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Abstract
The paper focuses on the interpretability of
Grammatical Error Correction (GEC) evalua-
tion metrics, which received little attention in
previous studies. To bridge the gap, we intro-
duce CLEME2.0, a reference-based metric de-
scribing four fundamental aspects of GEC sys-
tems: hit-correction, wrong-correction, under-
correction, and over-correction. They collec-
tively contribute to exposing critical qualities
and locating drawbacks of GEC systems. Eval-
uating systems by combining these aspects
also leads to superior human consistency over
other reference-based and reference-less met-
rics. Extensive experiments on two human
judgment datasets and six reference datasets
demonstrate the effectiveness and robustness
of our method, achieving a new state-of-the-
art result. Our codes are released at https:
//github.com/THUKElab/CLEME.

1 Introduction

The task of Grammatical Error Correction (GEC)
automatically detects and corrects grammatical er-
rors in a given text (Bryant et al., 2023). A core
component of GEC is the development of auto-
matic metrics that can objectively measure model
performance (Kobayashi et al., 2024b; Ye et al.,
2023c). However, proposing appropriate evalua-
tion of GEC has long been a challenging task (Mad-
nani et al., 2011), due to the subjectivity (Bryant
and Ng, 2015), complexity (Mita et al., 2019) and
subtlety (Choshen and Abend, 2018) of GEC.

Recent research efforts have focused on devel-
oping GEC metrics that closely align with human
judgements (Koyama et al., 2024), whereas the
interpretability of these metrics has received less
emphasis. We define the interpretability of metrics
as their capacity to disclose concerned character-
istics of systems, which is crucial for identifying
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Figure 1: An example of CLEME2.0. We highlight TP,
FP, FPne, FPun, and FN in different colors.

weaknesses in a given GEC system. It is gener-
ally recognized that excellent systems should ad-
here to the principles of grammaticality and faith-
fulness (Bryant et al., 2023). Grammaticality de-
mands that all grammatical errors be accurately cor-
rected, while faithfulness ensures that corrections
retain the original meaning and syntactic struc-
ture. Nevertheless, the commonly utilized GEC
metrics (Bryant et al., 2017; Dahlmeier and Ng,
2012a) are PRF-based (Precision, Recall, and F
scores). We claim that PRF-based metrics fail
to effectively capture subtle dimensions of GEC
systems, consequently hindering progress. As il-
lustrated in Figure 1, the edits [were→was] and
[for→in] in Hyp. 1 are regarded as 2 FP + FN
edits by ERRANT (Bryant et al., 2017) or 2 FP
edits by CLEME (Ye et al., 2023c). Meanwhile,
the edit [ϵ→of ] in Hyp. 2 is categorized as an FP
edit for both ERRANT and CLEME. Despite this,
these two categories of FP edits carry different im-
plications. The former type is correctly placed but
wrongly modified, whereas the latter is incorrectly
positioned. The inability to differentiate between
these FP edits results in ambiguous interpretations
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of P/R/F0.5 scores, as they fail to quantify gram-
maticality and faithfulness.

Thus, we introduce CLEME2.0, an interpretable
reference-based metric describing four fundamen-
tal aspects of GEC systems: 1) the hit-correction
score reflects the degree to which a system accu-
rately corrects grammatical errors, 2) the wrong-
correction score denotes the degree of incorrect
corrections made, 3) the under-correction score re-
veals the degree of missing corrections, and 4) the
over-correction score measures the degree of exces-
sive corrections. An excellent GEC system should
gain a higher hit-correction score and lower wrong-
correction, under-correction, and over-correction
scores. The initial three aspects assess grammati-
cality, whereas the over-correction score pertains
to faithfulness, given that it often alters the orig-
inal meaning, a challenge notably observed with
LLMs (Coyne et al., 2023; Li et al., 2023a). To
achieve this, CLEME2.0 first distinguishes be-
tween necessary and unnecessary false positive
(FP) edits. The idea is that necessary FP edits indi-
cate the system’s wrong-correction degree, while
unnecessary FP edits reveal the system’s over-
correction degree. As shown in the bottom block
of Figure 1, [were→was] and [for→in] in Hyp. 1
are regarded as FPne edits, while [ϵ→of ] in Hyp. 2
is considered as an FPun edit.

As a result, CLEME2.0 establishes a one-to-one
relationship between four distinct system aspects
and four types of edits: hit-correction v.s. TP,
wrong-correction v.s. FPne, under-correction v.s.
FN, and over-correction v.s. FPun. Unlike conven-
tional GEC metrics like ERRANT (Bryant et al.,
2017) and MaxMatch (Dahlmeier and Ng, 2012a)
that evaluate using P/R/F0.5 scores, it offers a nu-
anced view into the detailed aspects necessary for
characterizing critical features of GEC systems.
These separated scores are then consolidated into
an overall score via linear weighted summation,
giving varying importance to these distinct scores.
This aggregate score provides a holistic measure
of system performance. Similar to CLEME, our
method adopts the chunk partition technique and
supports evaluations based on either correction de-
pendence or correction independence assumptions,
so we dub the metric as CLEME2.0.

Moreover, we propose that edits of varying modi-
fication levels should uniquely influence the evalua-
tion outcomes. For example, corrections involving
punctuation are often less significant than correc-
tions of content words. Therefore, we integrate

two edit weighting techniques into CLEME2.0,
similarity-based weighting (Gong et al., 2022) and
LLM-based weighting. In particular, these methods
compute a specific weight for each edit through a
language model rather than assigning equal weight
to all edits, thereby enabling CLEME2.0 to grasp
contextual semantics and address the limitations of
conventional metrics that depend on surface-level
form similarity (Kobayashi et al., 2024a).

To verify the effectiveness of CLEME2.0, we
conduct extensive experiments on two human judg-
ment datasets (GJG15 (Grundkiewicz et al., 2015)
and SEEDA (Kobayashi et al., 2024b)), where our
method consistently achieves high correlations. We
also demonstrate the robustness of CLEME2.0 by
computing the evaluation results based on six refer-
ence datasets with disparate annotation styles. In
summary, our contributions are three folds:

(1) We introduce CLEME2.0, an interpretable
reference-based metric, which is beneficial
to reveal crucial aspects of GEC systems.

(2) We enhance CLEME2.0 by incorporating two
edit weighting techniques, addressing the lim-
itations of conventional reference-based met-
rics in capturing semantics.

(3) Extensive experiments and analyses are con-
ducted to confirm the effectiveness and robust-
ness of our proposed method.

2 Related Work

Reference-based metrics. Reference-based met-
rics evaluate GEC systems by comparing their
outputs to manually written references (Ye et al.,
2022, 2023a,b; Huang et al., 2023; Li et al., 2024c,
2022c,b, 2024d; Ma et al., 2022; Zhang et al., 2023,
2025a; Li et al., 2025c). The M2 scorer (Dahlmeier
and Ng, 2012b) identifies optimal edit sequences
between source sentences and system hypothe-
ses, using F0.5 scores. However, this method
can inflate scores by manipulating edit bound-
aries. To mitigate this problem, ERRANT (Bryant
et al., 2017) improves edit extraction through a
linguistically-informed alignment algorithm, but it
remains language-dependent and biased in multi-
reference evaluation. CLEME (Ye et al., 2023c) fur-
ther provides unbiased F0.5 scores and introduces
an extra correction assumption for multi-reference
evaluation. PT-M2 (Gong et al., 2022) combines
PT-based and existing GEC metrics for higher cor-
relations with human judgments.
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Figure 2: Overview of CLEME2.0. Initially, we extract edits and categorize hypothesis edits as TP, FN, FPne, and
FPun. Next, we compute four distinct scores. Finally, we integrate these scores into an overall score utilizing one of
the edit weighting techniques.

