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Abstract

The sparse Mixture-of-Experts (MoE) has
achieved significant progress for neural ma-
chine translation (NMT). However, there ex-
ist two limitations in current MoE solutions
which may lead to sub-optimal performance: 1)
they directly use the task knowledge of NMT
into MoE (e.g., domain/linguistics-specific
knowledge), which are generally unavailable at
practical application and neglect the naturally
grouped domain/linguistic properties; 2) the
expert selection only depends on the localized
token representation without considering the
context, which fully grasps the state of each
token in a global view. To address the above
limitations, we propose THOR-MoE via arm-
ing the MoE with hierarchical task-guided and
context-responsive routing policies. Specifi-
cally, it 1) firstly predicts the domain/language
label and then extracts mixed domain/language
representation to allocate task-level experts in
a hierarchical manner; 2) injects the context
information to enhance the token routing from
the pre-selected task-level experts set, which
can help each token to be accurately routed
to more specialized and suitable experts. Ex-
tensive experiments on multi-domain transla-
tion and multilingual translation benchmarks
with different architectures consistently demon-
strate the superior performance of THOR-MoE.
Additionally, the THOR-MoE operates as a
plug-and-play module compatible with exist-
ing Top-k (Shazeer et al., 2017a) and Top-
p (Huang et al., 2024) routing schemes, en-
suring broad applicability across diverse MoE
architectures. For instance, compared with
vanilla Top-p (Huang et al., 2024) routing, the
context-aware manner can achieve an average
improvement of 0.75 BLEU with less than 22%
activated parameters on multi-domain transla-
tion tasks.

* Corresponding author.

1 Introduction

The rapid advancement of neural machine transla-
tion (NMT; Zhang et al. (2020); Fan et al. (2020))
has been significantly propelled by sparse Mixture-
of-Experts (MoE) architectures (Shazeer et al.,
2017a; Lepikhin et al., 2021a; Fedus et al., 2022),
which increase model capacity while maintaining
computational efficiency through conditional com-
putation. In the literature, existing work can be
roughly classified into two categories: (1) some
studies mainly focus on how to effectively incor-
porate task information (e.g., domain/linguistics-
specific knowledge) into MoE models designing
task-specific modules (Pham et al., 2023; Jiang
et al., 2024); (2) another line of work concen-
trates on how to improve the training and infer-
ence efficiency via reducing the activated experts
in MoE (Jawahar et al., 2023a; Elbayad et al., 2023;
Wang et al., 2024; Zeng et al., 2024).

Specifically, in (1), Kudugunta et al. (2021)
routes input examples to different experts based
on translation language representations. Li et al.
(2023c) explores multiple language-group-specific
routers to incorporate language group knowledge
into models. Zhao et al. (2024b) takes one step
further by designing hierarchical language-guided
token routing. Although intuitive and effective,
they heavily rely on explicit task-specific knowl-
edge (e.g., domain or language labels), which is
often unavailable in real-world scenarios. This re-
liance not only restricts generalization but also over-
looks the intrinsic hierarchical grouping of domain
and linguistic properties inherent in multilingual
or multi-domain translation tasks. In (2), Zhao
et al. (2024a) distills the knowledge of unselected
experts to the selected one and thus reduces the
number of experts without impacting performance;
Li et al. (2023a) and Huang et al. (2024) decrease
the number of experts by designing a threshold
based on expert probability distribution; Zhao et al.
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(2024b) adapts the number of experts by the dif-
ficulty of language. Generally, the global context
grasp the overall situation and might know whether
each token is difficult or not (Gloeckle et al., 2024).
However, previous routing strategies select experts
solely based on localized token-level representa-
tions, neglecting the broader contextual dependen-
cies that govern token interactions. This myopic
view limits the model’s ability to allocate experts
optimally in a globally coherent manner.

In this work, to address the above issues, we pro-
pose a innovative hierarchical context-responsive
routing (THOR-MoE) framework for neural ma-
chine translation. Specifically, the THOR-MoE
first predicts which domain/language the input be-
longs to and then extracts the mixed task1 represen-
tation to allocates experts in a hierarchical manner.
It is not only flexible in practice but also effectively
infuses the domain knowledge into the task-level
routing via encouraging experts to specialize in cer-
tain domains/languages. Furthermore, before each
token routing, the THOR-MoE injects the context
information to help accurately assign the experts
from the pre-selected task-level experts set for each
token in a global perspective. This enables the
model to adaptively capture evolving contextual
dependencies, such as long-range syntactic struc-
tures or discourse coherence. Crucially, the THOR-
MoE operates as a plug-and-play module compat-
ible with existing Top-k (Shazeer et al., 2017a)
and Top-p (Huang et al., 2024) routing schemes,
ensuring broad applicability across diverse MoE
architectures.

