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Abstract

Multimodal Large Language Models (MLLMs)
are renowned for their superior instruction-
following and reasoning capabilities across di-
verse problem domains. However, existing
benchmarks primarily focus on assessing fac-
tual and logical correctness in downstream
tasks, with limited emphasis on evaluating
MLLMs’ ability to interpret pragmatic cues
and intermodal relationships. To address this
gap, we assess the competency of MLLMs
in performing Multimodal Discourse Analysis
(MDA) using Coherence Relations. Our bench-
mark, CORDIAL, encompasses a broad spec-
trum of Coherence Relations across 3 different
discourse domains at varying levels of granular-
ity. Through our experiments on 10+ MLLMs
employing different prompting strategies, we
show that even top models like Gemini 1.5 Pro
and GPT-4o fail to match the performance of
simple classifier-based baselines. This study
emphasizes the need to move beyond similarity-
based metrics and adopt a discourse-driven
framework for evaluating MLLMs, providing a
more nuanced assessment of their capabilities.
The benchmark and code are available at: ht
tps://aashish2000.github.io/CORDIAL/.

1 Introduction

The recent advancements in Multimodal Large Lan-
guage Models (MLLMs) enable them to effectively
capture diverse representations of problem domains
(Alayrac et al., 2022; Chen et al., 2024c; Pichai,
2024; Liu et al., 2024a). These MLLMs are capable
of adapting to various downstream tasks with lim-
ited data through Parameter-Efficient Fine-Tuning
(PEFT) (Hu et al., 2021) and In-Context Learning
(ICL) (Brown et al., 2020) approaches. Existing
Vision-based MLLM benchmarks assess different
aspects of model performance such as Perception,
Cognition, and Reasoning (Li et al., 2024) through
various downstream tasks.

Current benchmark design strategies often focus

on evaluating the ability of MLLMs to utilize the
intersection of input sources to solve a common
problem (Kruk et al., 2019). Although this helps
assess the model’s ability to interpret its inputs
factually and logically, it does not fully capture
the model’s understanding of the relationships be-
tween these modalities. Similarly, benchmarks that
evaluate the alignment between images and text
(Thrush et al., 2022), utilize curated or syntheti-
cally generated image-text pairs. These methods
focus solely on literal relations that measure the
level of overlap between the image and text. On the
other hand, pragmatic cues provide information on
non-literal relations where the true intent/message
of an example may not be directly referenced in
both modalities as shown in Figure 1. These cues
are leveraged routinely in real-world multimodal
discourses, which are characterized by the use of
multiple modes of communication to convey dif-
ferent components of a message. Multimodal Dis-
course Analysis (MDA) studies how the interaction
between these different modes can create semiotic
meaning (Kress, 2009).

To operationalize the assessment of these inter-
modal relationships, we turn to theories of Dis-
course Coherence (Hobbs, 1978), which offer a
way to quantify the organization and flow of ideas
across information sources. From these theories,
we focus on the concept of Coherence Relations
(Alikhani and Stone, 2019), which provides a finite
structure to link different parts of a discourse. Re-
cent studies have extended these traditionally text-
only theories to multimodal discourses, showing
that Coherence Relations can be effectively applied
to image-text pairs (Alikhani et al., 2020). With
Coherence Relations being a fundamental aspect
of human communication, we evaluate whether
MLLMs can effectively predict and verify these
relations.

In this work, we propose the CORDIAL
(COherence Relations in Discourse for Images
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Figure 1: CORDIAL presents a combination of literal and pragmatic relations for analyzing the intermodal
reasoning capabilities of MLLMs. We evaluate MLLMs on the task of Multimodal Discourse Analysis through the
prediction and verification of Coherence Relations across three different discourse domains.

And Language), the first benchmark for evaluating
MLLMs on the task of MDA. CORDIAL consists
of a diverse set of Coherence Relations across three
different discourse domains: Disaster Management,
Social Media, and Online Articles. Each domain
also offers different levels of complexity in the eval-
uated Coherence Relations, from binary relations to
more challenging settings such as multi-class and
multi-label relations assigned by human annotators.
We evaluate the performance of 10+ MLLMs on
CORDIAL, focusing on three research questions:

RQ1: Can MLLMs predict Coherence Relations
effectively?

RQ2: Can MLLMs verify Coherence Relations
accurately?

RQ3: Can we teach MLLMs to understand Co-
herence Relations better?

Our analysis reveals that both Coherence Rela-
tion prediction (RQ1) and verification (RQ2) are
challenging tasks for MLLMs when these relations
focus on pragmatic cues. Although larger MLLMs
perform better than their smaller, open-source coun-
terparts, traditional classifier baselines consistently
outperform them across discourse domains. To
summarize, our key takeaways are as follows:

• We propose CORDIAL, the first benchmark for
evaluating MLLMs for Multi-modal Discourse
Analysis (MDA) using Coherence Relations.

• Our experiments show that MLLMs struggle to
predict and verify Coherence Relations, espe-
cially when these relations are more pragmatic.

• We demonstrate the need for coherence-aware
fine-tuning approaches to improve intermodal
reasoning capabilities of MLLMs.

2 Related Work

Multimodal Large Language Models MLLMs
are fundamentally generative models that com-
bine Large Language Models (LLM) (Brown et al.,
2020) with multimodal encoders (Dosovitskiy et al.,
2021). In recent years, several new MLLMs have
been released, based on various proprietary (Ope-
nAI et al., 2024; Anthropic; Pichai, 2024) and open-
source LLM backbones (Liu et al., 2023; Wu et al.,
2024; Bai et al., 2023). These models have shown
impressive performance on a variety of downstream
reasoning tasks, including Visual Question Answer-
ing (Wu and Xie, 2024), Document Analysis (Lv
et al., 2023), Embodied AI agents (Shek et al.,
2024), etc.

MLLM Reasoning Benchmarks Recent works
that have proposed benchmarks evaluating vision
language reasoning, focus on assessing different
facets of their input modalities. Visual Reason-
ing benchmarks measure the capability of these
models to understand spatial and object-level re-
lations among image components (Kamath et al.,
2023; Rajabi and Kosecka, 2024; Nie et al., 2024;
Thrush et al., 2022; Kamoi et al., 2024). Contextual
Reasoning benchmarks demonstrate how MLLMs
interpret in-context examples and compositional
language prompts (Zong et al., 2024; Wu and Xie,
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Dataset Examples

DisREL Part of my pile of branches after
#HurricaneIrma - still no power

in #Orlando

Floridians rescue stranded
manatees as Irma sucks water

from shores

Coherence Relation:
Similar

Coherence Relation:
Complementary

Tweet Subtitles Fresh never frozen
jumbo wings tossed in a

housemade buffalo
sauce. Yum!

Freshly picked off my
allotment today,
well chuffed.
(strawberry)

Cartel leader whose
arrest sparked killings is
sentenced to prison in

Dallas court

Amazon Prime delivers
anything these days!

