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Abstract
Text-to-speech (TTS) systems have seen sig-
nificant advancements in recent years, driven
by improvements in deep learning and network
architectures. Viewing the output speech as
a data distribution, previous approaches often
employ traditional speech representations, such
as waveforms or spectrograms, within the Flow
Matching framework. However, these methods
have limitations, including overlooking vari-
ous speech attributes and incurring high com-
putational costs due to additional constraints
introduced during training. To address these
challenges, we introduce OZSpeech, the first
TTS method to explore optimal transport con-
ditional flow matching with one-step sampling
and a learned prior as the condition, effectively
disregarding preceding states and reducing the
number of sampling steps. Our approach oper-
ates on disentangled, factorized components of
speech in token format, enabling accurate mod-
eling of each speech attribute, which enhances
the TTS system’s ability to precisely clone the
prompt speech. Experimental results show that
our method achieves promising performance
over existing methods in content accuracy, nat-
uralness, prosody generation, and speaker style
preservation. Code and audio samples are avail-
able at our demo page 1.

1 Introduction

Text-to-speech (TTS) has numerous real-world ap-
plications, such as voice-based virtual assistants,
assistive screen readers for the visually impaired,
and reading aids for people with dyslexia, to name
a few. Most TTS systems focus on synthesizing
speech that matches a speaker in a set of speakers
seen during training. Recent studies tackle a more
challenging problem of converting text into speech
that follows the acoustic characteristics of a prompt
spoken by a speaker not seen during training. This
problem is called zero-shot TTS.

*Corresponding author
1https://ozspeech.github.io/OZSpeech_Web/

In recent years, remarkable progress has been
achieved in the research of Zero-shot TTS models.
These advancements have demonstrated the impres-
sive capabilities of such models, with their synthe-
sized outputs often approaching a quality level that
is virtually indistinguishable from human speech.
The body of research on Zero-Shot TTS can be
broadly divided into two primary categories, each
aligned with a dominant methodological paradigm
in the field: autoregressive models and diffusion-
based models.

Prominent examples of the autoregressive ap-
proach are VALL-E (Chen et al., 2025) and its vari-
ants (Chen et al., 2024a; Zhang et al., 2023; Han
et al., 2024; Meng et al., 2024; Song et al., 2024;
Peng et al., 2024; Ji et al., 2024a), which have
significantly advanced Zero-Shot TTS by integrat-
ing language modeling techniques and employing
disentangled speech units as input and output to-
kens. This innovative framework has paved the
way for the potential convergence of Zero-Shot
TTS with large language models (LLMs), enabling
the creation of efficient, multimodal systems which
are capable of generating text, speech, and other
modalities in a flexible and scalable manner. How-
ever, as with other LLM-based systems, autoregres-
sive models are susceptible to the issue of the non-
deterministic sampling process, potentially lead-
ing to infinite repetition, which remains a critical
challenge in applications requiring high levels of
precision and reliability.

In contrast, diffusion-based models, as demon-
strated by state-of-the-art (SOTA) TTS systems
such as E2 TTS (Eskimez et al., 2024) and other
related approaches (Le et al., 2023; Vyas et al.,
2023; Shen et al., 2024; Ju et al., 2024b), have
emerged as powerful generative frameworks ca-
pable of producing high-quality, natural-sounding
audio. This approach has proven particularly ef-
fective in specialized tasks such as in-filling and
speech editing. Nevertheless, diffusion-based mod-
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els face limitations in real-time applications due
to the computational inefficiency of their multi-
step sampling processes. These constraints under-
score the trade-offs inherent in the diffusion-based
paradigm, particularly in scenarios that demand
low-latency performance.

Distillation methods for diffusion-based models
have been explored to address the multi-step sam-
pling challenge, with Consistency Models (Song
et al., 2023) introducing one-to-one mapping func-
tions that transform intermediate states along the
Ordinary Differential Equation (ODE) trajectory
directly to their origin. This approach reduces sam-
pling steps to one while maintaining output quality
but requires access to a full range of t ∈ [0, 1]
to approximate trajectories, demanding extensive
training steps. As an alternative, Shortcut Models
(Frans et al., 2024) condition the network on noise
level and step size, enabling faster generation with
fewer training steps by using only a subset of t val-
ues. However, this method is computationally in-
tensive due to additional constraints introduced dur-
ing training, making it more resource-demanding
than Consistency Models.

To capitalize on the strengths and mitigate the
limitations of the aforementioned approaches, we
propose OZSpeech (One-step Zero-shot Speech
Synthesis with Learned-Prior-Conditioned Flow
Matching), a novel Zero-Shot TTS system. Our
model leverages optimal transport conditional flow
matching (Lipman et al., 2023) (OT-CFM), a class
of diffusion-based models. We reformulate the
original OT-CFM to enable single-step sampling,
where the vector field estimator regresses the trajec-
tories of all pairs of initial points from the learned
prior distribution, rather than conventional Gaus-
sian noise, to their respective target distributions.
By minimizing the distance between the initial
points and their origins while implicitly learning
the optimal t for each prior, this approach elimi-
nates the need to access a comprehensive range of
t values or compute additional constraints, thereby
ensuring high-fidelity synthesized speech.

The key contributions of this paper are as fol-
lows:

• We propose a reformulated OT-CFM frame-
work that effectively initializes the starting
points of the flow matching process using sam-
ples from a learned prior distribution. This
prior is optimized to closely approximate the
target distribution, enabling one-step sam-
pling with minimal errors. Our framework

requires only a single training run without the
need for an extensive distillation stage.

• We propose a simple yet effective network
architecture to learn prior-distributed codes.

• Compared to previous methods, our model
yields multi-fold improvement in WER and
latency, achieving significant reduction in
model size while striking a balance with
acoustical quality. In addition, while previ-
ous models suffer from increasing noise level
in the audio prompts, OZSpeech’s WER re-
mains stable, highlighting the excellent noise-
tolerant intelligibility of our method. Our
model requires significantly less computation,
with inference speed being 2.7 − 6.5 times
faster than the other methods. Our model is
only 29%-71% the size of the other models.

2 Related Work

Zero-Shot TTS enables the generation of speech in
an unseen speaker’s voice using only a few seconds
of audio as a prompt; this process is often termed
voice mimicking. Advances in large-scale gener-
ative models have driven significant progress in
this field. One prominent development is the adop-
tion of diffusion models (Ho et al., 2020; Song
et al., 2021), which have demonstrated remarkable
performance (Kang et al., 2023; Tran et al., 2023;
Shen et al., 2024; Ju et al., 2024b). Another ap-
proach, flow matching (Lipman et al., 2023; Liu
et al., 2023), has further advanced the state-of-the-
art by delivering strong results with reduced infer-
ence times (Kim et al., 2023; Mehta et al., 2024;
Eskimez et al., 2024; Chen et al., 2024c). Addition-
ally, a key innovation in Zero-Shot TTS is the use
of discrete tokens, often derived from neural codecs
(Wang et al., 2023; Kharitonov et al., 2023; Chen
et al., 2024b; Ju et al., 2024a; Du et al., 2024a).