We validate our proposed THOR-MoE frame-
work on the commonly-used multi-domain NMT
benchmark (Aharoni and Goldberg, 2020) and mul-
tilingual NMT benchmark (Zhang et al., 2020),
which contains 5 domains and 16 languages, re-
spectively. Extensive experiments show that the
hierarchical context-responsive routing is pivotal
for unlocking the full potential of MoE systems.

In summary, our main contributions are:

• We propose two components to expand MoE: (i)
a hierarchical design to enable language- and
domain-specific expert routing; (ii) enabling the
use of context information during expert selec-
tion, which is important for translation.

• Extensive experiments on both multi-domain and
multilingual translation consistently show the ef-

1Note that the task generally denotes the domain/language-
specific knowledge in this work.

fectiveness and generalization of THOR-MoE.
For example, our model achieves consistent im-
provements of an average improvement of 0.75
BLEU with less than 22% activated parameters
over vanilla Top-p routing in multi-domain trans-
lation tasks.

2 Background

2.1 Neural Machine Translation

Given an input sentence in the source language
X={xi}|X|

i=1, the goal of the model is to produce its
translation in the target language Y={yi}|Y |

i=1. The
conditional distribution of the model is:

LNMT = −
|Y |∑

t=1

log(p(yt|X, y1:t−1)), (1)

where y1:t−1 is the partial translation.

2.2 Sparse Mixture-of-Experts

The vanilla MoE model can be seen the vari-
ant of Transformer model via replacing the feed-
forward (FFN) sub-block of the transformer block
with MoE layer, in which per token selects fixed
number of experts (Lepikhin et al., 2021b). In
each MoE layer, there are N experts, denoted as
E = {e1, e2, . . . , eN}. An input x is dispatched to
these experts, and the output of the MoE layer is
computed as the weighted average of the outputs
from the experts:

MoE(x) =
N∑

i=1

gi(x) ∗ ei(x), (2)

where g∗(x) is computed by a router that predicts
the contribution of each expert to the final output.
Given the computing efficiency, the MoE assigns
each token to limited experts (e.g., 1 or 2).

To derive g∗(x), we generally compute the prob-
ability P of each expert being selected for the input
x as follows:

P = Softmax(Wr · xT ), (3)

where Wr ∈ N × d serves as a learnable param-
eter and d denotes the dimension of the input x.
The vector P, with a size of N , encapsulates the
probabilities associated with the selection of each
expert. And Pi indicates the likelihood of choosing
the ith expert ei to calculate the input x.
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Figure 1: The overview of the proposed THOR-MoE. 1) vanilla token routing; 2) hierarchical task-guided routing;
3) context-responsive token routing. The ‘Emb.’ and ‘Rep.’ denotes the embedding and representation, respectively.
The hierarchical manner denotes that the task-guided routing firstly selects different task-specific experts sets for
different queries (e.g., Et for query 1). Then the context-responsive token routing assigns experts from St for each
token in query 1.

2.2.1 Top-k Routing
Top-k routing (Shazeer et al., 2017b; Lepikhin
et al., 2021b; Zuo et al., 2022) entails the selec-
tion of the top k experts, which correspond to the
k highest probabilities within the vector P. Then,
the probabilities of the chosen experts are re-scaled
through normalization, while the probabilities of
the non-selected experts are set to zero, signifying
their deactivation. The resultant computation for
g∗(x) proceeds as below:

gi(x) =

{
Pi∑

j∈TopK(P) Pj
, i ∈ TopK(P)

0, i /∈ TopK(P)
(4)

where TopK(P) returns the indices of the k largest
elements in P.

2.2.2 Top-p Routing
Top-p routing is initially proposed by (Li et al.,
2023a; Huang et al., 2024), which aims to over-
come the drawback of Top-k activating the fixed
number of experts overlooking the variability in dif-
ficulty across different inputs. We refer to readers
to Huang et al. (2024) for more details.

Formally, Top-p first sorts the elements in P
from highest to lowest, returning in a sorted index
list I . Subsequently, we identify the minimal sub-
set of experts for which the aggregate probability

surpasses the threshold p. The count of selected
experts, denoted as t, is then determined by:

t = arg min
k∈{1...,N}

∑

j<=k

Pi,j ≥ p, (5)

where p is the threshold that controls how confident
the model should be when stopping adding more
experts. p is a hyper-parameter whose range is
from 0 to 1. The higher the p is, the more experts
will be activated.