(delivering a cat)

Eiffel Tower shuts down
as snow, freezing rain

pummel France

Coherence Relation:
Concretization

Coherence Relation:
Insertion

Coherence Relation:
Projection

Coherence Relation:
Extension

Coherence Relation:
Restatement

CLUE A path winds through an
ancient bamboo forest

A model walks the
runway for the

collection during,
fashion week

A city in winter is such
a beautiful city

People know that curb
appeal is not a thing to

take lightly when
remodeling a home

Seals fighting for a spot
to sleep on the rocks

Coherence Relations:
Visible

Coherence Relations:
Visible, Meta, Action

Coherence Relations:
Subjective, Story

Coherence Relations:
Story

Coherence Relations:
Action

Table 1: Examples from each dataset for all Coherence Relations. The words in red are important cues present in the
caption, while the words in orange show pragmatic cues inferred from the image-text pair. The relations highlighted
in blue are the selected relations for CLUE Single-Label.

2024; Shao et al., 2024; Zeng et al., 2024). Fi-
nally, Knowledge-based reasoning assesses how
models recall knowledge from intrinsic and extrin-
sic sources to answer factual and logical questions
(Johnson et al., 2016; Xenos et al., 2023; Lu et al.,
2022). Although these benchmarks measure how
multimodal prompts can be efficiently understood
to solve a candidate task, intermodal reasoning with
real-world discourses has been less studied.

Image-Text Relationships Quantifying image-
text relationships accurately has been an active area
of research in the era of Vision Language Mod-
els (VLMs). Traditional VLMs translate images
and text into a common representation space and
compute the degree of similarity based on the dis-
tance between these embeddings (Radford et al.,
2021; Jia et al., 2021; Caron et al., 2021; Hessel
et al., 2021). However, these methods failed to cap-
ture human preferences in image-text matching ac-
curately across different task domain benchmarks
(Anantha Ramakrishnan et al., 2024b; Ross et al.,
2024; Anantha Ramakrishnan et al., 2024a). To
include human feedback in the process of predict-

ing similarity scores, content-based models trained
on human-annotated similarity scores were intro-
duced (Wu et al., 2023; Kirstain et al., 2023; Xu
et al., 2023). Apart from similarity scores, tax-
onomies have been proposed to quantify different
types of linkages between image-text pairs (Marsh
and White, 2003; Vempala and Preoţiuc-Pietro,
2019; Kruk et al., 2019; Bateman, 2014). In par-
ticular, multimodal coherence relations have been
shown to sufficiently capture different aspects of
image-text intents for various vision-language tasks
(Alikhani et al., 2019; Inan et al., 2021; Alikhani
et al., 2023, 2020; Xu et al., 2022).

3 The CORDIAL Benchmark

3.1 Motivation
With Coherence Relations providing a finite repre-
sentation of image-text linkages, we aim to mea-
sure MLLM performance through relation classifi-
cation and verification tasks. Traditional alignment
benchmarks often evaluate models using similar-
ity scores. But multiple states of alignment be-
tween image-text pairs can exist, at the object-level,
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Figure 2: An overview of the Image-Text label (i.e., Coherence Relations) distributions across CORDIAL

scene-level, or even at the discourse-level (Xu et al.,
2022). A pragmatic understanding of the context
surrounding these pairs informs our ability to de-
scribe this alignment accurately. Thus, similarity
scores alone may not be sufficient to capture the
true performance of MLLMs. Additionally, with
Coherence Relations being context-driven, the type
of relations present in a discourse can vary across
different domains. This necessitates the evalua-
tion of MLLMs on multiple real-world discourse
domains to assess their generalization capabilities.
With MLLMs-as-a-judge (Chen et al., 2024a) be-
coming more popular in tasks where acquiring hu-
man judgment is expensive and time-consuming,
the importance of this task is further highlighted.
We carefully pick and curate real-world image-text
pairs with expert human annotations with the pre-
processing details described in Appendix Section
A. The three different discourse domains we evalu-
ate are: Disaster Management, Social Media, and
Online Articles.

3.2 Coherence Relations
Each dataset we include in CORDIAL assesses
a unique set of Coherence Relations. To under-
stand how communication in a discourse can be
quantified by Coherence Relations, we turn to the
Theory of Coherence (Hobbs, 1978). We define
communication as the transfer of information and
ideas from a speaker to a listener. For success-
ful communication, a discourse needs to satisfy 4
conditions: (1) The message contents should be
present in the discourse (2) The message must be
relevant to the overall context of the discourse (3)
Any new/unpredictable attributes of the message
must build on the listener’s existing world knowl-
edge (4) The speaker must provide cues to guide
the listener to graph their intended meaning. The
goal of defining Coherence Relations is to serve
any of the above-mentioned communicative func-

tions. This way, for tasks such as MDA, we can
analyze the communicative patterns present in a
multimodal discourse. We consider Coherence Re-
lations to be a constrained set of connections that
describe the structural and causal relationships be-
tween different parts of a discourse. Consider the
examples from Table 1, certain relations such as
Visible and Concretization deal with presenting
the same message content across modalities. On
the other hand, relations such as Insertion and Ex-
tension require the reader to understand the union
of information along with the context surrounding
each modality to get the full message.

3.3 Data Sources
To construct our benchmark, we leverage existing
datasets that provide image-text pairs along with
human-annotated Coherence Relations across dif-
ferent discourse domains. We select three datasets
that offer a diverse set of Coherence Relations: Dis-
Rel (Disaster Management), Tweet Subtitles (So-
cial Media), and CLUE (Online Articles).

DisRel This dataset (Sosea et al., 2021) explores
the relationship of image-text pairs from disaster-
related tweets, with labels collected through crowd-
sourcing on Amazon MTurk. The dataset contains
4600 multimodal tweets with a test set size of 500
examples with a 50% split between the two classes:

• Similar: The image and text share the same fo-
cus and attempt to convey the same message.
There exists a significant overlap in the informa-
tion conveyed between modalities.

• Complementary: The image and text do not
share the same focus, but one modality helps
understand the other better. Both modalities pro-
vide independent information which when com-
bined, provide a more complete picture of the
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message/event. There may be divergence in the
information conveyed between modalities.

Tweet Subtitles To measure cross-modal coher-
ence relations between image and text, this dataset
(Xu et al., 2022) contains 16000 image-text pairs
sourced from Twitter on open-domain topics. The
test set for this dataset consists of 1600 examples,
which is 10% of the entire dataset. The dataset
provides single-label annotations from expert anno-
tators on 3 entity-level and 2 scene-level relations:

• Insertion (Entity-level): Both the text and the
image focus on the same visual entity but it is
not explicitly mentioned in the text.

• Concretization (Entity-level): Both the text and
image contain a mention of the main visual entity
but may differ in types of details shared.

• Projection (Entity-level): The main entity men-
tioned in the text is implicitly related to the visual
objects present in the image. The image contains
a reference to objects related to the main entity
rather than the entity itself.

• Restatement (Scene-level): The text directly
describes the image contents. Both modalities
convey the same message.

• Extension (Scene-level): The image expands
upon the story or idea in the text, presenting new
elements or elaborations, effectively filling in
narrative gaps left by the text.

CLUE This dataset presents a novel conceptual-
ization of image-text relations by extending text-
only coherence relations to the multimodal set-
ting (Alikhani et al., 2020). The publicly avail-
able version of the dataset contains 4770 image-
text pairs sourced from the Conceptual Captions
Dataset (Sharma et al., 2018). The samples were
provided multi-label annotations by expert annota-
tors for 5 different relationship types:

• Visible: The text presents information that is
intended to recognizably characterize what is
depicted in the image.

