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Abstract

Open-world planning with incomplete knowl-
edge is crucial for real-world embodied AI
tasks. Despite that, existing LLM-based plan-
ners struggle with long chains of sequential
reasoning, while symbolic planners face com-
binatorial explosion of states and actions for
complex domains due to reliance on ground-
ing. To address these deficiencies, we introduce
LLM-REGRESS, an open-world planning ap-
proach integrating lifted regression with LLM-
generated affordances. LLM-REGRESS gen-
erates sound and complete plans in a compact
lifted form, avoiding exhaustive enumeration
of irrelevant states and actions. Additionally,
it makes efficient use of LLMs to infer goal-
related objects and affordances without the
need to predefine all possible objects and af-
fordances. We conduct extensive experiments
on three benchmarks and show that LLM-
REGRESS significantly outperforms state-of-
the-art LLM planners and a grounded planner
using LLM-generated affordances. Our experi-
mental results highlight the potential of LLM-
REGRESS for sound and complete open-world
planning for embodied AI tasks.

1 Introduction

Planning in open-world environments with incom-
plete knowledge is a necessary requirement for
embodied agents to perform many real-world tasks.
For instance, when tasked with “clean the kitchen”,
an agent must infer the possible presence of certain
objects (e.g., are there dirty plates to be cleaned?),
their relational information (e.g., are there plates on
the dining table or the kitchen counter?), and deter-
mine appropriate action affordances (e.g., should
the plate be cleaned in a sink instead of using a
broom?).

Although classical planning methods provide
sound and complete solutions for long-horizon
planning tasks, they rely heavily on the closed-
world assumption (CWA), which requires a fully

specified initial state (Ghallab et al., 2004). Pre-
vious efforts to adopt classical planning methods
for open-world tasks typically involve solving a
“closed” sub-problem and re-planning as new in-
formation becomes available (Perera et al., 2015;
Jiang et al., 2019; Hanheide et al., 2017). Despite
these adaptations, existing open-world planners
face two major limitations: (1) the reliance on pre-
defined object types and action affordances, and
(2) the challenge of determining which objects and
actions are relevant to the goal to avoid a com-
binatorial explosion of reasoning about irrelevant
information. These limitations make the current
approaches impractical for dynamic, open-world
settings, such as households, where thousands of
unique objects may exist in various configurations.

In a different vein, large language models
(LLMs) have demonstrated remarkable common-
sense reasoning capabilities (Yao et al., 2024;
Ouyang et al., 2022), a crucial aspect of open-world
tasks. Unlike classical planning methods, LLMs do
not require structured inputs or explicit knowledge
modelling, making them an attractive alternative to
solving goal-oriented open-world problems (Yao
et al., 2022; Shinn et al., 2024). However, growing
evidence raises concerns about the effectiveness of
LLMs in long-horizon planning tasks (Valmeekam
et al., 2023). LLMs are also prone to hallucination
and are highly sensitive to prompt input (Huang
et al., 2023), undermining their reliability for prac-
tical applications.

In this work, we propose to combine lifted re-
gression with LLM commonsense reasoning to ad-
dress open-world planning challenges for embod-
ied agents. Lifted regression is sound and complete
(Ghallab et al., 2004; Liu and Lakemeyer, 2010).
Critically, instead of searching from the initial state,
lifted regression employs goal-directed backward
search to derive relevant state descriptions of sub-
goals, thus filtering out irrelevant objects and ac-
tions. Furthermore, the plans generated by lifted
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Goal: "Put a clean plate in the drawer"

There is an egg, a knife, a salt
shaker, a bottle of dish soap, a
loaf of bread on the table.
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{isClean(?x), isPlate(?x), inReceptacle(?x, ?y), isDrawer(?y)}

Goal Parser
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Clean(?x,?y)
   parameters: {?x, ?y}
   precondition: {canClean(?x, ?y),
                          holding(?y)}
   add: {clean(?x)} 
   del: {}

PutInside(?x, ?y)
   parameters {?x, ?y}
   precondition {holding(?x)}
   add: {inside(?x, ?y)} 
   del: {holding(?x)}
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isCool(apple3)
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Knowledge Base (KB)

{canClean(sink, plate), canCool(fridge, plate), …}

Affordances Reasoner

{“plate”, “fridge”, “sink”, ...}

Object Parser

Subgoal1: {isPlate(?x), isDrawer(?z), 
                  canClean(?z, ?x), inside(?x, ?y)} 
Plan1: {Pickup(?x), Clean(?x, ?z), PutInside(?x, ?y)}
… .

Input

LLM-based

LLM-based

Figure 1: Illustrative Example for LLM-REGRESS. The LLM-REGRESS Agent has two major components:
Open-World Lifted Regression Planner and LLM-Based Affordances Reasoner. The former is responsible for
regressing lifted plans and the latter for parsing objects’ names as well as generating their affordances.

regression are parameterized with variables rather
than specific objects, eliminating the need for pre-
defined objects or the exhaustive enumeration of
object-action combinations.

To this end, we introduce LLM-REGRESS, an
open-world planning approach that leverages lifted
regression to produce sound and complete plans
while utilizing large language models (LLMs) to in-
fer unseen objects and action affordances from nat-
ural language observations. An overview of LLM-
REGRESS can be seen in Figure 1. We perform
experiments on the ALFWorld dataset (Shridhar
et al., 2020), a diverse embodied household bench-
mark that is partially observable with complex af-
fordance reasoning (an example task is shown in
Appendix A). Additionally, we evaluated LLM-
REGRESS on two curated datasets, ALFWorld-
Afford and TableTop-Afford, which introduce more
complex goals and affordances.

We show that LLM-REGRESS outperforms
other baselines on all three benchmarks while using
only a small fraction of the LLM tokens of com-
peting methods and without relying on few-shot
examples. The main contributions of this work are
as follows:

• We are the first to leverage lifted regression to
open-world embodied AI planning, generating
sound and complete lifted plans without exhaus-
tive state and action enumeration.

• We introduce LLM-REGRESS, an open-world
planning approach that integrates lifted regres-

sion with LLMs, enabling reasoning without pre-
defined object types or action affordances.

