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Abstract

Multimodal large language models (MLLMs)
have been widely studied for video question
answering recently. However, most existing as-
sessments focus on natural videos, overlooking
synthetic videos, such as AI-generated content
(AIGC). Meanwhile, some works in video gen-
eration rely on MLLMs to evaluate the qual-
ity of generated videos, but the capabilities of
MLLMs on interpreting AIGC videos remain
largely underexplored. To address this, we pro-
pose a new benchmark, VF-EVAL, which intro-
duces four tasks—coherence validation, error
awareness, error type detection, and reasoning
evaluation—to comprehensively evaluate the
abilities of MLLMs on AIGC videos. We eval-
uate 13 frontier MLLMs on VF-EVAL and find
that even the best-performing model, GPT-4.1,
struggles to achieve consistently good perfor-
mance across all tasks. This highlights the chal-
lenging nature of our benchmark. Additionally,
to investigate the practical applications of VF-
EVAL in improving video generation, we con-
duct an experiment, REPROMPT, demonstrat-
ing that aligning MLLMs more closely with
human feedback can benefit video generation.

Data songtingyu/VF-Eval
Code SighingSnow/VF-Eval

1 Introduction

Multimodal Large Language Models (MLLMs) are
powerful tools that process and integrate informa-
tion across visual and textual domains (Google,
2024a; Wang et al., 2023b, 2024b; Li et al., 2023,
2024a). While their primary applications have his-
torically included tasks such as natural language
processing (Lyu et al., 2023; Liang et al., 2024),
image captioning (Liu et al., 2024c; Bucciarelli
et al., 2024), and video analysis (Fu et al., 2024;
Ren et al., 2024), they are now increasingly being
utilized in the domain of video generation. In the
context of video generation, MLLMs are not only

applied for video quality assessment (Meng et al.,
2024; Wu et al., 2024a), but also play a critical
role in enhancing the video creation process (Kon-
dratyuk et al., 2023; Wang et al., 2024c). By provid-
ing feedback on generated videos—ranging from
content quality to more intricate aspects like visual
coherence and temporal consistency—MLLMs are
applied to help improve the quality of AIGC video
generation (Li et al., 2024d; Guo et al., 2025).

AIGC videos present new challenges for visual
understanding (Qu et al., 2024; Liu et al., 2024b),
including synthetic textures, dynamic lighting ef-
fects, and algorithmically generated characters that
significantly from those found in traditional video
content. These distinctive characteristics compli-
cate accurate interpretation by MLLMs, thereby
reducing the reliability and effectiveness of their
feedback. Despite these challenges, existing re-
search on MLLMs providing feedback (i.e., quality
assessment) on AIGC videos has its limitations. In
video quality assessment, MLLMs are often tasked
with providing implicit scores (Wu et al., 2023a; Ge
et al., 2024), which can be imprecise and fail to cap-
ture the full range of video quality nuances. While
some studies focus on generating natural language
feedback to assess video quality (Wu et al., 2024a;
Xu et al., 2024), the feedback may lack precision,
especially when applied to AIGC videos, whose
characteristics differ significantly from traditional
natural videos.

To bridge this gap, we propose a new bench-
mark named VF-EVAL, designed to evaluate the
capabilities of MLLMs to generate reliable feed-
back for AIGC videos. This benchmark focuses
on assessing key aspects such as alignment with
expected outcomes, feedback quality, and com-
monsense reasoning. Specifically, we propose
four tasks to systematically measure the MLLM’s
feedback generation capabilities: (1) Coherence
Validation: Detecting misalignment between the
AIGC video and its generation prompt, and provid-
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Figure 1: Overview of our research: (a) Collection of AIGC videos: We compile a diverse set of video generation
prompts to instruct both proprietary and open-source T2V models for generating AIGC videos. (b) Illustration of
errors occurring within the same AIGC video. (c) Analytics of the dataset: VF-EVAL covering a diverse range of
reasoning tasks. And it contains AIGC videos with durations between 4 to 12 seconds, reflecting the typical output
length of current T2V models.

ing a more appropriate video generation prompt.
(2) Error Awareness: Identifying errors in a video
set that includes both natural and AIGC videos. (3)
Error Type Detection: Identifying possible errors
within AIGC videos. (4) Reasoning Evaluation:
Demonstrating fine-grained reasoning ability over
AIGC video. We also incorporate six reasoning
tasks in Reasoning Evaluation: spatial and tempo-
ral reasoning, action and object reasoning, counting
problems, and information synopsis.

Our experimental results across 13 frontier
MLLMs highlight three key findings: (1) MLLMs
struggle with AIGC video tasks due to the unique
characteristics of AIGC videos. (2) MLLMs can
be utilized alongside auxiliary methods to provide
more accurate feedback on corresponding tasks.
(3) Open-source models demonstrate competitive
performance compared to proprietary models and
can be further improved for relevant tasks.

To demonstrate the potential of MLLM feed-
back, we conduct an experiment, REPROMPT, that
compares MLLM with humans in providing video
generation prompts. Through the experiments, we
find that the quality and coherence of AI-generated
content can be enhanced potentially by aligning
MLLM with human preferences.

We conclude our contribution as follows:

• We introduce VF-EVAL, a benchmark designed

to evaluate the reasoning abilities of MLLMs
on interpreting AIGC videos, with the goal of
advancing AIGC video generation processes.

• We conduct extensive experiments with state-of-
the-art MLLMs and perform fine-grained evalua-
tions of their reasoning capabilities across 6 criti-
cal tasks, highlighting the broader implications
of our findings for future model development.

• We conduct REPROMPT experiment, comparing
MLLM and human feedback in the context of
video generation prompts. Our results demon-
strate that aligning MLLM feedback with human
preferences can potentially enhance the quality
and coherence of AI-generated videos.