• Action: The text describes an extended, dynamic
process in which the moment captured in the
image is a representative snapshot.

• Meta: The text allows the reader to draw infer-
ences not just about the scene depicted in the
image but about the production and presentation
of the image itself.

• Subjective: The text provides information about
the speaker’s reaction to, or evaluation of, what
is depicted in the image.

• Story: The text provides a freestanding descrip-
tion of the circumstances depicted in the image,
analogous to including instructional, explanatory,
and other background relations.

We evaluate this dataset in two different settings:
Multi-Label (ML) and Single-Label (SL). In the
ML setting, we treat the dataset as a multi-label
classification task where MLLMs predict all appli-
cable labels. For CLUE SL, we follow the original
dataset’s label mapping strategy to select the most
applicable label from the present annotations for
each sample (Alikhani et al., 2020). This provides
two different settings for evaluating MLLM’s un-
derstanding of coherence relations on the same
image-text pairs with 1183 examples in the test set.

3.4 Baseline Classifier
Our goal of including a baseline classifier is to cap-
ture the existing signal in our datasets and to pro-
vide a reference point for MLLM performance. Un-
derstanding that human annotations can be noisy,
we utilize this simple, generalizable classifier to
identify relations where MLLMs are particularly
under-performing on our benchmark. We employ
CLIP Text and Image encoders to extract multi-
modal embeddings in a zero-shot manner (Radford
et al., 2021). We then train a Multi-Layer Percep-
tron (MLP) classifier using these embeddings on
the train sets of each of these datasets to predict
Coherence Relations. This ensures that our clas-
sifier is not biased towards any specific domain
and can generalize across different discourse con-
texts. More details about the classifier are present
in Appendix Section F.

4 Experiments

To answer our research questions, we conduct ex-
periments on the CORDIAL benchmark with top
open-source and proprietary MLLMs. For (RQ1),
we evaluate the performance of 12 MLLMs from
9 different model families across our benchmark
along with a classifier baseline. The 4 settings in
our benchmark are structured with increasing dif-
ficulty, with DisRel and Tweet Subtitles being the
simpler settings while CLUE Single-Label (SL)
and CLUE Multi-Label (ML) are more complex.
To answer (RQ2), we pick a selection of MLLMs
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Figure 3: % Loss/Gain after fine-tuning Llama 3.2-V.
Fine-tuning shows significant performance gains, either
on zero-shot or few-shot prompts across all 4 settings

and investigate their ability to verify coherence re-
lations as correct or incorrect when provided along
with image-text pairs. This provides a measure of
the model’s grasp of concepts such as discourse co-
herence and intermodal reasoning. For understand-
ing (RQ3), we evaluate the effectiveness of differ-
ent prompting strategies in enabling these MLLMs
to discern coherence relations. We also fine-tune an
MLLM on our benchmark to see if it can enhance
its intermodal reasoning capability.

4.1 Models Evaluated
We evaluate 4 proprietary MLLMs: GPT-4o
(OpenAI et al., 2024), Gemini 1.5 Flash (Pichai,
2024), Gemini 1.5 Pro (Pichai, 2024), and Claude
3.5 Sonnet v2 (Anthropic) and 8 open-source
MLLMs: LLaVA 1.6 (7B, 13B, 34B) (Liu et al.,
2024b), LLaVA OneVision 7B (Li et al., 2025),
Qwen2-VL-7B (Wang et al., 2024), Llama 3.2 11B
Instruct (Meta AI), Phi3.5 Vision Instruct (Abdin
et al., 2024), and InternVL 2.5 26B (Chen et al.,
2024b). We selected these model families as they
demonstrated acceptable prompt adherence as de-
scribed in Appendix Sections B, C. We also include
a pre-trained classifier fine-tuned for the task of co-
herence relation prediction. We selected GPT-4o,
Gemini 1.5 Pro, and Claude 3.5 Sonnet v2 as they
were among the better-performing MLLMs on our
benchmark for verification, with more details pro-
vided in Appendix Section D.

4.2 Evaluation Metrics
On the task of coherence relation prediction, we
report the per-class F1 score and overall F1 score

Model Prompt Sim Compl Macro F1

Random Guess Baseline 0.490 0.478 0.484

LLaVA 1.6 7B Zero 0.253 0.541 0.397
CoT 0.544 0.489 0.516 ↑30.0%

LLaVA 1.6 13B Zero 0.666 0.000 0.333
CoT 0.408 0.675 0.542 ↑62.8%

LLaVA 1.6 34B
Zero 0.000 0.666 0.333
Few 0.139 0.679 0.409 ↑22.8%
CoT 0.353 0.571 0.462 ↑38.7%

LLaVA OneVision 7B
Zero 0.626 0.391 0.509
Few 0.549 0.541 0.545 ↑7.1%
CoT 0.549 0.601 0.575 ↑13.0%

Qwen2-VL 7B
Zero 0.654 0.268 0.461
Few 0.664 0.148 0.406 ↓11.9%
CoT 0.446 0.602 0.524 ↑13.7%

Llama 3.2 Vision 11B
Zero 0.388 0.635 0.512
Few 0.509 0.479 0.494 ↓3.5%
CoT 0.292 0.615 0.453 ↓11.5%

Phi3.5 Vision 4.2B
Zero 0.655 0.177 0.416
Few 0.409 0.662 0.536 ↑28.8%
CoT 0.549 0.601 0.575 ↑38.2%

InternVL 2.5 26B
Zero 0.618 0.698 0.658
Few 0.633 0.633 0.633 ↓3.8%
CoT 0.393 0.670 0.531 ↓19.3%

GPT-4o
Zero 0.025 0.667 0.346
Few 0.443 0.667 0.555 ↑60.4%
CoT 0.361 0.676 0.519 ↑50.0%

Gemini 1.5 Flash
Zero 0.714 0.715 0.715
Few 0.363 0.688 0.525 ↓26.6%
CoT 0.593 0.699 0.646 ↓9.7%

Gemini 1.5 Pro
Zero 0.719 0.679 0.699
Few 0.611 0.727 0.669 ↓4.3%
CoT 0.630 0.717 0.673 ↓3.7%

Claude 3.5 Sonnet v2
Zero 0.722 0.615 0.669
Few 0.710 0.559 0.634 ↓5.2%
CoT 0.603 0.703 0.653 ↓2.4%

CLIP Classifier Baseline 0.750 0.715 0.733

Table 2: Results for Coherence Relation Prediction on
DisRel. The coherence relations predicted are Similar
(Sim) and Complementary (Compl).

across all 4 settings. We select Macro F1 for overall
performance as it treats all classes equally, which
is important for our benchmark as it contains im-
balanced classes. We report response accuracy for
measuring performance on the verification task.