• LLM-REGRESS outperforms existing LLM-
based and grounded planners (using LLM-
generated affordances) for 3 embodied AI bench-
marks in success rate, query token efficiency, and
total task execution time.

2 Background and Related Work

LLM-Driven Embodied AI Planning. Many re-
cent works have investigated LLM’s planning ca-
pability for embodied agents. Works such as (Ahn
et al., 2022; Valmeekam et al., 2023; Hazra et al.,
2024) use LLMs as heuristics to choose the best
action to fulfill the agent’s goal. Other works like
(Yao et al., 2022; Shinn et al., 2024; Huang et al.,
2022) rely on LLMs to directly generate plans and
iteratively refine them via self-reflection. Retrieval-
based approaches have also been explored to re-
trieve past data to improve decision-making (Wang
et al., 2023, 2024). Despite showing promising
results, LLM-based planners still lack the inter-
pretability and robustness required for many em-
bodied AI problems (Valmeekam et al., 2023).

Grounded Forward Planning with LLMs. Most
recent works have attempted to integrate LLMs
with classical planning approaches (Arora and
Kambhampati, 2023; Guan et al., 2023; Xie et al.,
2023a; Hazra et al., 2024). The state-of-the-art
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Lifted Regression 

Planning Model Pickup(apple1)

Initial Sate:
isPlate(plate1)

isApple(apple1)

canPickup(apple1)

Goal: 
isClean(?p) 
isPlate(?p)

State:
holding(apple1)

isApple(apple1)

canPickup(apple1)

Pickup(plate1)

Clean(plate1, apple1)

Clean(?x, ?p)

Subgoal:
holding(?p)
isPlate(?p)

canClean(?x, ?p)

Subgoal:
canPickup(?p)
isPlate(?p)

canClean(?x, ?p)

Clean(?x, ?p)

Pickup(?p)

Pickup(?p)

𝒫 = { holding/1, canPickup/1, canClean/2, 
      isClean/1, isPlate/1 } 
𝒜 = { PickUp(?x), Clean(?y, ?z) } 
O = { plate_1 } 
G = { isClean(?p), isPlate(?p) } 
I = { isPlate(plate_1) } 

Action: PickUp
---------------------
params(PickUp) = { ?x }
pre(PickUp) = { canPickup(?x) }
add(PickUp) = { holding(?x) }
del(PickUp) = { }

Action: Clean
---------------------
params(Clean) = { ?y, ?z }
pre(Clean) = { holding(?z), canClean(?y, ?z) }
add(Clean) = { isClean(?z) }
del(Clean) = { }

Grounded Forward Search

Clean(apple1, plate1)

.......

Figure 2: Grounded Forward Search vs. Lifted Regression. The results demonstrate that Grounded Forward
Search (top) fails to generate feasible without a complete initial state, whereas Lifted Regression(bottom) success-
fully produces plan traces and subgoals, enabling open-world reasoning.

planners operate under a closed-world assump-
tion (CWA) and rely on forward search in fully
grounded task representations (Helmert, 2006;
Hoffmann and Nebel, 2001; Calvanese et al., 2018).
As a result, grounded forward planning methods
can only generate valid plans if all relevant objects
are known—an unrealistic scenario in open-world
settings. When faced with partial knowledge, an
agent must exhaustively enumerate actions across
all objects, leading to a combinatorial explosion
(as the number of grounded actions grows expo-
nentially with the number of parameters and ob-
jects). Consequently, most existing hybrid planning
methods require a fully known initial state with a
limited set of predefined object types and action
affordances.

Lifted Regression Planning. An alternative sound
and complete approach to grounded forward search
is lifted regression planning (Reiter, 2001; Ghal-
lab et al., 2004; Sanner and Boutilier, 2009). In-
stead of searching forward from the initial state, it
performs a backward search from the goal. Crit-
ically, lifted regression operates in a parameter-
ized space where state and action descriptions use
variables instead of specific ground objects, elim-
inating the need for an exhaustive enumeration
of states and actions. While most lifted regres-
sion algorithms are designed for closed-world prob-
lems, their lifted representation also makes them
suitable for open-world settings, where variables
can be instantiated only when appropriate objects
are observed. Intuitively, a lifted plan serves as a
plan template, focusing on object properties rather
than specific instances—e.g., instead of searching
for a specific “sink3 to clean a plate”, it identi-

fies objects via existentially quantified variables
(e.g. ?x) satisfying relevant affordances, such as
“some ?x that can clean a plate”. The integration
of LLMs with lifted regression remains largely un-
explored, and we demonstrate for the first time the
potential of combining lifted regression with LLMs
to solve open-world embodied AI problems.

3 Methodology: LLM-REGRESS

In this section, we provide a detailed overview
of LLM-REGRESS and its two key components:
the Open-World Lifted Regression Planner and
the LLM-Affordances Reasoner. An overview of
LLM-REGRESS is shown in Figure 1. An example
of LLM-REGRESS solving an ALFWorld task is
shown in Appendix B.

3.1 Language Interface to Lifted Planning

In this work, we focus on language-based embod-
ied AI tasks, where both instructions and obser-
vations are represented in natural language. Fol-
lowing the existing model-based approaches (Song
et al., 2023; Chen et al., 2024; Huang et al., 2022),
we assume the agent possesses a set of high-level
skills encoded as action models using STRIPS-like
syntax (Fikes and Nilsson, 1971). Before the plan-
ner can search for feasible plans, the agent’s goal
must first be translated from natural language into
a formal symbolic representation.

3.1.1 Goal Parser
We adopt the goal conversion methods from (Song
et al., 2023; Xie et al., 2023b), which can reliably
transform natural language instructions into plan-
ning goals by prompting LLMs with the agent’s
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action model with few-shot examples. An exam-
ple of this prompt is provided in Appendix C. As
shown in Figure 1, when the agent receives the
instruction:

“Put a clean plate in the drawer.”

it translates this into the following structured goal
representation:

{isClean(?x), isPlate(?x),
inReceptacle(?x, ?y), isDrawer(?y)}.