Reference-less metrics. To overcome the limi-
tations of reference-based metrics, recent studies
focus on reference-less scoring. Inspired by qual-
ity estimation in NMT (Liu et al., 2022; Dong
et al., 2023), Napoles et al. (2016a) propose
Grammaticality-Based Metrics (GBMs) using an
existing GEC system or a pre-trained ridge regres-
sion model. Asano et al. (2017) enhance GBMs
by adding criteria like grammaticality, fluency, and
meaning preservation. Yoshimura et al. (2020) in-
troduce SOME, which uses sub-metrics optimized
for manual assessment with regression models.
Scribendi Score (Islam and Magnani, 2021) com-
bines language perplexity and token/Levenshtein
distance ratios. IMPARA (Maeda et al., 2022) in-
corporates a Quality Estimator and a Semantic Es-
timator based on BERT to evaluate GEC output
quality and semantic similarity. While reference-
less metrics align well with human judgments, they
lack interpretability due to the heavy dependence
on trained models, thus posing latent risks.

3 Method

Our CLEME2.0 can be generally divided into
three main steps, with the overview shown in Fig-

ure 2. Additionally, we incorporate two distinct
edit weighting techniques to enhance performance.

3.1 Edit Extraction

Given a source sentence X and a target (either
hypothesis or reference) sentence Y , we extract
the edits describing the modification from X to
Y . Here, we utilize the chunk partition technique
from CLEME (Ye et al., 2023c) to execute the pro-
cess of edit extraction. Unlike the traditional met-
rics like ERRANT (Bryant et al., 2017) and Max-
Match (Dahlmeier and Ng, 2012a), CLEME con-
currently aligns all sentences, including the source,
the hypothesis, and all the references. This facili-
tates segmentation of them all into chunk sequences
with an equal number of chunks, irrespective of the
varying token counts in different sentences, as de-
lineated in Figure 2. It is worth noting that a chunk
is a basic edit unit, which can be unchanged, cor-
rected, or dummy (empty) (Ye et al., 2023c).

3.2 Disentangled Scores

To compute disentangled scores, we initially dis-
entangle edits into four elementary types. 1) TP
edits refer to the corrected/dummy hypothesis
chunks that share the same tokens as the corre-
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sponding reference chunks. 2) FPne edits are the
corrected/dummy hypothesis chunks that have dif-
ferent tokens from those in the corresponding ref-
erence chunks wherein the reference chunks are
also corrected/dummy ones. 3) FPun edits are the
corrected hypothesis chunks but their correspond-
ing reference chunks remain unchanged. 4) FN
edits indicate the unchanged hypothesis chunks
but the corresponding reference chunks are cor-
rected/dummy. It is highlighted that traditional met-
rics (Dahlmeier and Ng, 2012a; Bryant et al., 2017;
Li et al., 2023c) do not distinguish between FPne
and FPun, treating both as FP, thereby resulting
in confusion between wrong-correction and over-
correction. Actually, we have FP = FPne+FPun.

Furthermore, we can differentiate between nec-
essary and unnecessary edits. TP, FPne, and FN
edits are all necessary edits, since their correspond-
ing reference chunks are also corrected/dummy,
implying the existence of grammatical errors in
the related parts of X . On the contrary, FPun edit
are unnecessary edits because the systems propose
corrections not represented in references. Conse-
quently, we can define four disentangled scores.

Hit-correction score. This paper defines the hit-
correction score as the ratio of TP edits to all neces-
sary reference edits. Its purpose is to quantify the
accuracy with which systems offer correct correc-
tions. The formula is as follows:

Hit =
TP

necessity
=

TP

TP + FPne + FN
(1)

Wrong-correction score. Conversely, the wrong-
correction score is defined as the ratio of FPne edits
to all necessary reference edits. This score seeks
to evaluate the degree to which systems generate
erroneous corrections for grammatical errors. The
formula for this score is as follows:

Wrong =
FPne

necessity
=

FPne

TP + FPne + FN
(2)

Under-correction score. Similarly, the under-
correction score is proposed to measure the degree
to which systems omit to correct grammatical er-
rors, which is computed as follows:

Under =
FN

necessity
=

FN

TP + FPne + FN
(3)

Over-correction score. The score is introduced
in response to frequent observations that LLMs are

prone to over-correcting texts. This score is deter-
mined by the proportion of FPun edits to all hypoth-
esis corrected/dummy edits, aiming to gauge the
level to which systems offer excessive corrections:

Over =
FPun

TP + FP
=

FPun

TP + FPne + FPun
(4)

With the disentangled scores indicating disparate
aspects of GEC systems, researchers can identify
specific weaknesses and implement targeted im-
provements without expensive human labor.

3.3 Comprehensive Score

Once the four disentangled scores have been com-
puted, they need to be merged into a comprehensive
score that encapsulates the global performance of
the systems. We employ a weighted summation
approach to organize these four scores for inter-
pretability and simplification. By definition, sys-
tems with higher hit-correction scores are usually
preferable, a tendency that inversely applies to the
remaining scores. Thus, the comprehensive score
can be calculated using the following formula:

Score = α1 ·Hit+ α2 · (1−Wrong)

+ α3 · (1− Under) + α4 · (1−Over)
(5)

where αi is the trade-off factor for each disentan-
gled score, and we constrain that 0 < αi < 1 and
α1 + α2 + α3 + α4 = 1.

3.4 Edit Weighting

Existing reference-based metrics, such as ER-
RANT and CLEME, depend heavily on superficial
literal similarity. This means that, regardless of
length or modification, all types of edits have equal
weighting in the evaluation scores. This aspect
fails to acknowledge that human evaluators might
semantically consider the edits’ varying importance
levels. Therefore, we introduce two distinct edit
weighting techniques to compute the importance
weights of edits. These weights are then incorpo-
rated into the calculation of the aforementioned
disentangled scores as depicted in Equation (1) ∼
(4). Take the hit-correction score as a typical exam-
ple, we reformulate the Equation (1) as follows:

Hit =
wTP

wTP + wFPne + wFN
(6)

Similarity-based weighting. We use PTScore to
assign edit weights (Gong et al., 2022). Since it per-
forms based on BERTScore (Zhang et al., 2019), a
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tool for evaluating text generation through similar-
ity scores, we refer to this technique as similarity-
based weighting. The rationale is to prioritize edits
with a more significant modification of the meaning
and quality of the text.

By simulating a partially accurate version X ′

of the source sentence X , PTScore can associate
specific weights to edits within a sentence. The
computation process is as follows:

X ′ = replace(X, ehyp) (7)

w = PTScore(X ′, R)− PTScore(X,R) (8)

where R is the reference sentence, while the func-
tion replace() is used to replace a specific chunk
of the source X with the corrected/dummy hypoth-
esis chunk ehyp. A positive weight w > 0 indicates
a beneficial correction, whereas a negative value
suggests a wrong correction. The absolute value
|w| is utilized as the edit weight following (Gong
et al., 2022), and the significance1 of an edit in a
sentence grows with a larger |w|.

LLM-based weighting. Recent studies have be-
gun investigating the effectiveness of LLM-based
evaluation, known for their advanced semantic
comprehension (Qin et al., 2024b), in assessing
various NLP tasks (Pavlovic and Poesio, 2024; Sot-
tana et al., 2023). Building on this trend, we prompt
Llama-2-7B (Touvron et al., 2023) to assign edit
weights from 1 to 5, where a higher value signifies
more critical edits. This methodology is rooted in
the idea that LLMs, due to their extensive train-
ing on diverse data, are adept at grasping intricate
language patterns and text structure. Detailed im-
plementation instructions and the prompting frame-
work are available in Appendix A.

4 Experiments

4.1 Experimental Settings

Human ranking datasets. We conduct compre-
hensive experiments across two human judgment
datasets with disparate annotation protocols.

• GJG15 (Grundkiewicz et al., 2015) is con-
structed to manually evaluate classical sys-
tems (Junczys-Dowmunt and Grundkiewicz,
2014; Rozovskaya et al., 2014) in the CoNLL-
2014 shared task (Ng et al., 2014).

1For more detailed analysis, refer to our case study in
Section 5.1 and PT-M2 (Gong et al., 2022).

