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Abstract

While feed-forward neurons in pre-trained lan-
guage models (PLMs) can encode knowledge,
past research targeted a small subset of neu-
rons that heavily influence outputs. This leaves
the broader role of neuron activations unclear,
limiting progress in areas like knowledge edit-
ing. We uncover a global linear relationship
between neuron activations and outputs using
neuron interventions on a knowledge probing
dataset. The gradient of this linear relationship,
which we call the neuron empirical gradient
(NEG), captures how changes in activations
affect predictions. To compute NEG efficiently,
we propose NeurGrad, enabling large-scale
analysis of neuron behavior in PLMs. We also
show that NEG effectively captures language
skills across diverse prompts through skill neu-
ron probing. Experiments on MCEval8k, a
multi-genre multiple-choice knowledge bench-
mark, support NEG’s ability to represent model
knowledge. Further analysis highlights the key
properties of NEG-based skill representation:
efficiency, robustness, flexibility, and interde-
pendency. The code and data are released.

� xzhao-tkl/NEG iszhaoxin/MCEval8K

1 Introduction

Pre-trained language models (PLMs) based on
Transformer architecture (Vaswani et al., 2017) ef-
fectively encode human knowledge, prompting ef-
forts to understand their inner workings. While
previous studies have shown that the feed-forward
(FF) neurons play key roles in encoding factual
knowledge (Dai et al., 2022; Yu and Ananiadou,
2024) and general language skills (Wang et al.,
2022; Tan et al., 2024), they face two main chal-
lenges. First, current methods mostly rank neurons
by importance without measuring the link between
neuron activations and model outputs (Dai et al.,
2022; Meng et al., 2022; Yu and Ananiadou, 2024),
limiting use cases like knowledge editing (Zhang

!"#$%&'()&*$+,$-&'&.$)/$!

!""#$%&'()'# *"+(&',0
&
.
1
2
&
1
#

3
+
4
#
*

!"#$%&'()'(%)*&+,+-.-(/$0

!"#$"

%$"&"

'()#) !"#$%&'()*+$+,-.'/$-0+"&1'2!(/3
!"#$%&#$'()*+$,#*

-.#/.#)

*+$,#*

!

! !

!

!"#$"

5#26+.78)/#$9.(#6:#.()+.$

!"#$%$&'()!*+(!"#$,-(.,-/$,00&1202/3()!4+!

!"#$,-(5-/"$6"-/2,-(7(!"#$,-(82-"&$2/3)!9+(

12-..%3/'*&3%)*&+/*

*
45(6-.78 + , -

!:%;1&<"'(=>200(!"#$,-(?$,12-@()!ABC+(

Figure 1: Our contributions: i) revealing linearity be-
tween activation and output shifts, ii) proposing Neur-
Grad, an efficient method to quantify it, iii) confirming
that NEGs capture language skills on MCEval8K.

et al., 2024). Second, these methods are costly,
involving repeated activation modifications (Dai
et al., 2022; Meng et al., 2022; Goldowsky-Dill
et al., 2023) or extensive tensor operations (Yu and
Ananiadou, 2024), making them inefficient for ana-
lyzing all neurons on large models.

This study begins by quantitatively analyzing
how neuron activations influence model outputs
(RQ1) (Figrue 1). Using MyriadLAMA (Zhao
et al., 2024), a factual knowledge probing dataset,
on seven PLMs, including large language mod-
els (LLMs) like Llama2-70B (§ 2), we gradually
modify random neuron activations and observe the
changes in the token probabilities for correct knowl-
edge (hereafter, output shifts). Notably, we find that
within a certain range, shifts in neuron activations
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(hereafter, activation shifts) have a linear impact on
output shifts. We define and quantify the gradient
of this linear relationship as neuron empirical gra-
dient (NEG), enabling quantitative neuron analysis.

Next, we explore whether shifting neuron ac-
tivations can precisely control PLMs’ output
probabilities (RQ2). Since computing NEGs re-
quires costly inference, we propose NeurGrad (§ 3),
an efficient method for estimating a single neuron’s
NEG. It builds on the empirical finding that com-
putational gradients (§ 3.1) strongly correlate with
NEG magnitudes, though less so with directions.
Using MyriadLAMA, we validate NeurGrad’s per-
formance against ground-truth NEGs, showing it
outperforms existing neuron-ranking methods (Dai
et al., 2022; Yu and Ananiadou, 2024). With Neur-
Grad, we further examine multi-neuron control,
finding that NEGs can accumulate across neurons
(§ 4), while the effect weakens as more neurons are
involved or larger activation shifts are involved.

Finally, we examine whether NEGs can cap-
ture general language skills beyond factual
knowledge (RQ3). To explore this, we perform
skill neuron probing (Wang et al., 2022; Song et al.,
2024) using NEGs. As the previous studies on skill
neuron probing focus on limited language skills,
we introduce MCEval8K, a benchmark covering
six genres and 22 tasks for broad LLM evaluation.
Our results show that NEGs can represent a wide
range of language skills. Furthermore, our in-depth
analysis highlights the properties of NEG-based
skill neurons, including the efficiency in represent-
ing language skills, robustness when facing diverse
contexts, substitutability of skills being represented
by different neurons, and interdependency between
neurons in representing skills.

Our contributions (Figrue 1) are as follows:

• We confirm that activation and output shifts
are linearly correlated within a certain range
through neuron intervention, defined as neu-
ron empirical gradient (NEG) (§ 2).

• We introduce NeurGrad, an efficient method
to NEG (§ 3), and conduct in-depth analysis
about neuron controllability (§ 4).

• We show that NEGs can represent language
skills through skill neuron probing (§ 5);
skill neurons exhibit efficiency, robustness,
inclusivity, and interdependency (§ 6).

• We develop MCEval8K, a multiple-choice
benchmark covering six genres and 22 lan-
guage understanding tasks (§ 5.2, § F).

2 Neuron Linearity to Model Output

This section empirically answers how neurons in
PLMs’ FF layers influence model outputs. We ob-
serve the resulting change in output tokens’ proba-
bilities for fine-grained neuron-level interventions.

2.1 Neuron-level Intervention Experiments
Models. To ensure the generality of our findings,
we evaluate both masked and causal LMs with vary-
ing sizes and learning strategies. For masked LMs,
we use two BERT (Devlin et al., 2019) models,
BERTbase and BERTlarge, and have them predict
masked tokens. For causal LMs, we examine five
LLMs with different model sizes and language fam-
ilies, including Llama2 (Touvron et al., 2023) (7B,
70B), Llama3.1 (8B), Llama3.2 (3B) (Grattafiori
et al., 2024), and Qwen2.5 (7B) (Qwen et al., 2025).
All of these models are instruction-tuned. Follow-
ing Zhao et al. (2024), we use a zero-shot prompt to
generate single-token answers. See § E for details.

Dataset. We use MyriadLAMA (Zhao et al.,
2024), a multi-prompt knowledge probing dataset
for neuron intervention. Its diverse prompts help
reduce bias from specific phrasing. We focus on
single-token probing, where the target answer is
a single token. For each PLM, we randomly sam-
ple 1000 prompts from MyriadLAMA, where the
model predicts the token representing the correct
answer. Due to tokenizer and knowledge differ-
ences, the sampled prompts vary across PLMs.

Neuron intervention. We shift activations in the
range of [-10, 10]1 with the step size of 0.2 to track
changes in target token probabilities. For example,
consider the following prompt:

Predict the [MASK] in each sentence in
one word.
Q: [MASK] is the capital of Japan.
A:

We modify the activations of specific neurons and
observe how the probability of the target word
Tokyo changes at the final position. Since conduct-
ing one intervention experiment for a neuron-token-
prompt combination requires 100 inferences due to
the shift values, we randomly sample2 neurons to
make computation tractable while ensuring broad
coverage.

1The range mostly covers the distribution of activations;
see § B.1 for details.

2The actual number of randomly sampled neurons will be
given in each experiment.
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Figure 2: Average absolute correlation between activa-
tion and output shifts.

Results. To understand how output shifts respond
to neuron activation shifts, we compute the Pear-
son correlation coefficient (r) between activation
shifts and output shifts of correct tokens, using
absolute r values. To reduce computation, we aver-
age r over 10 randomly sampled prompts from the
overall 1000 prompts, each with 1000 randomly
sampled neurons at specific shift ranges (x-axis).
Figure 2 shows a strong, nearly linear correlation
across a wide ±10 range, with stronger correlation
at smaller shift ranges consistent across all mod-
els. This suggests predictable output changes from
specific activation shifts. Since all PLMs behave
similarly, we focus on BERT models and Llama2
LLMs in subsequent analysis.

2.2 Neuron Linearity

Based on the findings above, we ask whether neu-
rons generally show linearity with model output.
We define neurons as linear if their correlation (r)
is at least 0.953 within a ±2 shift range, as observed
in Figure 2.

Then, we quantitatively analyze neuron linearity
across prompts and Transformer layers by measur-
ing the ratio of linear neurons from 1000 prompts
and 100 randomly sampled neurons. 4 The ratios
of linear neurons are reported in Table 1, showing
that most neurons in LLMs exhibit linearity. This
linearity is widespread across layers and prompts
(§ A). We also define polarity as follows: neurons
are positive if increasing activations boost target
token probabilities, and negative otherwise. The
analysis of neuron polarity is deferred to § 4.1.

Neuron empirical gradient. We quantify neu-
ron linearity and polarity using the gradient of the
linear relationship between activation and output
shifts, termed neuron empirical gradient (NEG).

3We assume r ≥ 0.95 to be a strong linear relationship.
4We only chose 200 prompts and 100 neurons for Llama2-

70B due to the large model size.