3.1.2 Open-World Planning Formalism
With a structured action model and goal, we can
formalize open-world regression problems. We
use a set-theoretic representation to define the
open-world lifted regression planning problem as
Π = ⟨P,A, O,G, I⟩, where P is a set of predicate
symbols, A is a set of action schemas, O is the
set of known objects, G is the agent’s goal, and I
represents the agent’s initial knowledge. An atom
pi(Ti) consists of a predicate symbol pi ∈ P and
an n-tuple of terms T = ⟨t1, . . . , tn⟩, with vari-
ables in T denoted as vars(T ). An atom is lifted if
vars(T ) ̸= ∅. Each action schema A is defined
as A = {params(A), pre(A), add(A), del(A)},
where params(A) is the set of parameters, pre(A)
is the precondition, add(A) consists of predicates
added to a subgoal, and del(A) contains predicates
removed from a subgoal. Figure 2 illustrates a for-
malized example of an open-world planning prob-
lem (i.e., only a subset of objects O are known in
the initial state).

3.1.3 Lifted Subgoal and Plans
With a formalized planning model, we can then per-
form open-world lifted regression through a back-
ward search from the goal. This process generates
a set of lifted plans along with their correspond-
ing subgoals. A lifted subgoal can be interpreted
as the preconditions that must be satisfied to exe-
cute a plan. An example of subgoal, illustrated in
Figure 2:

{isPickup(?p), isPlate(?p), canClean(?x, ?p)} ,

which states that the agent needs to “find some
plate ?p and some ?x to clean the plate with” in
order to excute the plan:

< PickUp(?p), Clean(?x, ?p) >

3.1.4 Lifted Regression Operations
Regression planning begins with the goal and ap-
plies regression operations (inverse of progression)

for only relevant actions until the initial condition
is met or a stopping criterion is reached. We define
both concepts as the following:

• RELEVANT(a, s) = (s ∩ (add(a) ∪ del(a)) ̸=
∅) ∧ (s ∩ del(a) = ∅) ∧ (s ∩ add(a) = ∅) deter-
mines whether an action a contributes to achiev-
ing the subgoal s. An action is relevant if its
effects add something to the subgoal without con-
tradiction.

• REGRESS(s, a) = (s \ add(a)) ∪ pre(a) com-
putes the preceding subgoal s before executing
action a.

We also use other standard logical oper-
ations such as SUBSTITUTE, UNIFY, and
STANDARDIZE, defined in Appendix K.

Referring back to Figure 2, we want to determine
which action can be regressed from the goal. Notice
that add(Clean) contains isClean(?z), which can
be unified with isClean(?p) using the substitution
θ = {?z/?p}. Hence,

G ∩ add(Clean) ̸= ∅,

and since del(Clean) = ∅, the action Clean is
relevant with respect to G.

In contrast, add(PickUp) = {holding(?x)}
does not share any predicates with G, meaning

G ∩ add(PickUp) = ∅.

Thus, PickUp is not relevant for achieving G, while
Clean is.

The regressed subgoal REGRESS(G, Clean) is
given by:

G \ add(Clean(?y, ?p)) ∪ pre(Clean(?y, ?p))

= {isPlate(?p), holding(?p), canClean(?y, ?p)}.
3.1.5 Open-World Lifted Regression

Algorithm
Open-world lifted-regression takes a problem spec-
ification Π = ⟨P,A, O,G, I⟩ and a plan length
threshold τ , returning a set S of subgoals paired
with plans (action sequences). In each iteration, a
pair of subgoals and plan, (g, π), is dequeued from
the frontier. If π reaches length τ , the pair is added
to S, representing a feasible lifted plan; otherwise,
for each action in A, the action is standardized to
avoid variable conflicts and unified with g. If a
action is determine to be RELEVANT, the action
is appended to π and used to compute a regressed
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Algorithm 1 Open-World Lifted-Regression Π =
⟨P,A, O,G, I⟩ , τ
1: S ← {}
2: Frontier← {(G, π = [])}
3: Visited← {G}
4: while Frontier ̸= ∅ do
5: g, π ← POP(Frontier)
6: if len(π) = τ then
7: S.add((g, π))
8: else
9: RegressibleActions = {}

10: for each A in A do
11: A′ ← STANDARDIZE(A)
12: θ ← UNIFY(A′, g)
13: if RELEVANT(θ(A′), θ(g)) then
14: RegressibleActions.add(A′)
15: π.append(A′)
16: g′ ← REGRESS(θ(g), θ(A′))
17: if g′ not in Visited then
18: Visited.add(g′)
19: Frontier.add((g′, π))
20: end if
21: end if
22: end for
23: if RegressibleActions = ∅ and g′ /∈ Visited then
24: S.add((g, π))
25: end if
26: end if
27: end while
28: return S

goal g′ = REGRESS(g,A). If g′ is new, it is added
to the Visited set and enqueued in the frontier. If
no regressible action exists for a subgoal, (g, π) is
added to S. This process continues until the fron-
tier is empty, returning S. The details are outlined
in Algorithm 1.

3.2 Lifted Planning via Regression to
Affordances-driven Actions

Once the agent obtains lifted subgoals and plans
via regression, it explores and interacts with the
environment to discover objects that can satisfy a
subgoal, enabling plan execution. Each time the
agent interacts with the environment, it uses the
LLM Object Parser to extract a set of objects from
observations and save them as name strings. The
agent then checks whether the non-affordance por-
tion of any subgoals can be satisfied by agent’s
Knowledge Based (KB). If such a subgoal exists,
the agent generates object affordances via LLM
Affordances Query based on the list of observed
object name strings. Once the agent’s KB satisfies
a subgoal, it instantiates the variables in the lifted
subgoal and plan, and then executes the actions in
the plan sequentially. We call this module LLM Af-
fordances Reasoner. A detailed algorithm is shown
in Algorithm 2 with an explanation in Appendix L.