In dynamic routing mechanism, the calculation
of g∗(x) is:

gi(x) =

{
Pi ei ∈ S

0, ei /∈ S
(6)

where S is the set of selected experts controlled by
t in Equation 5:

S = {eI1 , eI2 ...eIt}. (7)

3 THOR-MoE

In this section, we introduce the proposed hier-
archical context-responsive routing framework as
shown in Figure 1, including two components: hi-
erarchical task-guided routing (§ 3.1) and context-
responsive token routing (§ 3.2). Finally, we de-
scribe the training objectives (§ 3.3) in detail.
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3.1 Hierarchical Task-Guided Routing
Our hierarchical task-guided routing consists of
three stages, as shown in 2) of 1. The first stage
is task prediction, which aims to automatically ob-
tain the task knowledge by predicting which do-
main/language the input belongs to. The second
stage is to inject the mixed task representation to
allocates experts in a hierarchical task-guided man-
ner (third stage).
Task Predictor. During real testing for a query,
it is hard to reach its domain or language cate-
gory. Therefore, to automatically obtain the do-
main knowledge or language knowledge, we add
a special token [CLS] in front of the input. Then,
it represents the global sentence information and
thus can effectively reflect which domain/language
the input belongs to (Devlin et al., 2019). Finally,
we transform the representation Hcls into a fixed-
size vector through Maxpooling and apply a fully-
connected layer to predict suitable labels:

Hmax = Maxpooling(Hcls), Hmax ∈ Rd,

Pt = Softmax(WpHmax),
(8)

where Wp ∈ RK×d is trainable weight and K
denotes the number of domains or languages and d
is the model dimension.
Mixed Task Representation. Theoretically, we
can directly take the predicted task label to extract
corresponding task representation. However, in
some cases in practice, it is hard to judge since
some sentences belongs to multiple domains. In
language cases, there are some code-mixed sen-
tences, which is also confused to decide. Therefore,
directly use the given label in existing work or the
predicted label cannot accurately help model select
the specialized experts for such cases and thus lim-
its their potential, as shown in § 6.2. To address
this issue, we use the mixed task representation as
follows:

Ep =
∑

(Pt ·EMB1), Ep ∈ Rd, (9)

where Ep denotes the mixed task representation
generated by the weighted sum of the task distri-
bution P (predicted by the task predictor as Eq. 8)
and the task parameter matrix EMB1. The dimen-
sion of EMB1 is num (number of tasks/language
groups) * d (embedding dimension), which is ran-
domly initialized and then optimized with the train-
ing objective.
Hierarchical Task-Guided Routing. With the
mixed task representation, we design a task router

gt at the task level. In each MoE layer, gt takes the
mixed task representation Ep as input and outputs a
task-dependent expert vector. Then, based on it, we
use TopK function to select task-specific candidate
experts as St from all experts. Finally, based on
the selected task-specific candidate experts St, we
can conduct general token routing at the token level
with Top-k or Top-p routing as described in § 2.2.1
and § 2.2.2, respectively. The final routing policy
can be written as

∑|St|
i

∑|E|
j gti · gj · ei,j(x).

However, current expert selection at the token
level only depends on the current token representa-
tion without considering the complete word mean-
ing and global context. Generally, the global con-
text grasp the overall situation and might know
which token is difficult or not. Thus, the context
can schedules the token to route to suitable experts
in a global view. To this end, we propose context-
responsive experts selection at the token level.

3.2 Context-Responsive Routing

As shown in 3) of 1, before the experts selection
at the token level, we explicitly inject the context
into the token representation. Since it is hard to
determine for a code-mixed input or a query that
can belongs to several domains, which thus limits
its application in practice. Therefore, we use the
averaged context representation as the context rep-
resentation. Hctx = 1

|Y1:t−1|
∑|Y1:t−1|

t=1 hL
t where h

is the hidden state of the t-th token at the L layer.
At each decoding step, the context used for each
input token is the prefix of the generated next token.
That is, the context is dynamically updated with
decoding.

To effectively incorporate the context represen-
tation into the routing process, we design a gate
to dynamically control the contribution of these
information:

xi = g ⊙ xi + (1− g)⊙Hctx,

g = σ([xi;Hctx]W
g + bg),

where Wg and bg are the trainable parameters.
In this manner, we can inject the context informa-

tion into each token to accurately assign specialized
experts to suitable tokens and unlock the potential
of the MoE.

3.3 Training Objectives

Our training objectives consist of four parts in Top-
k routing (translation loss LNMT, task prediction
loss Ltp, load balance loss at the task level Lbd
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and token level Lbt) and five parts in Top-p routing
(LNMT, Ltp, Lbd, Lbt and dynamic routing loss Ld

in Top-p).

Task Prediction Loss. The task prediction loss
is defined as:

Ltp = min(− log(Pt[tg])), (10)

where tg is the golden class label, Pt is calculated
as in Eq. 8.