4.3 Prompting Strategies and Fine-tuning
In addition to zero-shot evaluation, we also inves-
tigate the contribution of few-shot and Chain-of-
Thought (CoT) prompting strategies in enabling
MLLMs to learn coherence relations better. For
few-shot, we include one example per coherence
relation in each prompt as examples in the 3 single-
label classification settings. For multi-label clas-
sification on CLUE ML, we include 6 different
examples covering different combinations of rela-
tions in our prompt. To perform CoT, we include a
reasoning step in our prompt that asks the model to
generate a rationale before predicting the coherence
relation. More details about the prompt templates
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Model Prompt Ins Concr Proj Restmt Ext Macro F1
Random Guess Baseline 0.094 0.340 0.068 0.123 0.165 0.158

LLaVA 1.6 7B
Zero 0.000 0.693 0.062 0.066 0.082 0.181
CoT 0.019 0.822 0.081 0.050 0.114 0.217 ↑19.9%

LLaVA 1.6 13B
Zero 0.085 0.044 0.000 0.000 0.095 0.045
CoT 0.070 0.477 0.000 0.122 0.054 0.145 ↑222.2%

LLaVA 1.6 34B
Zero 0.000 0.176 0.094 0.104 0.253 0.125
Few 0.026 0.630 0.198 0.060 0.211 0.225 ↑80.0%

CoT 0.024 0.063 0.108 0.154 0.169 0.104 ↓16.8%

LLaVA OneVision 7B
Zero 0.023 0.000 0.066 0.125 0.032 0.049
Few 0.067 0.000 0.087 0.071 0.177 0.081 ↑65.3%

CoT 0.062 0.005 0.057 0.124 0.101 0.070 ↑42.9%

Qwen2-VL 7B
Zero 0.000 0.728 0.121 0.142 0.011 0.201
Few 0.094 0.148 0.078 0.144 0.068 0.106 ↓47.3%

CoT 0.156 0.167 0.068 0.170 0.000 0.112 ↓44.3%

Llama 3.2 Vision 11B
Zero 0.000 0.779 0.000 0.093 0.000 0.175
Few 0.035 0.388 0.000 0.092 0.113 0.126 ↓28.0%

CoT 0.097 0.421 0.055 0.167 0.086 0.165 ↓5.7%

Phi3.5 Vision 4.2B
Zero 0.043 0.790 0.109 0.171 0.030 0.229
Few 0.183 0.179 0.000 0.159 0.093 0.123 ↓46.3%

CoT 0.025 0.745 0.164 0.156 0.022 0.223 ↓2.6%

InternVL 2.5 26B
Zero 0.101 0.389 0.090 0.090 0.011 0.136
Few 0.090 0.002 0.041 0.292 0.000 0.085 ↓37.5%

CoT 0.118 0.450 0.102 0.199 0.083 0.190 ↑39.7%

GPT-4o
Zero 0.126 0.564 0.111 0.200 0.167 0.234
Few 0.171 0.599 0.131 0.268 0.199 0.274 ↑17.1%

CoT 0.076 0.346 0.146 0.217 0.187 0.194 ↓17.1%

Gemini 1.5 Flash
Zero 0.172 0.783 0.138 0.183 0.011 0.257
Few 0.027 0.681 0.139 0.257 0.193 0.259 ↑0.8%

CoT 0.068 0.734 0.133 0.259 0.071 0.253 ↓1.6%

Gemini 1.5 Pro
Zero 0.200 0.692 0.141 0.290 0.034 0.271
Few 0.113 0.661 0.247 0.270 0.000 0.258 ↓4.8%

CoT 0.102 0.657 0.101 0.278 0.022 0.232 ↓14.4%

Claude 3.5 Sonnet v2
Zero 0.132 0.764 0.183 0.328 0.175 0.316
Few 0.144 0.567 0.122 0.285 0.246 0.273 ↓13.6%

CoT 0.180 0.725 0.138 0.316 0.256 0.323 ↑2.2%

CLIP Classifier Baseline 0.542 0.866 0.286 0.388 0.514 0.519

Table 3: Results for Coherence Relation Prediction on
Tweet Subtitles. The Coherence Relations predicted
are Insertion (Ins), Concretization (Concr), Projection
(Proj), Restatement (Restmt) and Extension (Ext).

used for each of the tasks are present in Sections
C.1 and D.1 of our appendix. We fine-tune the
Llama 3.2 11B Instruct model on our benchmark
to measure the impact of task-specific fine-tuning
in open-source MLLMs with hyperparameter se-
lection described in Appendix Section E.

5 Findings and Implications

5.1 Main Results
MLLMs Struggle with Coherence Relations
From our results in Tables 2, 3, 4, 6 we observe that
no MLLM shows improvements over our baseline
classifier on Macro F1 scores across all settings.
When strictly looking at zero-shot prompts, Claude
3.5 Sonnet v2 performs the best on Tweet Subtitles,
CLUE ML, and CLUE SL while Gemini 1.5 Flash
performs the best on DisRel. However, the CLIP
Classifier can outperform these MLLMs by 2.4%
on DisRel, 64.1% on Tweet Subtitles, 38.6% on
CLUE SL, and 5.6% on CLUE ML in terms of
Macro F1 score. This shows that although these
datasets have clearly discernible visual and text fea-
tures that help in predicting coherence relations,
MLLMs aren’t able to comprehend them effec-
tively. The trend extends to both proprietary and

Model Prompt Visible Subj Action Story Meta Macro F1
Random Guess Baseline 0.233 0.069 0.030 0.162 0.266 0.152

LLaVA 1.6 7B
Zero 0.484 0.135 0.000 0.158 0.096 0.174
CoT 0.534 0.198 0.068 0.043 0.004 0.169 ↓2.9%

LLaVA 1.6 13B
Zero 0.541 0.027 0.039 0.158 0.000 0.153
CoT 0.529 0.043 0.054 0.034 0.016 0.135 ↓11.8%

LLaVA 1.6 34B
Zero 0.545 0.000 0.000 0.012 0.004 0.112
Few 0.457 0.097 0.058 0.318 0.086 0.203 ↑81.3%

CoT 0.537 0.143 0.062 0.210 0.004 0.191 ↑70.5%

LLaVA OneVision 7B
Zero 0.541 0.000 0.087 0.043 0.000 0.134
Few 0.146 0.000 0.025 0.172 0.243 0.117 ↓12.7%

CoT 0.535 0.000 0.048 0.092 0.000 0.135 ↑0.7%

Qwen2-VL 7B
Zero 0.533 0.068 0.000 0.034 0.000 0.127
Few 0.539 0.000 0.000 0.000 0.004 0.109 ↓14.2%

CoT 0.530 0.156 0.057 0.080 0.004 0.166 ↑30.7%

Llama 3.2 Vision 11B
Zero 0.537 0.136 0.098 0.023 0.000 0.159
Few 0.542 0.000 0.026 0.000 0.000 0.114 ↓28.3%

CoT 0.533 0.189 0.026 0.083 0.020 0.170 ↑6.9%

Phi3.5 Vision 4.2B
Zero 0.542 0.038 0.053 0.104 0.000 0.147
Few 0.485 0.256 0.021 0.255 0.162 0.236 ↑60.5%

CoT 0.534 0.000 0.087 0.083 0.000 0.141 ↓4.1%

InternVL 2.5 26B
Zero 0.558 0.273 0.071 0.312 0.027 0.248
Few 0.498 0.211 0.048 0.253 0.127 0.228 ↓8.1%