2 Related works

2.1 Video Understanding Benchmark
Recently, numerous MLLMs (Google, 2024a;
Wang et al., 2023b; GLM, 2024; Li et al., 2024a;
Wu et al., 2024b; Bai et al., 2025) have been in-
troduced, showcasing strong competencies in han-
dling multimodal inputs and delivering appropriate
responses. Various benchmarks (Li et al., 2024e;
Fang et al., 2024; Chen et al., 2024; Li et al.,
2024c; Zhou et al., 2024a; Zhao et al., 2025a,b)
have been proposed to test these models across
various scenarios, as presented in Table 1. More-
over, some studies try to evaluate the MLLM’s ca-
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pacity to grasp commonsense and physical knowl-
edge as presented in videos (Wu et al., 2023b;
Wang et al., 2023a; Huang et al., 2025). How-
ever, existing datasets are typically based on nat-
ural videos, leaving the reasoning capabilities on
AIGC videos underexplored. Therefore, VF-EVAL

is proposed to assess MLLM comprehension skills
on AIGC videos through four distinct tasks.

2.2 Evaluation of AIGC Video Generation
As video generation becomes increasingly popu-
lar, various methods have emerged to evaluate its
quality. Traditional video quality assessment tech-
niques for user-generated content videos (Tu et al.,
2021; Ging et al., 2024) and AIGC videos (Huang
et al., 2024; Fan et al., 2024; Liu et al., 2023)
heavily utilize computer vision methods, offering
quantitative scores that partially capture the per-
ceived quality of videos. However, these scores
fall short of identifying areas of divergence from
human preferences or areas needing enhancement.
Meanwhile, video quality assessment methods uti-
lizing MLLMs are better aligned with human per-
ceptions by integrating reasoning abilities into their
evaluation processes. Recent studies (Wu et al.,
2024a; Meng et al., 2024; Wang et al., 2024c) have
explored the use of MLLMs to deliver more inter-
pretable assessments of video quality. While these
efforts primarily emphasize overall quality evalua-
tion, our work shifts the focus toward benchmark-
ing the reasoning abilities of MLLMs. Specifically,
we introduce a benchmark comprising four diverse
tasks designed to evaluate MLLMs’ capacity to pro-
vide detailed feedback on AIGC videos, including
their effectiveness in diagnosing quality issues and
identifying specific errors.

3 VF-EVAL Benchmark

This section first introduces the four tasks in VF-
EVAL, followed by a detailed explanation of the
dataset construction process for each task and an
analysis of the corresponding data statistics.

3.1 Task Formulation
VF-EVAL includes four tasks: Coherence Valida-
tion, Error Awareness, Error Type Detection, and
Reasoning Evaluation, each evaluated through spe-
cific question types, as shown in Figure 2. Co-
herence Validation evaluates MLLMs in two key
areas: assessing the alignment between the gener-
ated prompt and the corresponding video content,
and determining how well MLLMs can generate

Benchmarks QA Types Tasks

CV ER RE

Natural Videos
MVBench (Li et al., 2024c) MC ✓
AutoEval-Video(Chen et al., 2023) Open ✓
Video-Bench (Ning et al., 2023) MC ✓
TempCompass (Liu et al., 2024c) T/F, MC, Open ✓
TOMATO (Shangguan et al., 2024) MC ✓
Video-MME (Fu et al., 2024) MC ✓
VideoVista (Li et al., 2024e) MC ✓
SOK-Bench (Wang et al., 2024a) MC ✓
MLVU (Zhou et al., 2024b) MC, Open ✓
MMWorld (He et al., 2024) MC, Open ✓
MMVU (Zhao et al., 2025b) MC, Open ✓
VSI-Bench (Yang et al., 2024) MC, Open ✓

Synthetic Videos
EditVid-QA (Xu et al., 2024) Open ✓
QBench (Wu et al., 2024a) T/F, MC, Open ✓
VF-EVAL (ours) T/F, MC, Open ✓ ✓ ✓

Table 1: Comparisons between VF-EVAL and existing
video understanding benchmarks. CV denotes Coher-
ence Validation, ER denotes error reasoning including
Error Awareness and Error Type Detection, and RE
denotes Reasoning Evaluation. “T/F” denotes the Yes-
Or-No questions, “MC” denotes the Multiple-choice
questions, “Open” denotes the Open-Ended questions.

prompts that align with human expectations for
subsequent video generation. Error Awareness and
Error Type Detection focus on error detection in
AIGC video, with Error Awareness targeting the
identification of general errors in videos, while
Error Type Detection provides a more granular
evaluation of MLLM capabilities across multiple
dimensions. Recognizing that misalignment QA
and error detection alone may not comprehensively
evaluate MLLM performance, we introduce Rea-
soning Evaluation to measure MLLMs’ general
reasoning abilities in the context of AIGC video.
The tasks are formally defined as follows:

Task 1: Coherence Validation (CV). Coherence
Validation aims to verify the alignment between
prompts and their corresponding AIGC video. Co-
herence Validation primarily relies on Open-Ended
questions to verify the alignment between prompts
and their corresponding AIGC videos. The MLLM
is required to compare the alignment between the
video and the generation prompt, and to provide an
improved prompt for generation. Given a video v,
a human answer y, and the answer from the MLLM
ŷ, Coherence Validation uses an LLM (i.e., GPT-
4.1-mini) to rate the generated answer ŷ against the
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(a) Yes-Or-No

(c) Open-Ended

(b) Multichoice

Q1: Is there moral issuse in this video, including human, 
meaningless text, violence ?

Q2: Is there distortion issue within the pink pig toy? 
A. Yes         B. No 

A. Yes         B. No 

Q: What is unusual about the straw's appearance?
A. The straw is missing its top part.
B. The colors of the top and bottom parts are different.
C. The straw is shorter than a regular one.
D. The straw is bent at an unusual angle.

Q1: Identify any discrepancies between the video content and “A soccer player kicks a ball harder, making it travel farther than a light 
tap. ”  Afterward, suggest a better prompt based on the text to help regenerate the video.
A1: (1) Mis-alignment: There are two soccer balls in the video, and the soccer player does not kick the ball out. 
      (2) Better prompt: A soccer player kicks a soccer ball hard. 
Q2: How many soccer balls does the man kick?
A2: The man in the video actually kicks one ball, but the trajectory of the ball he kicked does not match his action, while the 
trajectory of the other soccer ball does. And a kick on one ball can’t make two balls move. 