Linear Positive Negative

BERTbase .9201 .4981 .5004
BERTlarge .9209 .4938 .4981

Llama3.2-3B .9483 .5000 .5000
Llama2-7B .9659 .5157 .4843
Qwen2.5-7B .6549 .5116 .4884
Llama3.1-8B .9540 .5048 .4952
Llama2-70B .9208 .4962 .5039

Table 1: Ratios of linear neurons and neuron polarity
over 1000 prompts with 100 neurons.

To compute NEGs, we fit a zero-intercept linear re-
gression between activation shifts and output shifts
acquired through neuron intervention; the regres-
sion coefficient serves as the NEG for each neuron,
prompt, and token.

3 NeurGrad for NEG Estimation

Efficient and accurate computation of NEG is es-
sential for quantitative neuron-level interpretability
in PLMs. However, the neuron-wise intervention
is costly. While prior knowledge attribution meth-
ods estimate neurons’ influence on model outputs,
they either require intensive computation or only
provide relative importance, without directly mea-
suring NEG (Dai et al., 2022; Geva et al., 2022;
Meng et al., 2022; Yu and Ananiadou, 2024).

3.1 NeurGrad

In this section, we propose NeurGrad, an accu-
rate and efficient method for estimating NEG, to
support further analysis. This approach is based
on preliminary findings using computational gra-
dients5 (CG) to approximate NEG. We compute
CG and ground-truth NEG values for seven PLMs,
including BERT variants and instruction-tuned
Llama2, using 1000 prompts and 100 neurons per
prompt with a shift range of ±2. While CG values
show a low correlation with NEG directly (average
r = −0.429), their absolute values are highly cor-
related (average r = 0.961). Additionally, both CG
and neuron activations determine the sign of NEG.
Based on these results, we introduce NeurGrad:

ḠE = CG × sign(A), (1)

where ḠE , A, and sign(A) denote the estimated
NEG, activation, and sign of A (1 if A > 0 and -1
if A < 0), respectively.

5Computational gradient refers to the gradient computed
from the computational graph through backpropagation.
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Correlation (r) MAE

CG IG LPI NeurGrad CG IG NeurGrad

BERTbase -.8909 .7360 -6 .9998 6.1e-03 3.0e-03 2.6e-05
BERTlarge -.9307 .7167 - .9958 4.6e-03 2.1e-03 1.9e-04

Llama3.2-3B -.1281 .5854 - .8094 3.5e-06 1.8e-06 1.6e-06
Llama2-7B .3023 .5377 .6469 .8135 1.7e-06 1.2e-06 1.3e-06
Qwen2-7B .1043 .2939 - .5862 1.1e-06 7.6e-07 7.7e-07
Llama3.1-8B .0072 .5098 - .7286 4.9e-06 1.9e-06 3.6e-06
Llama2-70B .0283 n/a7 n/a 1.000 2.2e-04 n/a 5.9e-07

Avg. Runtime (Llama2-7B) 0.149s 19.349s 6.086s 0.161s Same as left

Table 2: Evaluation of NeurGrad and baselines in calculating NEGs, including two metrics: r and MAE.

0.2 0.4 0.6 0.8 1.0
Activation Shifts Per Neuron

2 15

2 12

2 9

2 6

Av
er

ag
e 

Ou
tp

ut
 S

hi
fts

IG CG NeurGrad LPI

TopK
1
4
16

TopK
1
4
16

Figure 3: Comparison of neuron attribution methods in
token probability enhancement. X-axis: activation shifts
of selected neurons; Y-axis: average output shifts over
1000 factual prompts.

3.2 NEG Estimation Evaluation

We evaluate NeurGrad’s ability to estimate NEG us-
ing the same setup as in the CG evaluation. Our ex-
periment compares NeurGrad with three baselines:
two gradient-based methods, CG and integrated
gradients (IG) (Sundararajan et al., 2017; Dai et al.,
2022), and one logit-based method (LPI) (Yu and
Ananiadou, 2024). IG simulates NEG by small,
repeated neuron interventions, while LPI (Log-
Probability-Increase) estimates neuron importance
based on increases in output probabilities.8

We assess NEG estimation using correlation (r)
and mean absolute error (MAE) against ground-
truth NEG. As show in Table 2, NeurGrad con-
sistently achieves the highest r across the seven
PLMs, capturing relative neuron importance well.
NeurGrad also yields low MAE, indicating high
accuracy. The average running time of Llama2-7B
with an NVIDIA RTX A600 GPU (Table 2 (bot-

6We follow code released in Yu and Ananiadou (2024) and
only Llama2 LLMs are supported.

7Due to the high memory cost of IG and LPI, we preclude
Llama2-70B experiments on these methods.

8We exclude causal-tracing methods (Meng et al., 2022),
which are too costly and do not meet our efficiency goals.
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Figure 4: Cumulative distribution of NEG magnitudes.
(X-axis: the percentiles of NEG magnitudes; Y-axis: the
cumulative contribution of neurons to the total sum).

tom)) demonstrates NeurGrad’s superior efficiency.

3.3 Knowledge Attribution Evaluation
We further evaluate NeurGrad’s ability to identify
important neurons. For 1000 prompts, we select the
top-K neurons (K = 1, 22, 24) using CG, IG, LPI,
and NeurGrad values, and then enhance their activa-
tions by increasing activations of positive neurons
and decreasing those of negative neurons. The acti-
vation shift is conducted within the range of [0.1, 1]
with a step size of 0.1. Figure 3 shows output shifts
on Llama2-7B under these interventions. Neur-
Grad consistently outperforms baselines, due to
its accurate NEG estimation and inclusion of both
positive and negative neurons, unlike IG and LPI,
which only consider positive ones, despite their
equal distribution (Table 1). See § C for details.

4 Understanding Neurons’ Controllability

This section explores neuron controllability: the
ability to precisely adjust PLM output probabilities
by modifying neuron activations. We use NEGs
estimated by NeurGrad to achieve this.

4.1 How Are NEGs Distributed?
Do only a few neurons exhibit strong gradients?
Figure 4 presents the cumulative NEG distribution
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Figure 5: Multi-neuron enhancement with range [0,0.5]
with different number of neurons.

for all neurons, showing steady growth that only
converges when all neurons are included. This
indicates that most neurons influence the model’s
output probabilities.

Do neurons have polarity preference? Table 1
(§ 2) shows the ratios of positive and negative
neurons9 across 1000 prompts, each with 100 ran-
domly sampled neurons in seven PLMs, revealing
nearly equal numbers. This suggests that PLMs
have no polarity preference; interventions should
consider gradient polarity rather than simply in-
creasing or decreasing their activations (Dai et al.,
2022). See more detailed analysis on NEGs’ distri-
bution in § B.2 and § B.3.

4.2 Does Linearity Hold for Multi-neuron?

We explore whether output shifts can be pre-
dicted when intervening multiple neurons. For
each of 1000 prompts, we randomly sample N
neurons and shift their activations on the basis
of polarity measured by NeurGrad, applying pos-
itive/negative shifts to positive/negative neurons.
We experiment on BERTbase and Llama2-7B using
neuron sizes of 2N (0 ≤ N ≤ 12).

Figure 5 shows the average correlation (r) be-
tween predicted and actual output shifts across all
prompt-neuron pairs, using an enhancement range
of [0, 0.5] and a 0.01 step size. While r decreases
as more neurons are involved due to neuron in-
teractions, it remains strong (≥0.7) even with 212

neurons in both PLMs. The figure also shows that
larger neuron sets cause greater output shifts, sug-
gesting an additive effect. Although Llama2 shows
small average output shifts (due to the lower per-
neuron NEG; see § B.2), significant changes still

9We used ground-truth NEGs here to avoid flipping the
polarity of neurons with NEGs near zero.

occur when over 210 neurons are intervened. Ex-
periments with larger enhancement ranges show
similar trends: greater shifts load to lower r, re-
ducing predictability (see § D for experiments with
different ranges).

The analysis above shows that NeurGrad enables
partial prediction of output shifts. However, both
the number of modified neurons and the modifica-
tion range require careful consideration.

4.3 Why Do Neurons Exhibit Linearity?

We propose the local linearity approximation hy-
pothesis to explain neuron linearity, based on three
observations: i) larger shift ranges reduce r, ii)
larger PLMs show higher r due to the reduced in-
fluence of individual neurons (Figure 2), and iii) in-
volving more neurons weakens linearity (Figure 5).
This aligns with the first-order Taylor expansion
under local differentiability.

Local Linear Approximation Hypothesis

Let f : Rn → Rm denote the mapping from
a model’s FF activation layer x ∈ Rn

to its output probability vector f(x).
We have:

fj(x
′) = fj(x) +

∂fj
∂xi

(x)∆xi + o(∆xi)

if we consider a perturbation ∆xi on
i-th neuron, with perturbed vector x′ =
x + ∆xiei. Here (ei)j = δij is a unit

vector. Then, we define
∂fj
∂xi

(x) as NEG.

5 Skill Neuron Probing using NeurGard

While NEG and NeurGrad allow neuron-level out-
put control, variation in NEG across prompts limits
their use for modifying specific language skills,
which require handling diverse inputs. This section
investigates whether NEG can capture general
language skills through skill neuron probing,
which identifies neurons linked to task-solving ca-
pabilities. Unlike prior work (Wang et al., 2022;
Song et al., 2024) focusing on neuron activations,
we utilize NEG for finding skill neurons.