3.2.1 LLM Object Parser
In domains where observations can be expressed in
natural language, LLMs can directly extract objects
from descriptions and store them as name strings.
We assume the agent maintains a set of objects
O, initialized with known objects (e.g., those men-
tioned in the goal) and updated dynamically as it
discovers new ones during exploration and task ex-
ecution. Since objects are stored as name strings,
the agent does not require a predefined set of object
types. For example, if the agent encounters the
sentence:

“There is a table, a microwave, and an elephant in
the room.”

it can use an LLM to extract the object list:

O = {“table”, “microwave”, “elephant”}

without pre-predefining object types. The prompt
used for extraction is provided in Appendix D.

3.2.2 LLM Affordances Query
LLM affordances queries rely on two key com-
ponents: (1) a list of object name strings, i.e., O,
obtained via the LLM Object Parser, and (2) a pre-
defined set of affordance predicate types. When
the agent finds a subgoal that can be satisfied by
its current KB without affordances predicates, it
then queries the LLM to determine which existing
objects can satisfy the affordance portion of the sub-
goal. Using the example shown in Figure 2, let’s
assume the agent is currently holding a “plate”:

{holding(plate), isPlate(plate)} ⊆ KB

and observes a set of new objects:

O = {“table”, “apple”, “sink”}.

We want to determine whether the subgoal:

g = {isPlate(?p),
holding(?p), canClean(?x, ?p)}

can be satisfied. From agent’s KB, we can de-
termine that the non-affordances portion of g can
be satisfied. We then use LLM to query whether
canClean(?x, ?p) holds for some objects in O.
For example, if the LLM returns the object “sink”,
we can then add canClean(plate, sink) to the
KB, and the complete subgoal {holding(plate),
isPlate(plate), canClean(plate, sink)}
can be used to initiate a plan. The prompt for this
query is shown in Appendix E.
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Algorithm 2 LLM-Regress Reasoner
Require: LiftedPlans, O, KB, AffordPredTypes
1: FailedAff← {}
2: while G is not satisfied in KB do
3: for all (g, π) ∈ LiftedPlans do
4: ga ← {p ∈ g | type(p) ∈ AffordPredTypes}
5: gna ← g \ ga
6: if KB satisfies gna then
7: Fna = KB.qeury(gna)
8: Fa ← LLMAffQuery(Fna, FailedAff, O)
9: KB.add(Fa)

10: end if
11: if gna ∪ ga is satisfied then
12: for all a ∈ π do
13: a = SUBSTITE(a, Fa ∪ Fna)
14: Act(a)
15: if Act(a) fails then
16: FailedAff.add(Fa)
17: KB.remove(Fa)
18: else
19: PROGRESS(KB, a)
20: end if
21: end for
22: end if
23: end for
24: O ← O ∪ LLMObjectParser(RandomExplore())
25: end while

4 Experiments

We evaluate LLM-REGRESS against three embod-
ied AI benchmarks, and compare it with state-
of-the-art LLM planners and a grounded forward
search planner (with LLM-generated affordances).
We evaluate the results with respect to success rate
planning duration, and the number of tokens used
in queried LLMs.

4.1 Assumptions and Design Details

We assume a static environment with deterministic
actions. The agent is given a set of action schemas
without predefined object types (except for objects
specified in the goal) or action affordances. The
action schema follows a STRIPS-style syntax, as
in Appendices G and H. We use GPT-4o as the
underlying LLM for all baselines and conducted
all experiments on a computer equipped with a
modern Intel i7 processor and 32 GB of RAM.

4.2 Benchmarks

ALFWorld. ALFWorld (Shridhar et al., 2020) is
a text-based virtual household environment where
an agent must perform common household tasks
based on a set of natural language instructions. It
includes 134 environments spanning 6 different
task categories. The environment is designed to
support open-world reasoning, featuring partial ob-
servability, 125 distinct object types, and approx-

imately 93, 750 possible affordances among ob-
jects. These affordances define whether an object
(individually or in pairs) can be heated, cooled,
cleaned, or turned on/off. We do not provide ob-
ject types, which consequently requires the agent
to discover new objects dynamically during task
execution. Further details on ALFWorld can be
found in (Shridhar et al., 2020).

ALFWorld-Afford. AFLWorld tasks limit affor-
dances reasoning by restricting actions (e.g., heat-
ing only via a microwave, cooling via a fridge,
cleaning via a sink), which encourage memoriza-
tion over affordances reasoning. To address this,
we curated ALFWorld-Afford, which increases
both affordances diversity and goal types. Details
of these tasks can be found in Appendix I.

Tabletop-Afford. Robotic tabletop manipulation
such as (Shridhar et al., 2022) is also commonly
used to evaluate embodied planning performance.
However, existing tabletop manipulation tasks do
not consider affordances reasoning. To extend our
study, we also curated a set of 30 tabletop manipu-
lation tasks using PDDLGym (Silver and Chitnis,
2020) with a language-based observations transla-
tor. We added action affordances constraints for
placing objects on top of others. For example, we
allow actions such as “putting a cup on a tray” and
prevent actions such as “putting a cup on an apple”.
Appendix J provides the details of Tabletop-Afford.

4.3 Evaluation Metrics

We consider three metrics for our experimental
evaluation: (1) Success Rate, the percentage of
successfully completed tasks within the permitted
steps (i.e., 50 steps for the ALFWorld benchmarks,
and 20 for Tabletop-Afford), (2) Number of To-
kens, the total number of tokens used in LLM
queries, and (3) Task Duration, the time taken
by the agent to complete the task, measured in sec-
onds. All experiments are conducted 3 times and
the average and standard deviation are reported.

4.4 Baselines

LLM Baselines. We compare LLM-REGRESS

with the state-of-the-art LLM reasoner ReAct (Yao
et al., 2022), which generates thoughts, tracks
reasoning, and updates actions. Unlike LLM-
REGRESS, ReAct relies on at least two few-shot
examples per task. To evaluate the impact of ex-
amples, we also evaluate LLM-REGRESS against
two ReAct variations: (1) ReAct w/ Examples,
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Table 1: Performance Comparison across the ALFWorld, ALFWorld-Afford, and Tabletop-Afford Benchmarks.