• SEEDA. Kobayashi et al. (2024b) reveal sev-
eral shortcomings in GJS15 and subsequently
propose SEEDA, an alternative dataset fea-
turing human judgments across two levels of
granularity. To align with the contemporary
trend in GEC, SEEDA is primarily focused on
mainstream neural-based systems.

Both of human judgment datasets derive the over-
all human rankings for all GEC systems by em-
ploying Expected Wins (EW) (Bojar et al., 2013)
and TrueSkill (TS) (Sakaguchi et al., 2014) meth-
ods. Following the previous approaches (Ye et al.,
2023c; Kobayashi et al., 2024b), we compute the
Pearson (γ) and Spearman (ρ) correlations between
metrics and human judgments, in order to ascertain
the effectiveness and robustness of GEC metrics
within the context of system-level ranking.

Reference datasets. Reference-based metrics
rely on a reference set to establish a system rank-
ing list, the properties of which may significantly
influence the performance of the metrics. To in-
vestigate the impact of variable reference sets,
we assess human consistency across 6 reference
datasets. These datasets encompass a range of an-
notation styles, and a number of human annota-
tors, including CoNLL-2014 (Grundkiewicz et al.,
2015), BN-10GEC (Bryant and Ng, 2015) and SN-
8GEC (Sakaguchi et al., 2016). Notably, SN-8GEC
is partitioned into 4 sub-sets, i.e., Expert-Minimal,
Expert-Fluency, Non-Expert-Minimal, and Non-
Expert-Fluency. A more thorough breakdown of
these datasets and the statistics is provided in Ap-
pendix B.

Corpus and sentence levels. GEC evaluation
metrics can compute an overall system-level score
for a given system in two settings (Gong et al.,
2022). Given the metric M , source sentences S,
hypothesis sentences H and reference sentences
R, 1) corpus-level metrics compute the system
score based on the whole corpus M(S,H,R), and
2) sentence-level metrics use the average of the
sentence-level scores

∑I
iM(Si,Hi,Ri)/I .

Trade-off factors. We leverage a cross-
evaluation search method to identify two optimal
sets of trade-off factors for both the corpus and sen-
tence levels. At the corpus level, the factors are as-
signed as α1, α2, α3, α4 = 0.45, 0.35, 0.15, 0.05,
while for the sentence level, they are adjusted
to α1, α2, α3, α4 = 0.35, 0.25, 0.20, 0.20. The
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Metric
CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

Avg.
EW TS EW TS EW TS EW TS EW TS EW TS

M2 γ 0.623 0.672 0.547 0.610 0.597 0.650 0.590 0.659 0.575 0.634 0.582 0.649 0.616
ρ 0.687 0.720 0.648 0.692 0.654 0.703 0.654 0.709 0.577 0.648 0.648 0.703 0.670

GLEU
γ 0.701 0.750 0.678 0.761 0.533 0.513 0.693 0.771 -0.044 -0.113 0.674 0.767 0.557
ρ 0.467 0.555 0.754 0.806 0.577 0.511 0.710 0.757 -0.005 -0.055 0.725 0.819 0.551

ERRANT
γ 0.642 0.688 0.586 0.644 0.578 0.631 0.594 0.663 0.585 0.637 0.597 0.659 0.625
ρ 0.659 0.698 0.637 0.698 0.742 0.786 0.720 0.775 0.747 0.797 0.753 0.797 0.734

PT-M2 γ 0.693 0.737 0.650 0.706 0.626 0.667 0.621 0.681 0.630 0.675 0.620 0.682 0.666
ρ 0.758 0.769 0.690 0.824 0.709 0.736 0.758 0.802 0.736 0.758 0.758 0.802 0.758

CLEME-dep
γ 0.648 0.691 0.602 0.656 0.594 0.644 0.589 0.654 0.595 0.643 0.612 0.673 0.633
ρ 0.709 0.742 0.692 0.747 0.797 0.813 0.714 0.775 0.786 0.835 0.720 0.791 0.760

CLEME-ind
γ 0.649 0.691 0.609 0.659 0.593 0.643 0.587 0.653 0.601 0.647 0.611 0.672 0.635
ρ 0.709 0.731 0.692 0.747 0.791 0.802 0.731 0.791 0.797 0.841 0.714 0.786 0.761

CLEME2.0-dep (Ours)
γ 0.700 0.765 0.675 0.745 0.690 0.768 0.695 0.788 0.702 0.778 0.704 0.800 0.734
ρ 0.665 0.736 0.626 0.692 0.736 0.808 0.742 0.830 0.775 0.846 0.599 0.714 0.730

CLEME2.0-ind (Ours)
γ 0.718 0.777 0.731 0.793 0.708 0.784 0.736 0.824 0.757 0.826 0.801 0.848 0.775
ρ 0.665 0.736 0.698 0.758 0.736 0.808 0.742 0.830 0.775 0.846 0.670 0.769 0.753

CLEME2.0-sim-dep (Ours)
γ 0.783 0.853 0.721 0.801 0.765 0.834 0.737 0.827 0.761 0.824 0.741 0.834 0.790
ρ 0.819 0.890 0.802 0.863 0.791 0.868 0.758 0.852 0.830 0.896 0.786 0.857 0.834

CLEME2.0-sim-ind (Ours)
γ 0.806 0.871 0.772 0.839 0.780 0.841 0.761 0.844 0.782 0.834 0.798 0.877 0.817
ρ 0.846 0.901 0.835 0.885 0.819 0.885 0.758 0.852 0.846 0.896 0.863 0.923 0.859

SentM2 γ 0.871 0.864 0.567 0.646 0.805♣ 0.836♣ 0.655 0.732 0.729♣ 0.785♣ 0.621 0.699 0.734
ρ 0.731 0.758 0.593 0.648 0.806♣ 0.845♣ 0.731 0.764 0.797♣ 0.846♣ 0.632 0.687 0.737

SentGLEU
γ 0.784 0.828 0.756 0.826 0.742♣ 0.773♣ 0.785 0.846 0.723♣ 0.762♣ 0.778 0.848 0.788
ρ 0.720 0.775 0.769 0.824 0.764♣ 0.797♣ 0.791 0.846 0.764♣ 0.830♣ 0.768 0.846 0.791

SentERRANT
γ 0.870 0.846 0.885 0.896 0.768♣ 0.803♣ 0.806 0.732 0.710♣ 0.765♣ 0.793 0.847 0.810
ρ 0.742 0.747 0.786 0.830 0.775♣ 0.819♣ 0.813 0.764 0.780♣ 0.841♣ 0.830 0.857 0.799

SentPT-M2 γ 0.949 0.938 0.602♣ 0.682♣ 0.831♣ 0.855♣ 0.689 0.763 0.770♣ 0.822♣ 0.648 0.725 0.772
ρ 0.907 0.874 0.626♣ 0.670♣ 0.808♣ 0.819♣ 0.797 0.841 0.813♣ 0.857♣ 0.742 0.786 0.795

SentCLEME-dep
γ 0.876 0.844 0.915 0.913 0.806♣ 0.838♣ 0.849 0.886 0.742♣ 0.795♣ 0.876 0.921 0.855
ρ 0.824 0.808 0.835 0.874 0.775♣ 0.819♣ 0.824 0.863 0.797♣ 0.846♣ 0.791 0.846 0.825

SentCLEME-ind
γ 0.868 0.857 0.855♣ 0.876♣ 0.821♣ 0.856♣ 0.841 0.877 0.782♣ 0.831♣ 0.852 0.896 0.851
ρ 0.725 0.758 0.659♣ 0.714♣ 0.775♣ 0.819♣ 0.808 0.846 0.819♣ 0.874♣ 0.762 0.825 0.782

SentCLEME2.0-dep (Ours)
γ 0.870 0.881 0.766 0.830 0.941♣ 0.954♣ 0.892 0.938 0.913♣ 0.918♣ 0.916 0.949 0.897
ρ 0.714 0.725 0.681 0.747 0.857♣ 0.885♣ 0.824 0.901 0.857♣ 0.912♣ 0.720 0.791 0.801