Load Balance Loss at the Task Level. To fully
encourage the experts to specialize in certain tasks,
we propose a task-guided routing loss. It aims to
achieve the number of tasks processed by different
experts to be roughly the same. Therefore, the
task-guided routing loss is defined as:

Lbd = N ∗
N∑

i=1

F t
i ∗Qt

i, (11)

where F t
i represents the proportion of tasks se-

lecting expert ei, and Qt
i denotes the proportion

of the router’s probability allocated to expert ei.
For K tasks, F t

i and Qt
i are defined as: F t

i =
1
K

∑K
j=1 1{ei ∈ St,j} and Qt

i = 1
K

∑K
j=1 P

j
i

where St,j is the set of activated experts for task
j, which is calculated by Equation 7, and P j is
the probability of selecting each experts for task j,
calculated by Equation 3.

Load Balance Loss at the Token Level. This
loss is the similar to the vanilla load balance loss
with a slight difference that the experts candidates
is pre-selected by the hierarchical task-guided rout-
ing. Formally, the load balance loss at the token
level is defined as:

Lbt = |St| ∗
|St|∑

k=1

F b
k ∗Qb

k, (12)

where F b
k represents the proportion of tokens se-

lecting expert ek, and Qb
k denotes the proportion

of the router’s probability allocated to expert ek.
For a sequence comprising M tokens, F b

k and Qb
k

are defined as: F b
k = 1

M

∑M
ℓ=1 1{ek ∈ St,ℓ} and

Qk = 1
M

∑M
ℓ=1 P

ℓ
k where St,ℓ is the set of acti-

vated experts for token ℓ from pre-selected experts
set Sd,ℓ, which is calculated by Equation 7, and
P ℓ is the probability of selecting each experts for
token ℓ, calculated by Equation 3.

Dynamic Routing Loss in Top-p. The dynamic
routing loss aims to prevent dynamic routing from
using too many parameters to cheat and losing
its ability to selectively choose experts. There-
fore, Huang et al. (2024) introduce a constraint
on P and minimize the entropy of the distribution
P, ensuring that every token can focus on as less
specific experts as possible, which is formalized
as:

Ltopp = −
N∑

i=1

Pi ∗ log(Pi). (13)

Final Loss. Our approach can be flexibly applied
in Top-k and Top-p routing strategies. Therefore,
we have two final loss functions for Top-k and Top-
p, respectively. It is a combination of the translation
loss, task prediction loss, load balance loss at the
task level and at the token level, and dynamic loss:

Jtopk = LNMT + αLdp + βLbd + γLbp, (14)

Jtopp = Jtopk + δLtopp, (15)

where α, β, γ, and δ are hyper-parameters to ad-
just the contribution among these loss functions,
respectively.

4 Experiments

4.1 Datasets and Metric

Datasets. We use the multi-domain translation
dataset proposed by Koehn and Knowles (2017).
The dataset mainly covers five diverse domains:
IT, Koran, Law, Medical, and Subtitles, which
are available in OPUS (Aulamo and Tiedemann,
2019). Following previous work (Gu et al., 2022;
Liang et al., 2024), we use the new data splitting
released by Aharoni and Goldberg (2020), and per-
form German to English translation (De→En). We
use the OPUS-16 for multilingual translation fol-
lowing (Zhao et al., 2024b). The OPUS-16 comes
from OPUS-100 (Zhang et al., 2020), which in-
cludes 16 languages (8 high resource (> 0.9M), 4
medium resource, and 4 low resource (< 0.1M)).
Please refer to Tab. 8 of § 8 for detailed data statis-
tics.
Metric. For a fair comparison, we follow pre-
vious work (Gu et al., 2022; Zhao et al., 2024b)
and adopt the 4-gram case-sensitive BLEU with
the SacreBLEU tool2 (Post, 2018) and report the
statistical significance test (Koehn, 2004). For

2BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.4.13
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Models IT Koran Medical Law Subtitles Avg.

Dense SFT-3B 40.65 20.4 51.4 54.8 28.33 39.12

MoE

Trim-MoE (Top-1) 40.03 19.55 51.80 55.83 25.50 38.54
Trim-MoE (Top-2) 45.10 22.68 51.84 57.12 29.02 41.15
Trim-MoE (Top-p, p=0.5) 39.39 19.21 55.67 60.18 29.21 40.73
THOR-MoE (Top-1) 43.96‡ 21.93‡ 52.52† 56.25 28.41‡ 40.61‡

THOR-MoE (Top-2) 46.00† 23.35 55.79‡ 61.06‡ 28.23 42.89‡
THOR-MoE (Top-p, p=0.5) 44.63‡ 22.53‡ 53.58 58.65 27.99 41.48†

Table 1: BLEU score on multi-domain translation benchmarks with decoder-only architecture. “†” and “‡” denote
that statistically significant better than the best result of the counterpart (e.g., THOR-MoE (Top-2) vs. Trim-MoE
(Top-2)) with t-test p < 0.05 and p < 0.01 hereinafter, respectively. The best and second best results are bold and
underlined, respectively.

multilingual translation, the scores encompass the
average ratings across all language pairs, such
as English→Any (En→XX), and Any→English
(XX→En) on the OPUS-16 dataset.

