the current state and
correct action as input, we treat the state that the
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Figure 8: Distribution of the SFT and DPO dataset
across different task types.

correct action transitions to as “chosen”, and the
states that incorrect actions lead to as “reject” states.
We use GPT-4o to convert environment metadata
(object visibility, spatial relationships, etc.) and
visual information into natural language state de-
scriptions. Since there might be a language style
gap between GPT-4o and our model’s generations,
we have the model first reproduce the current state
description as an anchor point before predicting the
next state. The example of state prediction is as
follows:

Input:
<image>
Given the current state and step, describe the current state and predict what
the next state should look like.

### Step: open microwave

First describe the current state, then predict the next state after the step is
executed:
### Current State:
### Next State:

Chosen Output:
Current State: The microwave is on the counter, and the apple is held.
Next State: The microwave is open with a blue plate inside. The apple is
held.

Rejected Output:
Current State: The microwave is on the counter, and the apple is held.
Next State: The fridge is visible with a temperature display showing -15,
and the apple is held.

B.3 Data Distribution

To achieve a balanced dataset, we processed the
collected data to ensure similar sample sizes across
task types, with the detailed distribution presented
in the Fig. 8.

C Error Analysis

To systematically analyze the error patterns, we em-
ployed Deepseek-R1 (DeepSeek-AI et al., 2025)
to classify error types by comparing standard tra-
jectories with erroneous ones. Note that a single

SFT DPO D2PO

Dependency Error 212 157 141
Affordance Error 144 141 128
Inefficient Error 141 93 78
Others 20 16 17

Table 4: Distribution of Error Types Across Different
Methods

trajectory may contain multiple types of errors si-
multaneously. We categorized the errors into three
main types:

• Dependency Error (DE): Occurs when ac-
tions are executed without meeting necessary
prerequisites, violating the logical sequence
of operations.

• Affordance Error (AE): Manifests as incor-
rect object interaction sequences, indicating a
misunderstanding of how to properly interact
with objects in the environment. This includes
both action affordance errors (using incorrect
methods to interact with objects) and exis-
tence affordance errors (attempting to interact
with non-existent objects).

• Inefficient Error (IE): Involves redundant or
unnecessary actions that do not contribute to
achieving the task goal efficiently.

As shown in Tab. 4, our D2PO method demon-
strates significant improvements in reducing these
error types compared to baseline methods. The
analysis reveals that D2PO particularly excels in
minimizing Dependency Errors (212 → 141), Af-
fordance Errors (144 → 128), and Inefficient Errors
(141 → 78).

However, we acknowledge certain limitations in
our current approach. While we have made sub-
stantial progress in reducing these common error
types, there remain opportunities for future work
to further enhance the model’s performance and ad-
dress more complex error patterns that may emerge
in different scenarios.

D Case Study

We conduct case studies to demonstrate the advan-
tages of our proposed D²PO method over SFT in
terms of dependency and efficiency.

Dependency As shown in Fig. 9, our method ex-
hibits superior dependency modeling compared to
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SFT in the task “put washed plate inside fridge”. At
step 2, SFT attempts to “pick up” without first locat-
ing an accessible plate, while our method correctly
performs “find plate” before attempting any ma-
nipulation. Similarly, at step 4, SFT executes “put
down plate” without having successfully picked
up any plate, whereas our approach ensures proper
prerequisites are met. These initial errors in SFT
propagate throughout the sequence - despite mul-
tiple pick and place attempts, they remain invalid
operations, ultimately resulting in task failure.

Efficiency Fig. 10 demonstrates our method’s
superior efficiency in the task “place a warm plate
in the cabinet”. Even when both approaches suc-
cessfully complete the task, our method requires
fewer steps through better action sequencing. D²PO
first locates the plate before proceeding to operate
the microwave, following a logical and efficient
order. In contrast, SFT inefficiently operates the
microwave before finding the plate, leading to re-
dundant “find plate” actions in steps 1 and 5. Fur-
thermore, SFT exhibits unnecessary repetition in
steps 12-14, where it performs the same action
multiple times. This comparison highlights our
method’s ability to generate more streamlined and
efficient action sequences while maintaining task
success.