SentCLEME2.0-ind (Ours)
γ 0.866 0.881 0.799 0.853 0.941♣ 0.956♣ 0.915 0.952 0.915♣ 0.917♣ 0.883 0.904 0.899
ρ 0.709 0.720 0.681 0.747 0.879♣ 0.912♣ 0.857 0.923 0.824♣ 0.885♣ 0.654 0.720 0.793

SentCLEME2.0-sim-dep (Ours)
γ 0.926 0.937 0.797 0.861 0.939♣ 0.948♣ 0.908 0.952 0.871♣ 0.872♣ 0.918 0.947 0.906
ρ 0.907 0.912 0.808 0.863 0.852♣ 0.879♣ 0.885 0.945 0.753♣ 0.780♣ 0.896 0.940 0.868

SentCLEME2.0-sim-ind (Ours)
γ 0.915 0.936 0.808 0.866 0.945♣ 0.956♣ 0.923 0.963 0.885♣ 0.887♣ 0.931 0.961 0.915
ρ 0.868 0.879 0.753 0.824 0.863♣ 0.901♣ 0.879 0.956 0.775♣ 0.802♣ 0.835 0.923 0.855

Table 1: Correlation results on GJG15 Ranking. CLEME2.0-sim is based on similarity-based weighting. We
highlight the highest scores in bold and the second-highest scores with underlines. ♣ We exclude unchanged
references for higher correlations due to low-quality annotations in some reference sets. Results without excluding
references are presented in Appendix C.1.

details of the chosen values of trade-off factors can
be seen in Appendix B.5.

Evaluation assumptions. CLEME can evaluate
GEC systems based on correction dependence (-
dep) or independence (-ind) assumptions. The cor-
rection independence assumption offers a more re-
laxed edit-matching process, implying that systems
might yield better scores when multiple references

are available. Inspired by this work, CLEME2.0
also supports both assumptions, and we will study
their effects on our method.

4.2 Results of GJG15 Ranking

The correlations between the GEC metrics and hu-
man judgments on the GJG15 rankings are shown
in Table 1, and we have the following insights.
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CLEME2.0 outperforms other metrics at both
corpus and sentence levels. For corpus-level,
CLEME2.0-sim-ind achieves the highest average
correlations, closely followed by CLEME2.0-sim-
dep. CLEME2.0-ind and CLEME2.0-dep can also
gain comparable correlations with other metrics,
even though they do not utilize any edit weighting
techniques. On the other hand, sentence-level met-
rics exhibit a similar pattern. SentCLEME2.0-sim-
dep and SentCLEME2.0-sim-ind achieve the high-
est Pearson and Spearson correlations, respectively.
These results significantly demonstrate the effec-
tiveness and robustness of our proposed method
across different settings.

Sentence-level metrics outperform their corpus-
level counterparts. This observation is consis-
tent with recent studies (Gong et al., 2022; Ye et al.,
2023c). This is because system-level rankings treat
each sample equally regardless of edit numbers,
mirroring how sentence-level metrics are evalu-
ated. On the other hand, corpus-level metrics em-
phasize samples with more edits, thus causing the
gap between automatic metrics and human evalu-
ation. SentPT-M2 shows superior performance on
CoNLL-2014 but performs worse on BN-10GEC,
E-Minimal, and NE-Fluency compared to our ap-
proach, revealing a lack of robustness of the metric.

Generally, our method aligns more closely with
human assessments than existing popular met-
rics. Notably, our method with similarity-based
weighting surpasses unweighted ones, thanks to
the integration of semantic factors. However, on
E-Minimal and NE-Minimal, weighted and un-
weighted results are comparable. We suspect this
is because these datasets have minimal yet cru-
cial annotations, reducing the possibility of varying
weights and the efficacy of edit weighting.

Furthermore, we present comprehensive results
of CLEME2.0 on CoNLL-2014 and offer insights
into our method for analyzing and identifying weak-
nesses in GEC systems in Appendix C.5.

4.3 Results of SEEDA Ranking

We carry out an additional experiment on the
SEEDA-Sentence and SEEDA-Edit datasets, where
we compare our method against various GEC met-
rics. As presented in Table 2, our approach con-
sistently achieves the best outcomes across both
datasets. According to Kobayashi et al. (2024b),
the correlations of most metrics tend to decrease
when transitioning from classical to neural evalua-

Metric
SEEDA-S SEEDA-E

Avg.
γ ρ γ ρ

M2 0.658 0.487 0.791 0.764 0.675
PT-M2 0.845 0.769 0.896 0.909 0.855
ERRANT 0.557 0.406 0.697 0.671 0.583
PT-ERRANT 0.818 0.720 0.888 0.888 0.829
GoToScorer 0.929 0.881 0.901 0.937 0.912
GLEU 0.847 0.886 0.911 0.897 0.885
Scribendi Score 0.631 0.641 0.830 0.848 0.738
SOME 0.892 0.867 0.901 0.951 0.903
IMPARA 0.911 0.874 0.889 0.944 0.903
CLEME-dep 0.633 0.501 0.755 0.757 0.662
CLEME-ind 0.616 0.466 0.736 0.708 0.632
CLEME2.0-dep (Ours) 0.937 0.865 0.945 0.939 0.922
CLEME2.0-ind (Ours) 0.908 0.844 0.961 0.946 0.915
CLEME2.0-sim-dep (Ours) 0.923 0.914 0.948 0.974 0.940
CLEME2.0-sim-ind (Ours) 0.921 0.907 0.953 0.981 0.941

Sent-M2 0.802 0.692 0.887 0.846 0.807
SentERRANT 0.758 0.643 0.860 0.825 0.772
SentCLEME-dep 0.866 0.809 0.944 0.939 0.890
SentCLEME-ind 0.864 0.858 0.935 0.911 0.892
SentCLEME2.0-dep (Ours) 0.905 0.844 0.955 0.946 0.913
SentCLEME2.0-ind (Ours) 0.875 0.837 0.953 0.953 0.905
SentCLEME2.0-sim-dep (Ours) 0.924 0.858 0.923 0.953 0.915
SentCLEME2.0-sim-ind (Ours) 0.921 0.886 0.957 0.960 0.931

Table 2: Results of human correlations on SEEDA Rank-
ing based on TrueSkill (TS).

tion systems. This implies that conventional met-
rics might face difficulties in evaluating the more
extensively edited or fluent corrections produced by
state-of-the-art neural GEC systems. Nevertheless,
our method effectively tackles these challenges,
delivering even improved performance for all indi-
cators. The results for SEEDA-Edit exceed those
for SEEDA-Sentence, due to the greater detail in
SEEDA-Edit, aligning more closely with the oper-
ation of CLEME2.0.

It is crucial to mention that reference-less met-
rics such as SOME and IMPARA yield high out-
comes, in part, because these are fine-tuned on
GEC data. Although fine-tuned metrics generally
perform better, they are not without their limi-
tations. Firstly, the incorporation of fine-tuning
in SOME and IMPARA makes these reference-
less metrics more costly. Second, these reference-
less metrics may suffer from poor robustness
since the assessment process is not guided by
human-annotated references. For example, the au-
thors of Scribendi Score claim that it can achieve
high correlations on the human judgment dataset
from Napoles et al. (2016b). However, only moder-
ate correlations are observable on SEEDA-Edit.
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Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6

Source Do one who suffered from this disease keep it a secret of infrom their relatives ?
Reference Does one who suffers from this disease keep it a secret or inform their relatives ?
Hypothesis Do one (0.028) who suffer (0.011) from this disease keep it a secret to inform (0.094) their relatives ?

Hit = 0.00, Wrong = 0.79, Under = 0.21, Over = 0.00

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7 Chunk 8 Chunk 9

Source When we are diagonosed out with certain genetic disease , should we disclose this result to our relatives ?
Ref. When we are diagnosed with certain genetic diseases , should we disclose this result to our relatives ?
Hyp. When we are diagnosed out (0.056) with certain genetic diseases (0.006) , should we disclose the results (0.019) to their (0.021) relatives ?