4.2 Implementation Details

In multi-domain translation, we use decoder-only
Transformer architecture. Specifically, we use
Qwen1.5-MoE-A2.7B (Team, 2024a). It has 14.3B
parameters (60 non shared experts + 4 shared ex-
perts) in total and 2.7B activated parameters (4
non shared experts + 4 shared experts) during run-
time. Due to limited GPU resource, we used a
trimmed version, which has 3.5B parameters (8
non shared experts + 4 shared experts) in total and
2.3B activated parameters (2 non shared experts +
4 shared experts). To keep its capacity, we initial-
ize the trimmed model with Qwen1.5-MoE-A2.7B
and denote is as Trim-MoE. During training, we
use Llama-Factory (Zheng et al., 2024) to instruct-
tune LLMs. All LLMs are tuned on an 8×NVIDIA
A100 GPUs (40G) with 1e-5 learning rate. We set
gradient accumulation to 16 and batch size to 1,
which gives us 2*8*16*1 batch in total. We use
the DeepSpeed optimization (Rasley et al., 2020),
and set ZeRO-3 optimization. Following Qin et al.
(2024), we set the number of training epochs to
3. We set hyper-parameters α, β, γ, and δ to 1e-2,
1e-2, 1e-2, and 1e-4, which are determined by a
grid search.

In multilingual translation, we follow (Zhao
et al., 2024b) and compare our method with the
Transformer-Base model (as Dense) and its MoE
variants that have 6 encoder and decoder layers,
32 experts. The input and hidden dimensions of
all feed-forward networks are 512 and 2048. We
set the training processes to 35K iterations with

a learning rate of 5e-4, which follows the inverse
square root with 4,000 warm-up steps. To keep
balanced training, we use temperature-based data
sampling strategy with temperature 1.5. We set
hyper-parameters α, β, γ, and δ to 1e-2, 5e-2, 5e-2,
and 1e-4, which are determined by a grid search.

4.3 Comparison Models

Our comparison models mainly include two types:
Decoder-only and Encoder-Decoder based.
Decoder-only. We fine-tune two dense models
based on Qwen2.5-3B (Team, 2024b), which have
similar parameters with the activated parameter and
denoted as SFT-3B. Besides, based on the Trim-
MoE-A2.3B model, we also fine-tuned three MoE
models with Top-1, Top-2, and Top-p routing strat-
egy.
Encoder-Decoder. There are three types of com-
parison models: vanilla dense model, vanilla MoE
model, and enhanced MoE models via language
knowledge. We use the Transformer-Base model as
Dense model. For vanilla MoE model, the Switch
Transformer (Fedus et al., 2022) with a top-1 token-
based routing (as ST-MoE) and GShard (Lepikhin
et al., 2021a) with a top-2 token-based routing
(as GS-MoE) are adopted. For Language-specific
MoE models, the LS-MoE with fixed routing in-
spired by (Pires et al., 2023), assigning 2 non-
overlapping experts for tokens according to their
source language in the encoder and target language
in the decoder; Hybrid-MoE (Kudugunta et al.,
2021), with a top-2 token routing in the encoder
and a top-2 target language routing in the decoder
side; Residual-MoE (Elbayad et al., 2023; Rajb-
handari et al., 2022; Zhang et al., 2021) that aug-
ments each MoE layer with a shared feed-forward
network through a binary gate function; Lingual-
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MoE (Zhao et al., 2024b) stands for an MoE model
with linguistic-guided routing and dynamic expert
allocation, where the first-level language router se-
lects the top 8 experts and the second-level token
router activates the dynamical number of experts.

5 Main Results

Table 1 shows main results on the multi-domain
translation benchmark with decoder-only architec-
ture. Table 2 presents main results on the multilin-
gual translation with encoder-decoder architecture.
For a fair comparison, all models are trained and
assessed on the OPUS-16 dataset with Transformer-
Base as the backbone architecture.