CoT 0.537 0.333 0.052 0.254 0.087 0.252 ↑1.6%

GPT-4o
Zero 0.544 0.345 0.064 0.178 0.065 0.239
Few 0.549 0.352 0.023 0.390 0.134 0.289 ↑20.9%

CoT 0.558 0.321 0.054 0.324 0.024 0.256 ↑7.1%

Gemini 1.5 Flash
Zero 0.543 0.215 0.091 0.168 0.020 0.207
Few 0.543 0.380 0.054 0.402 0.071 0.290 ↑40.1%

CoT 0.557 0.300 0.000 0.329 0.072 0.252 ↑21.7%

Gemini 1.5 Pro
Zero 0.559 0.329 0.039 0.440 0.112 0.296
Few 0.531 0.391 0.070 0.451 0.253 0.339 ↑14.5%

CoT 0.558 0.330 0.000 0.350 0.057 0.259 ↓12.5%

Claude 3.5 Sonnet v2
Zero 0.516 0.408 0.070 0.439 0.113 0.309
Few 0.467 0.430 0.077 0.434 0.338 0.349 ↑12.9%

CoT 0.537 0.378 0.058 0.382 0.119 0.295 ↓4.5%

CLIP Classifier Baseline 0.548 0.270 0.150 0.479 0.687 0.427

Table 4: Results for Coherence Relation Prediction on
CLUE Single-Label. The Coherence Relations pre-
dicted are Visible, Subjective (Subj), Action, Story and
Meta

Dataset CR Claude Gemini GPT4o

DisREL
Similar 70.4% 57.2% 14.8%

Complementary 91.2% 10.8% 96.8%
Overall 80.8% 34.0% 55.8%

Tweet
Subtitles

Insertion 20.59% 0.0% 11.76%
Concretization 74.1% 57.35% 37.61%

Projection 81.82% 0.0% 15.91%
Restatement 65.73% 64.34% 21.68%
Extension 66.29% 0.0% 38.29%

Overall 70.44% 47.69% 34.56%

CLUE
SL

Visible 83.37% 90.21% 75.4%
Subjective 58.0% 20.0% 52.0%

Action 72.73% 9.09% 54.55%
Story 29.12% 3.85% 35.71%
Meta 9.98% 0.0% 0.8%

Overall 42.77% 35.0% 36.52%

CLUE
ML Overall 48.82% 32.71% 44.21%

Table 5: Accuracy of MLLMs in verifying each Coher-
ence Relation (CR) of every dataset.

open-source MLLMs regardless of their size. Our
results reiterate the need for benchmarks such as
CORDIAL to evaluate the intermodal reasoning
capabilities of MLLMs.

Pragmatic Relations are Challenging In single-
label prediction settings, we observe that MLLMs
come close to the baseline classifier’s scores on
DisRel, containing the image-text relations that
are more literal (Similar, Complementary). On the
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other hand, there exists a significant gap in per-
formance in other single-label datasets. Looking
into per-relation F1 scores, pragmatic relation cate-
gories such as Insertion, Projection, and Extension
are particularly challenging for MLLMs. A simi-
lar trend is observed in CLUE SL and CLUE ML
where MLLMs struggle with relation categories
such as Story and Meta.

Verification Accuracy Depends on Settings An-
alyzing the verification performance of MLLMs
in Table 5, we observe that the performance of
MLLMs on the verification task is highly depen-
dent on the setting. Across all settings, Claude
3.5 Sonnet v2 performs the best, with an accuracy
of 80.8% on DisRel, 70.4% on Tweet Subtitles,
42.8% on CLUE SL and 48.5% on CLUE ML. This
shows that MLLMs are able to verify coherence
relations better in settings where the relations are
more literal and easier to understand. However, the
performance of MLLMs on the verification task is
significantly lower in settings where the relations
are more non-literal and pragmatic.

Inconsistency of Prompting Strategies In our
experiments with few-shot and CoT prompting
strategies, we observe that the performance of
MLLMs is inconsistent across different settings
and model families. Across DisRel, Tweet Subti-
tles, CLUE SL and CLUE ML, a total of 7, 8, 10
and 10 MLLMs respectively show improvements in
performance with either few-shot or CoT prompt-
ing strategies. However, only 2 MLLMs: LLaVA
OneVision 7B and GPT-4o show improvements
across all settings. Overall, we observe that in the
more difficult settings (CLUE SL and CLUE ML),
more number of models are able to leverage one
of these alternate prompting strategies to improve
their performance. But, even with additional ex-
amples or reasoning steps, MLLMs are not able to
outperform the baseline classifier. This shows that
Coherence Relation Prediction is a fundamentally
difficult task that cannot be taught to MLLMs only
through prompting strategies.

Fine-tuning Improves MLLM Reasoning
Looking at Figure 3, we observe that fine-tuning
the Llama 3.2 Vision model on our benchmark
proves beneficial for coherence relation prediction.
In both DisRel and Tweet Subtitles, we see gains
in both zero-shot and few-shot prompt scores with
Llama 3.2 Vision up to 18.42% compared to its
original performance. On both CLUE ML and

SL, we see improvements in either zero-shot or
few-shot performance with minimal performance
loss on the other. This shows that MLLMs are
able to learn to recognize coherence relations
better when fine-tuned on a task-specific dataset.
Coherence-aware fine-tuning can be a promising
direction for improving their reasoning and
cognition abilities.

5.2 Discussion
Model Biases Inhibit Prediction Performance
Looking at the per-class F1 scores across MLLMs,
we observe they are biased towards certain rela-
tion categories. This includes the prediction of
only a small subset of relations across all samples
in an evaluation setting. From Figure 2, we ac-
knowledge that the distribution of relation cate-
gories in our benchmark is imbalanced. However,
this response imbalance of MLLMs is observed
even on majority classes such as Concretization in
Tweet Subtitles and Meta relations in CLUE SL
and ML. This shows that despite providing few-
shot examples and prompt optimization strategies,
MLLMs display biases towards certain relation cat-
egories. When we look at the results of our fine-
tuned model, we can see that prediction results on
relations ignored by the base model are improved.
This shows that fine-tuning can help mitigate these
reasoning biases in MLLMs.

Cross-Discourse Generalization of CR Tax-
onomies With our evaluation of MLLMs per-
forming MDA, we show that they perform much
worse compared to baseline classifiers within each
discourse type. Since CR taxonomies are designed
specifically for the discourses analyzed, it is diffi-
cult to directly infer the cross-domain translation of
model performances from one discourse to another.
Previous studies on text-only discourses report poor
cross-domain adaptation of traditional classifiers
across discourse types (Bourgonje and Demberg,
2024). As CORDIAL extends evaluation to mul-
tiple discourses, we are able to provide a better
assessment of MLLM capabilities in Discourse
Analysis. A natural extension of our benchmark
would be designing a unified set of CRs that can
be applied across complementary discourses. This
setting would be especially challenging for our clas-
sifier baselines due to the varying distribution of
images and text from different sources, compared
to MLLMs which are more robust to these changes.
The grouping of complementary discourse domains
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and definition of new unified CRs is a challenging
task which we aim to investigate as a part of our
future work.