Figure 2: Illustration of four proposed tasks and the corresponding question types in the VF-EVAL benchmark.
Detailed examples for each reasoning task are provided in Appendix C.1.

correct answer y. The final score is calculated as:

ScoreCV =
1

N

N∑

i=1

LLM(yi, ŷi), (1)

Task 2: Error Awareness (EA). Error Aware-
ness aims to detect whether there are errors in the
AIGC video. This task is primarily evaluated using
Yes-Or-No questions. Given an AIGC video v and
a question q, the model is required to predict a label
y indicating whether v contains errors. The final
score for Error Awareness is defined as:

ScoreEA =
1

N

N∑

i=1

I(yi = ŷi), (2)

Task 3: Error Type Detection (ED). Error Type
Detection intends to identify all the errors present in
the AIGC video. This task is mainly evaluated us-
ing Multiple-choice questions, We evaluate through
the overall success rate. The score is calculated as:

ScoreED =
1

N

N∑

i=1

I(yi = ŷi), (3)

where yi is the correct choice, and ŷi is the choice
predicted by the MLLM.

Task 4: Reasoning Evaluation (RE). Reasoning
Evaluation is dedicated to evaluating the reason-
ing ability of MLLMs on complex questions. As
shown in Figure 1, we have six sub-tasks: spatial

and temporal reasoning, action and object reason-
ing, counting problems, and information synopsis.
We provide the definition and illustrative examples
for each task in Appendix C.1. And the evaluation
is primarily realized through Open-Ended ques-
tions. Given a question q and an AIGC video v,
Reasoning Evaluation used an LLM (i.e., GPT-4.1-
mini) to evaluate the MLLM’s response ŷ against
the human-provided answer y. The final score for
Reasoning Evaluation is computed as:

ScoreRE =
1

N

N∑

i=1

LLM(yi, ŷi), (4)

where N represents the number of evaluations.

3.2 Dataset Construction Guidelines
To ensure the high quality of our dataset, VF-
EVAL adheres to the following collection guide-
lines: (1) Wide Scenarios Coverage: To realize
this, we generate videos using 1000 prompts gen-
erated by LLM (i.e., GPT-4o). As shown in Fig-
ure 1(a), the prompts are validated by human ex-
perts and presented in the Appendix. Additionally,
we collect other videos from existing datasets. (2)
Knowledge Intensive: We carefully craft the op-
tions in Multiple-choice and Open-Ended question,
incorporating commonsense and physical knowl-
edge (e.g., mechanics, light, material). This ap-
proach requires MLLMs to leverage their exper-
tise and analytical skills to address the related is-

21129



sues. (3) Reasoning Ability: We carefully de-
sign the Multiple-choice and Open-Ended prob-
lems. For the Multiple-choice questions, we em-
ploy MLLM (i.e., GPT-4o) to create distracting
options, subsequently verified by human reviewers
and combined with the accurate responses. Regard-
ing Open-Ended questions, we evaluate MLLM’s
capacities for spatial, temporal, action, and object
reasoning, as well as counting and information syn-
opsis, using AIGC videos.

3.3 Dataset Construction

To benchmark the reasoning abilities of MLLMs on
AIGC videos, we collect a large-scale AIGC video
dataset that ensures a wide range of diversity in
video content and scenarios. We design video gen-
eration prompts to cover various daily scenarios,
providing a comprehensive foundation for evaluat-
ing MLLMs’ reasoning capabilities. To enhance
diversity, we use both proprietary and open-source
video generation models. For proprietary mod-
els, we select Pika, Kling, Pixeldance, and Gen-3.
while for open-source models, we include videos
generated by T2V-turbo-v2 (Li et al., 2024b). In
addition to these generated videos, we enrich our
dataset by collecting AIGC videos from existing
datasets, specifically, from Lavie (Wang et al.,
2023c) and OpenSora (Zheng et al., 2024) in the
Videophy (Bansal et al., 2024) train split.

Multiple-choice Question Annotation.
Multiple-choice questions are intended to bench-
mark the Error Type Detection task. They are
constructed through a pipeline involving both
human annotators and MLLMs. Initially, human
annotators identify errors across three dimensions:
(1) Video Quality, which includes aspects such
as temporal-spatial coherence, visual appeal, and
camera work; (2) Commonsense and Physical
Violations, which encompass logical inconsisten-
cies, mechanical flaws, lighting issues, and other
abnormalities; and (3) Morality, which addresses
concerns like fear inducement, human portrayal,
textual content, and graphic violence. After the
human annotators provide answers, MLLMs are
tasked with generating distracting options. For
this, the input includes both the videos and the
question-answer pairs. The MLLM-generated
misleading answers are reviewed by human
annotators and used to complement the original
question-answer pairs. Once the options are final-
ized, Multiple-choice questions are constructed

with fine-grained granularity. For example, “Given
the video, select the choice that influences the
video quality” or “Select the choices that reflect
the abnormal behavior of the bicycle in the video.”

Yes-Or-No Question Annotation. The Yes-Or-
No questions are primarily designed for the Error
Awareness task, prompting MLLMs to make bi-
nary judgments. We utilize LLM(i.e., GPT-4o) to
convert Multiple-choice questions into Yes-Or-No
questions. All questions in our Yes-or-No task are
designed with “Yes” as the correct answer. This
intentional setup allows us to investigate whether
MLLMs exhibit bias toward perceiving videos as
normal. The question is like “Check whether this
video contains any commonsense violations.”