Method
ALFWorld ALFWorld-Afford Tabletop-Afford

Success Rate Tokens Duration Success Rate Tokens Duration Success Rate Tokens Duration

Grounded Planner w/
LLM Afford. 0.35±0.09 4K 13 sec 0.29±0.07 4K 19 sec 0.38±0.05 1K 10 sec

Direct LLM (GPT-4o) 0.21±0.12 1K 20 sec 0.12±0.09 1.5K 23 sec 0.27±0.04 0.4K 20 sec

ReAct
w/ Model Description 0.33±0.02 35K 34 sec 0.17±0.05 42K 39 sec 0.25±0.02 8K 35 sec
w/ Examples 0.70±0.05 40K 33 sec 0.57±0.02 56K 41 sec 0.72±0.03 12K 25 sec

LLM-Regress (Ours) 0.95±0.02 0.5K 5 sec 0.84±0.03 0.6K 8 sec 0.83±0.02 0.2K 5 sec
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Figure 3: Multi-trial Performance Comparison against ALFWorld, ALFWorld-Afford, and Tabletop-Afford.

the original version using few-shot examples—and
(2) ReAct w/ Model Description, a version where
task examples are replaced with a natural language
description of the Action Model used in LLM-
Regress. We also test a baseline that ablates the
reasoning and directly prompts GPT-4o to produce
actions (Direct LLM).
Grounded Forward Search. We built a grounded
forward search planner that uses LLM-generated
affordances. We provide a planner (Helmert, 2006)
with the action model, goal, and initial state (with
all objects and locations) in PDDL. We then prompt
LLMs to generate the necessary affordances infor-
mation (see Appendix F), incorporate it into the
initial state, and generate a plan using the FD plan-
ner (Helmert, 2006). We refer to this method as
Grounded Planner w/ LLM Affordances. If a
plan is generated, we then evaluate it in the simula-
tor, else we consider it as a failure.
Multi-Trial LLM Baselines. Another notable
LLM-based planner, Reflexion (Shinn et al., 2024),
enhances ReAct by reflecting on past attempts.
In contrast, LLM-REGRESS maintains a struc-
tured KB with affordances information that can

be reused, akin to Reflexion’s strategy. To evaluate
structured KB transfer, we compare Reflexion, Di-
rect LLM, and Grounded Planner across 3 succes-
sive trials to evaluate their respective performance
improvements from experience.

5 Results and Discussion

LLM-REGRESS outperforms LLM and grounded
planning baselines across all benchmarks, achiev-
ing higher success rates with fewer tokens and re-
duced planning time. Unlike grounded planners re-
quiring exhaustive affordances enumeration, LLM-
REGRESS generates affordances only when needed,
improving efficiency and reliability. It is also more
token-efficient than LLM planners while maintain-
ing superior success rates. Though performance
declines with task complexity, LLM-REGRESS re-
mains the most effective. Its structured KB fur-
ther enhances knowledge transfer, boosting perfor-
mance across multiple trials. The primary results
are show in Table 1 with a breakdown by each task
type in Appendix M.
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5.1 LLM Planning Baseline Comparison

As shown in Table 1, LLM-REGRESS signifi-
cantly outperforms LLM baselines across all three
benchmarks in success rate, input tokens, and
duration. LLMs reliably generate affordances
for common household items. However, we ob-
serve that sometimes LLMs produce affordances,
while aligned with commonsense, that are not sup-
ported by the benchmark (e.g., canCool(plate,
bread)), indicating the need for improved affor-
dances constraints in existing benchmarks. All
methods show performance deterioration on the
ALFWorld-Afford benchmark as task complexity
increases. For Tabletop-Afford, LLM-REGRESS

still achieves the best performance, though the gap
narrows, likely due to its full observability. LLM-
REGRESS is also more efficient in token usage
and planning duration since it generates predicate-
level affordances only when necessary. Finally, we
note that LLMs cannot directly leverage the action
model used in LLM-REGRESS and instead rely on
past examples as plan generation templates.

5.2 Grounded Planning Baseline Comparison

Grounded planners require complete problem spec-
ification to generate a plan. Consequently, an LLM
must exhaustively enumerate affordances facts to
construct both the domain and problem specifica-
tions for the planner, which amounts to approxi-
mately 4, 000 tokens per task in ALFWorld. This
significantly increases the likelihood of halluci-
nation, including syntax errors and infeasible af-
fordances, ultimately leading to plan failure. In
contrast, LLM-REGRESS generates affordances in-
formation only when necessary for a lifted plan,
greatly reducing the chances of hallucinations. As
a result, we observe that grounded planners rely-
ing on LLM-generated affordances perform signifi-
cantly worse than LLM-REGRESS.

5.3 Multi-Trial Baseline Comparison

As shown in Figure 3, we observe a monotonic
increase in performance when LLM-REGRESS uti-
lizes the knowledge from prior trials. Specifically,
LLM-REGRESS achieved significantly better per-
formance as more affordance knowledge was trans-
ferred, reaching respective success rates of 99%,
91%, and 91% in ALFWorld, ALFWorld-Afford,
and Tabletop-Afford after 3 trials. As for Reflexion
and Direct LLM, LLMs need to extract useful infor-
mation via text and determine what information is

Table 2: Success rate performance comparison of the
impact of affordances knowledge and different LLM
choices on our method across benchmarks.

Method ALFWorld ALFWorld
-Afford Tabletop-Afford

No-Affordances 0.12 0.05 0.21

LLM-Affordances
w/ GPT-3.5-Turbo 0.91 0.73 0.70
w/ GPT-4o 0.96 0.81 0.83

Perfect-Affordances 1.00 0.98 1.00

useful (e.g., affordances information versus room
layout details). In contrast, our structured approach
explicitly tracks and stores relevant facts in the KB
that are only used if necessary for a subgoal.