Hit = 0.10, Wrong = 0.90, Under = 0.0, Over = 0.39

Table 3: Study cases of CLEME2.0 with similarity-based weighting. We highlight TP, FPne, FPun, and FN chunks
in different colors. Values in brackets are similarity-based weighting scores.

Dataset
Corpus-EW Corpus-TS Sentence-EW Sentence-TS

γ ρ γ ρ γ ρ γ ρ

CoNLL-2014 0.697 0.659 0.759 0.720 0.626 0.654 0.696 0.698
BN-10GEC 0.732 0.764 0.796 0.813 0.638 0.637 0.708 0.698
E-Minimal 0.709 0.786 0.779 0.819 0.642 0.692 0.715 0.747
E-Fluency 0.760 0.786 0.831 0.841 0.642 0.665 0.720 0.714
NE-Minimal 0.777 0.823 0.839 0.861 0.654 0.747 0.723 0.791
NE-Fluency 0.823 0.692 0.849 0.709 0.664 0.791 0.742 0.830

Table 4: Correlation results of LLM-based weighting
on GJG15 Ranking.

4.4 Results of LLM-based Weighting

Table 4 presents the outcomes of LLM-based
weighting, noting that its effectiveness is less favor-
able than similarity-based weighting. A likely rea-
son is the coarse grading method of LLMs, which
allocates edit weights from 1 to 5, unlike the finer
continuous scale [0, 1]. Although Kobayashi et al.
(2024a) argue that LLMs serve as effective evalua-
tors for GEC, their research pertains to huge closed-
source LLMs (GPT-4 and GPT-3.5) and involves
specific prompt engineering. They also identify
the importance of the LLM scale since GPT-3.5
may even obtain negative correlations with human
judgments. In contrast, we employ a more straight-
forward approach with open-source LLama-2-7B.

5 Analysis

5.1 Case Study

Table 3 demonstrates instances of CLEME2.0. In
the first set, Chunks 3 and 5 are FPne edits con-
tributing to the wrong-correction score, with a
higher edit weight of Chunk 5 than Chunk 3 since
Chunk 5 introduces an error that entirely alters the
sentence’s meaning. In the second set, Chunk 2 ob-
tains the highest edit weight of 0.056, underscoring

Metric
EW TS

Avg.
γ ρ γ ρ

CLEME2.0-dep-Hit 0.599 0.593 0.673 0.648 0.628
CLEME2.0-dep-Wrong -0.444 -0.533 -0.526 -0.593 -0.524
CLEME2.0-dep-Under 0.496 0.599 0.576 0.659 0.583
CLEME2.0-dep-Over 0.118 0.269 0.073 0.275 0.253

SentCLEME2.0-dep-Hit 0.594 0.593 0.672 0.648 0.627
SentCLEME2.0-dep-Wrong -0.405 -0.429 -0.489 -0.500 -0.456
SentCLEME2.0-dep-Under 0.489 0.511 0.572 0.582 0.539
SentCLEME2.0-dep-Over -0.247 -0.363 -0.346 -0.440 -0.349

Table 5: Correlation results of each disentangled score
on GJG15 Ranking.

its substantial influence on the evaluation. Despite
the correct modification of “diagnosed”, the mis-
use of “out” remains, keeping the correction wrong.
Chunk 4 illustrates a singular-to-plural correction
in the source sentence, with a low weight indicating
a minor impact. Chunks 6 and 8 showcase over-
corrections. Chunk 6 leaves the original meaning
unchanged, whereas Chunk 8 introduces a signifi-
cant error by misusing a personal pronoun.

The cases highlight the effectiveness of the
weighting technique. Otherwise, all edits are given
equal weight, failing to distinguish hypothesis ed-
its with varying correction levels. We display the
cases of LLM-based weighting in Appendix C.2.

5.2 Ablation Study

We conduct ablation studies on (Sent)CLEME2.0-
dep to analyze the performance of individual dis-
entangled scores. A preferable system has re-
duced wrong-correction, under-correction, and
over-correction scores, so we report corrections
between 1-x with human judgments where x is
one of the scores. The outcomes are detailed in
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Metric Time (Seconds)

ERRANT 33.4
GLEU 21.5
CLEME-dep 54.1
CLEME-ind 54.1
(Sent)CLEME2.0-dep 54.1
(Sent)CLEME2.0-ind 54.1
(Sent)CLEME2.0-sim-ind 88.4
(Sent)CLEME2.0-sim-ind 87.6

Table 6: Efficiency of metrics.

Table 5. Hit-correction and under-correction show
moderate correlations. Over-correction scores have
small positive correlations at the corpus level, with
minimal negative correlations at the sentence level.
Notably, wrong-correction scores display negative
correlations, but this does not mean they do not im-
pact the overall score. In reality, the trade-off factor
for wrong-correction scores is relatively substantial.
The hypothesis is that focusing evaluations only on
wrong-correction scores might prefer systems that
make only highly confident edits, potentially lead-
ing to assessment bias.

Additionally, we utilize the similarity-weighting
approach on CLEME to evaluate its efficacy, with
the outcomes detailed in Appendix C.3. To exam-
ine our method on a broad scale, we also provide
the average correlations obtained from a compre-
hensive analysis of all potential parameter settings.
The results are found in Appendix C.4.

5.3 Efficiency

This section provides a comparative analysis of
the efficiency of our methods against other prevail-
ing metrics. The experiments were executed on
a GPU 3090 within the CoNLL-2014 framework,
with the evaluation times of the AMU system re-
ported. Our observations are as follows: (1) For
ERRANT, the primary time expenditure is associ-
ated with edit extraction, lasting 33.4 seconds. (2)
CLEME and CLEME2.0 primarily incur time costs
from edit extraction at 33.4 seconds and chunk par-
titioning at 20.7 seconds. (3) For CLEME2.0-sim,
the most significant time costs are assignable to edit
extraction (33.4 s), chunk partitioning (20.7 s), and
edit weighting (34.3 s). PT-M2 exhibits the slow-
est runtime when replicating existing mainstream
methods, with its evaluation process taking several
hours; thus, we did not report a precise runtime due
to the time constraints. Some technical solutions

can mitigate the runtime when evaluating a sys-
tem using these metrics concurrently. For instance,
when assessing a system with ERRANT, CLEME,
and CLEME2.0, the minimum cumulative duration
is calculated as 33.4 seconds for edit extraction,
20.7 seconds for chunk partitioning, and 34.3 sec-
onds for edit weighting, totaling 88.4 seconds.

6 Conclusion

This paper introduces CLEME2.0, an interpretable
evaluation metric for GEC that effectively high-
lights four key aspects of systems. By incorporat-
ing edit weighting techniques, we overcome the
challenges traditional reference-based metrics face
in recognizing semantic subtleties. Extensive ex-
periments and analyses confirm the effectiveness
and robustness of our method. We anticipate that
CLEME2.0 will offer a valuable perspective in the
GEC community.

Limitation

Limitation in languages and datasets. While
CLEME2.0 is adaptable to various languages, its
efficiency beyond English remains unverified. Ad-
ditionally, the reference sets employed in our ex-
periments stem from the CoNLL-2014 shared task,
which involves a second language dataset. To con-
firm the robustness of our methods, it’s necessary
to conduct further experiments using evaluation
datasets that cover a range of languages and text
domains. Finally, we highly encourage the creation
of new GEC evaluation datasets to foster progress.

Lack of further human evaluation for inter-
pretability. The experiments discussed in the
paper are primarily concerned with assessing the
correlation between automatic metrics and human
judgments. However, they fall short of providing
a thorough analysis of the method’s interpretabil-
ity. Although we showcase the strong correlation
performance of CLEME2.0, its interpretability is
still unverified. In future work, we will conduct
human evaluation experiments to showcase the in-
terpretability of our method.

