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Abstract
As artificial intelligence surpasses human capa-
bilities in text generation, the necessity to au-
thenticate the origins of AI-generated content
has become paramount. Unbiased watermarks
offer a powerful solution by embedding statisti-
cal signals into language model-generated text
without distorting the quality. In this paper,
we introduce MCMARK, a family of unbiased,
Multi-Channel-based watermarks. MCMARK
works by partitioning the model’s vocabulary
into segments and promoting token probabili-
ties within a selected segment based on a wa-
termark key. We demonstrate that MCMARK
not only preserves the original distribution of
the language model but also offers significant
improvements in detectability and robustness
over existing unbiased watermarks. Our ex-
periments with widely-used language models
demonstrate an improvement in detectability of
over 10% using MCMARK, compared to exist-
ing state-of-the-art unbiased watermarks. This
advancement underscores MCMARK’s poten-
tial in enhancing the practical application of
watermarking in AI-generated texts.

1 Introduction

As artificial intelligence outstrips human ability
in text generation, verifying the authenticity and
source of AI-created texts is increasingly cru-
cial. Watermarking of language models (Aaron-
son, 2022; Kirchenbauer et al., 2023a; Christ et al.,
2023; Kuditipudi et al., 2023; Hu et al., 2023; Wu
et al., 2023; Chen et al., 2024b,c; Guo et al., 2024)
offers an effective method to differentiate between
texts generated by humans and machines. This ap-
proach involves covertly embedding a statistical
signal within the text via a watermark generator
that uses specific watermark keys. Detection of
this statistical signal is carried out using statistical
hypothesis testing, enabling the confirmation of the
text’s provenance.

*Equal contribution.

Watermarks that do not introduce distortion
(Aaronson, 2022; Christ et al., 2023; Kuditipudi
et al., 2023; Hu et al., 2023; Wu et al., 2023, 2024)
are particularly crucial in the watermarking of lan-
guage models. These watermarks are essential as
they are provably capable of maintaining the origi-
nal output distribution of the language model. The
expected distribution of the watermarked model,
conditioned on the watermark keys, aligns perfectly
with that of the original language model, thus main-
taining utility and relevance in practical applica-
tions.

However, current unbiased watermarking ap-
proaches face practical challenges. For instance,
the unbiased watermark (Hu et al., 2023) requires
access to language model (LM) prompts and APIs,
EXP-edit (Kuditipudi et al., 2023) incurs a sub-
stantial time cost for detection, and DiPmark (Wu
et al., 2023) exhibits lower detection accuracy com-
pared to biased watermarks like those reported in
(Kirchenbauer et al., 2023a). Consequently, en-
hancing the practicality of watermarks is an im-
perative issue. In our work, we introduce a novel
family of unbiased watermarks, termed MCMARK,
which exhibit enhanced detectability and robust-
ness. In MCMARK, we partition the vocabulary
into l segments. During the watermark genera-
tion process, a watermark key is used to randomly
select a segment. Then, the token probabilities
within the selected segment are promoted using our
MCMARK-based unbiased algorithm. During de-
tection, the presence of the watermark is detected
by verifying whether the current token corresponds
to the segment associated with the watermark key.

Our contribution can be summarized as follows:

• We introduced MCMARK, a family of unbi-
ased watermarks that provably preserve the
output distribution of language models. MC-
MARK is adaptable, robust to text modifica-
tion, and does not require access to prompt
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and language model APIs during detection.

• We theoretically demonstrate that when the
number of segments equals two, MCMARK

offers superior detectability compared to DiP-
mark(Wu et al., 2023) and STA-1 (Mao et al.,
2024). We further discuss the trade-offs be-
tween detectability and robustness in MC-
MARK.

• Through comprehensive experiments, we val-
idate the unbiasedness, detectability, and ro-
bustness of MCMARK on popular language
models, such as LLAMA-3. Our results show
an over 10% improvement in detectability
compared to the state-of-the-art unbiased wa-
termarks.

2 Related Work

Statistical watermarks. Kirchenbauer et al.
(2023a) refined the statistical watermarking frame-
work initially introduced by Aaronson (2022),
showcasing the efficacy of this technique via com-
prehensive experiments on large language models.
They divided the language model tokens into red
and green lists and favored the green list tokens
by adjusting their logits with a fixed increment δ.
Zhao et al. (2023) introduced a unigram watermark
approach that employs single-gram hashing to gen-
erate watermark keys, enhancing the robustness of
statistical watermarks. Liu et al. (2023b) further
increased the robustness of statistical watermark-
ing by using the semantics of generated texts as
watermark keys. Additionally, Liu et al. (2023a)
developed a scheme for unforgeable watermarks
that utilizes neural networks to alter token distribu-
tions, moving away from conventional watermark
keys. Nevertheless, such methods can substantially
alter the text distribution, potentially diminishing
the quality of the content.
Unbiased watermarks. To maintain the original
output distribution in watermarked content, several
researchers have investigated novel approaches for
token distribution modification. Aaronson (2022)
pioneered an unbiased watermarking method using
Gumbel-max to adjust token distribution and em-
ploying prefix n-grams as watermark keys. Christ
et al. (2023) used inverse sampling for modifying
the token distributions of watermarked content on a
binary language model with watermark keys based
on token positioning. ITS-edit and EXP-edit (Ku-
ditipudi et al., 2023) utilized inverse-sampling and

Gumbel-max respectively for modifying the token
distributions of watermarked content, with a prede-
termined watermark key list. Hu et al. (2023) com-
bined inverse-sampling and γ-reweight strategies
for watermarking, though their detection method is
not model-agnostic. DiPmark (Wu et al., 2023) en-
hanced the γ-reweight technique and introduced a
model-agnostic detector. STA-1 (Mao et al., 2024)
optimized the quality of the watermarked text under
the low-entropy scenarios.