5.4 Ablation

In this section, we present an ablation study eval-
uating the impact of affordances knowledge and
LLM choice on agent performance. As Table 2
shows the Perfect-Affordances method provides
ground-truth affordances information, demonstrat-
ing the performance upper bound. Results show
that affordances generated by GPT-4o outperform
those from GPT-3.5-Turbo, indicating that a bet-
ter language model enhances affordances reason-
ing. In the No-Affordances setting, all actions are
applicable to all objects, rendering most plans in-
feasible. This underscores the critical importance
of affordances reasoning, as without it, the agent
cannot generate reasonable plans or select appro-
priate actions. Other failure modes are included in
a detailed analysis provided in Appendix N.

6 Conclusion

In this work, we introduced LLM-REGRESS,
an open-world planning approach that integrates
lifted regression with LLM-generated affordances.
LLM-REGRESS generates sound and complete
plans in a compact lifted representation, reduc-
ing the need for exhaustive state and action enu-
meration, while leveraging LLMs to infer goal-
relevant objects and affordances without requiring
full domain specification. Our experiments on three
benchmarks demonstrate that LLM-REGRESS sig-
nificantly outperforms state-of-the-art LLM plan-
ners and grounded forward planner with LLM-
generated affordances. The results highlight LLM-
REGRESS as a scalable and generalizable solution
for open-world planning, paving the way for more
robust and interpretable embodied AI systems.
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Limitations

While our approach demonstrates strong perfor-
mance on existing embodied AI benchmarks, our
focus on high-level embodied agent planning in-
troduces several limitations. First, our experi-
ments are conducted in deterministic environments,
which may require further adaptation for real-world
robotics. Second, the natural language instructions
and environment observations are generated within
a simulator, making them less noisy than human-
annotated data. Finally, although LLM-Regress is
highly token-efficient compared to existing LLM-
based approaches, it still assumes access to large-
scale language models such as GPT-4o. While
LLM-Regress can be readily adapted to extract
affordance information from structured knowledge
bases and knowledge graphs in computationally
constrained settings, this lies beyond the scope of
the current work.

Ethical Statement

LLM-REGRESS leverages lifted regression and
LLM-based commonsense reasoning for open-
world planning. While our approach is theoreti-
cally sound and complete, offering an interpretable
symbolic model and plans, its evaluation has been
confined to simulation environments. Transition-
ing these methods to real-world applications will
require additional ethical considerations regarding
testing and deployment. Moreover, because our ap-
proach relies on LLMs for generating affordances,
an area prone to hallucinations and unpredictable
behavior, careful monitoring, rigorous testing, and
continual ethical review are imperative to ensure
safe operation and alignment with societal values.
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Appendix

A Illustrative Example: An ALFWorld Task

You are in the middle of a
room. Looking quickly around
you, you see a safe 1, a shelf

4, a drawer 2, a bed 1, a
drawer 1, a shelf 5, a shelf 2,

a sidetable 2, a shelf 3, a
drawer 3, a shelf 1, a

sidetable 1, a desk 1, and a
garbagecan 1. 

Your task is to: examine an
alarmclock with the desklamp.

You arrive at loc 8. On the
desk 1, you see a pen 1, a bowl
1, a alarmclock 2, a pencil 2,
a pencil 3, a creditcard 3, a

book 1, a alarmclock 3, a
keychain 3, and a book 2.

You arrive at loc 1. On the
sidetable 2, you see a desklamp

1, and an alarmclock 1.
Task Complete

go to desk 1 take alarmclock 2 
from desk 1

go to sidetable 2

use desklamp 1

Example: An ALFWorld Task

You pick up the alarmclock 2
from the desk 1.

Figure 4: Illustrative Example for a Given ALFWorld Task: In this example, the agent is tasked with “Examine
an alarm clock under the desklamp”. To complete the task, the agent must first locate an alarm clock and pick it up,
then find a desk lamp and turn it on. The agent initially does not observe the alarm clock and desk lamp and needs
to actively explore the environment to find objects that can fulfill its goal.

B LLM-REGRESS Example for An ALFWorld Task

Here is a successful planning example for our LLM-REGRESS method for an ALFWorld task.� �
-= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see
a cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2,
a cabinet 1, a coffeemachine 1, a countertop 3, a countertop 2,
a countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1,
a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1,
a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2,
a stoveburner 1, and a toaster 1.

Your task is to: heat some egg and put it in garbagecan.
go to stoveburner 2
you arrive at loc 19. on the stoveburner 2, you see a pan 1.
go to microwave 1
you arrive at loc 17. the microwave 1 is closed.
go to garbagecan 1
you arrive at loc 31. on the garbagecan 1, you see a soapbottle 2, and a tomato 3.
go to stoveburner 3
you arrive at loc 15. on the stoveburner 3, you see a pot 1.
go to shelf 2
you arrive at loc 3. on the shelf 2, you see a creditcard 3, and a saltshaker 1.
go to fridge 1
you arrive at loc 30. the fridge 1 is closed.
go to cabinet 3
you arrive at loc 20. on the cabinet 3, you see nothing.
go to stoveburner 1
you arrive at loc 15. on the stoveburner 1, you see a pot 1.
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go to cabinet 4
you arrive at loc 21. on the cabinet 4, you see nothing.
go to cabinet 2
you arrive at loc 11. the cabinet 2 is closed.
open cabinet 2
you open the cabinet 2. the cabinet 2 is open. in it, you see nothing.
open microwave 1
you open the microwave 1. the microwave 1 is open. in it, you see nothing.
go to drawer 1
you arrive at loc 28. the drawer 1 is closed.
open drawer 1
you open the drawer 1. the drawer 1 is open. in it, you see a peppershaker 2.
go to countertop 3
you arrive at loc 5. on the countertop 3, you see a butterknife 3,
a butterknife 2, a butterknife 1, a cellphone 1, a cup 2, a egg 1,
a fork 1, a houseplant 1, a lettuce 3, a plate 2, a plate 1,
a potato 1, a tomato 2, and a vase 3.