Neural codecs are designed to learn discrete
speech and audio tokens, often referred to as acous-
tic tokens, while preserving reconstruction quality
and maintaining a low bitrate. SoundStream (Zeghi-
dour et al., 2022) is a well-known example that em-
ploys a vector-quantized variational autoencoder
(VQ-VAE), which was first introduced by (van den
Oord et al., 2017) in the field of computer vision,
and later adapted to TTS, to disentangle continu-
ous data into discrete tokens. It comprises multiple
residual vector quantizers to compress speech into
multiple tokens, which serve as intermediate rep-
resentations for speech generation. A significant
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breakthrough in this area, inspired by the success
of LLMs in natural language processing, is VALL-
E (Chen et al., 2025), a pioneering work in this
domain. VALL-E represents speech as discrete
codec codes using an off-the-shelf neural codec
and redefines TTS as a conditional codec language
modeling task. This approach has sparked further
research and development in the field (Kharitonov
et al., 2023; Zhang et al., 2023; Chen et al., 2024a;
Han et al., 2024; Du et al., 2024b).

3 Method

3.1 Problem Statement

In this paper, we consider the problem of gener-
ating speech from given text and acoustic prompt
such that conditions for the outputs are met. View-
ing the synthesized speech as a data distribution,
denoted as x1 ∼ p1(x), previous methods often
construct the output data distribution from a noise
distribution x0 ∼ p0(x). However, we propose
constructing the output data distribution from a fea-
sible intermediate state candidate xpr ∼ pprior(x)
instead of x0, thereby disregarding preceding states
and reducing the number of sampling steps. To
achieve this, we undertake the following steps:

• Prior Code Generation: We design an ef-
fective method for generating prior codes to
produce xpr (see Section 3.2).

• Vector Field Estimation: We develop a
vector field estimator to mimic attributes of
given speech prompts, facilitating the transi-
tion from xpr to x1 (see Section 3.3).

• Waveform Decomposition via FACodec:
We employ FACodec (Ju et al., 2024b), a neu-
ral codec disentangler framework, to decom-
pose the waveform into distinct components,
including speaker identity and sequences of
codes encoding prosody, content, and acoustic
details. This decomposition enables precise
control over the aspects of speech to be pre-
served or modified.

We propose a framework composed of three
main components: FACodec, the Prior Codes Gen-
erator, and the Vector Field Estimator. FACodec
is responsible for converting speech into discrete
tokens and reconstructing speech from these to-
kens. In this work, we focus on the Zero-shot TTS
task. To that end, we adopt a publicly available,
pretrained FACodec model without any additional
fine-tuning or retraining. The core components of
our framework are the Prior Codes Generator and

the Vector Field Estimator, which together enable
the mapping of input text to speech while trans-
ferring attributes from a reference speech prompt.
Given an input text, the Prior Codes Generator
produces a sequence of prior codes. These are con-
catenated with the discrete codes obtained from a
speech prompt (via FACodec), and the combined
sequence is fed into the Vector Field Estimator.
This component ensures that the output speech in-
herits the desired attributes from the speech prompt.
An overview of the entire pipeline is illustrated in
Figure 1.

3.2 Prior Codes Generation Modeling
Our key contribution to prior code generation is
that the process follows a hierarchical structure:
each code sequence generation depends on the pre-
ceding code sequences, while the condition for the
first code sequence is initialized based on phoneme
embeddings. To achieve this, we implement a cas-
caded neural network where specific decoder layers
generate the respective code sequences in the hi-
erarchy (shown in Fig. 1b). Formally, the Prior
Codes Generator fψ(·) is modeled as:

p(q1:6 | p;ψ) = p(q1 | p; f1ψ)
6∏

j=2

p(qj | qj−1; f
j
ψ),

(1)
where qj is the j-th code sequence from the Feed-
Forward Transformer (FFT) decoder layer f jψ and
p represents phoneme embeddings as the initial
condition. The Prior Loss Lprior minimizes the neg-
ative logarithm of the joint probability in Eq. (1),
ensuring content code sequences are learned ef-
fectively by conditioning on phonemes, while the
others, including prosody and acoustic details, con-
verge towards the mean representations. The Prior
Codes Generator produces semantically meaning-
ful codes, reducing the distance between xpr and
x1, allowing the Vector Field Estimator vθ(·, ·)
to approximate vectors from a mean distribution
rather than generating them from pure noise.

To align the input phonemes with their corre-
sponding output code sequences, we employ a neu-
ral network functioning as a Duration Predictor,
as introduced in (Ren et al., 2019a). Briefly, the
Duration Predictor estimates the duration (i.e., the
number of acoustic tokens) for each input phoneme.
The phoneme embeddings are duplicated accord-
ingly before being passed through the decoder of
the Prior Codes Generator. We define the loss func-
tion used to train the Duration Predictor as Ldur,
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Figure 1: Overview of OZSpeech: (a) The overall architecture: The text prompt is converted to phonemes and
then into prior codes via the Prior Codes Generator. Simultaneously, the audio prompt is encoded into codes using
the FACodec Encoder. These codes are concatenated along the sequence dimension and fed into the OT-CFM
Vector Field Estimator, which generates codes preserving the text content and acoustic attributes. Finally, the
FACodec Decoder converts them into output speech. (b) The Prior Codes Generator fψ(·) produces sequences of
phoneme-aligned codes. (c) The Vector Field Estimator refines these codes with the prosody and acoustic details
from the acoustic prompt. Before being fed through vθ(·, ·), six sequences of codes are first enhanced via Quantizer
Embedding, which serves as an identifier for each sequence within the hidden space. These embeddings are then
folded along the hidden dimension and processed by the network to estimate the velocity of the prior codes.

which aims to minimize the mean squared error
between the predicted and ground truth durations
on a logarithmic scale.

3.3 One-Step Optimal Transport Flow
Matching for Zero-Shot TTS

One-Step Optimal Transport Flow Matching
Formulation. We rectify the OT-CFM paradigm,
simultaneously introduced by (Lipman et al., 2023)
and (Liu et al., 2023) and first adapted to text gen-
eration by (Hu et al., 2024). Our approach involves
constructing a vector field that regresses the veloc-
ity of non-Gaussian distribution and data distribu-
tion pairs, where the initial distribution closely ap-
proximates the target distribution. To this end, we
reformulate the original flow matching loss equa-
tion (details provided in A.2) to explicitly account
for the discrepancies between the non-Gaussian
initial distribution and the target distribution. Let
xt denote a linear probability path, starting from
a purely noisy initial point x0 ∼ N (0, I) and pro-
gressing towards a data point x1 ∼ D. It is defined
as xt = tx1+(1−t)x0, where t ∼ U(0, 1) denotes
the interpolation parameter. Based on this, the ini-
tial point x0 can be derived as x0 =

tx1−xt
1−t . Thus,

the OT-CFM objective, as presented in Eq. (12),
can be reformulated as follows:

LCFM (θ) = Et,x0,x1

∥∥∥∥vθ(xt, t)−
x1 − xt
1− t

∥∥∥∥
2

.

(2)

We assume that xt can be estimated via fψ(·). Un-
der this assumption, xt is treated as a learnable
state, which we denote as xpr, while t is regarded
as an unknown interpolation parameter, represented
as a prior-dependent time variable τ . Where, τ is
learnable and predicted by a compact neural net-
work, which accepts xpr as input. Consequently,
Eq. (2) can be reformulated as follows:

LCFM(θ) = Expr,x1

∥∥∥∥vθ(xpr, τ)−
x1 − xpr

1− τ

∥∥∥∥
2

.