5.1 Results on Multi-Domain Translation

Table 1 shows that the Trim-MoE-based models
generally surpass the dense one. For example, the
Trim-MoE (Top-2) outperforms SFT-3B model by
average 2 BLEU scores where the activated param-
eters is less than dense model (2.3B vs. 3B), show-
ing the effectiveness of MoE model. Furthermore,
the proposed THOR-MoE significantly and con-
sistently surpasses the counterpart of Trim-MoE-
based one. For instance, the THOR-MoE (Top-2)
outperforms the Trim-MoE (Top-2) by averaged
1.74 BLEU scores. This clear advantage confirms
the superiority of incorporating domain knowledge
and context knowledge into the routing. What’s
important, the proposed approach is compatible
with the Top-k (Shazeer et al., 2017a) and Top-
p (Huang et al., 2024) routing strategies, validating
the generalization of THOR-MoE, which can be
a plug-and-play module. Besides, we find that
the scores on the same domain (e.g., Law) change
largely. The reason may be that the data distribu-
tion is unbalanced. We also list the results in terms
of COMET (Rei et al., 2020) score in Table 3 and
we can conclude the similar findings.

5.2 Results on Multilingual Translation

Table 2 summarizes the results and we can con-
clude several observations:
THOR-MoE vs. Dense and Vanilla MoE Base-
lines. The THOR-MoE substantially surpasses
the Dense and vanilla MoE multilingual transla-
tion baselines with a large margin. Specifically,
compared with Dense and ST-MoE, the THOR-
MoE (Top-p) achieves {5.39%, 3.99%, 4.70%} and
2.46%, 0.55%, 1.51% averaged improvement in
terms of BLEU score for Avg1., Avg2., and All

Avg., respectively. This significant margin demon-
strates the effectiveness of hierarchical language-
guided routing and context-responsive routing.
THOR-MoE vs. Language-Guided MoE mod-
els. The THOR-MoE also consistently outperforms
language-guided MoE models, including LS-MoE,
hybrid-MoE, Residual-MoE, and Lingual-MoE. It
shows again that the superiority of hierarchical
language-guided routing and context-responsive
routing. In detail, the Lingual-MoE performs the
highest in baselines and it also employs a hierarchi-
cal language-group-guided and dynamical routing,
which introduces the hard language id embedding
and fails to consider code-mixed cases and that
the token in different language can be the same
(e.g., ‘Internet’ in German and English). In con-
trast, THOR-MoE applies a mixed language rep-
resentation where the language ids are predicted,
which comprehensively incorporates the languages
knowledge. Furthermore, the dynamical routing
in Lingual-MoE does not incorporate the context
information. The context generally knows which to-
ken is difficult or not in a global view. The THOR-
MoE fully considers the above issues and obtains
better results.

6 Analysis

6.1 Ablation Study

We conduct ablation studies to investigate how well
hierarchical context-responsive routing of THOR-
MoE works. We conclude two findings from the
results in Tab. 4.

(1) “w/o hierarchical task-guided routing”: i.e.,
without using any task-related routing and decaying
to vanilla manner (select experts from full set of
experts), the model performance greatly degrades
on both translation tasks. It shows the necessity of
using task-guided routing in a hierarchical manner.

(2) “w/o context-responsive routing”: the model
performance becomes worse on both tasks when
removing context. This shows that our context-
responsive routing indeed can enhance the routing
effectiveness and guarantee the token can be as-
signed to suitable and specialized experts with the
indication of context, which thus benefits the model
performance on both translation tasks.

6.2 Comparison among Different Task
Representations

In this section, we aim to investigate the impact of
task representation in different manners. Table 5
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Models En→XX XX→En Avg.
high medium low Avg1. high medium low Avg2.

Dense Transformer-base 25.37 39.12 14.78 26.16 28.81 39.24 24.21 30.27 28.21

MoE

GS-MoE 25.55 40.71 18.97 27.70 28.77 41.70 29.25 32.12 29.91
ST-MoE 26.55 43.04 20.23 29.09 29.94 44.00 30.94 33.71 31.40
LS-MoE 20.06 37.31 11.72 22.29 23.69 42.99 32.01 30.60 26.44
Hybird-MoE 24.56 31.70 13.38 23.55 29.59 41.74 27.81 32.18 27.85
Residual-MoE 26.52 43.49 21.58 29.53 29.84 43.94 31.25 33.72 31.62
Lingual-MoE 27.11 46.24 23.34 30.95 29.87 43.49 32.02 33.81 32.38
THOR-MoE (Top-1) 27.21 46.37 23.88 31.17 29.68 44.01 32.58 33.99 32.57
THOR-MoE (Top-2) 27.88† 47.29† 24.85‡ 31.98† 30.38† 44.52† 33.26† 34.64† 33.31†
THOR-MoE (Top-p) 27.63† 46.82† 24.15† 31.55† 29.97 44.18† 32.96† 34.26 32.91†

Table 2: Averaged BLEU scores on multilingual translation with encoder-decoder architectures. “†” denotes that
statistically significant better than Lingual-MoE with t-test p < 0.05.

Models IT Koran Medical Law Subtitles Avg.