5.1 Task Definition

Following Wang et al. (2022), we define skill neu-
ron probing as follows. A skill dataset D con-
sists of language sequence pairs: knowledge in-
quiries Q = {q1, ..., q|T |} and corresponding an-
swers A = {a1, ..., a|T |}, where each ai is from
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a candidate set Âcands. For example, in sentiment
classification, Q is the set of documents and A the
sentiment labels. We train classifiers using the be-
havior of a neuron subset Ns ⊆ N as features to
predict the correct answer ai for each qi, where N
is the full neuron set. 10

Our skill neuron probe finds the optimal neuron
subset N ∗

s that maximizes accuracy on the dataset
D.

N ∗
s = argmax

Ns⊆N
Acc(f(Ns), D) (2)

Acc(f(Ns), D) =
1

|D|

|D|∑

i=1

1[f(Ns, qi) = ai].

(3)
Here, f(Ns, qi) is the classifer’s prediction using
neuron subset Ns for input qi and 1[X = Y ] is 1
if X = Y , otherise 0.

5.2 Evaluation Benchmark: MCEval8K
In this section, we introduce a benchmark dataset
for skill neuron probing. Since probing requires
a fixed target token, previous work (Wang et al.,
2022; Song et al., 2024) used on multiple-choice
datasets with single-token labels (e.g., A: positive,
B: negative). While we follow a similar setup, ear-
lier studies focused on small PLMs and probed
them on basic tasks, which are insufficient for eval-
uating LLMs.

To address this limitation, we create MCEval8K,
a diverse multiple-choice benchmark covering 22
language understanding tasks across six skill gen-
res, incorporating most datasets from previous stud-
ies. To ensure consistency and reduce computa-
tional cost, we cap each task at 8K queries,11 even
for large datasets like cLang-8 (Mizumoto et al.,
2011; Rothe et al., 2021). We also balance the
number of correct options per task to avoid classifi-
cation bias. Task and dataset details are provided
below and in § F.
Linguistic: Part-of-speech tagging (POS), text
chunking (CHUNK), named entity recognition
(NER), and grammatical error detection (GED).
Content classification: Sentiment (IMDB), topic
(Agnews), and Amazon reviews with numerical
labels (Amazon).
Natural language inference (NLI): Textual entail-
ment (MNLI), paraphrase identification (PAWS),
and grounded commonsense inference (SWAG).

10We focus on intermediate outputs (neurons) of FF layers.
11Only the Stereoset task has fewer than 8K queries due to

the limited size of the original dataset.

Factuality: Fact-checking (FEVER), knowl-
edge probing (MyriadLAMA), commonsense QA
(CSQA), and temporal fact probing (TempLAMA).

Self-reflection: Hallucination (HaluEval), toxicity
(Toxic), and stereotype detections (Stereoset).

Multilinguality: Language identification (LTI),
multilingual POS tagging (M-POS), sentiment
classification (M-Amazon), knowledge probing
(mLAMA), and textual entailment (XNLI).

5.3 NEG-based Skill Neuron Probe
We train skill neuron probes using NeurGrad’s esti-
mated NEG to examine how NEG encodes general
language skills. Each skill dataset D is split into:
training, validation, and test sets (Dtrain, Dvalid,
and Dtest), with a ratio of 6:1:1. We compare the
following three probes with different designs.

Polar-Probe is a majority-vote classifier, where
each neuron votes based on its polarity (positive or
negative). For each training pair (qi, ai) in Dtrain

and neuron nk, we record its polarity as feature
xnk
qi,ai . The dominant polarity across Dtrain defines

the neuron’s global polarity x̄nk , and neurons with
more consistent polarity are ranked higher.

To predict qi, we compare polarities xnk
qi,aj for

each candidate aj ∈ Âcands and nj ∈ N ∗
s :

f(N ∗
s , qi) = argmax

aj∈Âcands

∑

nk∈N ∗
s

1[xnk
qi,aj = x̄nk ]

(4)

The optimal size of N ∗
s is selected using Dvalid.

Magn-Probe uses NEG magnitudes as features
for a majority-vote classifier. For each training
pair (qi, ai) in Dtrain and neuron nk, we compare
NEGs across a ∈ Âcands. Neurons that consistently
show the highest or lowest NEGs for the correct
answer ai are marked as skill indicators, along with
their preference for being highest or lowest. More
consistent neurons are ranked higher. At inference,
predictions follow the same voting rule as in Eq. 4.
This probe evaluates whether NEG magnitudes can
encode skill information.

Tree-Probe is designed to analyze the impact of
accounting for interdependencies among skill neu-
rons. We use the index (non-negative integers)
of a ∈ Âcands with the most significant NEGs
as features for training a random forest classifier.
The hyperparameters include the number of trees
(#n_trees) and layers (#n_layers) used in each
tree. See more details in § G.2.
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Figure 6: MCEval8K accuracies on Llama2-7B across tasks in zero-shot and few-shot settings, reported for Rand
(random guess), LM-Prob (token probability), and three proposed probes. Legends show average accuracies.

Model NER Agnews PAWS CSQA HaluEval mLAMA

LM Act Mag LM Act Mag LM Act Mag LM Act Mag LM Act Mag LM Act Mag

Llama3.2-3B .598 .633 .618 .757 .857 .776 .500 .843 .831 .551 .681 .691 .650 .822 .780 .473 .563 .570
Llama2-7B .361 .453 .498 .588 .849 .702 .524 .825 .815 .610 .613 .639 .520 .788 .783 .608 .622 .637
Qwen2.5-7B .871 .877 .877 .751 .858 .755 .574 .889 .873 .768 .816 .814 .637 .821 .773 .784 .795 .785
Llama3.1-8B .815 .826 .833 .770 .883 .812 .500 .860 .854 .674 .733 .740 .674 .807 .798 .762 .781 .785
Llama2-70B .790 - .817 .763 - .824 .779 - .846 .754 - .763 .753 - .825 .743 - .760

Table 3: Accuracy of six tasks across five LLMs: LM-Prob, Activation-based, and Magn-Probe.

5.4 Experimental Setup

Dataset & Prompt. We split each MCEval8K
dataset into train, validation, and test by the ratio
of 6:1:1, ensuring balanced correct-answer tokens
across subsets to avoid majority label bias (Zhao
et al., 2021). We manually craft instructions and
options for all MCEval8K tasks to ensure single-
token outputs, considering both zero-shot and few-
shot settings. See § I for all task instructions.

Probe. For majority-based probes, we select the
optimal neuron size from 2n(0 ≤ n ≤ 13) using
Dvalid. For the Tree-Probe (random forest), we
report accuracy using scikit-learn’s default settings,
where the optimal subset of features is selected
automatically: 100 trees with no depth limitation.
See § G.1, G.2 for details.

Models. We probe Llama2-7B with three NEG-
based probes on all tasks in MCEval8K. For other
LLMs, to reduce computational cost, we only
probe one dataset per genre (NER, Agnews, PAWS,
CSQA, HaluEval, and mLAMA) with 210 training
examples, focusing on majority-vote probes.

5.5 Result and Analysis

We compare our skill probes with three baselines:
Rand (random guessing, LM-Prob (choosing the
token with highest model probability), and Act
(activation-based probes from Wang et al. (2022)).

Can NEG capture language skills? Figure 6
shows Llama2-7B’s accuracy on MCEval8K tasks
in zero- and few-shot settings. The results show
that LM-Prob consistently outperforms random
guessing, indicating that Llama2-7B can follow
instructions to activate the relevant language skills.
However, even the simple majority-vote probes can
surpass the LM-Prob, suggesting that NEGs cap-
ture meaningful information about language skills
in individual neurons. Furthermore, Tree-Probe sig-
nificantly outperforms majority-vote probes by in-
tegrating NEGs from multiple neurons. This high-
lights that the interplay among neurons is crucial
for accurately representing language skills. See
Tables 8 and 9 in Appendix § G.1 for details on all
tasks. Experiments on other LLMs further validate
our findings as reported in Table 3.

Which encodes skills better: activation or gra-
dient? Table 3 demonstrates that NEG-based
probes have a different focus from the activation-
based approach. Specifically, the gradient-based
probes perform better on knowledge-intensive lan-
guage tasks, such as factual knowledge and com-
monsense reasoning (mLAMA and CSQA). One
possible explanation is that simple linguistic knowl-
edge becomes saturated during pretraining, while
complex knowledge remains undertrained, making
it more effectively captured by NEG-based probes.

Furthermore, NEG-based probes outperform
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Neuron sizes Tasks

20 ∼ 23 Toxic, LTI, M-POS, FEVER, TempLAMA

24 ∼ 28
GED, POS, CHUNK, NER,
Amazon, IMDB, PAWS, MNLI,
SWAG, HaluEval, XNLI, M-Amazon

29 ∼ 213 Agnews, MyriadLAMA, CSQA, mLAMA

Table 4: The optimal neuron sizes for Mag-Probe.
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Figure 7: Accuracies with varying training sizes.

activation-based methods in efficiency by assigning
distinct values to different target tokens per neuron,
enhancing representational capacity. In contrast,
activation-based approaches rely only on forward
pass signals, limiting neurons to binary distinc-
tions and making them less effective for multi-class
tasks (Wang et al., 2022).

How do NEGs make predictions? We analyze
NEGs associated with each option token to explore
why simple majority-vote classifiers can achieve
high accuracy. Using PAWS (binary classification)
as an example, we acquire NEGs for target tokens
(“yes/no”) across 6K prompts. We find 97.21% of
neurons show opposite signs for “yes/no” tokens,
with a near-perfect negative correlation (−0.9996),
indicating strong polarity across options. We fur-
ther compare the NEGs given zero-shot and few-
shot prompts. We find that NEG magnitudes of few-
shot prompts over 22 tasks are 5.36 times larger
than zero-shot, suggesting that adding demonstra-
tions can effectively activate skill neurons.