(3)

This paradigm is similar to the original OT-CFM
in its objective of regressing the velocity between
the initial prior x0 and data x1 pairs. However,
unlike the original approach, it does not access the
distribution of x0 during training. Therefore, it
also does not enforce x0 to follow a normal distri-
bution. Furthermore, as the prior distribution xpr
approaches the target distribution x1, both the num-
ber of sampling steps and the magnitude of each
step are substantially reduced. This convergence
enables the sampling process to be efficiently per-
formed in as few as a single step.

Vector Field Estimator Modeling. To model
vθ(·, ·), we define the latent representations of the
prior, target, and estimated target distributions as
xpr, x1, and x̃1, respectively, where xpr,x1, x̃1 ∈
R6×N×D. These terms represent six quantizer cat-
egories with sequence length N and feature dimen-
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sionality D. Inspired by diffusion-based text gener-
ation models like Diffuseq (Gong et al., 2023), Dif-
former (Gao et al., 2024), and FlowSeq (Hu et al.,
2024), we condition xpr on an acoustic prompt to
guide vθ(·, ·) in transferring speech attributes other
than content. Specifically, only prosody and acous-
tic detail codes serve as prompts, while the con-
tent codes are masked to prevent undesired content
transfer. The input to vθ(·, ·) is then formulated as
the concatenated representation:

zpr = Concat(ymask,xpr + ϵ), ϵ ∼ N (0, I),

where zpr ∈ R6×L×D, with L =M +N represent-
ing the total sequence length of the concatenated
input. ymask denotes the content-masking represen-
tation of the acoustic prompt. Random Gaussian
noise ϵ is added to the latent representation of xpr
to ensure the robustness and diversity of the model.
The diagram of the Vector Field Estimator is shown
in Fig. 1c.

Folding Mechanism and Quantizer Encoding.
Our data representation consists of six sequences
of quantizer embeddings, making direct sequence
modeling with Transformers challenging. Previ-
ous works using Neural Codec for audio discretiza-
tion, such as VALL-E (Chen et al., 2025), VALL-E
2 (Chen et al., 2024a), and NaturalSpeech3 (Ju
et al., 2024b), model each quantizer sequence in-
dependently. While effective, this approach in-
curs high computational costs and long genera-
tion times due to sequential processing. To mit-
igate these inefficiencies, we propose modeling
all six quantizers simultaneously by folding them
along the hidden dimension. Let F(·) be the fold-
ing function, defined as a composition of two
transformations: G : R6×L×D → RL×6D and
H : RL×6D → RL×D′

. Thus, F is expressed
as: F ≜ H ◦ G : R6×L×D → RL×D′

. Within
this framework, the function F(·) permutes and
reshapes the input tensor to sequentially align the
component quantizers in the hidden space, follow-
ing the prescribed order of prosody, content, and
acoustic details. Subsequently, it adjusts the ten-
sor’s dimensionality accordingly. In addition, we
propose a quantizer encoding mechanism designed
to identify specific quantizers within the hidden
space. This mechanism operates in conjunction
with the F(·) function. The quantizer encoding is
formally defined as follows:

Q(x) = x+ Dup(ω,L), x ∈ R6×L×D.

Here, the quantizer encoding function Q(·) inte-
grates the input tensor R6×L×D with the embed-
ding Dup(ω,L). In this context, ω ∈ R6×1×D

plays a role as the identifier for the latent rep-
resentation of the quantizers, while the function
Dup(·, ·) duplicates the identifier along the se-
quence length L. With Q(·), we aim to prevent
the model from confusing the quantizers with each
other, even when they are simultaneously mod-
eled within a single sequence. Consequently, the
latent representation zpr is transformed into z̆pr,
which subsequently serves as the direct input to the
function vθ(·, ·). The transformation is defined as
z̆pr = (F ◦ Q)(zpr).

Anchor Loss. To optimize generative model perfor-
mance on discrete token data and stabilize training,
we use Anchor Loss Lanchor as a regularization
term for embeddings. Initially introduced in dif-
fusion models for discrete data (Gao et al., 2024)
and later adapted for flow matching models (Hu
et al., 2024), Lanchor measures the difference be-
tween an intermediate state xt and the ground truth
x1. It prevents embedding collapse, reduces dis-
tances between states, and enables efficient sam-
pling. In this study, Lanchor minimizes the negative
log-likelihood of the joint probability (Eq. (4)).

Let eϕ(·) = [e1, e2, . . . , eV ] ∈ RV×D denotes
the embedding lookup function with the vocab-
ulary size of V . Given A6×L = {αi,j | i =
1 . . . 6; j = 1 . . . L}, where αi,j ∈ {1 . . . V }, rep-
resents a quantizer element of an x1 with the se-
quence length of L, the embedding of A6×L can be
expressed as eϕ(A6×L) = {εi,j | i = 1 . . . 6; j =
1 . . . L}, where εi,j ∈ RD. Thus, the joint proba-
bility approximating the target distribution z1, con-
ditioned on the estimated sequences z̃1, can be
expressed as follows:

p(z1 | z̃1;ϕ) =
6∏

i=1

L∏

j=1

p(εi,j | ε̃i,j ; eϕ), (4)

where z̃1 is the approximation of z1, deduced us-
ing the triplet consisting of the estimated vector
vθ(z̆pr, τ), the prior state zpr, and the correspond-
ing interpolate parameter τ . The function F−1 de-
notes the reverse function of F . This relationship
is expressed as z̃1 = zpr+(1−τ)F−1(vθ(z̆pr, τ)).

Total loss. We define the total loss function used
in our joint training method as Ltotal = Lprior +
Ldur+LCFM+Lanchor. The loss functions Lprior
and Ldur set the training objective for the Prior
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Codes Generator, whereas LCFM and Lanchor are
designed to construct the vector field and distill the
sampling steps, respectively.

4 Experiments

4.1 Experiment Setup

Dataset. We employ the LibriTTS dataset (Zen
et al., 2019), which comprises multi-speaker En-
glish audio recordings of training data. For bench-
marking purposes, we use the LibriSpeech test-
clean (Panayotov et al., 2015) dataset. More de-
tailed information is provided in Appendix D.1.

Evaluation Metrics. To assess model performance,
we employ the following objective evaluation met-
rics for each criterion: speech quality, quantified by
UTMOS; speaker similarity, measured using SIM-
O and SIM-R; robustness, indicated by WER; and
prosody accuracy and error, analyzed through pitch
and energy. Additionally, we employ NFE and RTF
metrics to measure the latency of the sampling pro-
cess. More details on the evaluation metrics can be
found in Appendix D.2.

Baselines. We compare our model with previous
zero-shot TTS baselines. Further details regarding
baselines are available in Appendix D.3.

4.2 Main Results

Table 1 shows the performance of OZSpeech and
representative baseline methods for 1s, 3s, and 5s
audio prompt lengths. OZSpeech establishes a new
SOTA on WER across all audio prompt lengths,
demonstrating superior content preserving capa-
bility through a multi-fold reduction in WER. For
example, OZSpeech reduces WER by a factor of
1.8 − 6.8 over the other methods for 5s prompt
length. Some of these models, such as F5-TTS,
are trained on substantially more training data (F5-
TTS is trained on 95,000 hours of speech whereas
OZSpeech is trained on 500 hours). Compared to
the next-best method, OZSpeech yields a relative
reduction in WER by 58%, 44%, and 44% for 1s,
3s, and 5s audio prompt lengths, respectively. Ad-
ditionally, while the WER scores of all baseline
methods are sensitive to prompt length, OZSpeech
maintains a consistent WER regardless of prompt
length.