Open-Ended Question Annotation. Open-
Ended questions cover both the Coherence
Validation and Reasoning Evaluation tasks. For the
Coherence Validation task, annotators are provided
with the AIGC video and the prompt used to
generate the video. They are instructed to provide
two answers: the misalignment between the video
and the prompt, and a revised prompt that they
believe would generate a better video. Questions
for this task include “Given a prompt and the
video generated by it, could you provide a better
prompt to generate a more accurate video?” or
“Could you point out the misalignment between the
video and the given prompt?” For the Reasoning
Evaluation task, human annotators construct
questions across several reasoning categories,
including spatial reasoning, temporal reasoning,
action reasoning, object reasoning, counting
problems, and information synopsis tasks. For
example, a question for the spatial reasoning type
could be “Please specify the relationship between
the planet and the astronauts.”

3.4 VF-EVAL Data Analysis

Dataset Statistics. We present the statistics of
VF-EVAL in Table 2. VF-EVAL includes a total of
9,740 question-answer pairs, including 1,826 Yes-
Or-No, 5,932 Multiple-choice, 1,982 Open-Ended
questions. And we split them into the test and
validation sets. And we provide longer videos in
VF-EVAL compared to existing works.

Human Validation. To guarantee the quality of
VF-EVAL, we introduce a human validation pro-
cess. Expert validation is introduced in the follow-
ing process: (1) Data Construction Stage: When
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Statistics Value

Dataset Split
Test split 6,822
Validation split 2,918
Total 9,740

Question Type
Yes-Or-No 1,836
Multiple-choice 5,932
Open-Ended 1,982

Length
Video Length (avg. / max) 8.98 / 12
Question Length (avg. / max) 35.25 / 119

Table 2: Statistics of VF-EVAL, including the num-
ber of questions across different data splits and ques-
tion types, as well as the average and maximum video
length(seconds) and question length(words).

construction, a second annotator is introduced to
judge the first annotator’s annotation and provide
agreement. The second annotator is responsible
for choice validation in Multiple-choice questions
and checks the Open-Ended question-answer pair
quality; (2) Post Validation Stage: After VF-EVAL

is constructed, we select 3 annotators with top inter-
agreement scores to check all the question-answer
pairs. After this validation, 2,395 question-answer
pairs are corrected. And from the low percentage
of revisions, we can guarantee the high quality of
VF-EVAL. We also provide the details of human
validation in the Appendix A, including annotation
UI, annotators’ identity and tasks, and the inter-
annotator agreement.

4 Experiments

This section outlines the experimental setup and
summarizes the key findings.

4.1 Experiment Settings

We evaluate a wide range of MLLMs on VF-EVAL.
Specifically, we evaluate seven series of open-
source models, including InternVL3 (InternLM,
2025), LLava-NeXT (Liu et al., 2024a), LLaVA-
NeXT-Video (Zhang et al., 2024), Llama-3.2-
Vision (Dubey et al., 2024), VideoLlaMA3 (Zhang
et al., 2025), Phi-3.5-Vision (Abdin et al., 2024),
Qwen2.5-VL (Wang et al., 2024b), Mistral-Small-
3.1 (MistraAI, 2025), We also evaluate two series
of proprietary models, including GPT-4.1 (Ope-
nAI, 2023), GPT-4.1-mini and Gemini-Flash-
2.0 (Google, 2024b). For models without native
video support, we provide visual input according to
the maximum number of images that fit within the
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Figure 3: Performance Comparison of InternVL3-38B.

model’s context window. §B.1 details the settings
for different models. We evaluate these models
using the Chain-of-Thought (CoT) technique, as
illustrated in Appendix B.2.

4.2 Main Findings
Dataset Quality. As illustrated in Figure 3, the
absence of visual data leads to a significant de-
crease in performance, particularly in tasks Coher-
ence Validation and Reasoning Evaluation. We
acknowledge the potential biases present in the
Error Awareness and Error Type Detection tasks,
where questions might contain clear clues to the
correct answer. However, the performance on Er-
ror Awareness is worse than random guessing, in-
dicating that MLLMs tend to perceive the video
as normal. Moreover, as shown in Table 3, GPT-
4.1, the model with the best overall performance,
is still far from human behavior in each sub-task.
This underscores the importance of our dataset, as
it helps reveal these gaps in MLLM performance.
Given these gaps, directly using feedback from an
MLLM in video quality assessment tasks, or any
other task, may lead to inaccurate results.

Overall Performance. From Table 3, we can
deduce that the scaling law applies to this scenario.
Additionally, we observe that there is a large per-
formance gap between the best-performing propri-
etary model and the best-performing open-source
models. This highlights the potential for open-
source models to achieve competitive performance
with proprietary models through fine-tuning meth-
ods. However, at present, MLLMs do not per-
form relatively well on the corresponding tasks.
Other approaches, such as computer vision meth-
ods, should be incorporated as auxiliary tools to
improve feedback generation.
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Model
Coherence
Validation

Error Awareness Error Type Detection Reason.
Eval

Overall
Quality CP Quality CP Morality Object

Random Guess - 50.0 50.0 25.0 25.0 25.0 25.0 - -
Human 81.9 84.3 84.2 86.9 78.3 93.2 82.1 70.1 84.4

GPT-4.1 66.3 39.7 24.0 56.0 49.6 59.4 75.2 42.1 51.6
GPT-4.1-mini 55.3 25.5 10.9 46.6 56.9 52.8 69.0 37.4 44.3
Gemini-2.0-Flash 58.1 54.7 1.8 27.9 21.1 27.4 46.4 26.0 32.9

InternVL3-38B 52.9 34.7 5.0 49.4 53.9 49.1 67.9 36.2 43.6
InternVL3-8B 48.6 42.0 6.1 35.9 45.7 53.8 63.9 35.8 41.5
Mistral-Small-3.1-24B 57.6 28.7 12.0 45.5 36.0 47.2 53.3 36.3 39.6
Llama-3.2-11B-Vision 17.8 55.8 39.3 32.1 41.6 35.8 53.8 23.2 37.4
Qwen2.5-VL-72B 59.8 22.9 8.6 31.0 34.7 38.7 55.1 35.6 35.8
VideoLLaMA3-7B 35.4 10.2 5.8 31.4 40.3 43.4 54.8 33.5 31.8
Qwen2.5-VL-7B 51.5 23.4 6.1 23.8 27.1 28.3 47.6 35.3 30.4
Llama3-LLaVA-Next-8B 48.7 34.5 15.5 22.3 25.2 28.3 36.7 27.1 29.8
LLaVA-NeXT-Video-7B 28.0 46.6 25.9 23.6 28.2 24.5 34.8 22.5 29.3
Phi-3.5-Vision 38.5 4.2 0.5 23.2 27.3 37.7 52.7 26.0 26.3

Table 3: Model performance (i.e., accuracy %) on VF-EVAL. CP denotes “Commonsense and physics”.