6 Conclusions

We propose CORDIAL, a novel benchmark to
evaluate how MLLMs perform MDA using Coher-
ence Relations. Our experiments show existing
state-of-the-art MLLMs struggle to match simple
baseline classifiers in predicting Coherence Rela-
tions across different discourse domains. We also
show the impact of evaluating different prompt
strategies and the importance of using diverse
datasets to probe intermodal reasoning capabili-
ties of MLLMs. Finally, we show that fine-tuning
MLLMs on coherence relations can help allevi-
ate model biases and improve their performance
on these tasks. This work highlights the need for
MLLM benchmarks to evolve beyond factual &
perceptual assessment tasks and focus on under-
standing both literal and pragmatic relationships
between multimodal components of real-world dis-
courses. We hope that CORDIAL will serve as
a stepping stone for future research in MDA and
encourage the community to explore new methods
to improve MLLMs on these tasks.

Limitations

While our proposed benchmark provides a com-
prehensive assessment of intermodal reasoning in
current MLLMs, several limitations must be ac-
knowledged. The benchmark is currently limited
to analyzing coherence relations in single-turn dis-
courses. This is due to a lack of publicly available
datasets that provide multi-turn image-text pairs
with annotated coherence relations. We plan to ex-
tend our benchmark to include multi-turn discourse
relations as future work. Our benchmark is cur-
rently limited to the English language and must be
extended to multi-lingual discourses as well.
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Appendix

Model Prompt Visible Subj Action Story Meta Macro F1

LLaVA 1.6 7B
Zero 0.864 0.117 0.113 0.048 0.029 0.234
CoT 0.848 0.245 0.247 0.058 0.013 0.282 ↑20.5%

LLaVA 1.6 13B
Zero 0.869 0.147 0.389 0.115 0.401 0.384
CoT 0.849 0.095 0.237 0.090 0.048 0.264 ↓31.2%

LLaVA 1.6 34B
Zero 0.868 0.165 0.470 0.369 0.298 0.434
Few 0.859 0.000 0.471 0.453 0.166 0.390 ↓10.1%

CoT 0.858 0.117 0.317 0.175 0.163 0.326 ↓24.9%

LLaVA OneVision 7B
Zero 0.820 0.034 0.380 0.024 0.000 0.252
Few 0.757 0.109 0.510 0.150 0.000 0.305 ↑21.0%

CoT 0.856 0.150 0.349 0.213 0.154 0.345 ↑36.9%

Qwen2-VL 7B
Zero 0.864 0.045 0.211 0.086 0.013 0.244
Few 0.864 0.162 0.461 0.368 0.017 0.374 ↑53.3%

CoT 0.865 0.082 0.094 0.080 0.021 0.228 ↓6.6%

Llama 3.2 Vision 11B
Zero 0.869 0.157 0.424 0.349 0.284 0.417
Few 0.828 0.248 0.571 0.443 0.499 0.518 ↑24.2%

CoT 0.850 0.183 0.391 0.420 0.371 0.443 ↑6.2%

Phi3.5 Vision 4.2B
Zero 0.866 0.000 0.092 0.036 0.013 0.201
Few 0.527 0.226 0.311 0.490 0.036 0.318 ↑58.2%

CoT 0.819 0.047 0.475 0.294 0.064 0.340 ↑69.2%

InternVL 2.5 26B
Zero 0.822 0.291 0.448 0.324 0.029 0.383
Few 0.496 0.266 0.491 0.400 0.128 0.356 ↓7.0%

CoT 0.757 0.397 0.444 0.331 0.059 0.397 ↑3.7%

GPT-4o
Zero 0.858 0.451 0.453 0.291 0.060 0.423
Few 0.874 0.495 0.561 0.525 0.123 0.515 ↑21.7%

CoT 0.865 0.506 0.357 0.354 0.084 0.433 ↑2.4%

Gemini 1.5 Flash
Zero 0.875 0.368 0.554 0.355 0.065 0.443
Few 0.847 0.420 0.648 0.480 0.163 0.512 ↑15.6%

CoT 0.871 0.419 0.308 0.358 0.109 0.413 ↓6.8%

Gemini 1.5 Pro
Zero 0.884 0.485 0.544 0.313 0.106 0.467
Few 0.866 0.532 0.668 0.464 0.206 0.547 ↑17.1%

CoT 0.880 0.403 0.180 0.278 0.090 0.366 ↓21.6%

Claude 3.5 Sonnet v2
Zero 0.891 0.535 0.681 0.479 0.220 0.561
Few 0.829 0.503 0.643 0.553 0.360 0.578 ↑3.0%

CoT 0.876 0.515 0.596 0.389 0.174 0.510 ↓9.1%

CLIP Classifier Baseline 0.905 0.176 0.627 0.615 0.642 0.593

Table 6: Results for Coherence Relation Prediction on
the CLUE Multi-Label dataset. The Coherence Rela-
tions predicted are Visible, Subjective (Subj), Action,
Story and Meta with multiple relations being applicable
to a single image-text pair.

A Data Preparation

This section sheds light on the methods used while
preparing all the datasets mentioned in this paper
for model evaluation. We verify all three datasets
used to construct this benchmark have a permis-
sive license that allows usage for research purposes
without restrictions (DisRel - MIT License, Tweet
Subtitles - MIT License, CLUE - Sourced from
Conceptual Captions and free for research use).

A.1 DisREL
Due to limited number of samples in the Unre-
lated category, these image-text pairs were dis-
carded from our train and test set. All placeholder
instances of <URL> were removed from the text as
a part of our data cleaning.

A.2 Tweet Subtitles
This dataset contains two types of captions for
tweets: actual and text generated by an image cap-
tioning model. We use only the actual caption as
part of our evaluation.

Figure 4: An overview of the Image-Text Label (i.e.,
Coherence Relations) distribution across CLUE ML

A.3 CLUE
The labels other than the ones mentioned in Section
3.3 were disregarded from our train and test set for
both settings, due to the lack of examples. We
construct the CLUE Single-Label dataset with the
same heuristic used by Alikhani et al. (2020):

Step 1: If the set contains a Meta relation, assign
it to the image-text pair. Else, proceed to
the next step.

Step 2: If the set contains a Visible relation and
doesn’t contain either a Meta or Subjective
relation, assign it to the image-text pair.
Else, proceed to the next step.

Step 3: If none of the above rules are met, ran-
domly sample one relation from the 5 avail-
able, and assign it to the pair.

B Model Availability

This section focuses on the details of model avail-
ability and parameters, that we use in Section
4.1. For all models, we set temperature to 0 or
do_sample=False, maximum output tokens to 512
and the random seed set to 42, wherever possible
to ensure reproducibility. The model responses in
this paper were collected between January 12, 2025
and February 12, 2025.

B.1 Proprietary Models
OpenAI GPT: We access the GPT-4o model
via the official OpenAI API. We evaluate
gpt-4o-2024-08-06.
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Anthropic Claude: We access Claude 3.5 Son-
net v2 via the Vertex AI API, using Google Cloud.
We evaluate claude-3-5-sonnet-v2@20241022.