LLM Prompt: I am an embodied agent, I have observed a list of objects:
cabinet_6 , cabinet_5 , cabinet_4 , cabinet_3 , cabinet_2 , cabinet_1
, coffeemachine_1 , countertop_3 , countertop_2 , countertop_1 ,
drawer_3 , drawer_2 , drawer_1 , fridge_1 , garbagecan_1 , microwave_1
, shelf_3 , shelf_2 , shelf_1 , sinkbasin_1 , stoveburner_4 ,
stoveburner_3 , stoveburner_2 , stoveburner_1 ,
toaster_1 I want to the best object or receptalce [’R’]

from my observations, so that this fact is True:
inreceptacle(countertop_3, egg_1) & isgarbagecan(garbagecan_1)
& isegg(egg_1)
& canheat(R, egg_1)
. Please give me the best object or receptacle that would satisfy my objective.
. Please give the answer in format like best_answer:(obj_1)

LLM answer: best_answer:(microwave_1)
llm generated affordances: canheat(R, egg_1) [’microwave_1’]
take egg 1 from countertop 3
you pick up the egg 1 from the countertop 3.
heat egg 1 with microwave 1
you heat the egg 1 using the microwave 1.
put egg 1 in/on garbagecan 1
you put the egg 1 in/on the garbagecan 1.
Success: True� �

C Goal Parser

We parse the natural language goal to a symbolic form using action models and few-shot examples. The
prompt that we use is shown below:� �
Action Model: {
(:action pick-up

:parameters (?x - obj ?r - robot)
:precondition (and

(canPickUp ?x)
(clear ?x)
(onTable ?x)
(handEmpty ?r)
)

:effect (and
(not (onTable ?x))
(not (clear ?x))
(not (handEmpty ?r))
(handFull ?r)
(holding ?x)
)

)

(:action put-down
:parameters (?x - obj ?r - robot)
:precondition (and

(holding ?x)
(handFull ?r)
)

:effect (and
(not (holding ?x))
(clear ?x)
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(handEmpty ?r)
(not (handFull ?r))
(onTable ?x)
)

)
.....................
{
"Example 1": {
"Language Goal": "Put a hot potato on the countertop.",
"Symbolic Goal": "isHot(?x), isPotato(?x), isCountertop(?y), inReceptacle(?x, ?y)"

},
"Example 2": {
"Language Goal": "Put a hot cup in the fridge.",
"Symbolic Goal": "isHot(?x), isCup(?x), isFridge(?y), inReceptacle(?x, ?y)"

}
}

Generate symbolic goal from language goal: Put a hot apple on a plate

Your results should be in the form of {<symbolic goal>}� �
D LLM Object Parser Prompt� �
LLM Prompt: I am an embodied agent, My observations is "{}"
I want to extract list of objects to observe.
Please give me a set of objects in this format: {obj_1, obj_2, obj_3}� �

E LLM Affordances Query Prompt� �
LLM Prompt: I am an embodied agent,
I have observed a list of objects: {}
I want the object or receptacle from my observations, so that this fact is True:
KB: {}
Please give me the best object or receptacle that would satisfy my objective.
Please give the answer in format like best_answer: (obj_1)� �

F Grounded Forward Search W/ LLM Affordances Prompt� �
LLM Prompt:
Given
A PDDL domain: {*content of domain file}
A PDDL problem: {*content of problem file with removed affordances}
An agent is tasked to {PDDL Goal, Natural Language Goal}

Please generate affordances required to complete the task, you should use PDDL
syntax specified in PDDL domain and PDDL problem� �

G The STRIPS-Style Action Model for ALFWorld and ALFWorld-Afford� �
(:action PutObjectInReceptacle

:parameters (?o - obj ?r - obj)
:precondition (and

(holds ?o)
(holdsAny)
(not (isContained ?o))

)
:effect (and

(inReceptacle ?r ?o)
(isContained ?o)
(not (holds ?o))
(not (holdsAny))

)
)
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(:action HeatObject
:parameters (?r - obj ?o - obj)
:precondition (and

(canHeat ?r ?o)
(holds ?o)
(holdsAny)
(not (isContained ?o))

)
:effect (and (isHot ?o))

)

(:action CleanObject
:parameters (?r - obj ?o - obj)
:precondition (and

(canClean ?r ?o)
(holds ?o)
(holdsAny)
(not (isContained ?o))
(not (isHot ?o))

)
:effect (and (isClean ?o))

)

(:action ToggleObject
:parameters (?o - obj)
:precondition (and

(canToggle ?o)
(holds ?o)
(holdsAny)
(not (isContained ?o))

)
:effect (and (isOn ?o))

)� �
H The STRIPS-Style Action Model for Tabletop-Afford� �
(:action pick-up
:parameters (?x - obj ?r - robot)
:precondition (and

(canpickup ?x)
(clear ?x)
(ontable ?x)
(handempty ?r)
)

:effect (and
(not (ontable ?x))
(not (clear ?x))
(not (handempty ?r))
(handfull ?r)
(holding ?x)
)

)

(:action put-down
:parameters (?x - obj ?r - robot)
:precondition (and

(holding ?x)
(handfull ?r)
)

:effect (and
(not (holding ?x))
(clear ?x)
(handempty ?r)
(not (handfull ?r))
(ontable ?x)
)

)
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(:action stack
:parameters (?x - obj ?y - obj ?r - robot)
:precondition (and

(canstack ?x ?y)
(holding ?x)
(clear ?y)
(handfull ?r)
)

:effect (and
(not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty ?r)
(not (handfull ?r))
(on ?x ?y)
)

)

(:action unstack
:parameters (?x - obj ?y - obj ?r - robot)
:precondition (and

(canpickup ?x)
(on ?x ?y)
(clear ?x)
(handempty ?r)
)

:effect (and
(holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty ?r))
(handfull ?r)
(not (on ?x ?y))
)

)� �
I The ALFWorld-Afford Benchmark

We created 150 additional tasks on top of the text version of ALFWorld, including 5 new task types, each
requiring at least two affordances. Additional affordances for new objects were also added to increase
diversity.

I.1 Number of Tasks and Affordances Actions

Task Number of Tasks Affordances Actions

pick-clean-heat-put 20 Heat, Clean
pick-clean-cook-put 20 Cool, Clean
pick-heat-cool-put 20 Heat, Cool
pick-clean-heat-put-toggle 20 Heat, Clean, Toggle
pick-clean-cool-put-toggle 20 Cool, Clean, Toggle

Table 3: Number of tasks and affordances actions in ALFWorld-Afford.