3 Preliminary

Notation. We follow the notations in the previous
work (Hu et al., 2023; Wu et al., 2023; Mao et al.,
2024) to represent the generation task of LLMs.
Let the set of vocabulary tokens be denoted by V
with cardinality N = |V |. We define V , which
includes all possible token sequences of any length
including zero. In the context of a language model,
token sequences are generated in response to a spe-
cific prompt. The probability of generating the
next token xt+1 from V , conditioned on the pre-
ceding token sequence x1, . . . , xt, is represented
as PM (xt+1 | x1:t).

In the watermark generator, the LLM utilizes a
private key k ∈ K to reweight the distribution from
PM (xt+1 | x1:t) to PM,w(xt+1 | x1:t, k), where
PM,w indicates a watermarked model and the pri-
vate key k is randomly selected from a key space
K according to a known distribution PK(k). Ac-
cording to (Hu et al., 2023), an unbiased watermark
requires that the expectation of the reweighted dis-
tribution equals that of the original distribution,
i.e.,

Ek∼PK [PM,w(xt+1 | x1:t, k)] = PM (xt+1 | x1:t).

During watermark detection, the user only has
access to the watermark key, the reweight strategy,
and the generated audio. The detector employs a
hypothesis testing approach to ascertain the pres-
ence of the watermark signal. The null hypothesis
H0 is defined as “The content is generated without
the presence of watermarks". The detector adopts a
score function based on the watermark key and the
reweight strategy, which exhibits statistical bias be-
tween the watermarked and unwatermarked token
sequences.

4 Method

Definition 4.1 (Distribution Channel). Given the
original LM distribution PM (·|x1:t), the reweight-
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ing method and the key space, we define each
unique watermarked distribution PM,w(·|x1:t, k)
as a distribution channel. The set of distribution
channels is the set of all possible LM distributions
after watermarking, i.e., {PM,w(·|x1:t, k)|k ∈ K}.

For example, for the inverse-sampling and the
Gumbel-max method, the set of distribution chan-
nels is {δ(x)|x ∈ V }, where δ is the Dirac dis-
tribution, δ(x) means the probability of sampling
token x is 1. It is easy to see the cardinality of the
distribution channel set is |V |.

We can define the unbiased watermark from
the perspective of distribution channels. Let
{P1, . . . , Pl} be a set of distribution channels. De-
fine Ki as the subset of watermark keys that satisfy
PM,w(· | x1:t, k) = Pi for all k ∈ Ki. An unbiased
watermark should meet the following condition:
∀x ∈ V , it should have:

l∑

i=1

Pi(x)Ek∼PK

[
1{k∈Ki}

]
= PM (x | x1:t).

4.1 MCMARK Overview
By utilizing the distribution channels, we can de-
sign a new watermarking framework. During gen-
eration, the watermark key is used to pseudoran-
domly select one of these channels as the basis for
the next token distribution. For detection, the algo-
rithm verifies whether a given token was generated
by our model by assessing whether the token aligns
with the recovered distribution channel it. The de-
tailed algorithms for the generation and detection
processes are provided in Alg. 3 and Alg. 4.

Based on this framework, we propose MCMARK,
a family of Multi-Channel-based unbiased water-
marking algorithms. MCMARK operates by con-
structing a set of l distribution channels. We divide
the vocabulary V into l equal parts, V1, . . . , Vl. For
each distribution channel Pi, we increase the prob-
ability of tokens in Vi. During detection, given
the recovered distribution channel index it, if the
generated token xt ∈ Vit , we assume this token is
generated by the watermarked distribution. The de-
tailed algorithms for the generation and detection
processes are shown in Alg. 1 and Alg. 2.

The effectiveness of our proposed wa-
termarking approach hinges on designing
optimal distribution channels that maximize
Eit∈{1,2,··· ,l}

∑
x∈Vit

Pit(x), that is if the selected
channel is it, the probability of generating tokens
within Vit should be maximized to ensure that
more tokens can be effectively detected.

Unwatermarked
Distribution: 

Distribution
Channel 1: 
Distribution

Channel 2: 

Unbiasedness
requirements:

Figure 1: Illustration of the optimal solution for the
binary channel example, where we set the red and green
list token probabilities to Pr = 0.3 and Pg = 0.7 re-
spectively.

In the following sections, we detail the process
for obtaining the optimal distribution channels.