Task-Specific Performance Variations Perfor-
mance varies across different tasks and models.
We summarize our findings as follows: (1) In the
Error Awareness task, MLLMs perform better in
the “Quality” aspect than in the “CP”. From our
analysis, this is because MLLMs lack knowledge
of video quality assessment. The better perfor-
mance in the “Quality” aspect of the Error Aware-
ness task could be attributed to LLM cannot de-
tect the subtle violation in “CP”. (2) In the Error
Type Detection task, MLLMs perform worse than
expected. As current MLLMs are aligned with hu-
man preferences, they may still fail to distinguish
the morality violation in AIGC videos. This high-
lights MLLMs’ limitations in effectively utilizing
visual inputs and their inadequate consideration of
moralities depicted in videos.

Challenges on AIGC videos. MLLMs lack
knowledge of video generation. In task Coher-
ence Validation, although they can largely iden-
tify the misalignment between the prompt and the
video, MLLMs cannot always generate a better
prompt for video generation. The prompts they
provide are often simple expansions of the origi-
nal prompt. Furthermore, as shown in Table 3,
MLLMs may easily fail on reasoning tasks involv-
ing AIGC videos. Due to issues such as blurri-
ness, sudden appearances, and disappearances in
AIGC videos, MLLMs often struggle to capture
all the details. Additionally, the unusual structure
and abrupt changes in the videos may contradict
MLLMs’ commonsense knowledge, resulting in
worse performance on tasks Coherence Validation

Temporal Reasoning

Object ReasoningSpatial Reasoning

Action Reasoning

Information Synopsis Tasks Counting Problems

0.25
0.35

0.45
0.55

GPT-4.1
Gemini-2.0-Flash

InternVL3-38B
Qwen2.5-VL-72B-Instruct

Figure 4: Performance comparison within four models
on six reasoning sub-tasks.

and Reasoning Evaluation. Specifically, we pro-
vide a detailed analysis of the error cases in §5.2.

5 Analysis

We next present an in-depth analysis of MLLM
reasoning capabilities and provide a detailed er-
ror analysis. Additionally, we explore methods
to enhance MLLM feedback generation through
fine-tuning techniques.

5.1 Reasoning abilities analysis

As mentioned in Section 3.1, we classify Reasoning
Evaluation task within six fine-grained reasoning
abilities. As illustrated in the Figure 4, GPT models
and InternVL3-38B demonstrate stronger capabili-
ties, particularly in tasks such as “Information Syn-
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opsis”, “Object Reasoning”. This may be attributed
to their incorporation of more knowledge. In con-
trast, models perform relatively worse on tasks like
“Spatial Reasoning”, “Temporal Reasoning”, high-
lighting the challenges faced by these models in
achieving competitive performance across various
video understanding tasks.

5.2 Error Analysis
To comprehensively evaluate the limitations of
MLLMs, we perform detailed case studies and er-
ror analyses. The identified errors fall into these
categories: (1) Misconception of video creation:
This mistake is observed in Coherence Validation
tasks. When asked to enhance a prompt, MLLMs
often adhere closely to the initial prompt and give
an expansion, highlighting a lack of understand-
ing in video creation. (2) Excessive Dependence
on Textual Cues: This issue is prevalent in Error
Awareness and Error Type Detection tasks, where
MLLMs struggle with Multiple-choice questions re-
quiring the identification of options violating phys-
ical laws. Faced with distractors that also breach
such laws, MLLMs fail to differentiate and choose
randomly. (3) Neglect of Critical Details: This
problem is evident across the four tasks proposed.
MLLMs often miss crucial elements (e.g.,, blurri-
ness, wind direction, camera shaking). (4) Over-
reliance on Commonsense Knowledge: This typ-
ically occurs in Reasoning Evaluation tasks. For
instance, in Figure 1, when asked “How many
balls are on the table tennis table?” some MLLMs
might incorrectly answer “Only one ball” based on
commonsense assumptions. Additional examples
and illustrations are provided in Appendix C.2.

5.3 REPROMPT Analysis
To assess the effectiveness of MLLM feedback in
enhancing video generation, we examine whether
human-in-the-loop feedback leads to improved re-
sults. As described earlier, annotators revise the
LLM-generated prompts based on the content of
the corresponding videos. These revised prompts
are then used to re-generate the videos—a process
we refer to as REPROMPT. We evaluate whether
the newly generated videos exhibit higher quality
compared to the originals.

The experiment is conducted on a dataset of 300
videos. Human judges are tasked with evaluating
the quality of the re-generated videos in a pairwise
comparison against the originals. For each video
pair, annotators assess four aspects: subject con-

Metrics Win Rate

Subject Consistency 56.7
Background Consistency 53.3
Aesthetic Quality 57.6
Image Quality 50.7

Table 4: Results (%) of REPROMPT.

sistency, background consistency, aesthetic appeal,
and overall image quality. Appendix B.3 presents
the detailed definitions of these evaluation criteria.

Table 4 presents the win rates of the revised
videos across these aspects. Overall, we find that
videos generated from human-revised prompts con-
sistently outperform the originals. Notably, im-
provements are most evident in subject consistency
and aesthetic appeal. However, gains in visual qual-
ity and background consistency are more modest,
likely reflecting inherent limitations of the under-
lying video generation model. These results sug-
gest that MLLMs have strong potential to enhance
video generation, particularly if they can be more
closely aligned with human preferences. When
used as feedback providers or critics, MLLMs
could drive meaningful improvements in genera-
tion quality. This perspective is further supported
by recent work (Lee et al., 2024), which shows
that integrating MLLM feedback into more sophis-
ticated generation pipelines leads to notable gains
in video quality.