6 Properties of Skill Neurons

To deepen our understanding of how language
skills are represented within neurons, we analyze
skill neurons’ behavioral and structural properties
through a series of focused studies.

6.1 Representation & Acquisition Efficiency

Representational efficiency: By tuning neuron
size on the validation set, we find that skill-neuron
probes achieve high accuracy with only a few neu-

rons. The optimal neuron sizes for all tasks with
Magn-Probe are reported in Table 4. Most tasks
can achieve optimal accuracy within 256 neurons,
demonstrating the efficiency of NEG in represent-
ing language skills. Notably, factuality tasks, such
as MyriadLAMA, CSQA, and mLAMA, engage
more neurons, suggesting that handling facts re-
quires more diverse neurons, reflecting the com-
plexity of factual understanding tasks.

Acquisition efficiency: Figure 7 reports the accu-
racy of skill-neuron probes with different training
examples. While adding training examples can con-
sistently increase the probes’ accuracy, the earnings
slow down after 128, indicating the efficiency of
acquiring skill neurons with limited data.

6.2 How Robust Are Skill Neurons to
Contextual Variations?

We investigate how skill neurons change when
we provide different contexts, including instruc-
tions, demonstrations, and options for the same
task. Given context X , we first acquire the skill
neurons NX

s and the accuracy ACCX
NX

s
. Then, we

use the classifier built with NX
s to evaluate the

task by context Y as ACCY
NX

s
. We denote the ro-

bustness of NX
s on context Y as

max(ACCY

NX
s

−α,0)

max(ACCY

NY
s
−α,0)

,

where α is the accuracy by Rand.
Using PAWS as an example, we create 12 dis-

tinct contexts by varying the instructions, the selec-
tion of demonstrations, and the output token styles.
By measuring robustness across combinations, we
find that it remains very high (near 1) for varying
instructions and demonstrations but drops signifi-
cantly when target tokens change. The results show
that skill neurons remain highly robust to changes
in instructions and demonstrations but lose robust-
ness when output tokens change. See § J for details
of experimental settings and results.

6.3 Are Neurons Substitutable in
Representing Language Skills?

We investigate whether skill neurons uniquely rep-
resent skills or can be substituted by different neu-
rons. For investigation, we build Magn-Probes us-
ing different neuron sets. Specifically, we select 64
consecutive neurons from the ranked list, ordered
by their importance as skill indicators (§ 5.3).12

12We use 64-neuron units that maintain high accuracy
across tasks (§ A). With 352,256 neurons in Llama2-7B’s
FF layers, this produces 5,504 unique neuron sets.
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Figure 8: Accuracies of Magn-Probe with different neu-
ron sets, plotting the mean accuracy within each window,
along with the accuracy ranges, as the envelope. Neu-
ron sets are selected from all neurons in Llama2-7B in
groups of 32, ranked by importance as skill indicators.

0 2 4 6 8 10#log_ntree
2

4
6

8
10

#log
_nl

ay
er

0.80

0.85

0.90

0.95

PAWS

0 2 4 6 8 10#log_ntree
2

4
6

8
10

#log
_nl

ay
er

0.4

0.5

0.6

CSQA

0 2 4 6 8 10#log_ntree
2

4
6

8
10

#log
_nl

ay
er

0.70
0.75
0.80
0.85
0.90
0.95

Ac
cu

ra
cy

HaluEval

Figure 9: Accuracies of Tree-Probes with varying
depths and trees. X-axis: logarithm of trees’ number;
Y-axis: logarithm of tree depths; Z-axis: Accuracy.

Figure 8 depicts the accuracies across six tasks
with different neuron sets, showing that represen-
tational accuracy declines only gradually with less
important neurons. Even using the least important
neurons still outperforms Rand. This suggests that
numerous neurons can act as skill indicators and
skill neurons are broadly distributed and substi-
tutable (see § H.2 for full results).

6.4 Do Skill Neurons Depend on Each Other?
The majority-vote probes assume neuron indepen-
dence, while the Tree-Probe model their interde-
pendencies via hierarchical classifiers. Figure 6
shows that Tree-Probles better represents language
skills by accounting for neuron interdependency.
To see how important interdependency is in en-
coding language skills, we train Tree-Probes with
varying #n_trees and #n_layers.13

Figure 9 reports the resulting accuracies of Tree-
Probe on PAWS, CSQA, and HaluEval. Their dif-
ferent shapes indicate the interdependency style be-
tween neurons for diverse skills differs. Some tasks
(PAWS) prefer deep layers, while some (CSQA)
prefer more trees, and some (HaluEval) require a
balance. See § H.3 for details.

13#n_trees and #n_layers are set to 2N and 2M , where
0 ≤ N ≤ 10, 1 ≤ M ≤ 11, and N +M < 12.

7 Related Work

Neuron-level knowledge attribution methods.
Previous work links neurons to knowledge (Oba
et al., 2021) by measuring their impact on model
predictions. Some use causal interventions (Geva
et al., 2021; Meng et al., 2022; Chen et al., 2023;
Wang et al., 2024), while others rely on heavy ten-
sor calculations (Geva et al., 2022; Lee et al., 2024;
Yu and Ananiadou, 2024). These methods are com-
putationally costly, limiting their use for large-scale
probing across diverse LLM prompts. They also
focus on relative neuron rankings rather than the
precise, quantitative neuron-output relationships,
reducing their applicability in use cases like knowl-
edge editing (Zhang et al., 2024) and bias mitiga-
tion (Gallegos et al., 2024). Gradient-based ap-
proaches (Lundstrom et al., 2022; Dai et al., 2022)
similarly face high computational costs.
Skill neuron probing. Neurons in feed-forward
layers can encode specific language skills, enabling
the tasks to be solved using only their activations;
such neurons are called skill neurons (Wang et al.,
2022; Song et al., 2024). Prior work showed that
neurons represent semantic skills like sentiment
classification (Wang et al., 2022; Song et al., 2024)
and complex skills such as style transfer (Lai et al.,
2024) and translation (Tan et al., 2024). However,
these studies focus on activations as knowledge
indicators, overlooking neuron gradients’ potential
to represent language skills, which limits neuron-
level model adjustments.

8 Conclusions

This is the first study to provide a global quantita-
tive link between feed-forward layer neurons and
model output, and discuss the potential of precise
LLM control via neuron modifications. Through
neuron intervention experiments, we reveal the lin-
ear relationship between neurons and model out-
puts and quantify such linearity by “neuron em-
pirical gradients” (NEG) and propose NeurGrad,
an efficient NEG estimation method. Finally, we
verify NEG’s ability to represent various language
skills associated with diverse prompts through skill
neuron probing.

As future work, we plan first to explore the trade-
off between precision and intensity in neuron mod-
ification based on NeurGrad, and then leverage
these insights to develop a broader neuron-level
modification methodology for applications such as
knowledge editing and bias mitigation.
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9 Limitations

Our research establishes a framework to quantita-
tively measure neuron influence on model output
and shows that empirical gradients effectively rep-
resent language skills, linking language skill repre-
sentation to outputs via neuron empirical gradients.
However, tuning neuron values for skill-level out-
put adjustment remains unexplored and could offer
a more efficient alternative to weight-level tuning.
We also plan to assess NEG’s role in language gen-
eration skills, aiming for dynamic behavior changes
without altering LLM parameters, reducing costs
and improving flexibility in model adaptation.

Currently, our neuron linearity and gradient anal-
ysis focus on single-token factual prompts. Future
work will expand to diverse domains and multi-
token contexts to support wider use cases with lan-
guage generation.
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A Generality of Neuron Linearity

In this section, we provide additional evidence to
verify that linearity is a general property for neu-
rons in LLMs. Specifically, we want to verify
whether the linear neurons exist widely across dif-
ferent Transformer feed-forward layers and within
different prompts. We use the metrics of layer gen-
erality (LG) and prompt generality (PG) to mea-
sure the prevalence of their existence. Intuitively,
we can consider a simplified problem as follows:
suppose we have many colored balls (green, blue,
...) and 10 bins, and if we want to verify whether
the blue ball has “generality,” it means (1) high
coverage: the blue ball exists in most of the bins;
(2) even distribution: the number of blue balls in
each bin hardly differs from others. For our neuron
generality, the “balls” are the “linear neurons,” and
the “bins” refer to either “feed-forward layers” (for
LG) or “different prompt” (for PG). To address
these two aspects simultaneously, we define LG
and PG as follows:

Linear
neuron
ratio

Prompt-
wise
gen.

Layer-
wise
gen.

BERTbase .9565 .9999 .9982
BERTlarge .8756 .9999 .9989
Llama2-7B .9387 .9999 .9986
Llama2-70B .9208 .9999 .6294

Table 5: Neuron linearity statistics. We choose 1000
prompts and their corresponding 100 neurons with top
gradient magnitudes. For Llama2-70B, since the model
is giant, we only chose 200 prompts and 100 neurons
due to the high computational cost. The shift range is
set to ± 2.

LG ≜ coveragelayer × distributionlayer, (5)

PG ≜ coverageprompt × distributionprompt, (6)

where coverage and distribution are defined as:

coveragex =
Σi1(linear neuron exists in xi)

# of x
,

(7)

distributionx = 1− Var(#neurons in x)

maxVar(#neurons in x)
,

(8)
where x refers to either layer or prompt, maxVar(·)
denotes the max possible variance. High coverage
and distribution are desirable; a perfect generality
then achieves coverage of one and distribution of
one. The statistics in Table 5 suggest that linearity
is a general property of neurons, largely indepen-
dent of specific prompts or Transformer layers.