4.2 Finding Unbiased Watermarks as an
Optimization Problem

A binary channel example. Using the con-
cept of distribution channels, we can explore
new unbiased watermarks by identifying sets
{P1, . . . , Pl} and {K1, . . . ,Kl}. Consider the sim-
plest case where l = 2 and Ek∼PK [1k∈K1 ] =
Ek∼PK [1k∈K2 ] = 1

2 . In this scenario, the wa-
termark possesses two distribution channels with
equal probability. To ensure detectability of the
watermark (in the presence of a watermark key),
the distributions P1 and P2 must be sufficiently dis-
tinct. A practical approach involves dividing all
tokens into two lists, red and green. In distribution
channel P1, we increase the sum of the probability
of tokens in the red list (P1r :=

∑
x∈Vr

P1(x)),
and in distribution channel P2, we increase the
probability of tokens in the green list (P2g). Let
Pr and Pg denote the cumulative probabilities of
the red and green tokens in the original language
model distribution, respectively. The probabilities
P1r, P1g, P2r, P2g must satisfy the following con-
straints for maintaining unbiased properties:





P1r + P1g = 1,
P2r + P2g = 1,
P1r + P2r = 2Pr,
P1g + P2g = 2Pg.

(1)

The first two constraints ensure that the sum of
probabilities within a distribution equals 1, while
the last two constraints are necessary to uphold the
unbiased nature of the watermark.

In order to maximize the detection efficiency, we
expect the variation between P1 and P2 to be as
large as possible. Thus our optimization objective
is

maxP1r + P2g.

Assuming w.l.o.g. Pr ≤ 0.5, it is easy to identify
the optimal solution is P1r = 2Pr and P2g = 1
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with the constrains in Eq. 1. See Figure 1 for an
illustration of the optimal solution. In this con-
figuration, the probabilities of all red tokens are
doubled in the first distribution channel, while the
probabilities of all green tokens are doubled in both
channels.
Optimization problem. We can generalize the bi-
nary case (l = 2) to more complex scenarios. Con-
sider Ek∼PK [1k∈K1 ] = · · · = Ek∼PK [1k∈Kl

] = 1
l .

Similarly to the l = 2 case, we can divide the
token set into l equal parts, V1, . . . , Vl, where
|Vi| = |V |

l . For each distribution channel Pi, we in-
crease the probability of tokens in Vi. Denoting by
Pi,Vj :=

∑
x∈Vj

Pi(x) the probability of part Vj in
channel Pi, and PVj the sum of token probabilities
within Vj (i.e. Ex∼PM

[1x∈Vj ]), we formulate the
following optimization problem:

max
l∑

i=1

Pi,Vi ,

s.t.

{∑l
j=1 Pi,Vj = 1, ∀i = 1, . . . , l,∑l
i=1 Pi,Vj = lPVj , ∀j = 1, . . . , l.

(2)

The constraint
∑l

j=1 Pi,Vj = 1 ensures that the
total probability within each distribution channel
Pi sums to 1. This requirement guarantees that
each Pi represents a valid probability distribution.
Additionally, the constraint

∑l
i=1 Pi,Vj = lPVj en-

sures that the expected probability of Vj across all
distribution channels equals the original probability
of Vj in the model distribution PM . This maintains
the unbiased nature of the watermark.

Optimization Solution. Given that
max

∑l
i=1 Pi,Vi ≤ ∑l

i=1maxPi,Vi , we first
calculate each maxPi,Vi individually and then
demonstrate the feasibility of

∑l
i=1maxPi,Vi .

With the constraint
∑l

i=1 Pi,Vj = lPVj ,
we have Pi,Vi ≤ min{1, lPVi} and
maxPi,Vi = min{1, lPVi}. Therefore, we
obtain:

max

l∑

i=1

Pi,Vi ≤
l∑

i=1

min{1, lPVi}.

We now show that
∑l

i=1min{1, lPVi} is feasible.
We propose one solution:

Pi,Vj =

{
min{1, lPVi}, if i = j,

(1− lPVi)+(lPVj − 1)+, if i ̸= j.
(3)

Expanding  times

Original Unwatermarked
Distribution Distribution Channels

Redistribute the part larger than 1:

Figure 2: Illustration of the optimal solution (Eq. 3) for
creating the distribution channels for MCMARK.

where (1 − lPVi)+ := max{0, 1 − lPVi} and
(lPVj − 1)+ := max{0, lPVj − 1}. Please refer
Figure 2 for an illustration of the optimal solution.
The token probabilities within a channel are given

by Pi(x) =
Pi,Vj

PVj
PM (x|x1:t),∀x ∈ Vj .

4.3 Watermarking Methodology

With the optimization solution defined, we can es-
tablish our watermarking algorithm. Following the
approach outlined in (Kirchenbauer et al., 2023a),
we utilize a fixed secret key sk and the n-gram pre-
ceding content xt−n:t−1 as the watermark key to
generate the token xt. During watermark genera-
tion, we first split the vocabulary into l parts and
compute the set of distribution channels according
to Eq. 3. We then pseudorandomly select a prob-
ability channel based on the watermark key and
sample the next token from the selected probability
channel. The detailed algorithm is presented in
Algorithm 1.

During detection, we are given the generated
content and the secret key. With this information,
we can recover the index it of the probability chan-
nel used for generating the token xt at step t. As
in Pit , we increase the probability of tokens in Vit ,
thus we can detect the watermark signal by check-
ing whether xt is in Vit or not. We define a hy-
pothesis test with null hypothesis H0: the content
is generated without watermarking. Denoted by
x1:T a given content sequence, we can use the test
statistic Φ(x1:T ) =

∑T
t=1 1xt∈Vit

, where it is the
index of the probability channel at step t recovered
from the watermark keys.