E Prompt Template
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(a) SFT Trajectory (Fail)

(b) D2PO Trajectory (Success)

Figure 9: Case Study about Dependency. This example demonstrates our method’s superiority in dependency
modeling compared to SFT. At step 2, SFT attempts “pick up” without locating an accessible plate, while our
method first performs “find plate”. Similarly, at step 4, SFT executes “put down plate” without having picked up
any plate, whereas our approach ensures the plate is properly held before putting it down. These initial errors in
SFT propagate throughout the sequence - despite multiple pick and place attempts, they remain invalid operations,
ultimately resulting in task failure.
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(a) SFT Trajectory (Success)

(b) D2PO Trajectory (Success)

Figure 10: Case Study about Efficiency. Even when both SFT and D2PO methods successfully complete the task,
our approach requires fewer steps. Our method first locates the plate before proceeding to operate the microwave,
while SFT operates the microwave before finding the plate, resulting in redundant “find plate” actions in steps 1
and 5. Additionally, SFT’s repetitive execution of the same action in steps 12-14 further reduces efficiency. This
comparison demonstrates our method’s superior action sequencing and efficiency, even when both approaches
ultimately achieve the goal.
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GPT Evaluation Prompt

Please serve as an unbiased evaluator for the AI-
generated next step in the task planning according to
the goal progress. The task involves robotic actions
that typically follow a logical sequence of steps to
achieve a defined goal.
{example}
## Input Data:
### Goal: {goal}

### Previous Steps: {previous_steps}
—
## AI-generated Next Step to Evaluate:
Step: {step}
Execution Result: {action_ret}
After executing the step, you can see the following
environment state: <image>

## Evaluation Criteria:
### Goal Progress (1-5 points):
Evaluate how effectively the step moves toward
completing the task by considering:
1. **Action Sequence** - Does it follow a
logical progression of actions based on the task
requirements? (e.g., preparation → execution →
refinement → goal completion)
2. **Previous Actions** - How does it build on
prior steps? Does it avoid unnecessary repetition or
conflicting actions?
3. **Goal State** - Does the step advance the task
toward achieving the defined goal or final condition?
4. **Environment State** - Does the environment
state after executing the step align with the expected
progress toward the goal?

Scoring for Goal Progress:
- **[1]:** Step moves away from the goal or makes
goal completion more difficult.
- **[2]:** Step is redundant or repeats the exact
same action as the immediate previous step without
progress.
- **[3]:** Step makes moderate progress toward the
goal.
- **[4]:** Step makes significant progress toward the
goal, aligning well with the task sequence.
- **[5]:** Step makes excellent progress, directly
advancing toward goal completion.

### Examples:
- A step that repeats an action unnecessarily (e.g.,
"find object" followed by "find object") = [2].
- A step that logically follows the sequence (e.g., "find
object" before "pick up object") = [4].
- A step that conflicts with the goal (e.g., "pick up ob-
ject" followed by "put down object" without correct
location) = [1].
—
## Output Format:
### Evaluation:
Analysis: Briefly explain how the step compares to
prior actions, whether it follows a logical sequence,
and how it advances the goal.
Goal Progress Score: Use the following scale format:
[1], [2], [3], [4], [5].

Figure 11: Prompt Template for GPT-Evaluation during
the Data Collection.

State Description Prompt

For the initial state (without previous state descrip-
tion):

<image>
Please describe the current scene state for the goal
‘goal’.
All Steps: {step_text}
Current Executed Step: {step}

Only Describe what is visually present in the current
scene in 1-2 simple factual sentences without
interpretation or suggestions. Follow these rules:
1. If an object has been picked up (including in the
current step) but not yet put down (including in the
current step), describe it as ‘is held’.
2. Object ‘object’ must be included in the description.

For the subsequent states (with previous state
description):

<image>
Please describe the current scene state for the goal
‘goal’.
All Steps: {step_text}
Previous State: {previous_state}
Current Executed Step: step

Only Describe what is visually present in the current
scene in 1-2 simple factual sentences without inter-
pretation or suggestions. Follow these rules:
1. If an object has been picked up (including in the
current step) but not yet put down (including in the
current step), describe it as ‘is held’.
2. Object ‘object’ must be included in the description.

Figure 12: Prompt Template for State Description using
GPT-4o.
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