6 Conclusion

Our experiments reveal that frontier MLLMs face
significant challenges in VF-EVAL tasks involving
AIGC videos. This poor performance is attributed
to the unique characteristics of AIGC videos.
AIGC videos often exhibit temporal inconsisten-
cies, such as abrupt changes in motion or unnatural
continuity between frames, and unrealistic object
behaviors that defy commonsense. These chal-
lenges, combined with the semantic ambiguities
and misalignment between visuals and textual in-
put, make it difficult for MLLMs to generate feed-
back for video quality assessment. However, from
our re-prompt pipeline, we observe that if MLLMs
can better align with human preferences in video
generation, their feedback becomes more valuable
and trustworthy. Additionally, our experiments sug-
gest that integrating other methods, such as com-
puter vision techniques and in-context learning, can
further enhance feedback precision.
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Limitations

In this section, we outline three limitations of this
study, each of which presents opportunities for fu-
ture improvements. (1) First, only text-to-video
models are considered, whereas videos generated
from images may exhibit other types of error cases
that are not addressed in this study. (2) Second,
the design of the re-prompt pipeline is relatively
simplistic, as it only incorporates textual feedback
from humans. The specific positions of error cases
are not included, which limits the granularity of the
feedback. (3) Third, cross-modal videos are not
included in our dataset. Since some video gener-
ation models also provide audio information, this
omission may overlook more complex scenarios
that arise from multimodal interactions.
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A VF-EVAL Annotation

A.1 Annotator Biography
The detailed biographies of the annotators involved in VF-EVAL construction are presented in Table 5.

ID Year Major #Videos Inter Agreement

1 Graduate or above Geology 162 78.4%
2 Fourth year Agricultural Resources and Environment 200 78.9%
3 Third year Journalism 136 91.8%
4 Fourth year Electrical Engineering and Automation 154 90.3 %
5 Graduate or above Mechanical Engineering and Automation 162 86.1%
6 Graduate or above Electrical Engineering 160 88.5%
7 Graduate or above Structural Engineering 164 89.2%
8 Graduate or above Electronics and Information 279 76.9%
9 Graduate or above Clinical Medicine 190 86.5%
10 Fourth year Electrical Engineering and Automation 182 91.3%
11 Graduate or above Mechanical Engineering 80 83.2%
12 Fourth year Polymer Materials and Engineering 128 98.9%
13 Second year Cultural Heritage and Museum Studies 165 93.7%
14 Second year Computer Science and Technology 65 93.4%
15 Graduate or above Computer Science and Technology 72 98.1%

Table 5: Annotator Details

A.2 Data Annotation and Validation
The data annotation process primarily takes place on Label Studio, as mentioned above. To ensure the
quality of the dataset, each video is reviewed by a separate reviewer. We also provide the annotator
agreement, as shown in Table 5. For the annotators whose Annotator Inter Agreement score is less than
80%, we require viewer to recheck his annotations.
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A.3 Annotation Interface and Guideline
We employ Label Studio (Tkachenko et al., 2020-2024) as our annotation platform. As shown in Figure 5,
we have five annotation tasks. Q1 is related to the Coherence Validation task, Q5 to the Reasoning
Evaluation task, and Q2–Q4 to the Error Awareness and Error Type Detection tasks. For each annotator,
they are first asked to complete a trial task, which involves annotating 10 videos. (1) For Q1, annotators
are required to check for misalignment between the video and the text prompt. (2) For Q2–Q4, annotators
are asked to select a specific error type. For example, for Q3, they can choose from categories such as
"commonsense," "gravity," "lighting," and so on. Additionally, for Q2–Q4, annotators are asked to mark
an area in the video that corresponds to the error type they have selected. (3) For Q5, human annotators are
tasked with designing a question based on the specialties of AIGC videos, and the question they design
needs to require reasoning.

Figure 5: UI of annotation.
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B Experiment Setup

B.1 MLLM Model Configuration
Table 6 presents the details of model configuration for our experiments.

Organization Model Release Version Support
Video?

# Input
Frames

Inference
Pipeline

Proprietary Models

OpenAI GPT-4.1 2025-4 gpt-4.1-2025-04-14 ✗ 16 APIGPT-4.1-mini 2025-4 gpt-4.1-mini-2025-04-14 ✗ 16

Google Gemini-2.0-Flash 2024-12 gemini-2.0-flash ✓ 1fps API

Open-source Multimodal Foundation Models

LMMs-Lab LLaVA-NeXT-Video-7B 2024-8 LLaVA-NeXT-Video-7B-hf ✓ 16 vLLM
llama3-llava-next-8b-hf 2024-7 llama3-llava-next-8b-hf ✗ 2 vLLM

Microsoft Phi-3.5-Vision 2024-7 Phi-3.5-vision-instruct ✗ 16 vLLM

Shanghai AI Lab InternVL3-8B 2025-4 InternVL3-8B ✗ 4 vLLM
InternVL3-38B 2025-4 InternVL3-38B ✗ 4 vLLM

Alibaba Qwen2.5-VL-7B 2024-9 Qwen2-VL-7B-Instruct ✓ 8 vLLM
Qwen2.5-VL-72B 2024-9 Qwen2-VL-72B-Instruct ✓ 8 vLLM

DAMO VideoLLaMA3 2025-1 VideoLLaMA3-7B ✓ 1fps HF

Meta Llama-3.2-11B-Vision 2024-9 Llama-3.2-11B-Vision-Instruct ✗ 8 vLLM

Mistral AI Mistral-Small-3.1-24B 2025-3 Mistral-Small-3.1-24B-Instruct-2503 ✗ 8 vLLM

Table 6: Details of the multimodal models in VF-EVAL. The “Source” column lists URLs for proprietary models
and Hugging Face names for open-source models. The “# Input Frames” column shows the default input frames,
chosen from 2, 4, 8, 16, based on the context window. “HF” refers to Hugging Face.
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B.2 Prompts for Evaluation
As mentioned, we primarily use the chain of thought (COT) technique to prompt MLLMs and obtain
the raw response. The prompt for Yes-Or-No questions is shown in Figure 6, and the prompt for
Multiple-choice questions is shown in Figure 7. For Open-Ended questions, we have two tasks: CV
(Coherence Validation) and RE (Reasoning Evaluation) to benchmark. The prompt for CV is shown in
Figure 8, and the prompt for RE is shown in Figure 9.