Google Gemini: We access Gemini 1.5
Flash and Gemini 1.5 Pro via the Ver-
tex AI API, using Google Cloud. We
evaluate gemini-1.5-flash-002 and
gemini-1.5-pro-002.

B.2 Open Source Models
We evaluate models published on Huggingface Hub.
LLaVA 1.6 34B and Llama 3.2 11B Vision were
evaluated using the LMDeploy 1 framework. We
evaluate Qwen2-VL using code released by the
authors. All other models, were evaluated using
the VLLM 2 framework. Refer to Table 7 for the
models we evaluate.

Model Model ID

InternVL 2.5 26B OpenGVLab/InternVL2_5-26B
Llama 3.2 Vision 11B meta-llama/Llama-3.2-11B-Vision-Instruct

LLaVA 1.6 7B llava-hf/llava-v1.6-mistral-7b-hf
LLaVA 1.6 13B llava-hf/llava-v1.6-vicuna-13b-hf
LLaVA 1.6 34B liuhaotian/llava-v1.6-34b

LLaVA OneVision 7B llava-hf/llava-onevision-qwen2-7b-ov-hf
Phi 3.5 Vision microsoft/Phi-3.5-vision-instruct
Qwen2-VL-7B Qwen/Qwen2-VL-7B-Instruct

Claude 3.5 Sonnet v2 claude-3-5-sonnet-v2@20241022
GPT-4o gpt-4o-2024-08-06

Gemini 1.5 Flash gemini-1.5-flash-002
Gemini 1.5 Pro gemini-1.5-pro-002

Table 7: MLLMs we evaluate in this paper. For open-
source models, this table shows the model names in
Huggingface.

C MLLM Evaluation Details

This section provides details about the evaluation
task (RQ1) mentioned in Section 4.1.

C.1 Prompt Templates
As mentioned in Section 4.3, we make use of Zero-
Shot, Few-Shot and Chain of Thought prompting
for evaluation. Every prompting strategy utilizes
three different messages:

• System Message: We explain the task and
the definitions of each Coherence Relation
present in the dataset being evaluated.

• User Message: This message is used to reit-
erate the task again, along with the required
output format. The image and text that needs
to be evaluated, is also added here.

1https://github.com/InternLM/lmdeploy
2https://github.com/vllm-project/vllm

• Assistant Message: We use this optional mes-
sage for certain models, to guide its responses
towards the intended output format.

The different prompts and system messages used
on each data source as mentioned in Section 3.3, is
present in the appendix.

C.2 Few Shot Prompting
In this prompting strategy, we utilize user-assistant
message pairs that are inserted right after the
user message which specifies output format. For
the Tweet Subtitles and CLUE Single-Label
datasets, we utilize 5-shot examples to include
all possible coherence relations. In the case of
CLUE Multi-Label and DisREL, we utilize 6-shot
examples and 2-shot examples respectively.

We do not evaluate LLaVA 1.6 7B and 13B using
this prompting technique, as our prompt (text +
multimodal tokens) does not fit into the context
length (4096) of these models.

C.3 Chain-of-Thought Prompting
We instruct the model to analyze the image-text
pair, before assigning a Coherence Relation in this
prompting strategy. We incorporate the instruc-
tion "Let’s think step by step", to make the model
respond with concise sentences that detail its rea-
soning process.

C.4 Preprocessing Images for Claude
We noticed that some images were above the 5 MB
per file size limit imposed by Anthropic for their
API. As per their recommendations, we evaluate
Claude on images that are resized to 1.3 megapix-
els, while preserving the aspect ratio.

C.5 Postprocessing MLLM Responses
In the case of single-label datasets, we remove
instances of the phrase "Coherence Relation:"
along with other punctuation and whitespace. If
there exists only one occurrence of a particular
coherence relation, we use that as the prediction
result for the image-text pair.

While working with CLUE Multi-Label
responses, we remove instances of the phrase
"Coherence Relations:". All valid JSON in the
response is parsed using regular expressions. If the
output format is comma-separated values, those
responses are parsed appropriately.
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After this, if we cannot find any valid label for
an image-text pair from the MLLM’s response, we
discard the sample from our test set. To ensure test
set consistency, we discarded around 200 samples
across all datasets and calculated the final evalua-
tion metrics as mentioned in Section 4.2.

D MLLM Verification Details

This section provides details about the verification
task (RQ2) mentioned in Section 4.1.

D.1 Prompt Templates
For this task, we utilize a Chain-of-Thought
prompting strategy. Each model is given the same
system message as before, but along with the
image-text pair, we also give the ground truth Co-
herence Relation. The model is then asked to re-
spond with a True/False answer, along with its ra-
tionale for its response.

D.2 Preprocessing Images for Claude
We use the same strategy as mentioned in Section
C.4, only for the images that don’t come under the
file size limit.

D.3 Postprocessing MLLM Responses
We parse boolean values from each MLLM re-
sponse, and assign False to an image-text pair, only
if there is any occurrence of the same. For CLUE
ML, we provide only overall verification accuracies
since it is a multi-label verification problem.

E Fine-tuning Details

We fine-tune LLaMA 3.2 Vision 11B Instruct
(unsloth/Llama-3.2-11B-Vision-Instruct in
Huggingface) using the Unsloth3 framework. We
opted for this framework due to its memory effi-
ciency and rapid fine-tuning capabilities. We per-
form Parameter Efficient Fine-Tuning (PEFT) of
all layers (Vision & Language) and modules (Atten-
tion & MLP) present. We use the hyperparameters
mentioned in Section E.1 on each dataset for fine-
tuning. Other parameters have been initialized to
their default values.

E.1 Hyperparameters
Common Parameters

• LoRA Parameters: r=16

• num_train_epochs = 3

3https://unsloth.ai/blog/vision

Model Prompt Sim Compl Macro F1

FT-Llama 3.2 Vision 11B Zero 0.629 0.620 0.625
Few 0.673 0.327 0.500 ↓20.0%

Llama 3.2 Vision 11B Zero 0.388 0.635 0.512
Few 0.509 0.479 0.494 ↓3.5%

Table 8: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
DisRel dataset. The coherence relations predicted are
Similar and Complementary.

Model Prompt Ins Concr Proj Restmt Ext Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.440 0.853 0.045 0.042 0.148 0.306
Few 0.231 0.752 0.213 0.100 0.254 0.310 ↑1.3%

Llama 3.2 Vision 11B
Zero 0.000 0.779 0.000 0.093 0.000 0.175
Few 0.035 0.388 0.000 0.092 0.113 0.126 ↓28.0%

Table 9: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
Tweet Subtitles dataset. The Coherence Relations pre-
dicted are Insertion (Ins), Concretization (Concr), Pro-
jection (Proj), Restatement (Restmt) and Extension
(Ext).