For pitch and energy accuracies and errors,
which indicate the prosody reconstruction ability
of TTS systems, OZSpeech consistently ranks as
the best or second-best performer across different

prompt lengths. For the remaining metrics (UT-
MOS, SIM-O, and SIM-R), our method in overall
does not exhibit an obvious performance advan-
tage over the baseline models. (We note that these
models also experience trade-offs between different
metrics.) However, our goal is to enhance the bal-
ance between intelligibility (i.e. content accuracy)
and acoustical/perceptual quality while maintain-
ing low latency and small model size.

Our UTMOS scores show a rather small degrada-
tion compared to some of the baselines, particularly
VALL-E and VoiceCraft. This is largely due to dif-
ferences in the neural codecs’ trade-offs between
acoustic and semantic representations. EnCodec
(VoiceCraft’s codec) primarily relies on acoustic
codes, while SpeechTokenizer (VALL-E’s codec
in this experiment) incorporates one semantic se-
quence alongside acoustic codes. In contrast, Fa-
Codec (OZSpeech’s codec) strives to balance both
representations. However, our focus is on opti-
mizing the trade-off between sampling speed and
speech synthesis quality.

We also retrain F5-TTS with 500 hours of the
LibriTTS dataset using the official code for 1 mil-
lion steps following its guideline, however the re-
sulting WER exceeds 0.95 across all settings, so
we exclude this retrained checkpoint from Table 1
and instead use the officially released checkpoint,
which is trained on 95,000 hours of data. The
poor retraining results suggest that this method,
which is based on traditional OT-CFM, requires a
much larger, more diverse dataset for robustness.
In contrast, neural codec-based models remain ef-
fective with limited data, likely due to extensive
pre-training of the neural codec module on massive
datasets. Thus, traditional OT-CFM methods like
F5-TTS are unsuitable for low-resource languages.

Table 2 compares the model sizes and latency of
OZSpeech and baseline models. OZSpeech is the
smallest model of all, being only 29%-71% the size
of the other models. When considering only the
trainable part of the models, the number of train-
able parameters of OZSpeech is only 17%-43% that
of the other models. For the NFE metric, our model
uses only a single sampling step, significantly re-
ducing computation compared to NaturalSpeech 2
and F5-TTS, which require 200 and 32 steps, re-
spectively, to achieve optimal performance. As a
result, in terms of inference speed represented by
the RTF metric, OZSpeech is almost 3 times faster
than the next fastest model, F5-TTS.
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Table 1: Performance evaluation on the LibriSpeech test-clean across different audio prompt lengths. Bold indicates
the best result, and underline indicates the second-best result. (↑) indicates that higher values are better, while (↓)
indicates that lower values are better. [♠] means reproduced results. [⋆] and [♣] mean results inferred from official
and ufficial checkpoints, respectively. Abbreviation: LT (LibriTTS), E (Emilia), GS (GigaSpeech).

SPK-SIM F0 Energy

Model Data (hours) UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

Ground Truth 4.09 0.02 - - - - - -

1s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 3.73 0.19 0.32 - 0.61 29.93 0.50 0.02
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.45 0.16 0.31 0.24 0.61 31.57 0.52 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.12 0.12 0.20 0.21 0.69 26.48 0.39 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.61 0.21 0.24 0.28 0.55 37.87 0.40 0.02

OZSpeech LT (500) 3.17 0.05 0.30 0.33 0.62 27.7 0.49 0.02

3s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 3.76 0.24 0.53 - 0.80 13.78 0.67 0.01
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.55 0.18 0.51 0.45 0.78 17.22 0.44 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.38 0.09 0.31 0.38 0.80 15.62 0.25 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.68 0.19 0.40 0.48 0.75 21.66 0.36 0.02

OZSpeech LT (500) 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01

5s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 3.72 0.32 0.58 - 0.83 11.20 0.68 0.01
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.58 0.19 0.56 0.51 0.81 14.48 0.46 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.33 0.09 0.35 0.44 0.84 13.13 0.28 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.72 0.19 0.46 0.55 0.79 18.20 0.41 0.01

OZSpeech LT (500) 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01

Table 2: Comparison of model size and latency for 3s audio prompt length. Column #Params indicates the total
number of parameters required for end-to-end synthesis, with the first value representing the parameters of the
zero-shot model (trainable) and the second value corresponding to those of the neural codec or vocoder component
(frozen).

Model #Params NFE (↓) RTF (↓) WER (↓) SIM-O (↑)

F5-TTS (Eskimez et al., 2024) 336M + 13.5M Vovos (Siuzdak, 2024) 32 0.70 0.24 0.53
VoiceCraft (Peng et al., 2024) 830M + 14M EnCodec (Défossez et al., 2023) - 1.70 0.18 0.51
NaturalSpeech 2 (Shen et al., 2024) 378M + 14M EnCodec (Défossez et al., 2023) 200 1.66 0.09 0.31
VALL-E (Chen et al., 2025) 594M + 104M SpeechTokenizer (Zhang et al., 2024a) - 0.86 0.19 0.40

OZSpeech 145M + 102M FACodec (Ju et al., 2024b) 1 0.26 0.05 0.40

Table 3: Comparison of two prompting strategies during
training: First Segment and Arbitrary Segment.

SPK-SIM

Prompt Setting UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑)

1s Prompt

First segment 3.01 0.08 0.25 0.29
Arbitrary segment 3.17 0.05 0.30 0.33

3s Prompt

First segment 3.04 0.08 0.35 0.42
Arbitrary segment 3.15 0.05 0.40 0.47

5s Prompt

First segment 3.02 0.06 0.37 0.45
Arbitrary segment 3.15 0.05 0.39 0.48

4.3 Ablation Study

Table 3 compares the performance of two prompt-
ing strategies: First Segment and Arbitrary Seg-
ment. The former generates prompts using the ini-
tial portion of the ground truth, whereas the latter
selects random audio segments from the ground
truth to form the prompts. The results clearly show
that the Arbitrary Segment strategy outperforms
the First Segment strategy across all metrics. In
the First Segment setting, the model seems to over-

fit in that it is forced to transfer the prompt to the
beginning of the target. In contrast, the Arbitrary
Segment setting hides the position of the prompt,
allowing it to smoothly transfer attributes from
the prompt to the target. Consequently, we adopt
the Arbitrary Segment approach for our training.
This experiment also shows that the Arbitrary Seg-
ment approach improves robustness by exposing
the model to a more diverse range of speech con-
texts, leading to better generalization in zero-shot
speech synthesis.

4.4 Noise Tolerance Analysis
Unlike previous studies, we propose to investigate
the effects of noisy prompts in TTS. Table 4 evalu-
ates the tolerance of each model on noisy prompts.
We conduct zero-shot testing of all models in this
scenario, where zero-shot in this context means that
the models trained on their original training dataset,
typically with clean prompts, are directly tested on
noisy prompts. For this, we generate three sets of
noisy prompts at SNRs of 0dB, 6dB, and 12dB,
respectively. SNR = ∞ refers to prompts directly
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Table 4: Performance evaluation on noisy audio prompts. The noisy prompts are derived from the LibriSpeech
test-clean dataset with additive noise augmentation. The prompts are 3-second long. The checkpoints of each model
trained on LibriTTS—except for VoiceCraft, which was trained on GigaSpeech—are used without re-training the
models to include noisy samples. [♦] means fine-tuned results on noisy prompts. This table highlights a vulnerable
use case where speech prompts contain noise, assessing the tolerance of these models. SNR= ∞ indicates the
prompts are directly obtained from LibriSpeech test-clean dataset and these results are simply copied from Table 1.