Ethics Statement

In this paper, we validate the effectiveness and
robustness of our proposed approach using the
CoNLL-2014, BN-10GEC, and SN-8GEC refer-
ence datasets. These datasets are sourced from
publicly available resources on legitimate websites
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A LLM-based Edit Weighting

Because of the powerful semantic comprehension
abilities of LLMs (Qin et al., 2024a; Tan et al.,
2024; Ye et al., 2025a; Yu et al., 2024a; Tang et al.,
2025; Yan et al., 2025; Li et al., 2024e, 2022a; Du
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recent studies (Chu et al., 2025; Ye et al., 2025c,b,
2024; Hu et al., 2024; Chen et al., 2024; Su et al.,
2025; Zou et al., 2025; Xu et al., 2025; Li et al.,
2025b, 2024b; Zhang et al., 2025b; Li et al., 2024a)
have generated interest in employing LLMs for text
assessment on various NLP tasks. Building on this
idea, we use Llama-2-7B (Touvron et al., 2023)
as a scorer to determine edit weights. The prompt
for edit weighting is presented in Figure 3. We
set the temperature to 0.1 to ensure consistent and
certain results. We instruct the LLM to evaluate
each edit individually to prevent interference from
other grammatical errors. Edit weights vary from
1 to 5, with higher values representing a greater
need for correction. We do not specify the types
of edits to the LLM; instead, we allow the LLM to
directly evaluate the importance of edits through
its inherent language understanding abilities. An
input is composed of an uncorrected sentence and
a certain edit.

B Details about GEC Meta-Evaluation

B.1 Human Rankings

GJG15 ranking. Grundkiewicz et al. (2015) pro-
pose the first large-scale human judgement dataset
for 12 participating systems of the CoNLL-2014
shared task. In this assessment, 8 native speakers
are asked to rank the systems’ outputs from best
to worst. Two system ranking lists are generated
using Expected Wins (EW) and TrueSkill (TS), re-
spectively.

SEEDA ranking. Kobayashi et al. (2024b) iden-
tify several limitations of the GJG15 ranking
dataset, and propose a new human ranking dataset
called SEEDA. SEEDA consists of corrections with
human ratings along two different granularities:
edit-based and sentence-based, covering 12 state-
of-the-art systems, including large language mod-
els (LLMs), and two human corrections with differ-
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Prompt:
As an evaluator for grammatical error correction, you are tasked with assessing the importance of
each error. You will be provided with two lines: the first is an uncorrected sentence, the second shows
the edit. Then you output the importance score of the given edit.
The scores range from 1 to 5, where a higher score reflects the greater significance of the correction,
while a lower score indicates minor importance.

- A score of 1 means the correction is almost negligible and unnecessary.
- A score of 2 means the correction has slight influence.
- A score of 3 signifies some impact by the correction.
- A score of 4 means the edit is essential.
- A score of 5 indicates the modification is highly important and necessary.

Next, I’ll provide you a sentence with an edit. You should score each edit accordingly. The output
should only be the score, with no additional explanation.

Example Input:
Uncorrected sentence: Nowadays the technologies were improved a lot compared to the last century.
Edit: were → have
Example Output (1-5): 5

Note that the output must be a number between 1 and 5. Here is the formal input:
Uncorrected sentence: {uncorrected sentence}
Edit: {edit}
Example Output (1-5):

Figure 3: Prompt of LLM-based weighting.

ent focuses. Three native English speakers partic-
ipate in the annotation process. Similar to Grund-
kiewicz et al. (2015), the overall human rankings
are derived from TrueSkill (TS) and Expected Wins
(EW) based on pairwise judgments.

B.2 Ranking Algorithms

Our employed human judgments are originally pair-
wise comparisons, i.e., humans choose the better of
two available system outputs. The overall rankings
are derived by using ranking algorithms, including
Expected Wins (EW) and TrueSkill (TS).

Expected Wins (EW) EW (Bojar et al., 2013)
is a derived ranking metric that quantifies the the-
oretical number of wins a participant is expected
to achieve against a defined set of opponents. It is
calculated by summing the probability of winning
against each opponent, where these probabilities
are typically derived from an existing skill rating
system. EW provides a single aggregate score for
ranking, useful for pre-match seeding or assessing
theoretical group performance.

TrueSkill (TS) TS (Sakaguchi et al., 2014) is
a Bayesian skill rating system developed by Mi-
crosoft Research. Unlike simpler systems, TS mod-
els a participant’s skill as a probability distribution
(N(µ, σ2)), where µ represents the estimated skill
level and σ quantifies the uncertainty in that es-
timate. Upon match outcomes, TS updates these
distributions using Bayesian inference, allowing
for rapid adjustments and robust ranking. A key
advantage is its inherent support for multi-player
or team-based matches and the explicit handling
of draws. Participants are typically ranked by a
conservative estimate of their skill, such as µ− 3σ,
which accounts for confidence.

B.3 Statistics of Reference Datasets

Table 7 presents the statistics of all the reference
sets involved in our experiments.

B.4 Baseline Metrics

In our evaluation, we compare our method with the
following reference-based baseline metrics, includ-
ing corpus and sentence-level variants:
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Item CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

# Sentence (Length) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0)
# Reference (Length) 2,624 (22.8) 13,120 (22.9) 2,624 (23.2) 2,624 (22.8) 2,624 (23.0) 2,624 (22.2)
# Edit (Length) 5,937 (1.0) 36,677 (1.0) 4,500 (1.0) 8,373 (1.1) 4,964 (0.9) 11,033 (1.2)
# Unchanged Chunk (Length) 11,174 (4.8) 93,496 (2.5) 8,887 (6.3) 12,823 (3.8) 10,748 (5.1) 14,086 (2.9)
# Corrected/Dummy Chunk (Length) 4,994 (1.3) 26,948 (2.4) 3,963 (1.2) 6,305 (1.7) 4,221 (1.2) 6,892 (2.6)

Table 7: Statistics of CoNLL-2014 (Ng et al., 2014), BN-10GEC (Bryant and Ng, 2015) and SN-8GEC (Sakaguchi
et al., 2016) reference sets. We leverage ERRANT (Bryant et al., 2017) for edit extraction, and CLEME (Ye et al.,
2023c) for chunk extraction.

Metric
CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

Avg.
EW TS EW TS EW TS EW TS EW TS EW TS

SentGLEU
γ 0.784 0.828 0.756 0.826 0.624 0.581 0.785 0.846 0.218 0.142 0.778 0.848 0.668 (⇓ 0.120)
ρ 0.720 0.775 0.769 0.824 0.599 0.593 0.791 0.846 0.220 0.170 0.768 0.846 0.660 (⇓ 0.131)

SentERRANT
γ 0.870 0.846 0.885 0.896 0.760 0.692 0.806 0.732 0.104 -0.066 0.793 0.847 0.680 (⇓ 0.130)
ρ 0.742 0.747 0.786 0.830 0.626 0.588 0.813 0.764 -0.003 -0.137 0.830 0.857 0.620 (⇓ 0.179)

SentCLEME-dep
γ 0.876 0.844 0.915 0.913 0.602 0.507 0.849 0.886 -0.021 -0.127 0.876 0.921 0.670 (⇓ 0.185)
ρ 0.824 0.808 0.835 0.874 0.451 0.412 0.824 0.863 -0.181 -0.247 0.791 0.846 0.592 (⇓ 0.233)

SentCLEME-ind
γ 0.868 0.857 0.539 0.453 0.513 0.410 0.841 0.877 -0.061 -0.181 0.852 0.896 0.572 (⇓ 0.279)
ρ 0.725 0.758 0.209 0.143 0.368 0.335 0.808 0.846 -0.167 -0.247 0.762 0.825 0.447 (⇓ 0.335)

SentCLEME2.0-dep (Ours)
γ 0.870 0.881 0.766 0.830 0.937 0.928 0.892 0.938 0.634 0.571 0.916 0.949 0.843 (⇓ 0.054)
ρ 0.714 0.725 0.681 0.747 0.846 0.852 0.824 0.901 0.368 0.352 0.720 0.791 0.710 (⇓ 0.091)