As we benchmark a wide range of MLLMs, we do not expect that each model will output a well-
formatted (i.e., JSON) response. Thus, we use LLMs (i.e., GPT-4o) to extract the answer from the raw
response of those MLLMs. For Yes-Or-No and Multiple-choice questions, the LLM is used to directly
extract the response; the corresponding prompts are shown in Figure 10 and Figure 11. For Open-Ended
questions, the LLM is required to compare the matching extent between the response of the MLLM and
the correct answer. The prompt is shown in Figure 12.

[YN_COT_PROMPT]
Question: {question}
Answer the given question. The last line of your response should be of the following format: "Answer:
Your Answer" (’yes’ or ’no’), where ANSWER is the final answer of the questions. Think step by step
before answering.

Figure 6: Prompt for Yes-Or-No questions.

[COT_PROMPT]
Question: {question}
Options: {optionized_str}
Solve the given multiple-choice question step by step. Begin by explaining your reasoning process clearly
and thoroughly. After completing your analysis, conclude by stating the final answer using the following
format: ’Therefore, the final answer is: {final_answer}.

Figure 7: Prompt for Multiple-choice questions.

[CV_SHOT_PROMPT]
Question: {question}
Answer the given question. The last line of your response should be in the following format:
"Answer: Your Answer" (without quotes), where Your Answer is the final answer to the question.
Think step by step before answering.
Here are some example answers:
1. "Basically in line with the situation, but other elements need to be added. The blue petal sunflower
turns with the sun.",
2. "Completely inconsistent with the text description. It should be changed to: One person holds a
delicate smoke machine, which releases a large amount of gas in all directions."
3. "The text seen through the glass does not match the original text. Look at the text through a glass of
water."

Figure 8: Prompt for CV(Coherence Validation) tasks.
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[CV_SHOT_PROMPT]
Question: {question}
Answer the given question. The last line of your response should be in the following format: "Answer:
Your Answer" (without quotes), where Your Answer is the final answer to the question. If necessary, you
can answer with phrases like ’not sure’, ’violates reality’, etc. Think step by step before answering. Here
are some examples:
1. Q: "Why does the amount of white sugar in the video increase as the spoon stirs?"
A: "In real life, sugar does not increase with stirring a spoon; the content in the video goes against common
sense."
2. Q: "What color pants are the skaters wearing?"
A: "Sometimes they are white, sometimes they are black."
3. Q: "How many cars passed by?"
A: "6-10 vehicles. At the beginning of the video, there is one vehicle, and later many vehicles flash in the
frame, suggesting that this video might not depict a real-life scene."

Figure 9: Prompt for RE(Reasoning Evaluation) questions.

[EXTRACT_YESNO_RESPONSE_PROMPT]]
Given a string, extract the reasoning process and the final answer from the string.
Output a JSON object with the following structure:

"reason": "The reasoning process derived from the string.",
"answer": "yes" # The final answer either "yes" or "no".

Please don’t include any other information in your response.
The string is response.

Figure 10: Extraction prompt for Multiple-choice question.

[EXTRACT_MULTICHOICE_RESPONSE_PROMPT]
Given a string, extract the reasoning process and the final answer from the string.
Output a JSON object with the following structure:

"reason": "The reasoning process derived from the string.",
"choices": "A" # The final answer, represented as an alphabet character (e.g., "A", "B", etc.).
Please don’t include any other information in your response.
The string is response.

Figure 11: Extraction prompt for Multiple-choice question.
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[EXTRACT_OPENEND_RESPONSE_PROMPT]
Given the question, evaluate whether the response completely matches the correct answer.
First, check the response and please rate score 0 if the response is not a valid answer. Please rate score 2 if
the response completely or almost completely matches the correct answer on completeness, accuracy,
and relevance. Please rate score 1 if the response partly matches the correct answer on completeness,
accuracy, and relevance.
Please rate score 0 if the response doesn’t match the correct answer on completeness, accuracy, and
relevance at all. Please only provide the result in the following format: "Score:",
No other information should be included in your response.

Output a JSON object with the following structure:

"reason": "The reasoning process derived from the string.",
"score": 0 # The final answer, represented as an number (e.g., "0", "1", "2").

Please don’t include any other information in your response.

Question: question
Response: response
Correct Answer: answer

Figure 12: Extraction prompt for Open-Ended question.
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B.3 REPROMPT Details
We provide the definition of the metrics used in REPROMPT experiments here. (1) Subject Consistency:
The degree to which the appearance, identity, or structure of the main subject remains stable across frames.
(2) Background Consistency: The temporal coherence and spatial stability of the background throughout
the video. (3) Aesthetic Quality: The overall visual appeal of the video based on artistic and stylistic
elements. (4) Image Quality: The technical clarity and fidelity of each frame in the video.

And the final score is calculated as follows:

Win Rate =
Nhuman

Ntotal
(5)

where Nhuman denotes the number of video pairs in which the human-generated video is preferred, and
Ntotal is the total number of video pairs evaluated.
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C Case Study and Error Analysis

C.1 Examples of Reasoning Tasks
We aim to benchmark the reasoning ability of MLLMs over six different reasoning tasks, including spatial
and temporal reasoning, action and object reasoning, counting problems, and information synopsis. We
exemplify some scenarios of these tasks. (1) Spatial reasoning requires the MLLM to deduce the position
or relative positioning of objects within the video. (2) In our dataset, temporal reasoning focuses on
detecting anomalies that violate temporal correctness. (3) Action reasoning involves recognizing actions
or distinguishing unusual actions based on objects or contextual cues. (4) Object reasoning primarily
assesses the MLLM’s ability to identify object properties or correctly name objects. (5) For counting
problems, the MLLM needs to detect the sudden appearance or disappearance of objects in videos. (6)
Finally, information synopsis requires the MLLM to summarize the video’s theme or infer its possible
background. For clarification, we provide examples of these reasoning tasks as shown in Figure 13.