Under the null hypothesis, Φ(x1:T ) follows a
binomial distribution with a success rate of 1

l . Thus,
we have the following tail bound:
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Pr(Φ(x1:T ) ≥ z) =
T∑

i=⌈z⌉

(
T

i

)(
1

l

)i(
l − 1

l

)T−i

The theoretical false positive rate is therefore:

T∑

i=Φ(x1:T )

(
T

i

)(
1

l

)i( l − 1

l

)T−i

(4)

Algorithm 1 MCMARK generator.

1: Input: pretrained LM PM , secret key sk,
prompt x−m:0, generate length T ∈ N.

2: for t = 1, . . . , T do
3: Split the vocabulary into l parts

{V1, ..., Vl}.
4: Get the probability distribution of t-th to-

ken PM (· | x−m:t−1).
5: Get PVj =

∑
x∈Vj

PM (x | x−m:t−1), j =

1, ..., l
6: Generate the distribution channels

{P1, ..., Pl} by Eq. 3
7: Pseudorandomly select a probability

channel Pi based on the watermark key
(sk,xt−n:t−1).

8: Sample the next token xi from Pi.
9: return x1:T .

Algorithm 2 MCMARK detector.
1: Input: pretrained LM PM , generated tokens

x1:T , false positive rate threshold p0.
2: Initialize Φ = 0
3: for t = 1, . . . , T do
4: Recover the index of the selected distribu-

tion channel it based on the watermark key.
5: Φ = Φ+ 1xt∈Vit

.

6: Get theoretical false positive rate p by Eq. 4.
7: if p ≤ p0 then
8: return x1:T is watermarked.
9: else

10: return x1:T is not watermarked.

4.4 Theoretical analysis
During the watermark detection process, situations
may arise where the current token xt is sampled
from the distribution channel Pit but does not be-
long to the designated subset Vit . This discrepancy
occurs when Ex∼PM

[1x∈Vit
] < 1

l . Under such

conditions, detection of the watermark signal is not
possible even though xt is generated from the wa-
termarked distribution. This leads us to define the
true-negative rate, which quantifies the frequency
of these undetectable instances, as follows:

Definition 4.2 (Expected True-Negative Rate).
We define the true-negative rate, denoted as
PTN (x, PM,w(· | k),Φ), as the probability that a
token is generated from the watermarked distribu-
tion (true) but cannot be detected by the watermark
detector (negative): PTN (x, PM,w(· | k),Φ) :=
Pr({x ∼ PM,w(· | k),Φ(x) = 0}). The expected
true-negative rate is then defined as

ETN := Ek∼PK [PTN (x, PM,w(· | k),Φ)].

The true-negative rate is relevant for many
statistical watermarks, including Soft water-
mark (Kirchenbauer et al., 2023a), γ-reweight (Hu
et al., 2023), DiPmark (Wu et al., 2023), and STA-
1 (Mao et al., 2024). Notably, γ-reweight is a spe-
cial case of DiPmark. In the subsequent analysis,
we will compare the expected true-negative rates
of DiPmark, STA-1, and our proposed method.

Both DiPmark and STA-1 implement a red-green
list strategy. We denote the red list probability as
PVr := Ex∼PM

[1x∈Vr ]. The expected true nega-
tive rate of DiPmark (EDiP

TN ), STA-1 (ESTA
TN ) and

MCMARK (EMCmark
TN ) are given by:





EDiP
TN = max{PVr − α, 0}+max{PVr − (1− α), 0}.

ESTA
TN = P 2

Vr
.

EMCmark
TN =

∑l
i=1 max{0, 1/l − PVi}.

If the probabilities PVi are evenly distributed,
that is, PVi = 1

l , then the expected true-negative
rate for MCMARK, EMCmark

TN , equals zero, and
watermark signals are embedded uniformly across
all tokens. In practice, increasing l tends to re-
sult in more unevenly distributed PVi . In the most
extreme case, when l = |V |, each segment Vi con-
tains exactly one token, which represents the most
uneven distribution of PVi and thus the expected
true-negative rate will be large.

To compare with DiPmark and STA-1, we con-
sider a special case of MCMARK where l = 2,
meaning there are two distribution channels, and
the vocabulary is segmented into a red and a green
list. In this scenario, the expected true-negative rate
for MCMARK simplifies to:
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Figure 3: Validating unbiased property of MCMARK. Top: text summarization task with perplexity metric. bottom:
machine translation task with BLEU metric.

Table 1: Detectability comparison with LLama2 and C4 dataset on text generation task. Notice, as the detectors of
ITS-edit and EXP-edit do not provide a theoretical guarantee of the false positive rate, we report the true positive
rate at the empirical false positive rate instead. ’-’ refers to unavailable results. The lack of results for ITS-edit and
EXP-edit at an FPR of 0.01% is because, in their original setting, the lowest achievable FPR does not reach 0.01%.