Model Prompt Visible Subj Action Story Meta Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.547 0.074 0.042 0.045 0.004 0.142
Few 0.516 0.230 0.053 0.228 0.155 0.236 ↑66.2%

Llama 3.2 Vision 11B
Zero 0.537 0.136 0.098 0.023 0.000 0.159
Few 0.542 0.000 0.026 0.000 0.000 0.114 ↓28.3%

Table 10: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
CLUE Single-Label dataset. The Coherence Relations
predicted are Visible, Subjective (Subj), Action, Story
and Meta

Model Prompt Visible Subj Action Story Meta Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.864 0.228 0.520 0.287 0.431 0.466
Few 0.864 0.158 0.586 0.282 0.549 0.488 ↑4.7%

Llama 3.2 Vision 11B
Zero 0.869 0.157 0.424 0.349 0.284 0.417
Few 0.828 0.248 0.571 0.443 0.499 0.518 ↑24.2%

Table 11: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
CLUE Multi-Label dataset. The Coherence Relations
predicted are Visible, Subjective (Subj), Action, Story
and Meta with multiple relations being applicable to a
single image-text pair.

• warmup_steps = 100 since our train sets are
relatively small.

• per_device_train_batch_size = 32

• gradient_accumulation_steps = 1

• dtype = torch.bfloat16

• optim = adamw_torch

• weight_decay = 0.01

• lr_scheduler_type = cosine
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DisREL

• LoRA Parameters: lora_alpha=16

• Learning Rate = 1e−5

Tweet Subtitles

• LoRA Parameters: lora_alpha=16

• Learning Rate = 1e−5

CLUE Single-Label

• LoRA Parameters: lora_alpha=16

• Learning Rate = 1e−5

CLUE Multi-Label

• LoRA Parameters: lora_alpha=8

• Learning Rate = 1e−7

E.2 Train Set Preparation for CLUE
During experimentation, we noticed that models
fine-tuned on CLUE Single-Label and Multi-Label,
tend to skew their responses towards the majority
classes (Visible, Story and Meta) in the dataset. In
order to curb this behavior, we decided to randomly
sample 200 examples from the CLUE Single-Label
train set for these coherence relations alone. The
same image-text pairs were used for the multi-label
setting as well.

F Baseline Classifier Details

As mentioned in Section 3.4, we em-
ploy CLIP Text and Image Encoders
(openai/clip-vit-large-patch14 in Hug-
gingface) in a zero-shot manner to extract
multi-modal embeddings. These embeddings are
then concatenated together, to form a tensor of
size 1536. This multi-modal tensor is then passed
through a Multi-Layer Perceptron with two hidden
layers of size 512 and 256, along with an output
layer equal to the number of Coherence Relations
in each dataset. The MLP uses RELU in between
each layer for introducing non-linearity, and a
Dropout of 0.2 between the first two layers.

A validation split of 10% was created from
the train sets. The DisREL, Tweet Subtitles and
CLUE Single-Label classifiers were trained using
the Cross Entropy Loss, whereas the CLUE Multi-
Label classifier used the Binary Cross Entropy Loss
along with a Sigmoid Layer. Due to the large

class imbalance in CLUE Single-Label, we use
a weighted loss function in that classifier alone.
Every model was trained with a batch size of 32,
using the Adam Optimizer and a learning rate of
1e−5. Table 12 shows the number of epochs, for
which each classifier was trained in every setting.

Dataset Number of Epochs
DisREL 15

Tweet Subtitles 25
CLUE Single-Label 25
CLUE Multi-Label 50

Table 12: Number of epochs for which each classifier
was trained.

G Computational Resources

To evaluate and fine-tune open-source models, we
use 2 NVIDIA H100 80GB HBM3 and 2 NVIDIA
A100 SXM4 GPUs for around two days worth of
computation.

21293



System Message for DisREL

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:
- Similar: The image and text provide the same information and share the same focus. There exists
significant overlap in information conveyed between modalities.
- Complementary: The image and text do not provide the same information or share the same
focus but one modality helps understand the other better.

System Message for Tweet Subtitles

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:
- Insertion: The salient object described in the image is not explicitly mentioned in the text.
- Concretization: Both the text and image contain a mention of the main visual entity.
- Projection: The main entity mentioned in the text is implicitly related to the visual objects
present in the image.
- Restatement: The text directly describes the image contents.
- Extension: The image expands upon the story or idea in the text, presenting new elements or
elaborations, effectively filling in narrative gaps left by the text.

System Message for CLUE Single-Label and Multi-Label

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:

- Visible: The text presents information that is intended to recognizably characterize what is
depicted in the image.
- Action: The text describes an extended, dynamic process of which the moment captured in the
image is a representative snapshot.
- Meta: The text allows the reader to draw inferences not just about the scene depicted in the
image but about the production and presentation of the image itself.
- Subjective: The text provides information about the speaker’s reaction to, or evaluation of, what
is depicted in the image.
- Story: The text provides a free-standing description of the circumstances depicted in the image,
analogous to including instructional, explanatory and other background relations.
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Zero/Few Shot Prompt for DisREL, Tweet Subtitles and CLUE Single-Label

System
<insert-system-message>

User
Based on provided information, predict the most applicable Coherence Relation for the next
image-text pair. Output only one relation (<insert-coherence-relations>) and do not include any
other information in your response.

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to finetuned LLaMA 3.2 Vision’s prompt in CLUE Single-Label, to enhance output
format adherence.)

<add-few-shot-examples>

<insert-image-text-pair>

Assistant
Coherence Relation:

CoT Prompt for DisREL, Tweet Subtitles and CLUE Single-Label

System
<insert-system-message>

User
Before assigning a coherence relation, let’s think step by step and analyze the image-text pair in
depth.

<insert-image-text-pair>

Assistant
Analysis: <add-analysis-from-model>

User
Based on provided information, predict the most applicable Coherence Relation for the next
image-text pair. Output only one relation (<insert-coherence-relations>) and do not include any
other information in your response.

Assistant
Coherence Relation:
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Zero/Few Shot Prompt for CLUE Multi-Label

System
<insert-system-message>

User
Based on provided information, predict the correct Coherence Relations for the next image-text
pair. Output them as a JSON value to the key "labels" and do not include any other information in
your response. (Default output format for all models)

Give your predicted labels as comma separated values. Do not include any other information in
your response.
(Alternate output format for LLaMA 3.2, Phi 3.5, Qwen2-VL and LLaVA-OneVision)

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to LLaVA 1.6 13B prompt to enhance output format adherence.)

<add-few-shot-examples>

<insert-image-text-pair>

Assistant
Coherence Relations:
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CoT Prompt for CLUE Multi-Label

System
<insert-system-message>

User
Before assigning a coherence relation, let’s think step by step and analyze the image-text pair in
depth.

<insert-image-text-pair>

Assistant
Analysis: <add-analysis-from-model>

User
Now, using your analysis, predict the correct Coherence Relations for the image-text pair. Output
them as a JSON value to the key "labels" and do not include any other information in your
response. (Default output format for all models)

Give your predicted labels as comma separated values. Do not include any other information in
your response.
(Alternate output format for LLaMA 3.2, Phi 3.5, Qwen2-VL and LLaVA OneVision)

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to LLaVA 1.6 13B prompt to enhance output format adherence.)

Assistant
Coherence Relations:

Verification Prompt Template

System
<insert-system-message>

User
Based on provided information, reply True (if appropriate) or False (if not appropriate) for the
following image-text pair. Give your rationale behind it.

<insert-image-text-pair>
<insert-coherence-relation>

Sample Assistant Response
<True/False>
Rationale: <model-response>
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