B Neurons’ Statistics

B.1 Distribution of Neuron Activations
In this section, we analyze the distribution of neu-
ron activations across seven PLMs, illustrated in
Figure 10. The models include three BERT-based
PLMs and three instruction-tuned LLaMA-2 LLMs.
Figure 10 reveals that most neuron activations fall
within the range of ±10. While there are still some
neurons that have a value out of the range of ±10,
the number of such neurons is comparably fewer,
and increasing the range linearly increases the com-
putational cost. Considering the balance between
coverage and computational cost, we finally set the
intervention range as ±10 as shown in Section § 2.
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Figure 10: Histograms of neuron activations for seven models across 1,000 prompts, displayed on a logarithmic
y-axis. The figure includes three BERT models and three LLaMA-2 models, with each subplot showing the
distribution of activations for one model.

B.2 Distribution of Neuron NEGs

In this section, we report the distribution of neu-
rons’ NEG across the seven PLMs, as illustrated
in Figure 11. Similar to our discussion in Sec-
tion § 4.1, neurons capable of altering model out-
put are not rare. For instance, in BERTbase, over
1,000 neurons exhibit NEG magnitudes larger than
0.1. Additionally, the NEG magnitudes of neurons
in LLaMA-2 LLMs are significantly smaller than
those in BERT PLMs, likely due to the smaller
parameter size of BERT models, which grants indi-
vidual neurons greater influence over model output.
Notably, all models exhibit zero gradients when
averaging the NEGs across all neurons.

B.3 How are neurons distributed across
layers?

We examine the variation in the absolute value
of NEGs across Transformer layers to understand
the distribution of neuron controllability. The Fig-
ure 12 illustrates the means and confidence interval
of magnitudes of NEG across layers. The mean
NEG magnitude reflects the intensity with which
PLMs adjust output probabilities through neurons
in a given layer, while the variance indicates how
concentrated the effective neurons are within that
layer. A positive Corr is observed between vari-
ances and means,14 suggesting that as PLMs in-

14The Corr between means and variances of neuron mag-
nitudes across different layers are 0.88, 0.79, 0.87 for
BERTbase/large/wwm, and 0.57, 0.51, 0.42 for Llama2-

crease the intensity of gradient activity in specific
layers, they also focus more on a limited subset of
neurons. Specifically, in BERT models, a strong
Corr is evident between layer depth and neuron con-
trollability intensity, with deeper layers exhibiting
larger gradient magnitudes, whereas Llama2 dis-
plays a distinct pattern: gradient magnitudes peak
in the middle layers, decrease towards the deeper
layers and then increase at the final layers. This
divergence underscores the differences between the
BERT and Llama2 families, emphasizing the need
for case-by-case analysis in LLM mechanism in-
vestigation.

C Knowledge Attribution Evaluation:
Supplementary Experiments

In this section, we report the knowledge evaluation
experiments on other PLMs, including two BERT
PLMs. We exclude LPI from the following experi-
ments as LPI cannot be applied to BERT models.
We follow a similar experiment setup to Section
§ 3.3.

The evaluation results are illustrated in Figure 13.
NeurGrad consistently outperforms other gradient-
based methods in finding the top-K important neu-
rons. Furthermore, we can observe that output
shifts made on BERT PLMs are much larger than
shifts on Llama2-7B (Figure 3). This is due to
the small NEG magnitudes in Llama2-7B as intro-
duced in § B.2.

7B/13B/70B.
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Figure 11: Histograms of neuron NEGs for seven models across 1,000 prompts, displayed on a logarithmic y-axis.
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Figure 12: Means and variances of NEG magnitudes across Transformer layers on seven models. The data is
calculated from the average of 1000 prompts.

D Multi-neuron Intervention:
Supplementary Experiments

In this section, we report the multi-neuron inter-
vention experiments conducted with different en-
hancement ranges on BERTbase and Llama2-7B,
following the similar experiment setup to Section
§ 4.2. Specifically, we report the correlation be-
tween output shift and the accumulated NEGs esti-
mated by NeurGrad with the enhancement ranges
of [0, 0.1], [0, 1], [0, 1.5], and [0, 2], illustrated
in Figure 14. Figure 14 demonstrates that a larger
enhancement range, involving more neurons, can
vastly reduce the Corr, suggesting the output shift
is less predictable. However, we can observe that
BERTbase consistently achieves strong Corr. (>0.8)
for any scenario. While Llama2-7B is less sta-
ble than BERTbase, it can still maintain moderate
positive Corr. (>0.5) for 4096 neurons with an
enhancement range of [0,2].

E Model cards

Here are the links from Hugging Face to load each
model:

BERTbase: https://huggingface.co/
bert-base-uncased

BERTlarge: https://huggingface.co/
bert-large-uncased

Llama3.2-3B: https://huggingface.co/meta-llama/
Llama-3.2-3B-Instruct

Llama2-7B: https://huggingface.co/meta-llama/
Llama-2-7B-hf

Qwen2.5-7B: https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

Llama3.1-8B: https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

Llama2-70B: https://huggingface.co/meta-llama/
Llama-2-70B-hf
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(a) Evaluation results on BERTbase.
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(b) Evaluation results on BERTlarge.

Figure 13: Knowledge attribution evaluation by com-
paring CG, IG, and NeurGrad on two BERT.

Model #n_layers #neurons_per_layer

BERTbase 12 3,072
BERTwwm 24 4,096
Llama3.2-3B 28 11,008
Llama2-7B 32 11,008
Qwen2.5-7B 28 18,944
Llama3.1-8B 32 14,336
Llama2-70B 80 28,672

Table 6: Number of Layers and Intermediate Neurons
per Layer for BERT and Llama2 Models

The statistics of these seven PLMs, including the
number of layers (#n_layers) and neurons per layer
(#neurons_per_layer) are listed in Table 6.

F Construction of MCEval8K

The motivation behind creating MCEval8K is to
establish a comprehensive benchmark that spans di-
verse knowledge genres and language skills. Since
we aim to facilitate skill neuron probing experi-
ments where a single token must represent answers,
we adopt a multi-choice task format. Additionally,
we aim for the benchmark to be adaptable while
avoiding redundancy for effective evaluation. In
summary, we adhere to several guiding principles
to design MCEval8K.

1. All datasets must be in multi-choice format.

2. Avoid including datasets that convey similar
language skills.

3. To eliminate potential bias from imbalanced
classifications, we ensure that the number of
correct options is evenly distributed across all
answer choices. This balance helps maintain
fairness and accuracy in the analysis results.

4. We use a unified number (8000) of data to
avoid high computational costs.

Multi-choice format: We created MCEval8K to
include six different genres with 22 tasks, which are
linguistic, content classification, natural language
inference (NLI), factuality, self-reflection, and mul-
tilingualism. All the genres and tasks are listed in
Table 7. For datasets that are not multi-choice tasks,
we create options for each inquiry following rules.
These datasets include POS, CHUNK, NER, Myr-
iadLAMA, TempLAMA, Stereoset, M-POS, and
mLAMA. The rules we adhere to create options
are listed below:

POS We use weighted sampling across all POS
tags to select three additional tags alongside
the ground-truth tag.

CHUNK The process is analogous to POS.

NER The process is analogous to POS.

MyriadLAMA For factual inquiries formed from
< subi, relj >, we collect all objects that ap-
pear as the target of the relj within the dataset
and perform sampling to select three addi-
tional objects alongside the ground-truth tag.

TempLAMA We randomly sample three addi-
tional candidate years from the range 2009
to 2020, alongside the ground-truth tag.

M-POS The process is similar to POS, applied
separately for each language.

mLAMA The process is similar to MyriadLAMA,
applied separately for each language.

Balanced Options: Most datasets, except for Stere-
oset, contain over 8000 data points. To ensure
balance across all options, we perform balanced
sampling so that each option has an equal num-
ber of examples. From these datasets, we split
8000 examples into training, validation, and test
sets, allocating 6,000, 1000, and 1000 examples,
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(b) Enhancement range of [0, 1].
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(c) Enhancement range of [0, 1.5].
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(d) Enhancement range of [0, 2].

Figure 14: Multi-neuron intervention experiment results with different enhancement ranges.

respectively. For instance, in the case of mLAMA,
where each inquiry has four options, we ensure that
the correct answer is represented equally across all
four positions. This results in 1,500 occurrences
(6,000/4) per position in the training set and 250
occurrences per position in both the validation and
test sets.

Creation of multilingual tasks: For multilingual
datasets, we focus on five languages: English (en),
German (de), Spanish (es), French (fr), and Chinese
(zh). These languages vary significantly in linguis-
tic distance, with English being closer to German,
French closer to Spanish, and Chinese being dis-
tant from all of them. This selection allows for a
deeper analysis considering linguistic distances be-
tween languages. We ensure that 5 languages have
the same number of data examples in each dataset
(1,600 per language). Furthermore, for datasets
like mLAMA, XNLI, and M-AMAZON, we en-
sure that each piece of knowledge is expressed in
all five languages. This consistency enables direct
comparisons of language understanding abilities
across different languages.

G Details of Skill Neuron Probing

G.1 Per-task Probing Result

In this section, we report the details of our skill neu-
ron probing evaluation, including the full optimal
accuracies on all tasks with zero-shot prompt set-
ting (Table 8) and few-shot prompt setting (Table 9).
For two majority vote probes, optimal accuracies
are acquired by performing a hyperparameter (opti-
mal neuron size) search on the validation set and
evaluating the test set. We report the optimal neu-
ron sizes for all tasks and the table’s accuracies.
For the random-forest probing (Tree-Probe), we
directly use the gradients of all neurons to train the
random forest tree. As the random forest training
algorithm only takes important features to construct
the decision trees, we also report the number of neu-
rons used to build the random forests. The details
of the random-forest-based probe are introduced in
§ G.2.