TPR@FPR=1%↑ TPR@FPR=0.1%↑ TPR@FPR=0.01%↑ Median p-value↓
KGW(δ=0.5) 38.78% 19.16% 10.20% 2.809e-2
KGW(δ=1.0) 86.88% 74.44% 61.55% 5.494e-6
KGW(δ=1.5) 96.69% 93.83% 90.08% 1.556e-12
KGW(δ=2.0) 99.34% 98.79% 97.79% 6.580e-22
Unigram(δ=0.5) 78.63% 63.51% 47.54% 1.607e-4
Unigram(δ=1.0) 96.99% 92.59% 88.08% 1.745e-9
Unigram(δ=1.5) 98.94% 97.54% 96.13% 1.051e-16
Unigram(δ=2.0) 99.88% 99.52% 98.93% 5.387e-25

ITS-edit 61.77% 54.49% - 4.000e-4
EXP-edit 89.01% 86.35% - 2.000e-4
γ-reweight 89.17% 81.79% 75.83% 4.467e-8
DiPmark(α=0.4) 87.66% 78.77% 71.77% 1.236e-7
DiPmark(α=0.3) 81.88% 69.88% 61.65% 5.284e-6
STA-1 84.93% 71.58% 57.76% 2.656e-5

MCMARK(l=20) 98.96% 98.38% 97.69% 8.098e-30

EMCmark
TN = max

{
0,

1

2
− PVr

}

+max

{
0, PVr − 1

2

}
=

∣∣∣∣
1

2
− PVr

∣∣∣∣ .
(5)

Note that all of EDiP
TN , ESTA

TN , and EMCmark
TN are

correlated with PVr . Assuming a uniform distri-
bution of PVr on [0, 1], we compute EPVr

[EDiP
TN ],

EPVr
[ESTA

TN ], and EPVr
[EMCmark

TN ] as (α− 1
2)

2+ 1
4 ,

1
3 , and 1

4 , respectively. This implies that MCMARK

achieves superior detectability compared to DiP-
mark and STA-1, as indicated by the lower ex-
pected true negative rate. Furthermore, the vari-
ances of EDiP

TN , ESTA
TN , and EMCmark

TN are calculated
as 5

48 − (α− 1
2)

2
[
(α+ 1

6)
2 + 1

18

]
, 4
45 , and 1

48 , re-
spectively. Given that in DiPmark α ≤ 1

2 , MC-
MARK also achieves the minimum variance among
all three methods. This indicates that MCMARK

can more consistently generate watermarked sen-
tences with a low true negative rate.

4.5 Robustness-detectability trade-off

An adversary may attempt to alter the output to-
ken to disrupt the watermark detection. In MC-
MARK detection, if a token xt is modified to x′t
and x′t /∈ Vit , the watermark signal is effectively
removed. Consequently, the probability that a wa-
termark is removed due to such an alteration is
given by |Vit |

|V | . Given that |Vit | = |V |
l , the proba-

bility that a watermark is removed simplifies to 1
l

Therefore, increasing l decreases the robustness of
the watermark, as it increases the likelihood that an
adversary can successfully remove the watermark
by modifying the token.

On the other hand, we show that moderately
increasing l can enhance the detectability of the
watermark (see Appendix B for a detailed discus-
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Figure 4: Comparative analysis of MCMARK against SOTA unbiased watermarks across various language models
and datasets on watermark detectability.

sion). Thus, we identify a fundamental trade-off:
increasing the number of distribution channels l
enhances the detectability of the watermark, yet it
simultaneously reduces its robustness. We empiri-
cally validate our analysis in Figure 5 and 6.

5 Experiments

The experiments consist of two main parts. First,
we validate that our proposed method is unbiased
by demonstrating that its output quality for machine
translation and text summarization tasks is similar
to the baseline without watermarking. Second, we
showcase the effectiveness of MCMARKthrough
comprehensive experiments on text generation. Af-
ter that, we discuss the robustness of our method
and the detectability-robustness trade-off in MC-
MARK. The detailed experimental settings can be
found in Appendix C.

5.1 Unbiased Property Validation

Since MCMARK is provably unbiased, we use this
empirical experiment as a support for this prop-
erty. We follow the evaluation process of (Hu et al.,
2023). Specifically for MCMARK, we select num-
ber of the distribution channels l from the set {2, 3,
4, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000,
8000, 16000, 32000}. Upon examining Figure 3,
we find across all l values, the BLEU scores in the
machine translation tasks and the perplexity values
in the text summarization tasks remain consistently

similar between MCMARK and the original lan-
guage model. In appendix Table 6 and Table 7,
we provide additional unbiasedness evaluation on
both biased and unbiased watermarks, the results
indicate that MCMARK can preserve the LM distri-
bution compared to the biased watermarks.

5.2 Detectability

Following the evaluation metric of the previous
works (Kuditipudi et al., 2023; Wu et al., 2023), we
report the true positive rate at guaranteed false pos-
itive rates, i.e., TPR@FPR={1%, 0.1%, 0.01%}.
Notice, as the detectors of ITS-edit and EXP-edit
do not provide a theoretical guarantee, we report
the true positive rate at the empirical false positive
rate following their original setting. From Table 1,
we see that MCMARK achieved the best detectabil-
ity comparing with all unbiased watermarks, at
least 14% improvement on all TPR@FPR metrics.
Besides, MCMARK outperformed the biased wa-
termarking algorithm KGW and Unigram when
δ ∈ {0.5, 1.0, 1.5}, and achieved comparable per-
formance with them when δ = 2.0. In Figure 4,
we present a comparative analysis of MCMARK

against SOTA unbiased watermarks across various
language models and datasets. Our method, rep-
resented by the last bar in each plot, consistently
outperforms all comparisons across the board. Fur-
ther experimental results are detailed in Figure 7.
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Table 2: Robustness comparison of unbiased watermarks, we use metrics TPR@FPR=0.1% and the median p-value.