SFT-3B 86.39 73.17 85.43 87.19 78.52 82.14
THOR-MoE (Top-p) 87.31 74.09 86.09 87.88 79 82.87

Table 3: COMET scores on multi-domain translation
benchmarks with decoder-only architecture.

Multi-Domain Multilingual

THOR-MoE (Top-p) 41.48 32.91
w/o hierarchical task-guided routing 40.16 31.57
w/o context-responsive routing 40.74 32.12

Table 4: Ablation Study with Avg. results.

shows the results where the ‘Non-Mixed Represen-
tation’ denotes that directly uses the automatically
predict task label to extract corresponding task rep-
resentation and ‘Golden Representation’ indicates
using the golden task label to extract corresponding
representation. We conclude that the task knowl-
edge indeed has a positive impact on translation
performance (vs. baseline). We also observe that
using the automatically predicted task labels (ac-
tually the mixed task representation) shows better
results than using ground truth and Non-Mixed
manner in terms of Avg. BLEU scores. The rea-
son may be that the mixed task representation has
certain fault tolerance. We also analyze the accu-
racy of task prediction to further show its quality

Multi-Domain Multilingual

baseline (w/o any task Rep.) 40.74 32.12
Non-Mixed Rep. 40.95 32.44
Golden Rep. 41.32 32.78
THOR-MoE (Mixed manner) 41.48 32.91

Table 5: The Avg. results of different representation
(Rep.) manner during hierarchical task-guided routing.

Multi-Domain Multilingual

baseline (w/o any task Rep.) 40.74 32.12
Infuse task Rep. into token Rep. 40.95 32.44
THOR-MoE (Hierarchical manner) 41.48 32.91

Table 6: The investigation of why hierarchical manner.
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Figure 2: Average activated experts number across train-
ing steps on the multi-domain translation task.

in Appendix A.

6.3 Why Hierarchical Design?

In this section, we aim to investigate the manner of
using mixed task representation. Table 6 shows that
introducing task knowledge indeed helps tokens
route well and achieve improvement (vs. baseline).
The hierarchical manner greatly outperforms the
direct infusion with token representation before
routing, proving the effectiveness of hierarchical
design, which unlock the potential of MoE with the
help of the mixed task knowledge.
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Domains IT Koran Medical Law Subtitles Avg.

Top-p 1.87 1.95 1.82 1.92 1.77 1.87
Top-p w/ ctx 1.37 1.61 1.42 1.56 1.31 1.45

Table 7: Average activated experts (AE) in different
domain translation tasks. ‘Top-p w/ ctx’ denotes the
proposed method to infuse the context during routing.

6.4 Analysis of Efficient Training and
Inference

To further explore whether our proposed method is
efficient in training and inference, we calculate the
average number of experts activated by the model
on multi-domain translation tasks. Figure 2 and
Table 7 shows the average number of experts ac-
tivated per token across various translation tasks
during training and inference. The result is aver-
aged across all the layers of transformers.

During training, we can see that our method
converges faster to use less activated experts than
the vanilla Top-p (Huang et al., 2024). During in-
ference, we can observe that across all five tasks,
the number of activated experts is less than origi-
nal Top-p routing, averaging 1.45 activated experts
(less than 22% activated parameters) with better
performance. Both findings show that the context
plays a key role in guiding token routing.

7 Related Work

Neural Machine Translation. The NMT have
received remarkable attention in the era of
LLMs (Jawahar et al., 2023b; Zhou et al., 2023).
Previous work mainly focuses on the continual
learning of new domains (Gu and Feng, 2020;
Gu et al., 2022; Liang et al., 2024), introducing
ready-made task-related (linguistics) knowledge
via adapter (Zhang et al., 2020, 2021), parame-
ter sharing (Aharoni et al., 2019), or task-specific
modules (Pires et al., 2023), and multilingual rep-
resentation learning (Yang et al., 2021).
Mixture-of-Experts. Jacobs et al. (1991) first pro-
poses the concept of MoE, which consists of a se-
ries of network sub-modules. The Sparsely-gated
MoE, as a variant, which only activates a few ex-
pert networks for each input, has been shown its
superiority in diverse NLP and computer vision ap-
plications(Shazeer et al., 2017b; Zoph et al., 2022).
In the context of NMT, most of previous work fo-
cuses on addressing the over/under-fitting (Elbayad
et al., 2023) via regularization strategies (Elbayad
et al., 2023) or modularizing MoE (Li et al., 2023c;

Zhang et al., 2024), and incorporating task-related
knowledge (language, domain etc) (Kudugunta
et al., 2021; Zhao et al., 2024b; Pham et al., 2023;
Gururangan et al., 2022; Li et al., 2023b), achieving
impressive performance. Besides, there are some
studies aim to improve the training/inference effi-
ciency of routing via adaptive computation (Jawa-
har et al., 2023a) or reducing the number of acti-
vated experts (Li et al., 2023a; Huang et al., 2024).