G.2 Random Forest-based Probe

What is the random forest algorithm? The
random forest is an ensemble learning algo-
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rithm (Heath et al., 1993) that works by creating
a multitude of decision trees during training. For
our multi-choice classification tasks in MCEval8K,
the random forest’s output is the option selected by
most trees. A decision tree is a supervised learning
model that makes predictions by recursively split-
ting data based on feature values. During training,
the tree builds nodes by selecting features that best
separate the data according to a chosen metric, such
as Gini impurity. Splitting continues until the data
in each leaf node is sufficiently pure or a maximum
depth is reached. During inference, a new input is
passed through the tree by following the feature-
based decisions from the root to a leaf, where the
final prediction is determined by the majority label
or average value of samples in that leaf.

Feature design: Our study’s objective is to ex-
plore the effectiveness of using NEG as features
for knowledge representation and conduct further
analysis. Therefore, the inputs for training and in-
ference in the random forest model are constructed
solely based on gradients estimated by NeurGrad.
Specifically, each neuron is assigned an integer
value for a given prompt. In our classification tasks,
a neuron’s feature is set to i if the gradient associ-
ated with the i-th token for that neuron is the largest
among the gradients computed for all other candi-
date tokens (options). We ignore information on
the smallest gradients to reduce the size of feature
spaces.

Implementation details: For the implementation,
we directly use RandomForestClassifier in scikit-
learn (Pedregosa et al., 2011) for training and in-
ference. We use the default parameters of Ran-
domForestClassifier besides the number of trees
(#n_trees) and layers (#n_layers) used in each tree.
The number of trees refers to the number of deci-
sion trees used to ensemble the random forest. The
number of layers refers to the layer depth for each
tree. Noted that RandomForestClassifier constructs
binary trees; thus, the number of features used in
each tree is equal to or less than 2#n_layers − 1.

Visualization: We present an example of a single-
tree random forest model learned from the PAWS
dataset in the few-shot setting, illustrated in Fig-
ure 15. For learning this decision tree, the number
of trees and layers is set to 1 and 8. The PAWS
dataset is a binary classification task with candi-
date tokens "yes" and "no." To construct features
for each neuron, we compare the NEGs computed
by NeurGrad for the "yes" and "no" prompt pairs.

If the gradient estimated for the prompt-yes pair
exceeds that of the prompt-no pair, we assign a
feature value of 1; otherwise, we assign 0.

H Additional Analysis on Probing Results

H.1 More Data about Efficiency

We report the accuracies of majority-vote probes
with different neuron sizes for all tasks to provide
additional evidence for the discussion about the
representation and acquisition efficiency of skill
neurons in § 6.1. The results are demonstrated in
Figure 18 and Figure 19 for zero-shot and few-shot
prompting settings.

H.2 Probing With Varying Neuron Sets

We report the aggregated accuracies across all 22
tasks in MCEval8K in Figure 20 to provide addi-
tional evidence for discussion in § 6.3. It demon-
strates that many neurons can construct the classi-
fiers in solving the language tasks, showing their
ability to represent language skills and knowledge.

H.3 Tree-Probe: Flatteness vs. Hierarchy

To investigate the balance between hierarchy and
independence of skill neurons, we train Tree-Probe
with fixed neuron features (210) but with differ-
ent depths and trees. For each task, we train 10
Tree-Probes, varying the number of trees (#n_tree
∈ (20 ∼ 29)) and the tree depth (#n_layer ∈
(210 ∼ 21)), which fewer trees with deeper lay-
ers indicate a more hierarchical structure. All
tasks show a camel curve given stronger hierar-
chies. We report the optimal #n_layer for dif-
ferent tasks as follows: CSQA(4), MNLI(16),
SWAG(16), Stereoset(16), Agnews(32), Myriad-
LAMA(32), mLAMA(32), XNLI(32), POS(64),
FEVER(64), Toxic(64), LTI(64), GED(128),
IMDB(128), M-Amazon(128), CHUNK(256),
NER(256), Amazon(256), PAWS(256), HaluE-
val(256), M-POS(256), TempLAMA(1024). This
demonstrates that Different language skills require
different hierarchy levels. For instance, factual
tasks benefit from flatter structures, while linguis-
tic tasks prefer deeper hierarchies.

For all tasks in MCEval8K, we plot the accura-
cies of trained models with varying hyperparame-
ters, including the number of trees and layers per
tree. The number of trees is set to 2N , where N
ranges from 0 to 10, and the number of layers is
set to 2M , where M ranges from 1 to 11. Train-
ing is conducted only for configurations where
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N +M < 12. The results are visualized as 3D sur-
faces, where the x-axis represents the logarithm of
the number of trees (#log_ntree), the y-axis shows
the logarithm of the number of layers (#log_nlayer),
and the z-axis indicates the accuracy evaluated on
the test set. We display the results for all tasks
under the zero-shot setting in Figure 22 and those
under the few-shot setting in Figure 23.

I Prompting Setups

In this subsection, we list all the instructions we
use for each task in MCEval8K. It includes design
instructions, options, and a selection of few-shot
examples. As mentioned in § 5.4, we adopt two
instruction settings, zero-shot and few-shot. For
few-shot prompting, we set the number of examples
to the same number as the number of options and
ensure each option only appears once to prevent
majority label bias (Zhao et al., 2021). All the few-
shot examples are sampled from the training set.
Finally, we list all the instructions and options we
used for skill neuron probing examples by showing
one zero-shot prompt.

GED
### Instruction: Which of the sentence
below is linguistically acceptable?
### Sentences:
a.I set the alarm for 10:00 PM but I could
n’t wake up then .
b.I set the alarm for 10:00PM but I could
n’t wake up then .
### Answer:

POS
### Instruction: Determine the
part-of-speech (POS) tag for the
highlighted target word in the given
text. Choose the correct tag from the
provided options.
### Input text:One of the largest
population centers in pre-Columbian
America and home to more than 100,000
people at its height in about 500 CE,
Teotihuacan was located about thirty
miles northeast of modern Mexico City.
### Target word:’pre-Columbian’
### Options:
a.DET
b.ADJ
c.PRON
d.PUNCT

### Answer:

CHUNK
### Instruction: Identify the chunk type
for the specified target phrase in the
sentence and select the correct label from
the provided options.
### Input text:B.A.T said it purchased
2.5 million shares at 785 .
### Target phrase:’said’
### Options:
a.PP
b.VP
c.NP
d.ADVP
### Answer:

NER
### Identify the named entity type for
the specified target phrase in the given
text. Choose the correct type from the
provided options
### Input text:With one out in the fifth
Ken Griffey Jr and Edgar Martinez stroked
back-to-back singles off Orioles starter
Rocky Coppinger ( 7-5 ) and Jay Buhner
walked .
### Target phrase:’Orioles’
### Options:
a.LOC
b.ORG
c.MISC
d.PER
### Answer:

Agnews
### Instruction: Determine the genre of
the news article. Please choose from
the following options: a.World b.Sports
c.Business d.science. Select the letter
corresponding to the most appropriate
genre.
### Text:Context Specific Mirroring
"Now, its not that I dont want to have
this content here. Far from it. Ill
always post everything to somewhere on
this site. I just want to treat each
individual posting as a single entity
and place it in as fertile a set of beds
as possible. I want context specific
mirroring. I want to be able to
newlinechoose
multiple endpoints for a post, and
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publish to all of them with a single
button
click."

### Genres:
a.World
b.Sports
c.Business
d.Science
### Answer:

Amazon
### Instruction: Analyze the sentiment
of the given Amazon review and assign a
score from 1 (very negative) to 5 (very
positive) based on the review. Output
only the score.
### Input Review:I never write reviews,
but this one really works, doesn’t float
up, is clean and fun. Kids can finally
take a bath!
### Output Score:

IMDB
### Instruction: Based the review, is the
movie good or bad?
### Review:Stewart is a Wyoming cattleman
who dreams to make enough money to
buy a small ranch in Utah ranch
<...abbreviation...>. In spontaneous
manner, Stewart is lost between the
ostentatious saloon owner and the
wife-candidate...
### Answer:

MyriadLAMA
### Instruction: Predict the [MASK] in
the sentence from the options. Do not
provide any additional information or
explanation.
### Question:What is the native language
of Bernard Tapie? [MASK].
### Options:
a.Dutch
b.Telugu
c.Russian
d.French
### Answer:

CSQA
### Instruction: Please select the most
accurate and relevant answer based on the
context.
### Context: What does a lead for a

journalist lead to?
### Options:
a.very heavy
b.lead pencil
c.store
d.card game
e.news article
### Answer:

TempLAMA
### Instruction: Select the correct year
from the provided options that match the
temporal fact in the sentence. Output the
index of the correct year.
### Question:Pete Hoekstra holds the
position of United States representative.
### Options:
a.2013
b.2014
c.2018
d.2011
### Answer:

PAWS
### Instruction: Is the second sentence
a paraphrase of the first? Answer exactly
’yes’ or ’no’.
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by Cameron
Crain , Richard Shelgren and Kamala Lopez
and directed by Kamala Lopez .
### Answer:

MNLI
### Instruction: Given a premise and a
hypothesis, determine the relationship.
### Premise: easily yeah yeah and then
if you want popcorn and stuff it’s just
i mean uh it’s incredible
### Hypothesis: It’s anti-incredible,
very ordinary and unimpressive.
### Question: What is the relationship
between the two sentences?.
### Options:
a.Entailment
b.Neutral
c.Contradiction
### Answer:

SWAG
### Instruction: Given the context,
select the most likely completion from the
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following choices. Please exactly answer
the label.
### Context: He looks back at her kindly
and watches them go. In someone’s dark
bedroom, someone
### Options:
a.paces with the bandage, his back to
someone.
b.spies a framed photo of a burmese
soldier on a black horse.
c.blinks covers the apartment’s couch.
d.lays her sleeping niece down gently onto
the bed.
### Answer:

HaluEval
### Instruction: Given the knowledge
context, dialogue histroy and response,
determine if any hallucination is present.
Provide a response of either ’yes’ or ’no’
only.
### Context:Kim Edwards wrote The Memory
Keeper’s Daughter
### Dialogue history:[Human]: Could
you recommend something by Kim Edwards?
[Assistant]: Absolutely, The Memory
Keeper’s Daughter is good. Do you like
Fiction? [Human]: Yes, I do. I really
love Sci Fi. [Assistant]: OK. Some Sci
Fi choices are Blade Runner, The Matrix
and Alien. Do you like any of these?
[Human]: I wasn’t fond of Alien or Blade
Runner but I loved The Matrix.
### Response:Actually, Kim Edwards is a
director and her best work so far is The
Memory Keeper’s Daughter. For Sci-Fi, I
suggest you watch the 1989 classic Field
of Dreams. Would you like to give it a
try?
### Hallucination (yes or no):

Toxic
### Instruction: Determine if
the provided text contains toxic
content.Provide a response of either
’yes’ or ’no’ only.
### Text:Dear SchfiftyThree
I would just like to say that i hate you
and the rest of the wikipedia editors
for deleting my creations. fuck you.
### Toxicity (yes or no):

Stereoset
### Instruction: Given the context,
identify and select the sentence that does
not convey the stereotype related to the
context.
### Context:A performing artist is often
up late at night.
### Options:
a.Many artists are very likeable people.
b.Having children is a momentous
occasion.
c.Any who performs is a diva.
### Answer:

M-Amazon
### Anweisung: Analysieren Sie die
Stimmung der gegebenen Amazon-Bewertung
und vergeben Sie eine Punktzahl von 1
(sehr negativ) bis.
### Eingabebewertung:Produkt ist
gefährlich. Hat den Fi rausgehen.
Man hat das gefühl es fällt auseinander.
Billigste Qualität!! Man fühlt sich
einfach betrogen!!!
### Ausgabewertung:

LTI
### Instruction: Identify the language of
the given sentence.
### Text:S’en retournait, et assis sur
son chariot, lisait le prophète Ésaïe.
### Options:
a.English
b.French
a.German
a.Chinese
a.Spanish
### Answer:

mLAMA
### Instrucción: Prediga el [MASK] en la
oración a partir de las opciones. No
proporcione información ni explicaciones
adicionales.
### Respuesta:La capital de Irán es
[MASK].
### Opciones:
a.Indianápolis
b.Génova
c.Teherán
d.París
### Pregunta:
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XNLI
### Instruction: Étant donné une prémisse
et une hypothèse, déterminez la relation.
### Prémisse: Ouais nous sommes à environ
km au sud du lac Ontario en fait celui qui
a construit la ville était un idiot à mon
avis parce qu’ ils l’ ont construit ils l’
ont construit assez loin de la ville qu’
il ne pouvait pas être une ville portuaire
### Hypothèse: Nous sommes à 10 km au sud
du lac Ontario en bas i-35 .
### Options:
a.Implication
b.Neutre
c.Contradiction
### Réponse:

M-POS
### 指令：确定给定文本中高亮目标词的词
性。从提供的选项中选择正确的词性标签。
### 文本:但是，有一個全面的人口統計數據
分析，對象包括婦女，特是有養育孩子的那
些。
### 目标词:’一’
### 选项:
a.NUM
b.AUX
c.ADJ
d.VERB
### 问题:

J Diverse Contexts for Skill Neuron
Generality Evaluation

In this section, we report the instructions we used
for experiments to measure the generality of skill
neurons in § 6.2. We report five types of instruction
settings with 2-shot, IT0, IT1, IT2, IT3, IT4, where
IT0 use yes/no as it candidate target tokens while
others use a/b.

We fix the number of skill neurons to 32 when
training the skill-neuron-based probes. We use
32 as the optimal neuron size of PAWS with the
few-shot setting is 32. Finally, we report the pair-
wise generality values among different prompting
settings in Figure 21.

An example of IT0
### Instruction: Is the second sentence
a paraphrase of the first? Answer exactly
’yes’ or ’no’.
### Sentence 1: The canopy was destroyed
in September 1938 by Hurricane New England

in 1938 , and the station was damaged but
repaired .
### Sentence 2: The canopy was destroyed
in September 1938 by the New England
Hurricane in 1938 , but the station was
repaired .
### Answer:no
### Sentence 1: Pierre Bourdieu and Basil
Bernstein explore , how the cultural
capital of the legitimate classes has been
viewed throughout history as the “ most
dominant knowledge ” .
### Sentence 2: Pierre Bourdieu and
Basil Bernstein explore how the cultural
capital of the legitimate classes has
been considered the “ dominant knowledge
” throughout history .
### Answer:yes
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by Cameron
Crain , Richard Shelgren and Kamala Lopez
and directed by Kamala Lopez .
### Answer:

An example of IT1
### Instruction: Given two sentences,
determine if they are paraphrases of each
other.
### Sentence 1: The canopy was destroyed
in September 1938 by Hurricane New England
in 1938 , and the station was damaged but
repaired .
### Sentence 2: The canopy was destroyed
in September 1938 by the New England
Hurricane in 1938 , but the station was
repaired .
### Options:
a.not paraphrase
b.paraphrase
### Answer:a
### Sentence 1: Pierre Bourdieu and Basil
Bernstein explore , how the cultural
capital of the legitimate classes has been
viewed throughout history as the “ most
dominant knowledge ” .
### Sentence 2: Pierre Bourdieu and
Basil Bernstein explore how the cultural
capital of the legitimate classes has
been considered the “ dominant knowledge
” throughout history .
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### Options:
a.not paraphrase
b.paraphrase
### Answer:b
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by Cameron
Crain , Richard Shelgren and Kamala Lopez
and directed by Kamala Lopez .
### Options:
a.not paraphrase
b.paraphrase
### Answer:

An example of IT2
### Instruction: Review the two given
sentences and decide if they express the
same idea in different words.
### Sentence 1: The canopy was destroyed
in September 1938 by Hurricane New
England in 1938 , and the station was
damaged but repaired .
### Sentence 2: The canopy was destroyed
in September 1938 by the New England
Hurricane in 1938 , but the station was
repaired .
### Options:
a.non-equivalent
b.equivalent
### Answer:a
### Sentence 1: Pierre Bourdieu and Basil
Bernstein explore , how the cultural
capital of the legitimate classes has
been viewed throughout history as the “
most dominant knowledge ” .
### Sentence 2: Pierre Bourdieu and
Basil Bernstein explore how the cultural
capital of the legitimate classes has
been considered the “ dominant knowledge
” throughout history .
### Options:
a.non-equivalent
b.equivalent
### Answer:b
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by
Cameron Crain , Richard Shelgren and
Kamala Lopez and directed by Kamala Lopez
.

### Options:
a.non-equivalent
b.equivalent
### Answer:

An example of IT3
### Instruction: Examine the two
sentences provided. Determine if the
second sentence is a valid paraphrase of
the first sentence.
### Sentence 1: The canopy was destroyed
in September 1938 by Hurricane New
England in 1938 , and the station was
damaged but repaired .
### Sentence 2: The canopy was destroyed
in September 1938 by the New England
Hurricane in 1938 , but the station was
repaired .
### Options:
a.different
b.similar
### Answer:a
### Sentence 1: Pierre Bourdieu and Basil
Bernstein explore , how the cultural
capital of the legitimate classes has
been viewed throughout history as the “
most dominant knowledge ” .
### Sentence 2: Pierre Bourdieu and
Basil Bernstein explore how the cultural
capital of the legitimate classes has
been considered the “ dominant knowledge
” throughout history .
### Options:
a.different
b.similar
### Answer:b
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by
Cameron Crain , Richard Shelgren and
Kamala Lopez and directed by Kamala Lopez
.
### Options:
a.different
b.similar
### Answer:

An example of IT4
### Instruction: You are provided with
two sentences. Identify whether they
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convey identical ideas or differ in
meaning.
### Sentence 1: The canopy was destroyed
in September 1938 by Hurricane New
England in 1938 , and the station was
damaged but repaired .
### Sentence 2: The canopy was destroyed
in September 1938 by the New England
Hurricane in 1938 , but the station was
repaired .
### Options:
a.The sentences convey different idea.
b.The sentences convey the same ideas.
### Answer:a
### Sentence 1: Pierre Bourdieu and Basil
Bernstein explore , how the cultural
capital of the legitimate classes has
been viewed throughout history as the “
most dominant knowledge ” .
### Sentence 2: Pierre Bourdieu and
Basil Bernstein explore how the cultural
capital of the legitimate classes has
been considered the “ dominant knowledge
” throughout history .
### Options:
a.The sentences convey different idea.
b.The sentences convey the same ideas.
### Answer:b
### Sentence 1: It is directed by Kamala
Lopez and produced by Cameron Crain ,
Richard Shelgren and Kamala Lopez .
### Sentence 2: It was produced by
Cameron Crain , Richard Shelgren and
Kamala Lopez and directed by Kamala Lopez
.
### Options:
a.The sentences convey different idea.
b.The sentences convey the same ideas.
### Answer:
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Genres Task Language skills Dataset #n_choices #n_examples