SPK-SIM F0 Energy

SNR (dB) Model UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

∞

F5-TTS (Chen et al., 2024c) 3.76 0.24 0.53 - 0.80 13.78 0.67 0.01
VoiceCraft (Peng et al., 2024) 3.55 0.18 0.51 0.45 0.78 17.22 0.44 0.01
NaturalSpeech 2 (Shen et al., 2024) 2.38 0.09 0.31 0.38 0.80 15.62 0.25 0.02
VALL-E (Chen et al., 2025) 3.68 0.19 0.40 0.48 0.75 21.66 0.36 0.02

OZSpeech 3.15 0.05 0.39 0.47 0.81 11.96 0.67 0.01
OZSpeech [♦] 3.19 0.06 0.39 0.46 0.78 13.67 0.65 0.01

12

F5-TTS (Chen et al., 2024c) 3.09 0.25 0.29 - 0.50 42.20 0.46 0.03
VoiceCraft (Peng et al., 2024) 2.42 0.20 0.40 0.40 0.59 32.48 0.60 0.01
NaturalSpeech 2 (Shen et al., 2024) 1.66 0.12 0.22 0.34 0.71 20.0 0.45 0.01
VALL-E (Chen et al., 2025) 2.43 0.51 0.25 0.31 0.54 59.25 0.40 0.02

OZSpeech 2.65 0.05 0.28 0.35 0.70 21.70 0.53 0.03
OZSpeech [♦] 3.04 0.05 0.33 0.39 0.76 15.0 0.73 0.01

6

F5-TTS (Chen et al., 2024c) 2.41 0.27 0.29 - 0.55 40.95 0.50 0.11
VoiceCraft (Peng et al., 2024) 1.80 0.27 0.33 0.36 0.50 45.31 0.68 0.01
NaturalSpeech 2 (Shen et al., 2024) 1.42 0.16 0.17 0.30 0.61 27.41 0.58 0.01
VALL-E (Chen et al., 2025) 1.66 0.77 0.14 0.18 0.40 96.93 0.44 0.02

OZSpeech 2.21 0.06 0.23 0.29 0.61 32.80 0.46 0.05
OZSpeech [♦] 2.90 0.06 0.29 0.34 0.72 17.41 0.74 0.01

0

F5-TTS (Chen et al., 2024c) 1.88 0.32 0.17 - 0.41 51.80 0.44 0.29
VoiceCraft (Peng et al., 2024) 1.58 0.44 0.22 0.29 0.40 57.40 0.55 0.02
NaturalSpeech 2 (Shen et al., 2024) 1.33 0.23 0.12 0.26 0.48 38.27 0.56 0.01
VALL-E (Chen et al., 2025) 1.44 0.93 0.07 0.11 0.36 102,68 0.52 0.07

OZSpeech 1.72 0.06 0.17 0.22 0.45 46.60 0.44 0.08
OZSpeech [♦] 2.58 0.06 0.23 0.28 0.67 21.37 0.54 0.02

sourced from LibriSpeech test-clean dataset, with
metric values directly replicated from Table 1.

Overall, all baseline methods are highly sensitive
to noise in the audio prompts, experiencing signif-
icant degradation in all metrics as prompt SNR
decreases. OZSpeech also shows similar sensitiv-
ity except for WER, which experiences either no
or negligible degradation across all prompt SNR
levels. VALL-E seems to be the most vulnerable
to noise, where the WER increases by almost 2.7
times at the least noisy setting, SNR = 12dB. At
SNR = 0dB, VALL-E becomes almost unintelligi-
ble with a 93% WER. The WER results highlight
the robust intelligibility of OZSpeech, even in noisy
prompt conditions.

Although OZSpeech performs sub-optimally in
non-WER metrics with the original clean prompts,
it surpasses all baseline models in UTMOS. This
improvement is largely attributed to the significant
performance drop observed in the baseline models.
Mixed results are observed when comparing all
models on the remaining metrics.

Next, we further fine-tune OZSpeech with both
original and noisy prompts, where noisy prompts
occur with a probability of 0.8. The noisy prompts
are constructed by mixing the original prompts with

random noise at different SNRs, drawn from a uni-
form distribution over the [0dB, 15dB] range. We
leveraged the QUT-NOISE database (Dean et al.,
2010) as our noise dataset. When tested with clean
prompts (SNR = ∞), there is either no change
or minimal changes in OZSpeech’s performance
across all metrics before and after fine-tuning. In
noisy prompt conditions, WER remains unaffected
by fine-tuning while the other metrics are signifi-
cantly improved across all SNR levels. With de-
creasing SNR, fine-tuning generally yields increas-
ingly larger improvements in all non-WER metrics.

We have empirically demonstrated the feasibil-
ity of the noise-aware training approach, which
aims to synthesize noise-free speech conditioned
by noisy prompts. This approach enables Zero-
Shot TTS models to implicitly remove noise from
given codec codes while preserving key attributes
of speech. Consequently, neural codec-based Zero-
shot TTS systems, which have traditionally been
vulnerable and sensitive to noisy prompts, exhibit
enhanced robustness, particularly against adversar-
ial attacks.
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5 Conclusion

We propose OZSpeech, an effective and efficient
zero-shot TTS model that employs flow matching
with a single sampling step from a learned prior
instead of random noise. The model strikes a bal-
ance between synthesized speech intelligibility and
acoustical quality. In particular, OZSpeech yields
a multi-fold improvement in WER compared to
existing baseline methods with some trade-off in
the acoustical quality. Furthermore, unlike other
methods, OZSpeech achieves a consistent WER
across different audio prompt’s lengths and noise
levels. With a single-step sampling approach and
a novel prior learning module that learns an effec-
tive starting point for the sampling process, our
model requires significantly less computation, with
inference speed being 2.7 − 6.5 times faster than
the other methods. In addition, our model size is
only 29%-71% that of the other models. OZSpeech
achieves competitive results even over models that
are trained on much larger training sets.

In future work, we plan to enhance OZSpeech by
integrating adaptive noise filtering techniques and
expanding its capability to support multilingual and
multimodal zero-shot speech synthesis, enabling
more versatile applications in real-world scenarios.

Limitations

Despite achieving remarkable results, our Zero-
shot TTS model still encounters challenges in nat-
uralness. We have observed that the synthesized
speech often exhibits slight distortions, which ap-
pear to contribute to a degradation in overall quality.
In this study, we employed the Duration Predic-
tor, originally proposed in FastSpeech (Ren et al.,
2019b), to align input phonemes with codec codes.
This module requires ground-truth phoneme dura-
tions for training; however, since phoneme dura-
tions are inherently real numbers rather than inte-
gers, inaccuracies arise in the ground-truth data.
To align with codec codes, these durations must
be rounded to integer values, which subsequently
degrades the quality of the synthesized speech in
the temporal domain. To address this issue in fu-
ture work, we plan to explore alternative alignment
methods, such as Monotonic Alignment Search
(Kim et al., 2020) or Encoder-Decoder architec-
tures. Nevertheless, the approach employed in
this study remains the de facto approach in many
real-world TTS systems, where latency is a criti-
cal factor. Thus, this presents a trade-off between

synthesis quality and computational efficiency.