ϵ=0.05 ϵ=0.1 ϵ=0.2
TPR↑ p-value↓ TPR↑ p-value↓ TPR↑ p-value↓

ITS-edit 50.40% 7.998e-4 43.69% 6.399e-3 33.90% 4.839e-2
EXP-edit 81.35% 2.000e-4 78.27% 2.000e-4 74.88% 2.000e-4
γ-reweight 72.38% 4.241e-6 59.40% 1.975e-4 31.07% 1.195e-2
DiPmark(α=0.4) 69.63% 8.154e-6 58.13% 1.975e-4 29.06% 1.996e-2
DiPmark(α=0.3) 59.53% 1.363e-4 46.24% 2.123e-3 20.59% 4.059e-2
STA-1 60.84% 2.253e-4 47.15% 1.462e-3 21.35% 1.843e-2

MCMARK(l=20) 97.11% 6.068e-23 96.07% 2.140e-18 88.79% 3.731e-10

Table 3: Robustness comparison of unbiased watermarks under GPT rephrasing attack, we report
TPR@FPR={5%,1%,0.1%,0.01%}, the median p-value, and AUC.

GPT rephrasing
TPR @ FPR (%)

Median p-value ↓ AUC ↑
5% 1% 0.1% 0.01%

ITS-edit 6.3% 2.3% 1.0% – 4.721× 10−1 0.5138
EXP-edit 26.4% 17.9% 11.9% – 2.296× 10−1 0.6879
γ-reweight 13.4% 6.6% 2.2% 0.9% 5.635× 10−1 0.5019
DiPmark(α = 0.4) 14.9% 6.4% 2.4% 0.7% 6.031× 10−1 0.4921
DiPmark(α = 0.3) 9.9% 3.7% 1.0% 0.3% 6.629× 10−1 0.4738
STA-1 24.0% 11.6% 4.5% 1.8% 2.317× 10−1 0.6850

MCmark(l = 20) 62.5% 48.0% 31.7% 20.2% 1.256× 10−2 0.8592
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Figure 5: Median p-value vs number of distribution
channels l in MCMARK.

Time Efficiency. Similar to the KGW watermark,
Unigram, and DiPmark, the time cost introduced
by the MCMARK generator occurs only during the
modification of token probabilities in the genera-
tion process. Additionally, the MCMARK detector
is model-agnostic. Empirically, the time efficiency
of the MCMARK method matches that of KGW, Un-
igram, γ-reweight, DiPmark, and STA-1. Notably,
the detectors of ITS-edit and EXP-edit require thou-
sands of inferences (Wu et al., 2023), which signif-
icantly reduces their detection efficiency compared
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Figure 6: TPR@FPR=0.1% vs number of distribution
channels l in MCMARK.

to other methods.

5.3 Robustness
We compare the robustness of MCMARK (l = 20)
with the SOTA unbiased watermark approaches
ITS-edit, EXP-edit, γ-reweight, DiPmark, and
STA-1. In this context, we use the text gen-
eration task with 1,000 generated sequences on
LLaMA-2. For robustness evaluation, we manip-
ulate ϵ ∈ {0.05, 0.1, 0.2} portion of the text to-
kens through token replacement attack (Kirchen-
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Table 4: Robustness comparison of unbiased watermarks under GPT back-translation attack, we report
TPR@FPR={5%,1%,0.1%,0.01%}, the median p-value, and AUC.

GPT back translation
TPR @ FPR (%)

Median p-value ↓ AUC ↑
5% 1% 0.1% 0.01%

ITS-edit 6.2% 2.3% 1.0% – 4.710× 10−1 0.5136
EXP-edit 73.9% 66.8% 60.4% – 2.000× 10−4 0.8841
γ-reweight 64.5% 50.8% 32.2% 18.0% 9.202× 10−3 0.8520
DiPmark(α = 0.4) 60.4% 46.8% 30.8% 19.8% 1.378× 10−2 0.8352
DiPmark(α = 0.3) 52.8% 35.5% 19.8% 9.8% 9.829× 10−2 0.7859
STA-1 66.5% 45.1% 24.0% 11.1% 1.509× 10−2 0.8926

MCmark(l = 20) 94.6% 91.6% 86.8% 81.2% 8.572× 10−10 0.9796

Table 5: Robustness comparison of unbiased watermarks under DIPPER attack, we report
TPR@FPR={5%,1%,0.1%,0.01%}, the median p-value, and AUC.

DIPPER
TPR @ FPR (%)

Median p-value ↓ AUC ↑
5% 1% 0.1% 0.01%

ITS-edit 5.1% 1.3% 0.1% – 5.206× 10−1 0.4898
EXP-edit 16.6% 9.2% 3.5% – 3.735× 10−1 0.5976
γ-reweight 1.8% 0.4% 0.0% 0.0% 9.745× 10−1 0.3124
DiPmark(α = 0.4) 1.7% 0.3% 0.0% 0.0% 9.634× 10−1 0.3314
DiPmark(α = 0.3) 1.3% 0.6% 0.0% 0.0% 9.780× 10−1 0.3191
STA-1 11.6% 3.4% 0.6% 0.1% 3.652× 10−1 0.5917

MCmark(l = 20) 24.1% 11.0% 3.6% 1.0% 1.976× 10−1 0.6950

bauer et al., 2023b), GPT rephrasing attack, GPT
back translation attack, and DIPPER (Krishna et al.,
2023).