SentCLEME2.0-ind (Ours)
γ 0.866 0.881 0.799 0.853 0.940 0.933 0.915 0.952 0.693 0.631 0.883 0.904 0.854 (⇓ 0.045)
ρ 0.709 0.720 0.681 0.747 0.819 0.835 0.857 0.923 0.423 0.401 0.654 0.720 0.707 (⇓ 0.086)

SentCLEME2.0-sim-dep (Ours)
γ 0.926 0.937 0.797 0.861 0.914 0.902 0.908 0.952 0.607 0.550 0.918 0.947 0.852 (⇓ 0.054)
ρ 0.907 0.912 0.808 0.863 0.808 0.813 0.885 0.945 0.527 0.505 0.896 0.940 0.817 (⇓ 0.051)

SentCLEME2.0-sim-ind (Ours)
γ 0.915 0.936 0.808 0.866 0.922 0.916 0.923 0.963 0.720 0.669 0.931 0.961 0.877 (⇓ 0.038)
ρ 0.868 0.879 0.753 0.824 0.808 0.841 0.879 0.956 0.544 0.527 0.835 0.923 0.803 (⇓ 0.052)

Table 8: Correlation results on GJG15 Ranking. We report the results without excluding unchanged reference
sentences and the reduction compared with Table 1. We highlight the highest scores in bold and the second-highest
scores with underlines.

• M2 and SentM2 (Dahlmeier and Ng, 2012a) dy-
namically extract the hypothesis edits with the
maximum overlap of gold annotations by utiliz-
ing the Levenshtein algorithm.

• GLEU and SentGLEU (Napoles et al., 2015) are
BLEU-like GEC metrics based on n-gram match-
ing, rewarding hypothesis n-grams that align with
the reference but not the source, while penaliz-
ing those aligning solely with the source. GLEU
is the main metric in JFLEG, an English GEC
dataset that highlights holistic fluency edits.

• ERRANT and SentERRANT (Bryant et al.,
2017) are among the most widely recognized
in grammatical error correction. They enhance
the accuracy of edit extraction by employing a
linguistically refined version of the Damerau-
Levenshtein algorithm.

• PT-M2 and SentPT-M2 (Gong et al., 2022) lever-

age pre-trained language model (PLM) to evalu-
ate GEC systems. The main idea is similar to M2

and ERRANT, but they can leverage the knowl-
edge of pre-trained language models to score
edits effectively.

• CLEME and SentCLEME (Ye et al., 2023c) are
proposed to provide unbiased scores for multi-
reference evaluation. Furthermore, the authors
present the correction independence assumption,
enabling CLEME to function under either the
traditional correction dependence or correction
independence assumptions.

For the evaluation on SEEDA, we add extra eval-
uation metrics following the evaluation methods
reported in Kobayashi et al. (2024b):

• GoToScorer (Gotou et al., 2020): takes into ac-
count the difficulty of error correction when cal-
culating the evaluation score. The difficulty is
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Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6

Source Do one who suffered from this disease keep it a secret of infrom their relatives ?
Reference Does one who suffers from this disease keep it a secret or inform their relatives ?
Hypothesis Do one (5) who suffer (5) from this disease keep it a secret to inform (1) their relatives ?

Hit = 0.00, Wrong = 0.55, Under = 0.45, Over = 0.00

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7 Chunk 8 Chunk 9

Source When we are diagonosed out with certain genetic disease , should we disclose this result to our relatives ?
Ref. When we are diagnosed with certain genetic diseases , should we disclose this result to our relatives ?
Hyp. When we are diagnosed out (5) with certain genetic diseases (5) , should we disclose the results (4) to their (5) relatives ?

Hit = 0.50, Wrong = 0.50, Under = 0.00, Over = 0.47

Table 9: Study cases of CLEME2.0 with LLM-based weighting. We highlight TP, FPne, FPun, and FN chunks in
different colors. Values in brackets are LLM-based weighting scores.

calculated based on the number of systems that
can correct errors.

• Scribendi Score (Islam and Magnani, 2021):
evaluates GEC systems in conjunction with the
complexity calculated by GPT-2 (Radford et al.,
2019), the labeled ranking ratio and the Leven-
stein distance ratio.

• SOME (Yoshimura et al., 2020): optimizes hu-
man evaluation by fine-tuning BERT separately
for criteria such as grammaticality, fluency, and
meaning preservation.

• IMPARA (Maeda et al., 2022): incorporates a
quality assessment model fine-tuned using BERT
parallel data and a similarity model that takes
into account the effects of editing.

B.5 Details of Determining Trade-off Factors
A cross-validation approach was employed on the
six reference sets of GJG15 to determine the opti-
mal set. Five of the six reference sets were selected,
and an exhaustive exploration of all trade-off fac-
tors was conducted. The candidate factors were
evaluated at intervals determined by a grid value
of 0.05. The optimal factors were then identified
and applied to the remaining reference set, yielding
resultant corrections. We reiterated this process six
times to ascertain the final set of trade-off factors,
which exhibited the highest average correction for
the remaining reference sets.

C Extra Results

C.1 Results of Full References
The results without excluding unchanged reference
sentences are presented in Table 8. We observe an

obvious performance reduction in traditional met-
rics, especially in NE-Minimal, which contains nu-
merous under-corrections due to annotation by non-
experts under the minimal editing guideline. We
remove 470 unchanged references in E-Minimal
and 612 unchanged references in NE-Minimal. In
particular, SentERRANT, SentCLEME-dep, and
SentCLEME-ind exhibit negative correlations in
NE-Minimal, revealing their lack of robustness.
Many metrics also undergo a significant decrease
in E-Minimal except CLEME2.0. In the case of E-
Minimal, many metrics also show a marked decline,
except for CLEME2.0. Our approach achieves the
highest or comparable correlations across all refer-
ence sets, underscoring its robustness.

C.2 Case Study of LLM-based Weighting

In Table 9, we report instances of CLEME2.0 using
LLM-based weighting. We notice distinct prefer-
ences when comparing similarity-based and LLM-
based weighting methods. In the first example,
Llama-2 attributes significant weights to Chunks 1
and 2, highlighting key grammatical mistakes. Con-
versely, it assigns a minor weight to Chunk 5 due
to its imperfect modification. The second example
shows Llama-2 attributing substantial weights to all
chunks. Specifically, for Chunk 2, the hypothesis
fails to remove the redundant “out," emphasizing
the under-correction issue. Chunks 6 and 8 display
excessive corrections, altering the sentence’s orig-
inal intent and thus indicating considerable over-
correction. Generally, Llama-2 tends to ascribe
either very high or very low weights to modifica-
tions. We speculate it is due to the small scale of the
LLM we adopt, impairing its ability to distinguish
grammatical errors with varying levels.
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Metric
EW TS

γ ρ γ ρ

CLEME-dep-unw 0.638 0.654 0.681 0.709
CLEME-ind-unw 0.640 0.648 0.680 0.698
CLEME-dep-len 0.700 0.665 0.691 0.742
CLEME-ind-len 0.649 0.709 0.691 0.731
CLEME-dep-sim 0.655 0.764 0.698 0.797
CLEME-ind-sim 0.641 0.720 0.687 0.747

SentCLEME-dep-unw 0.853 0.687 0.805 0.604
SentCLEME-ind-unw 0.790 0.275 0.722 0.181
SentCLEME-dep-len 0.876 0.824 0.844 0.808
SentCLEME-ind-len 0.868 0.725 0.857 0.758
SentCLEME-dep-sim 0.888 0.692 0.844 0.648
SentCLEME-ind-sim 0.843 0.500 0.786 0.434

Table 10: Extra results of CLEME with different edit
weighting techniques: unweighting (unw), length-based
weighting (len), and similarity-based weighting (sim).

C.3 Extra Results of CLEME with Similarity
Weighting

We additionally investigate the application of
similarity-based weighting to CLEME (Ye et al.,
2023c) and present the results on CoNLL2014 in
Table 10. We find that similarity-based weighting
is superior to length-based weighting for corpus-
level CLEME, while the trend is reversed for Sent-
CLEME, and both are better than the unweighted
setting. Moreover, it should be noted that no mat-
ter the weighting strategy employed, CLEME con-
sistently underperforms compared to CLEME2.0.
This is attributed to the fundamental disparities in
design and scoring frameworks between the ver-
sions. CLEME2.0 was crafted to incorporate these
sophisticated weighting techniques, allowing it to
better distinguish between diverse error types and
deliver a more thorough and refined performance
assessment.