Potential Risks

Zero-shot Text-to-Speech (TTS) models offer sev-
eral advantages, such as the ability to rapidly and
effortlessly synthesize speech without requiring
repeated recordings, making them particularly ben-
eficial for content creators and for restoring dam-
aged audio. However, despite these benefits, they
also pose significant risks. Zero-shot TTS models,
which can generate speech in novel voices with
little to no training data, present several potential
threats, including:

• Deepfake Fraud: Malicious entities may ex-
ploit these models to impersonate individuals,
facilitating scams, misinformation, or fraudu-
lent activities.

• Fabricated Media: Synthesized audio can be
used to create misleading or defamatory con-
tent, influencing public perception and spread-
ing misinformation.

• Privacy Violations: The unauthorized repli-
cation of voices without explicit consent raises
ethical and legal concerns regarding individ-
ual privacy.

• Legal and Copyright Challenges: Certain
voices may be subject to copyright, trade-
mark, or publicity rights protections, poten-
tially leading to legal disputes over their unau-
thorized use.
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A Background

A.1 FACodec
Factorized neural speech codec, named FACodec,
(Ju et al., 2024b) was proposed as a codec disentan-
gler and timbre extractor. It separates the original
speech waveform into distinct aspects: content,
prosody, acoustic details, and timbre. Specifically,
the speech input x ∈ RC is processed through a
speech encoder, fenc, comprising several convolu-
tional blocks to produce a pre-quantization latent
representation:

h = fenc(x) ∈ RT×D, (5)

where T and D denote the downsampled time-
frames and the latent dimension, respectively.
Subsequently, three factorized vector quantizers
(FVQs) are employed to tokenize h into distinct
discrete sequences, capturing detailed representa-
tions of speech attributes such as content, prosody,
and acoustic details. Let Qp, Qc, and Qa denote
the FVQs for prosody, content, and acoustic de-
tails, respectively. Each FVQ comprises a cer-
tain number of quantizers, defined Qi = {qji }Ni

j=1

where i ∈ {p, c, a}, qji ∈ Rd represents the j-th
quantizer corresponding to the i-th attribute, with
a hidden dimension d, and its codebook size of
1024. The number of quantizers for each attribute
is Np = 1, Nc = 2, Na = 3. Thus, the output con-
sists of a total of six sequences of discrete codes:

z = Concat(fp(h), fc(h), fa(h)) ∈ RT×6, (6)

where fp(h) ∈ RT×1, fc(h) ∈ RT×2, and fa(h) ∈
RT×3 are functions that map the latent representa-
tion h into discrete codes representing the speech
attributes, which are then concatenated into a uni-
fied representation z.

The timbre attribute is extracted by passing h
through several Conformer blocks (Gulati et al.,
2020) combined with a temporal pooling layer,
which converts h into a timbre-specific representa-
tion:

zt = TemporalPooling(Conformer(h)) ∈ RD.
(7)
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After obtaining z and zt, the neural codec decoder
fdec combines them to reconstruct the waveform:

y = fdec(z, zt). (8)

Inspired by Eq. (8), which takes z and zt as inputs
and is pre-trained on a large-scale, multi-speaker
dataset, ensuring robust zero-shot TTS capabilities,
our approach aims to build a system that generates
a six-sequence representation z̃ ∈ RT×6, which is
forced to lie within the subspaces of the pre-trained
FACodec. This representation captures prosody,
content, and acoustic details in a manner consistent
with z. Subsequently, z̃ is fed into fdec, alongside
zt, obtained using Eq. (7), to synthesize the speech
output ỹ.

A.2 Flow Matching

We present the fundamental principles of Flow
Matching (FM) upon which our model is built. FM
aims to construct a probability path xt ∼ pt(x),
from a known source distribution x0 ∼ p0(x) (typi-
cally a Gaussian distribution) to a target distribution
x1 ∼ p1(x). Specifically, FM is formulated as a re-
gression objective for training a velocity field (also
called a vector field), which models the instanta-
neous velocities of samples at time t (also known
as the flow). This velocity field is then used to
transform the source distribution p0 into the target
distribution p1 along the probability path pt. For-
mally, the flow of x along the trajectory is defined
by an ordinary differential equation (ODE):

d

dt
dψt(x) = vt(ψt(x); θ), ψ0(x) = x, (9)

where t ∼ U [0, 1], ψt : [0, 1] × Rd → Rd repre-
sents a time-dependent flow describing the position
of the point x at time t, and vt : [0, 1]×Rd → Rd is
the time-dependent velocity field modeled by a neu-
ral network with parameters θ. Given xt := ψt(x0),
the velocity field vt creates a probability path pt
such that xt ∼ pt for x0 ∼ p0. Under this formu-
lation, the objective is to regress velocity field vt
predicted by the neural network parameterized by
θ to a target velocity field ut in order to generate
the desired probability path pt. This is achieved by
minimizing the Flow Matching (FM) loss:

LFM (θ) = Et,xt
∥∥∥vt(xt; θ)− ut(xt)

∥∥∥
2
, (10)

where t ∼ U [0, 1], xt ∼ pt.

In practice, LFM (θ) is rarely implemented due
to the complexity of ut and the lack of prior knowl-
edge of pt, ut, and the target distribution p1, which
makes it an obstacle to directly calculate ut(xt).
A feasible approach to address this issue is to sim-
plify the loss by constructing the probability path
pt conditioned on real data x1 from the training
dataset. This path is also known as conditional
optimal transport path. Following (Lipman et al.,
2023), a random variable xt ∼ pt can be expressed
as a linear combination of x0 ∼ N (x|0, I) and
x1 ∼ p1:

xt = tx1 + (1− t)x0 ∼ pt, (11)

Thus, the probability path pt(x|x1) =
N (x|tx1, (1 − t)2I). Given xt represents
conditional random variables, the conditional ve-
locity field can be derived from d

dtxt = ut(xt|x1)
as ut(xt|x1) = x1 − x0. Using this, we can
formulate a tractable and simplified version of
the Flow Matching loss (10), referred to as the
Conditional Flow Matching (CFM) loss. This
formulation encourages straighter trajectories
between the source and target distributions and is
expressed as follows:

LCFM (θ) = Et,x0,x1
∥∥∥vt(xt; θ)− ut(xt|x1)

∥∥∥
2

= Et,x0,x1
∥∥∥vt(xt; θ)− (x1 − x0)

∥∥∥
2
,

(12)

where t ∼ U [0, 1], x0 ∼ N (x|0, I), x1 ∼ p1.
Once the training of the vector field vt is complete,
solving the ODE (9) at discretized time steps until
t = 1 allows us to generate novel samples x1 that
approximate the target distribution p1.

B Method Details

Prompting Trick during Training. As outlined
in Section 3.3, incorporating an acoustic prompt is
essential for generating x1. This process involves
transferring prosody and acoustic detail attributes
from the prompt to the output quantizers. A signif-
icant challenge arises in preparing prompt-target
pairs that exhibit similar attributes, as mismatches
can lead to degraded performance. To address this
issue, we leverage ground truth quantizers, utilizing
them as both the prompt and the target during train-
ing. Specifically, we randomly select and clone a
segment of 1 ∼ 3 seconds from the ground truth
data to serve as the prompt at each training step.
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This approach ensures a high degree of similarity
between the prompt and target, facilitating more ef-
fective attribute transfer and enhancing the quality
of the generated output.