In Table 2, 3, 4 and 5, we present the TPR at a
specific FPR and the median p-value for various wa-
termarks across different attack strengths, denoted
by ϵ. MCMARK consistently demonstrates superior
robustness, outperforming all baseline methods in
effectively detecting watermarked sentences.

5.4 Detectability-robustness trade-off

In Section 4.5, we discuss the detectability-
robustness trade-off of MCMARK w.r.t. l. In this
experiment, we empirically verify this trade-off
by comparing the TPR@FPR=0.1% and the me-
dian p-value with the number of the distribution
channels l ∈{2, 3, 4, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 4000, 8000, 16000, 32000}. We use
Llama2 model with C4 subset on the text gener-
ation task. For robustness evaluation, we mod-
ify ϵ ∈ {0.05, 0.1, 0.2} portion of the text tokens
through token replacement attack (Kirchenbauer
et al., 2023b; Wu et al., 2023; Chen et al., 2024a).

In Figures 5 and 6, we report on the detectability
of MCMARK using two metrics: TPR@FPR=0.1%
and median p-value. The robustness of MCMARK

initially increases with l before subsequently de-
creasing, aligning with the analysis presented in
Section 4.5.

6 Conclusion

In summary, we present MCMARK, a novel family
of unbiased watermarks that significantly enhance
detectability and robustness in large language mod-
els without distorting text output. Our experimental
results demonstrate a more than 10% improvement
in detectability over existing state-of-the-art unbi-
ased watermarking approaches, validated across
various models and datasets. MCMARK represents
a significant advancement in the practical applica-
tion of watermarking technology in LMs.

Limitations

There is an inherent trade-off between the robust-
ness and detectability of our proposed MCMARK.
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Increasing the number of distribution channels l
can potentially enhance detectability but reduce ro-
bustness against attacks where an adversary may
modify output tokens to disrupt the watermark de-
tection.
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A Algorithms

Algorithm 3 Generation framework.
1: Input: pretrained LM PM , prompt x−m:0,

generate length T ∈ N.
2: for t = 1, . . . , T do
3: Get the probability distribution of t-th to-

ken PM (· | x−m:t−1).
4: Generate the probability channels

{P1, ..., Pl}
5: Pseudorandomly select a probability chan-

nel Pi based on the watermark key.
6: Sample the next token xi from Pi.
7: return x1:T .

Algorithm 4 Detection framework.
1: Input: pretrained LM PM , generate length

T ∈ N, generated tokens x1:T .
2: for t = 1, . . . , T do
3: Recover the index of the selected distribu-

tion channel it based on the watermark key.
4: Check whether token xi is generated from

the it-th distribution channel.

B Robustness-detectability trade-off

An adversary may attempt to alter the output to-
ken to disrupt the watermark detection. In MC-
MARK detection, if a token xt is modified to x′t
and x′t /∈ Vit , the watermark signal is effectively
removed. Consequently, the probability that a wa-
termark is removed due to such an alteration is
given by |Vit |

|V | . Given that |Vit | = |V |
l , the proba-

bility that a watermark is removed simplifies to 1
l

Therefore, increasing l decreases the robustness of
the watermark, as it increases the likelihood that an
adversary can successfully remove the watermark
by modifying the token.

On the other hand, moderately increas-
ing l can enhance the detectability of the
watermark. Recall that Pr(Φ(x1:T ) ≥
z) =

∑T
i=⌈z⌉

(
T
i

) (
1
l

)i ( l−1
l

)T−i
. The deriva-

tive with respect to l of each term in the
sum is given by: d

dl

((
1
l

)i ( l−1
l

)T−i
)

=
(
1
l

)i+2 ( l−1
l

)T−i
(
−il + (T − i) l

l−1

)
, indicating

that when l ≥ 2 and i > T
2 ,

(
1
l

)i ( l−1
l

)T−i

decreases with increasing l. Typically, the score
Φ(x1:T ) is greater than T

2 , so increasing l may

reduce the detection p-value. This reduction makes
the statistical distinction between watermarked
and unwatermarked text more significant, thereby
improving the detectability of the watermark.
Thus, we identify a fundamental trade-off: in-
creasing the number of distribution channels l
enhances the detectability of the watermark, yet it
simultaneously reduces its robustness.

However, blindly increasing l may also lead to
bad detectability. The detectability is not only re-
lated to the distribution of Φ(x1:n) under the null
hypothesis but also the scale of Φ(x1:n). If l is too
large, the expected true negative rate EMCmark

TN =∑l
i=1max{0, 1/l − pVi} might be poor, since pVi

are more likely to be unevenly distributed. We
empirically validate our analysis in Figure 5 and 6.

C Experimental settings

Baselines We evaluate the performance of our
methods against various baselines, including two
biased watermarking approaches, KGW (Kirchen-
bauer et al., 2023a) and Unigram (Zhao et al.,
2023), as well as five unbiased watermarking al-
gorithms, ITS-edit (Kuditipudi et al., 2023), EXP-
edit (Kuditipudi et al., 2023), γ-reweight (Hu et al.,
2023), DiPmark (Wu et al., 2023) and STA-1 (Mao
et al., 2024).

Models and Datasets we ustilize Llama-2-7b-
chat-hf (Touvron et al., 2023), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), Phi-3.5-mini-instruct (Ab-
din et al., 2024)for text generation tasks to evaluate
the effectiveness of our proposed MCMARK.