Q: Please point out where the astronaut walks after jumping off the moon.
A: (1) After the astronaut jumps off the moon, it seems as if they've 
detached from it, walking directly in space. (2) However, the way 
astronauts walk in space appears as if they're in direct contact with 
some flat surface, which is relatively rare in the universe.

Q: According to the video content, please answer how does the ice 
block-like object move in the video?
A: Some ice cubes remained fixed on the table, while others floated into 
the air. This is really rare in daily life. 

A: The video could be from a sci-fi movie, where a flying ball gradually 
sinks into the mountain, merging with its surface. 

Q: What type of movie is the scene in the video most likely to occur in, a 
documentary, sci-fi, or something else?

Q: Please describe the changes in the coffee within the cup.
A: The coffee in the cup initially expands, then more coffee is added 
inside, but the amount of coffee remains the same.

(a) Spatial Reasoning (b) Temporal Reasoning

(c) Action Reasoning

(g) Information Synopsis

Q: How many eyes do the fish has? 
A: The number of eyes is larger than 3. Because the fish have two eyes 
on one side and possibly another on the other side.  

(e) Counting problems

Q: Please recognize the object that child is seating in ? 
A: From the background, the object is a real train. But the ratio between 
the children and the train is incorrect. 

(d) Object Reasoning

Figure 13: Detailed examples of reasoning tasks.
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C.2 Error Analysis
As described in section 5.2, we have classify the errors of MLLM into four categories. Considering
Qwen2-VL-72B-Instruct have a comparable performance against other models, we provide the error
cases of it as follows: (1) Misconception of video creation: Figure 14 shows that the MLLM doesn’t
understant how to generate a good video prompt. It may simply add more information and constraints
to the original prompt. (2) Excessive Dependence on Textual Cues: Figure 15 demonstrates that the
MLLM may rely on its prior knowledge rather than observing details in the video. (3) Neglect of Critical
Details: Figure 16 shows that the MLLM tends to answer questions while overlooking critical details
in AIGC videos. (4) Over-reliance on Commonsense Knowledge: Figure 17 illustrates the model’s
over-reliance on textual information.

[Question] : Analyze the mismatch between the video and the original text that was used for its 
generation. Based on this, propose a revised prompt that can be used to regenerate the video 
content. The original text is: Cut fruit exposed to air dries and develops a wrinkled texture. If there is 
no discrepancy, you can answer largely correlated with the video. If there may be no room to 
improve, you can answer that the original text is fairly well.

[LLM Response]: Answer: The video effectively showcases the process of slicing the fruits and 
observing the changes in their texture as they are exposed to the air. 
New Prompt: \"Create a video that demonstrates the process of cutting citrus fruits and observing 
how they dry and develop a wrinkled texture when exposed to the air.
[Correct Answer]:  The video illustrating the cut action while ‘cut’ is not needed to shown in the 
video. New prompt: There is a wrinkled texture on the freshly cut apple. 
[Error reason analysis]: (1) The MLLM fails to recognize the wrinkled texture and thinks the cut is 
a verb. (2) The newly prompt doesn’t recognize the human intention on the wrinkle texture and 
provide a long video generation prompt, which will confuse the video generation model. 

Figure 14: Misconception of Video Creation

[Question]: Identify any quality issues in the video, including low resolution, blurriness, or distortion 
of the images.
[Choices]:  
A. The grass in the foreground is disappearing intermittently.
B. The tree shadows are flickering inconsistently. 
C. The sun is pulsating erratically in brightness.
D. The heart of the sunflower is twisting.

[LLM Response]: A. 
[Correct Answer]:  D. 
[Error reason analysis]: The MLLM fails to analyze the choices by video content but heavily relies on 
textual information in the question. As a result, it randomly chooses answer A. 

Figure 15: Excessive Dependence on Textual Cues
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[Question] : Given the video, please identify if there is any quality issuse in the video.  Quality issues 
include but are not limited to: low resolution, blurry, distorted images, camera problems or aesthetics.

[LLM Response]: No. After analyzing the video, there are no apparent quality issues such as low 
resolution, blurry, distorted images, camera problems or aesthetic issues. The objects in the video are 
well-represented, and there are no obvious inconsistencies or anomalies observable. In conclusion, 
the video appears to be of good quality and can be accurately assessed.
[Correct Answer]:  Yes. 
[Error reason analysis]: The MLLM fails to analyze the fact that the size proportion between the 
hand and the cup is incorrect. And there exists distortion on the human hand. 

Figure 16: Neglect of Critical Details

[Question] : Why does the balloon fall down after flying up in the video? 

[LLM Response]: The balloon falls down after flying up in the video because it loses its buoyancy. 
This can happen for several reasons: the helium inside the balloon escapes, the balloon is punctured 
or damaged, or the weather conditions change. Balloons rely on the principle of buoyancy, where 
the lighter-than-air helium lifts the balloon against gravity. If the helium escapes or the balloon is no 
longer intact, the balloon will lose its buoyancy and descend to the ground. Therefore, the reason 
why the balloon falls down after flying up in the video is because it loses its buoyancy. 
[Correct Answer]:  The balloon may fall due to a collision with birds in the air, leading to potential 
leaks, but it should not turn into a ball once it lands. 
[Error reason analysis]: The MLLM fails to analyze the choices by video content but heavily rely on 
its commonse and physical knowledge. As a result, it fails to produce a satisfying answer. 

Figure 17: Over-reliance on Commonsense Knowledge
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