Losses Computing Strategy. Let the velocity of
z̆pr along the path progressing toward the corre-
sponding z1 be represented as v1:L

θ (z̆pr, τ), where
L denotes the length of the entire output sequence
of vθ(·, ·). Our goal is to compute the drift of
xpr for generating x1 only; it is unnecessary to
backpropagate gradients over the entire output se-
quence, which includes the concatenation of acous-
tic prompt y and xprior velocities. To address this,
v1:L
θ (z̆pr, τ) is truncated by excluding the velocity

components associated with the acoustic prompt
y, where M denotes its length. The resulting trun-
cated velocity, vM :L

θ (z̆pr, τ), is then used in sub-
sequent operations, including loss computation, to
ensure computational efficiency while maintaining
the focus on the target velocity for xpr. As a result,
Eq. ((3)) is rewritten as:

LCFM (θ) = Ex1,xpr

∥∥∥∥vM :L
θ (z̆pr, τ)−

x1 − xpr

1− τ

∥∥∥∥
2

.

(13)
Consequently, the Anchor Loss Lanchor approxi-
mating the target distribution x1, conditioned on
the x̃1 is formulated:

Lanchor(ϕ) = Ex1,x̃1 [−logp(x1 | x̃1;ϕ)] , (14)

where, x̃1 is computed as follows:

x̃1 = xpr + (1− τ)F−1(vθ,M :L(z̆pr, τ)).

C Training Details

We integrate the Prior Codes Generator and the
Vector Field Estimator, exploring various config-
urations to optimize overall system performance.
For the Prior Codes Generator, we employ a com-
pact neural network architecture with the following
specifications: a hidden dimension of dmodel = 256,
a multi-head attention mechanism with nheads = 4,
and a feed forward network filter size of dffn =
1024. These parameters are consistently applied
across both the encoder and decoder layers. The
architecture includes 2 FFT blocks in both the en-
coder and the shared decoder, while an additional
6 blocks are utilized as specific layers to estimate
the corresponding quantizers. The output dimen-
sionality of the Prior Codes Generator is set to
xpr = 1024, ensuring alignment with subsequent

processing stages. For the Vector Field Estimator,
we adopt a Transformer architecture comprising
four layers, each characterized by a hidden dimen-
sion of dmodlel = 1024, a number of attention heads
nheads = 32, and a feedforward network inner di-
mension of dffn = 4096 for the base-size model.

The Prior Codes Generator and the Vector Field
Estimator are jointly trained on a cluster of four
80GB A100 GPUs, using a batch size of 16. The
training process employs the AdamW optimizer
with a learning rate of 10−4, β1 = 0.9, β2 = 0.98,
and a weight decay parameter of 10−4.

D Evaluation Details

D.1 Dataset Details

Training dataset. We use a subset of 500 hours
from the LibriTTS dataset, where the duration of
individual audio ranges from 1.0 to 16.6 seconds.
From this dataset, we construct metadata for each
training sample, which includes the following ele-
ments: input phonemes, target durations, and target
code sequences. To derive the input phonemes
and their corresponding target durations, we use
the Montreal Forced Alignment (MFA) (McAuliffe
et al., 2017) tool. This tool aligns each audio sam-
ple with its transcription and extracts the duration
of each phoneme. Furthermore, we produce target
codes using FACodec, which processes input wave-
forms sampled at 16 kHz. The FACodec applies a
folding operation at a compression factor of 200.
As a result, each second of audio is decomposed
into a set of six quantizers, with each quantizer
comprising 80 discrete speech units. These units
have a value range spanning from 0 to 1023.

Evaluation dataset. We follow the VALL-E eval-
uation protocol (Chen et al., 2025). Particularly,
the LibriSpeech test-clean dataset is filtered to in-
clude samples between 4 and 10 seconds in length,
totaling 2.2 hours of audio. For each sample, the
prompt speech is randomly selected from another
sample by extracting a 1-second, 3-second, or 5-
second clip, depending on the prompt setting used
in our experiment, from the same speaker.

D.2 Metrics Details

We evaluate each system using the following objec-
tive evaluation metrics:

• RTF (Real-Time Factor) is an essential metric
for assessing a system’s efficiency, particu-
larly in scenarios demanding real-time pro-
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Table 5: Comparison of two OZSpeech model sizes: Base (145M parameters) and Small (100M parameters),
evaluated on the LibriSpeech test-clean dataset. Both models were trained on the 500-hour LibriTTS training dataset.

SPK-SIM F0 Energy

Model Size UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

1s Prompt

Base 3.17 0.05 0.30 0.33 0.62 27.70 0.49 0.02
Small 3.15 0.05 0.29 0.33 0.69 23.94 0.51 0.02

3s Prompt

Base 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01
Small 3.14 0.06 0.37 0.44 0.78 13.54 0.65 0.01

5s Prompt

Base 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01
Small 3.17 0.05 0.38 0.46 0.79 12.58 0.66 0.01

cessing. It represents the time required to
produce one second of speech. We assess the
RTF of all models in a fully end-to-end setup
using an NVIDIA 80GB A100 GPU.

• NFE (Number of Function Evaluations) de-
notes the total number of times the model’s
guiding function—often a score or drift func-
tion—is computed during the sampling pro-
cess. This metric is especially important in
settings where the generative process is formu-
lated as solving an ordinary differential equa-
tion (ODE), such as in the probability flow
ODE method used in score-based generative
models.

• UTMOS (Saeki et al., 2022) is a deep
learning-based system used to evaluate speech
quality by predicting the mean opinion scores
(MOS). It eliminates the need for costly, time-
consuming subjective evaluations by using
advanced deep learning techniques to pro-
vide predictions that closely align with human
judgments.

• SIM-O and SIM-R are metrics used to eval-
uate speaker similarity. SIM-O measures the
similarity between the synthesized speech and
the original prompt, while SIM-R evaluates
the similarity between the synthesized speech
and the reconstructed prompt generated by
FACodec (Ju et al., 2024b). These metrics are
computed by calculating the cosine similarity
of speaker embeddings extracted by applying
WavLM-TDCNN 2 on the audio waveforms.

2https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

Both SIM-O and SIM-R range from -1 to 1,
with higher values indicating greater speaker
similarity.

• WER (Word Error Rate) is used to evaluate
the robustness of speech synthesis systems,
specifically how accurately they pronounce
each word. We employ an ASR model 3 to
transcribe the generated speech and compare
the transcription with the text prompt. The
ASR model used is a CTC-based HuBERT,
pre-trained on LibriLight and fine-tuned on
the 960-hour training set of LibriSpeech.

• Prosody Accuracy & Error are used to as-
sess the alignment between the synthesized
speech and audio prompt, with a specific fo-
cus on pitch (F0) and energy. For accuracy
assessment, we adopt the methodology pro-
posed in PromptTTS (Guo et al., 2022) and
TextrolSpeech (Ji et al., 2024b), categorizing
the F0 and energy levels of speech into three
categories—high, normal, and low—based on
their mean values 4. Additionally, we employ
the Root Mean Square Error (RMSE) to quan-
tify the differences in F0 and energy between
the synthesized speech and the corresponding
prompts.