Following Kirchenbauer et al. (2023a); Hu et al.
(2023), we use a subset from the C4 dataset (Raffel
et al., 2020) for text generation experiments. Addi-
tionally, we also include three MMW datasets (Piet
et al., 2023), Dolly CW (Conover et al., 2023) and
two tasks from WaterBench (Tu et al., 2023).

For unbiasedness validation, we adopt the set-
tings from Hu et al. (2023); Wu et al. (2023), em-
ploying MBart (Liu et al., 2020) for machine trans-
lation and BART (Lewis, 2019) for text summariza-
tion.

In the machine translation experiments, we use
the WMT16 ro-en dataset (Bojar et al., 2016). For
text summarization, while for text summarization,
we utilize the CNN/DailyMail dataset (See et al.,
2017).
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Watermarking parameters. We evaluate the de-
tectability of MCMARK on the text generation
task with different language models. We gener-
ate 1,000 examples for each tasks. We use the
prefix 2-gram together with a secret key as the
watermark keys. We select α ∈ {0.3, 0.4} for DiP-
mark, and δ ∈ {0.5, 1.0, 1.5, 2.0} and γ = 0.5
for KGW watermark (Kirchenbauer et al., 2023a),
δ ∈ {0.5, 1.0, 1.5, 2.0} for Unigram (Zhao et al.,
2023). For ITS-edit (Kuditipudi et al., 2023), EXP-
edit (Kuditipudi et al., 2023), γ-reweight (Hu et al.,
2023) and STA-1 (Mao et al., 2024), we follow the
settings in the original papers. For MCMARK we
set the number of distribution channels l = 20.

D Additional Experiments

In this section, we provide additional comparative
analysis regarding the unbiased property and de-
tectability of MCMARK. We also include an abla-
tion study on the number of distribution channels l
in MCMARK.
Unbiased Property. In Tables 6 and 7, we con-
duct an additional evaluation of unbiasedness for
both biased and unbiased watermarks. The results
confirm that MCMARK effectively preserves the
language model’s distribution, outperforming the
biased watermark alternatives.
Detectability. In Figure 7, we assess the detectabil-
ity of MCMARK on tasks such as MMW Book Re-
port, Longform QA, and Finance QA. The results
demonstrate that MCMARK consistently exhibits
superior detectability across all tested models and
datasets.
Ablation Study with l. In Figures 8, 9, 10, and
11, we present an analysis of the relationship be-
tween detectability and the number of distribution
channels l in MCMARK. Our findings indicate that
detectability initially increases and then decreases
with respect to l, illustrating a critical trade-off in
the parameter’s configuration.

Table 6: Unbiasedness evaluation on text summarization
tasks.

BERT Score↑ PPL↓ Rouge-1↑
Baseline 0.3175 6.3932 0.3768

KGW(δ=0.5) 0.3152 6.4894 0.3746
KGW(δ=1.0) 0.3125 6.8647 0.3742
KGW(δ=1.5) 0.3067 7.4633 0.3673
KGW(δ=2.0) 0.2996 8.4847 0.3605

Unigram(δ=0.5) 0.3160 6.5302 0.3754
Unigram(δ=1.0) 0.3132 6.8145 0.3717
Unigram(δ=1.5) 0.3081 7.4693 0.3647
Unigram(δ=2.0) 0.2990 8.4182 0.3545

ITS-edit 0.3147 6.5302 0.3758
EXP-edit 0.3209 5.9945 0.3775
γ-reweight 0.3164 6.4414 0.3765
DiPmark(α = 0.4) 0.3178 6.4127 0.3773
DiPmark(α = 0.3) 0.3169 6.3867 0.3765
STA-1 0.3182 6.4118 0.3777

MCMARK(l=20) 0.3168 6.3864 0.3763

Table 7: Unbiasedness evaluation on machine transla-
tion tasks.

BERT Score↑ BLEU↑
Baseline 0.5576 20.35

KGW(δ=0.5) 0.5560 20.25
KGW(δ=1.0) 0.5555 20.02
KGW(δ=1.5) 0.5489 18.95
KGW(δ=2.0) 0.5420 18.28

Unigram(δ=0.5) 0.5570 20.49
Unigram(δ=1.0) 0.5576 20.02
Unigram(δ=1.5) 0.5459 19.05
Unigram(δ=2.0) 0.5330 18.51

ITS-edit 0.5700 21.29
EXP-edit 0.5600 20.00
γ-reweight 0.5548 20.12
DiPmark(α = 0.4) 0.5614 20.65
DiPmark(α = 0.3) 0.5563 20.48
STA-1 0.5532 19.83

MCMARK(l=20) 0.5588 20.16
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Figure 7: Comparative analysis of MCMARK against SOTA unbiased watermarks across various language models
and datasets on watermark detectability.
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Figure 8: Left: Median p-value vs number of distribution channels l in MCMARK with Mistral-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Mistral-7B.
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Figure 9: Left: Median p-value vs number of distribution channels l in MCMARK with Llama2-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Llama2-7B.
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Figure 10: Left: Median p-value vs number of distribution channels l in MCMARK with Llama3-7B. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Llama3-7B.
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(a) TPR@FPR=0.1% vs l
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(b) Median p-value vs l

Figure 11: Left: Median p-value vs number of distribution channels l in MCMARK with Phi3.5-Mini. Right:
TPR@FPR=0.1% vs number of distribution channels l in MCMARK with Phi3.5-Mini.
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