Linguistics

POS Part-of-speech tagging Universal Dependencies (Nivre
et al., 2017)

4 8000

CHUNK Phrase chunking CoNLL-2000 (Tjong Kim Sang
and Buchholz, 2000)

4 8000

NER Named entity recognition CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003)

4 8000

GED Grammatic error detection cLang-8 (Rothe et al., 2021;
Mizumoto et al., 2011)

2 8000

Content
classification

IMDB Sentiment classification IMDB (Maas et al., 2011) 2 8000

Agnews Topic classification Agnews (Zhang et al., 2015) 4 8000

Amazon Numerical sentiment classi-
fication

Amazon Reviews (Hou et al.,
2024)

5 8000

Natural
language
inference (NLI)

MNLI Entailment inference MNLI (Williams et al., 2018) 3 8000

PAWS Paraphrase identification PAWS (Zhang et al., 2019) 2 8000

SWAG Grounded commonsense
inference

SWAG (Zellers et al., 2018) 4 8000

Factuality

FEVER Fact checking FEVER (Thorne et al., 2018) 2 8000

MyriadLAMA Factual knowledge
question-answering

MyriadLAMA (Zhao et al.,
2024)

4 8000

CSQA Commonsense knowledge
question-answering

CommonsenseQA (Talmor
et al., 2019)

4 8000

TempLAMA Temporary facts question-
answering

TempLAMA (Dhingra et al.,
2022)

4 8000

Self-reflection

HaluEval Hallucination detection HaluEval-diag (Li et al., 2023) 2 8000

Toxic Toxicity post identification Toxicity prediction (cjadams
et al., 2017)

2 8000

Stereoset Social stereotype detection Stereoset (Nadeem et al., 2021) 3 4230

Multilinguality

LTI Language identification LTI LangID corpus (Brown,
2014; Lovenia et al., 2024)

5 8000

M-POS Multilingual POS-tagging Universal Dependencies
(Nivre et al., 2017)

4 8000

M-Amazon Multilingual Amazon re-
view classification

Amazon Reviews Multi (Ke-
ung et al., 2020)

5 8000

mLAMA Multilingual factual knowl-
edge question-answering

mLAMA (Kassner et al., 2021) 4 8000

XNLI Multilingual entailment in-
ference

XNLI (Conneau et al., 2018) 3 8000

Table 7: Details of datasets in MCEval8K.
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Tasks Rand LM-Prob Polar-Probe
(#n_neurons)

Magn-Probe
(#n_neurons)

Tree-Probe
(#n_neurons)

GED .5000 .5000 .7580 (16) .8050 (1024) 1.000 (54644)
POS .2500 .5050 .5190 (16) .5470 (4) .5850 (91290)
CHUNK .2500 .3510 .4660 (8) .4490 (16) 1.000 (93282)
NER .2500 .3950 .4120 (32) .4490 (8) 1.000 (97185)
Agnews .2500 .4950 .6410 (32) .6900 (2) .8310 (49369)
Amazon .2000 .3750 .2750 (256) .4680 (128) 1.000 (85696)
IMDB .5000 .9660 .9630 (8192) .9650 (1024) .9710 (15892)
MyriadLAMA .2500 .5080 .5200 (4) .5760 (4) 1.000 (80167)
FEVER .5000 .6530 .7830 (32) .7610 (32) .7920 (45564)
CSQA .2000 .5170 .3490 (1) .5380 (16) .5730 (96696)
TempLAMA .2500 .2430 .3560 (4096) .3640 (16) 1.000 (113786)
PAWS .5000 .5000 .7640 (128) .7920 (128) 1.000 (58200)
MNLI .3333 .3560 .4980 (4) .5590 (128) .6740 (79711)
SWAG .2500 .4610 .3360 (512) .5310 (2) .5160 (96955)
HaluEval .5000 .4990 .7540 (1024) .7510 (32) 1.000 (58987)
Toxic .5000 .7230 .8250 (1024) .8210 (16) .8390 (32263)
Stereoset .3333 .1096 .8299 (16) .7335 (16) .8847 (29242)
M-Amazon .2000 .2990 .2350 (4096) .3740 (2) .6260 (97623)
LTI .2000 .3670 .4300 (4) .5830 (8) .9970 (12068)
mLAMA .2500 .4020 .3880 (128) .4470 (4) .4640 (79839)
XNLI .3333 .3270 .3500 (256) .3620 (16) .4510 (79212)
M-POS .2500 .3890 .2610 (1024) .3930 (4) .7740 (90001)

Table 8: Optimal accuracies across all MCEval8K tasks in the zero-shot setting on Llama2-7B, with the neuron
sizes achieving these accuracies.

Tasks Rand LM-Prob Polar-Probe
(#n_neurons)

Magn-Probe
(#n_neurons)

Tree-Probe
(#n_neurons)

GED .5000 .5060 .8330 (16) .8330 (64) 1.000 (43465)
POS .2500 .5730 .5870 (4) .6210 (16) .6550 (80695)
CHUNK .2500 .2710 .2820 (8192) .3910 (64) 1.000 (101539)
NER .2500 .3610 .4300 (4) .4970 (64) 1.000 (93577)
Agnews .2500 .5880 .7060 (64) .6890 (512) .8120 (42846)
Amazon .2000 .4840 .5310 (1) .5680 (128) 1.000 (84055)
IMDB .5000 .9700 .9700 (64) .9690 (64) .9660 (13823)
MyriadLAMA .2500 .7380 .7450 (256) .7530 (4096) .7460 (70446)
FEVER .5000 .6780 .8000 (1) .8030 (4) .8210 (38943)
CSQA .2000 .6100 .6180 (32) .6340 (8192) .6180 (94246)
TempLAMA .2500 .2600 .2500 (1) .4110 (4) 1.000 (106140)
PAWS .5000 .5240 .8180 (16) .8210 (32) 1.000 (44060)
MNLI .3333 .5100 .5780 (32) .5860 (64) .6830 (67771)
SWAG .2500 .4100 .4430 (256) .4710 (64) .4160 (95311)
HaluEval .5000 .5200 .7750 (2048) .7770 (256) 1.000 (51411)
Toxic .5000 .7800 .8250 (8) .8260 (4) .8430 (29766)
Stereoset .3333 .1040 .7297 (128) .5180 (16) .8204 (29774)
M-Amazon .2000 .5250 .5470 (1024) .5880 (128) .6820 (87424)
LTI .2000 .3680 .5480 (64) .6950 (8) .9910 (28362)
mLAMA .2500 .6080 .6230 (8192) .6360 (512) .6450 (75439)
XNLI .3333 .3970 .4860 (32) .4980 (32) .5990 (80886)
M-POS .2500 .4440 .4830 (4) .5130 (8) 1.000 (95537)

Table 9: Optimal accuracies across all MCEval8K tasks in the few-shot setting on Llama2-7B, with the neuron sizes
achieving these accuracies. The number of demonstrations is set to the same number of options for each task.
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Grad(Layer=7, Neuron=7475) <= 0.5
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Grad(Layer=22, Neuron=9567) <= 0.5
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True  

Grad(Layer=9, Neuron=6824) <= 0.5
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value = [0.811, 0.189]

  False

Grad(Layer=3, Neuron=8297) <= 0.5
samples = 100.0%

value = [0.494, 0.506]

Figure 15: Visualization of a decision tree learned for the PAWS dataset with the few-shot setting on Llama2-7B
model. The “samples” in each node refers to the percentage of samples reaching this node. The “value” shows the
class distribution of samples in the node.
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Figure 16: Per-task accuracies with varying neuron sizes on Llama2-7B, zero-shot prompt setting.
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Figure 17: Per-task accuracies with varying neuron sizes on Llama2-7B, few-shot prompt setting.
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Figure 18: Per-task accuracies with the varying number of training examples on Llama2-7B, zero-shot prompt
setting.

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c2
ra
c6

ling2is1ic 1asks

GED
POS

CHUNK
NER

classifica1ion 1asks

Agne4s
Amazon

IMDB

fac12ali16 1asks

M6riadLAMA
FEVER

CSQA
Tem.LAMA

22 25 28 211
N2mber of 1raining e5am.les

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c2
ra
c6

nli 1asks

PAWS
MNLI

SWAG

22 25 28 211
N2mber of 1raining e5am.les

self-reflecti-n tasks

HaluEval
T-xic

Stere-set

22 25 28 211
N2mber of 1raining e5amples

m2l1iling2ali1y 1asks

M-Amaz-n
LTI
mLAMA

XNLI
M-POS

Figure 19: Per-task accuracies with the varying number of training examples on Llama2-7B, few-shot prompt
setting.
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Figure 20: Per-task accuracies with varying neuron sets per with 64 neurons. We report the aggregated accuracies
with a window size of 64 for better visualization, plotting the mean accuracy within each window, along with the
corresponding accuracy ranges (minimum to maximum) as the envelope.
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Figure 21: Generality of skill neurons across different contexts. X-axis: the context used to acquire skill neurons.
Y-axis: evaluation context. The contexts on the x-axis are in the same order as on the y-axis. The context using the
i-th instruction, k-th set of j-shot demonstrations, and yes/no answers is denoted as IT(i)-(j)D(k)-YN. “AB” refers to
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Figure 22: Accuracies of trained random forest models with the zero-shot setting on Llama2-7B.
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Figure 23: Accuracies of trained random forest models with the few-shot setting on Llama2-7B.
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