D.3 Baselines Details

We compare our model with previous zero-shot
TTS baselines, including:

3https://huggingface.co/facebook/
hubert-large-ls960-ft

4https://github.com/jishengpeng/TextrolSpeech
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Table 6: Comparison of two variants of Vector Field Estimator: with and without Quantizer Encoding, evaluated on
the LibriSpeech test-clean dataset. Both models were trained on the 500-hour LibriTTS training dataset.

SPK-SIM F0 Energy

Experimental Setting UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

1s Prompt

w/ Quantizer Encoding 3.17 0.05 0.30 0.33 0.62 20.35 0.49 0.02
w/o Quantizer Encoding 3.07 0.06 0.30 0.34 0.60 23.94 0.51 0.02

3s Prompt

w/ Quantizer Encoding 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01
w/o Quantizer Encoding 3.10 0.07 0.40 0.47 0.79 12.45 0.63 0.01

5s Prompt

w/ Quantizer Encoding 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01
w/o Quantizer Encoding 3.10 0.06 0.36 0.47 0.80 12.77 0.65 0.01

• VoiceCraft (Peng et al., 2024). We use the
official code and pre-trained checkpoint 5,
which is trained on the GigaSpeech dataset
(Chen et al., 2021).

• NaturalSpeech 2 (Shen et al., 2024). We use
the Amphion toolkit (Zhang et al., 2024b) and
pre-trained checkpoint 6, which is trained on
the LibriTTS dataset (Zen et al., 2019).

• F5-TTS (Chen et al., 2024c). We use the offi-
cial code and pre-trained checkpoint 7, which
is trained on the Emilia dataset (He et al.,
2024).

• VALL-E (Chen et al., 2025). We reproduce
VALL-E using the Amphion toolkit (Zhang
et al., 2024b) and train it under identical set-
tings to our training dataset configuration.

E Extra Experiments

Table 5 shows the performance of OZSpeech-Base
(145M parameters) and OZSpeech-Small (100M
parameters). Although at over 31% reduction in
size, the Small model shows comparable perfor-
mance with the Base model across all metrics, ex-
cept for pitch (F0). Interestingly, the Small model
outperforms the Base model by 13.6% in F0 RMSE
for 1s prompt length (23.94 for Small vs. 27.70 for
Base). However, for 3s prompt length, it experi-
ences a 13.2% relative decline in the same metric
(13.54 for Small vs. 11.96 for Base).

5https://huggingface.co/pyp1/VoiceCraft/blob/
main/830M_TTSEnhanced.pth

6https://huggingface.co/amphion/
naturalspeech2_libritts/tree/main/checkpoint

7https://huggingface.co/SWivid/F5-TTS/blob/
main/F5TTS_Base_bigvgan/model_1250000.pt

Table 6 illustrates the effects of Quantizer En-
coding on the Vector Field Estimator across dif-
ferent prompt durations. Incorporating Quantizer
Encoding consistently enhances performance, par-
ticularly in speech naturalness (UTMOS) and intel-
ligibility (WER). For instance, in the 1s prompt set-
ting, the model with Quantizer Encoding achieves
a higher UTMOS score (3.17 vs. 3.07) and a
lower F0 RMSE (20.35 vs. 23.94), reflecting bet-
ter prosody modeling. This trend continues with
longer prompts: at 3s, F0 RMSE is 11.96 with en-
coding compared to 12.45 without, and at 5s, it
is 12.05 versus 12.77. Speaker similarity metrics
(SIM-O and SIM-R) remain nearly identical across
both setups, but the encoded model consistently
outperforms in F0 Accuracy and Energy Accuracy,
especially in the 3s and 5s settings (e.g., 0.83 vs.
0.80 in 5s F0 Accuracy).

Table 7 compares the hierarchical and parallel
variants of the Prior Codes Generator. The hierar-
chical model generally performs slightly better or
comparably across most metrics. We hypothesize
that modifying the architecture could improve or
degrade the Prior Codes Generator’s performance;
however, the Vector Field Estimator is sufficiently
robust to mitigate the impact of these changes.

F Analysis

As shown in Figure 2, the distributions of perfor-
mance metrics across different prompt lengths are
as follows:

• WER: For the 1s prompt, OZSpeech exhibits
a distribution that is very close to zero with a
narrow box, indicating superior performance.
The second best is NaturalSpeech 2, which
shows a slightly right-shifted box compared
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Table 7: Comparison of two variants of the Prior Codes Generator: hierarchical and parallel architectures, evaluated
on the LibriSpeech test-clean dataset. Both models were trained on the 500-hour LibriTTS training dataset.

SPK-SIM F0 Energy

Architecture UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

1s Prompt

Hierarchical 3.17 0.05 0.30 0.33 0.62 27.70 0.49 0.02
Parallel 3.10 0.06 0.29 0.32 0.65 21.44 0.49 0.02

3s Prompt

Hierarchical 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01
Parallel 3.10 0.06 0.38 0.47 0.79 13.02 0.67 0.01

5s Prompt

Hierarchical 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01
Parallel 3.15 0.05 0.38 0.48 0.82 12.12 0.67 0.01

to OZSpeech, followed by VoiceCraft. This
pattern is consistent across the 3s and 5s
prompts. In contrast, VALL-E and F5-TTS
display higher distributions. Notably, F5-TTS
shows slightly better performance than VALL-
E for the 1s prompt. However, as the prompt
length increases, F5-TTS significantly lags be-
hind the other baselines, with its distribution
approaching 0.5.

• UTMOS: The best performance for this met-
ric is achieved by VALL-E for the 1s prompt.
Its distribution shifts slightly to the right
for the 3s prompt and stabilizes for the 5s
prompt. VoiceCraft and OZSpeech show the
next best performances, maintaining stable
distributions across different prompt lengths,
with VoiceCraft consistently outperforming
OZSpeech. NaturalSpeech 2 scores mostly be-
low 3.0 for the 1s prompt and shows improve-
ment as the prompt length increases. Notably,
F5-TTS consistently scores below 1.5, signifi-
cantly lagging behind the other baselines.

• SIM-O: For the 1s prompt, the distribu-
tions of VoiceCraft and OZSpeech are al-
most equivalent, followed by VALL-E, F5-
TTS, and NaturalSpeech 2, respectively. As
the prompt length increases, the differences
among the models become more noticeable.
Specifically, VoiceCraft shows the best perfor-
mance in retaining the speaker’s identity in
the synthesized output. VALL-E follows with
the second-best performance, followed by
OZSpeech and NaturalSpeech 2, respectively.
In contrast, F5-TTS consistently demonstrates

poor performance regardless of the prompt
length.

All in all, OZSpeech achieved competitive per-
formance compared to other baselines. Although
our method does not show a clear performance
advantage over baseline models, our primary objec-
tive is to balance sampling speed and speech synthe-
sis capability. This trade-off enables our method to
maintain a small model size with low WER while
preserving the naturalness of the speech and the
speaker’s identity style from the prompt in the syn-
thesized output. In contrast to the baselines, which
have larger models and require longer inference
times (see Table 2), our method demonstrates a
significant advantage. With just one sampling step,
we can achieve promising performance.
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Figure 2: Boxplots showing the distributions of performance metrics (WER, UTMOS, and SIM-O) on the Lib-
riSpeech test-clean dataset for each model, evaluated across different audio prompt lengths.
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