I.2 Extra Affordances
Additional affordances for new objects include:

• Heat: Toaster {Bread}, Coffee Machine {Mug}, Stove Burner {Pan, Pot}
• Cool: Countertop {Cup, Plate, Pan, Bowl}
• Clean: Cloth {Apple, Egg, Cup, Pan, Tomato}, Dish Sponge {Cup, Plate, Pan, Bowl}
• Toggle: Microwave, Faucet, Laptop, Light Switch, Television, Cellphone, Toaster, Stove Burner
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J The Tabletop-Afford Benchmark

An example task translated to language instruction is shown below:� �
You are in the middle of a countertop. You see a plate, a cup, a bowl, a can, a fork, a knife, a
spoon, a napkin, a book, a remote, a phone, a pen, a key, a bottle, an apple, a banana, a chair,
and a laptop.
Your task is to: stack the can on the bowl, the bowl on the plate, and the plate on the book.� �
The list of objects is: {plate, cup, bowl, can, fork, knife, spoon, napkin, book, remote, phone, pen, key,

bottle, apple, banana, mug, glass, vase, clock, scissors, towel, pillow, newspaper, cereal_box, cheese, milk,
bread, chair, laptop}, and we randomly choose a subset of the items and their location for the tasks.

K First Order Logic Operations

Our approach relies on key logical operators to facilitate lifted regression and ensure sound plan generation.

• Unification: The unification operator UNIFY(p, q) checks whether two sets of predicates with different
variables are equivalent. If they can be unified, it returns a substitution θ:

UNIFY(p, q) = θ where θ(p) = θ(q).

The substitution function θ is a most general unifier (MGU), ensuring that two predicates are equivalent.
• Standardization: The standardization operator STANDARDIZE(p) replaces all variables in p with

fresh variables v′ /∈ V such that:

∀v ∈ vars(p), v /∈ vars(STANDARDIZE(p)).

Standardization prevents variable name conflicts when reusing action schemas in a plan.
• Substitution: A substitution θ is a mapping from variables to terms, denoted as:

θ = {x1/t1, x2/t2, ..., xn/tn}.

Applying θ to a predicate p, written θ(p), replaces each variable xi in p with its corresponding term ti.
Substitutions are used to instantiate lifted actions and query the LLM predicates in regression.

L LLM Regression Reasoner

The LLM-REGRESS reasoner utilizes a set of LiftedPlans generated via Open-World Lifted Regression,
represented as a set of tuples (g, π), where g denotes a subgoal and π its corresponding plan. Before
executing any action, for each (g, π) ∈ LiftedPlans, the algorithm identifies affordances predicates as:

ga = {p ∈ g | type(p) ∈ AffordPredTypes}

and defines non-affordances predicates as:

gna = g \ ga.

If the agent’s KB satisfies gna, we then obtain the set of satisfying facts Fna by querying the agent’s KB.
The affordances predicates Fa are generated by querying LLM:

Fa ← LLMAffQuery(Fna,FailedAff, O)

Once the entire subgoal g is satisfied, each action a ∈ π is executed sequentially. If an action fails, the
corresponding ga is added to FailedAff, and the agent removes it from the knowledge base. Otherwise,
the agent updates its KB with respect to a via:

PROGRESS(KB, a) = KB ∪ add(a) \ del(a).

If no feasible plan can be found, the agent explores the environment randomly. The object set O is
augmented with new objects parsed by the LLM Object Parser during exploration. This process repeats
until the overall goal G is fully satisfied in the knowledge base.
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M Success Rate Breakdown by Task Type

In this section, we present the performance breakdown for ALFWorld and ALFWorld Afford. The
following table shows the performance for each task type in terms of success rate.

Table 4: Success Rate Breakdown by Task Category (ALFWorld)

Task Category LLM-Regress Direct LLM (GPT-4o) ReAct GroundedPlanner

Pick & Place 1.00 0.20 0.40 0.36
Examine in Light 0.98 0.15 0.85 0.12
Clean & Place 0.96 0.30 0.90 0.27
Heat & Place 0.98 0.25 0.75 0.53
Cool & Place 0.94 0.10 0.87 0.22
Pick Two & Place 0.84 0.26 0.43 0.60

Overall 0.95 0.21 0.70 0.35

Table 5: Success Rate Breakdown by Task Category (ALFWorld-Afford)

Task Category LLM-Regress Direct LLM (GPT-4o) ReAct GroundedPlanner

pick-clean-heat-put 1.00 0.10 0.55 0.35
pick-clean-cool-put 0.90 0.15 0.65 0.35
pick-heat-cool-put 0.85 0.10 0.60 0.20
pick-clean-heat-put-toggle 0.70 0.10 0.40 0.25
pick-clean-cool-put-toggle 0.75 0.20 0.65 0.30

Overall 0.84 0.13 0.57 0.29

N Failure Analysis

We provide a breakdown of failure modes for each benchmark in this section, where the reported numbers
indicate the proportion of failures attributed to each category. This analysis is conducted only on failure
cases, which represent a small subset of the total tasks evaluated. The failure categories include: Incorrect
Affordance, referring to failures caused by inaccurately generated affordances; Insufficient Exploration,
where the agent fails to locate all necessary objects related to the goal; Goal Parsing Error, due to
discrepancies between parsed and ground-truth goals; Observation Parsing Error, where objects in the
observation are misinterpreted; and Other, which includes syntax errors from LLMs, incorrect action
formats, simulator issues, and other miscellaneous problems.

Table 6: Failed Tasks Breakdown by Failure Modes

Failure Mode ALFWorld ALFWorld-Afford TableTop-Afford

Incorrect Affordances 0.22 0.35 0.51
Insufficient Exploration 0.32 0.33 Not Applicable
Goal Parsing Error 0.11 0.08 0.12
Observation Parsing Error 0.21 0.17 0.11
Others 0.14 0.07 0.26
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