Different from these prior works that directly
use the task-related knowledge, we propose a
hierarchical context-responsive routing method
where we automatically extract corresponding do-
main/language knowledge and design a hierarchi-
cal network to guide the task-level routing. Besides,
we aim to help each token accurately select special-
ized and suitable experts and thus we incorporate
the context to guide the token routing rather than
relying on the localized token only in existing work.
In this manner, the context-responsive routing can
improve the training or inference efficiency, which
is compatible with previous Top-k and Top-p rout-
ing policies.

8 Conclusion

In this paper, we propose a new hierarchical task-
gudied and context-responsive routing framework
for NMT. To automatically obtain the task knowl-
edge, we propose to predict it and then use mixed
task representation. Consequently, we design a
hierarchical routing at the task level and the to-
ken level. Further, we propose to inject context to
enhance the effectiveness of token routing. Exten-
sive experiments on multi-domain and multilingual
translation benchmarks show the superiority and
generalization of our proposed approach.

Limitations

While we introduce the mixed domain/language
and context knowledge into routing in hierarchical
manner and achieve good results, there are some
limitations worth considering to study in future
work: (1) In this study, the design relies on the
prior (the number of tasks and language groups),
which may limit its extention to broader topics (Li
and Zhou, 2025); (2) This work only conduct exper-
iments on translation tasks and does not conduct ex-
periments other generation or discriminative tasks.
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Tasks/Groups Train Valid Test

Multi-Domain
Translation
Dataset
(De→En)

IT 0.22M

2000 2000
Koran 18K
Law 0.47M

Medical 0.25M
Subtitles 0.5M

Multilingual
Translation
Dataset

16 17,559,950 30*1000 30*1000

Table 8: The data statistic of the multi-domain trans-
lation dataset and multilingual translation (OPUS-16)
dataset. The number in Train/Valid/Test columns
denotes the number of sentence pairs in each do-
main/language pair.

Models IT Koran Medical Law Subtitles Avg.

Qwen1.5-MoE-A2.7B (SFT, Top-8) 45.59 23.31 55.67 60.18 29.21 42.79
THOR-MoE (Top-p, p=0.5) 46.76 24.03 55.9 61.13 30.29 43.62
Qwen1.5-MoE-A2.7B (SFT, Top-8) 87.3 74.24 85.85 87.78 79.36 82.91
THOR-MoE (Top-p, p=0.5) 87.45 74.58 86.45 88.75 80.23 83.49

Table 9: BLEU (top block) / COMET (below block)
scores on multi-domain translation benchmarks with
decoder-only architecture. Note that top-8 means it
activates 4 shared experts and 4 non-shared experts out
of 60 experts.

A Task Prediction

We also evaluate the performance of the Task Pre-
dictor to show whether the classifier can accurately
predict suitable labels. The results are 82.45% and
64.89% for domain and language prediction, re-
spectively. It suggests that our classifier can predict
suitable labels and further provide effective mixed
task representation for routing.

B Comparison to Larger Model

We implemented our proposed method based on a
large-scale Qwen1.5-MoE-A2.7B (totally 14B, ac-
tivated 2.7B, denoted as THOR-MoE). Besides, we
also fine-tuned the vanilla Qwen1.5-MoE-A2.7B
model as the baseline. The averaged COMET
and BLEU results shown in Table 9 demonstrate
that the THOR-MoE model at the 14B level also
achieve better results than fine-tuned Qwen1.5-
MoE-A2.7B model in terms of BLEU and COMET
scores.

C Analysis of Domain Similarity

Following previous work (Wu et al., 2024), we con-
duct some analysis for domain similarity. Specifi-
cally, we sum the predicted soft label and then nor-
malize it. The vertical axis and horizontal axis are
unsupervised cluster label (clustering with BERT-

IT Koran Medical Law Subtitles

IT 0.833 0.027 0.055 0.0219 0.065
Koran 0.012 0.817 0.003 0.019 0.149
Medical 0.111 0.004 0.737 0.135 0.013
Law 0.142 0.008 0.032 0.798 0.02
Subtitles 0.058 0.076 0.009 0.006 0.851

Table 10: BLEU (top block) / COMET (below block)
scores on multi-domain translation benchmarks with
decoder-only architecture. Note top-8 means it activates
4 shared experts and 4 non-shared experts out of 60
experts.

base and k=5) and predicted soft labels, respec-
tively. The similarity matrix are shown in Table 10.

The results show that there exist some sentences
that are assigned to a cluster of another domain (i.e.,
hard cases). This makes sense as the mixed rep-
resentation can capture such domain information,
making the proposed approach works (the reason).
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