C.4 Average Correlations.

To analyze our method from a global viewpoint,
we present the average correlations derived from
the exhaustive enumeration of possible parameter
configurations. We explore all potential parameter
combinations with increments of 0.05. Table 11
shows that all correlations are positive, regardless
of the correction assumptions, levels of evalua-
tion, or weighting techniques used. By compar-
ing results from unweighted and similarity-based
weighted metrics, we determine that similarity-

Metric
EW TS

Avg.
γ ρ γ ρ

CLEME2.0-dep 0.461 0.423 0.483 0.457 0.456
CLEME2.0-ind 0.468 0.421 0.489 0.453 0.458
CLEME2.0-sim-dep 0.559 0.592 0.581 0.624 0.589
CLEME2.0-sim-ind 0.566 0.593 0.588 0.622 0.592

SentCLEME2.0-dep 0.374 0.305 0.362 0.290 0.333
SentCLEME2.0-ind 0.372 0.302 0.356 0.283 0.328
SentCLEME2.0-sim-dep 0.410 0.361 0.400 0.345 0.379
SentCLEME2.0-sim-ind 0.412 0.360 0.399 0.338 0.377

Table 11: Average correlations of (Sent)CLEME2.0 and
(Sent)CLEME2.0-sim on CoNLL-2014.

based weighting substantially enhances human cor-
relation on a global level. Additionally, corpus-
level metrics generally achieve higher average val-
ues compared to sentence-level metrics. However,
sentence-level metrics with optimal parameters can
outperform their corpus-level equivalents. This im-
plies that corpus-level metrics might demonstrate
greater robustness concerning parameter selection.

C.5 Details Results on CoNLL-2014
Table 12 presents a comprehensive evaluation of
CLEME2.0 on CoNLL-2014 across all GEC sys-
tems. Our method offers a clear and quantita-
tive examination of detailed features of GEC sys-
tems, which other automatic metrics cannot pro-
vide. For instance, the CAMB system attains the
top hit-correction score of 0.271 for CLEME2.0-
dep, which shows that about 27.1% of edits by
the system are accurate. The wrong-correction
score of 0.194 indicates that 19.4% of edits are
correctly placed but incorrect, the under-correction
score of 0.534 indicates that 53.4% of grammatical
errors are overlooked by the system, and the over-
correction score of 0.470 suggests that 47.0% of
the edits are unnecessary.

As a result, developers and researchers can pin-
point the aspects of their systems that require en-
hancement. Furthermore, users can select GEC
systems that best meet their requirements. For in-
stance, users might opt for a system with a minimal
under-correction score in high-stakes situations, as
they expect to detect every possible grammatical
mistake even though the system might make some
unnecessary edits.
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Metric AMU CAMB CUUI IITB INPUT IPN NTHU PKU POST RAC SJTU UFC UMC

CLEME2.0-dep

TP 380 584 471 22 0 39 330 246 412 254 85 32 260
sim 9.20 12.66 7.58 0.39 0.00 0.77 5.79 6.69 8.80 6.68 1.50 0.42 5.29

FP 817 1307 964 67 0 488 905 709 1145 782 272 18 789
sim 16.03 30.92 16.06 1.80 0.00 11.93 24.56 14.36 19.25 11.98 6.49 0.25 18.26

FPne 276 418 311 34 0 149 302 254 316 259 76 12 245
sim 4.08 6.55 3.68 0.75 0.00 4.61 5.89 4.06 4.60 3.80 2.30 0.17 3.83

FPun 541 889 653 33 0 339 603 455 829 523 196 6 544
sim 11.95 24.36 12.38 1.05 0.00 7.33 18.67 10.30 14.64 8.18 4.19 0.08 14.43

FN 1360 1150 1357 2057 1782 2886 1388 1454 1354 1487 1668 2087 1461
sim 34.25 28.45 36.21 78.39 48.24 83.10 46.53 36.15 34.48 38.00 56.28 51.27 39.60

Hit 0.188 0.271 0.220 0.010 0.00 0.013 0.163 0.126 0.198 0.127 0.046 0.015 0.132
sim 0.194 0.266 0.160 0.005 0.00 0.009 0.100 0.143 0.184 0.138 0.025 0.008 0.109

Wrong 0.137 0.194 0.145 0.016 0.00 0.048 0.150 0.130 0.152 0.130 0.042 0.006 0.125
sim 0.086 0.138 0.078 0.009 0.00 0.052 0.101 0.0866 0.096 0.078 0.038 0.003 0.079

Under 0.675 0.534 0.634 0.973 1.00 0.939 0.687 0.744 0.650 0.744 0.912 0.979 0.743
sim 0.721 0.597 0.763 0.986 1.00 0.939 0.799 0.771 0.720 0.784 0.937 0.989 0.813

Over 0.452 0.470 0.455 0.371 0.00 0.643 0.488 0.476 0.532 0.505 0.549 0.12 0.519
sim 0.474 0.559 0.524 0.478 0.00 0.577 0.615 0.490 0.522 0.438 0.524 0.116 0.613

Score 0.483 0.508 0.497 0.431 0.45 0.408 0.463 0.450 0.479 0.505 0.434 0.450 0.453
sim 0.503 0.520 0.484 0.425 0.45 0.408 0.439 0.474 0.491 0.438 0.424 0.448 0.452

SentCLEME2.0-dep

TP 376 580 467 22 0 39 327 244 409 251 84 32 259
sim 9.14 12.63 7.52 0.39 0.00 0.76 5.72 6.65 8.75 6.59 1.48 0.42 5.23

FP 821 1311 968 67 0 488 908 711 1148 785 273 18 790
sim 16.49 31.25 16.50 1.85 0.00 13.00 24.83 14.38 19.36 12.34 7.13 0.26 18.47

FPne 286 431 320 22 0 132 310 262 326 271 81 10 255
sim 4.60 7.51 4.27 0.44 0.00 2.62 6.58 4.58 5.06 4.02 1.28 0.15 4.39

FPun 535 880 648 45 0 356 598 449 822 514 192 8 535
sim 11.89 23.74 12.23 1.42 0.00 10.39 18.24 9.80 14.30 8.32 5.85 0.12 14.07

FN 1600 1374 1577 1972 1982 1940 1660 1712 1587 1744 1900 1980 1714
sim 43.65 35.92 45.22 57.46 58.31 54.69 46.92 46.02 43.09 46.05 55.32 58.35 48.02

Hit 0.136 0.210 0.163 0.008 0.00 0.013 0.119 0.088 0.142 0.089 0.032 0.012 0.091
sim 0.131 0.205 0.142 0.007 0.00 0.011 0.104 0.088 0.129 0.086 0.027 0.008 0.087

Wrong 0.080 0.129 0.090 0.005 0.00 0.038 0.095 0.076 0.088 0.071 0.023 0.002 0.070
sim 0.063 0.102 0.066 0.004 0.00 0.033 0.079 0.059 0.070 0.051 0.020 0.001 0.059

Under 0.500 0.392 0.479 0.675 0.687 0.639 0.496 0.538 0.486 0.551 0.637 0.678 0.546
sim 0.519 0.419 0.517 0.673 0.684 0.645 0.524 0.553 0.509 0.567 0.641 0.680 0.557

Over 0.248 0.419 0.293 0.031 0.00 0.242 0.304 0.235 0.342 0.232 0.121 0.006 0.267
sim 0.241 0.421 0.294 0.030 0.00 0.224 0.302 0.224 0.331 0.203 0.119 0.005 0.267

Score 0.498 0.513 0.507 0.467 0.466 0.447 0.481 0.475 0.495 0.477 0.469 0.471 0.476
sim 0.502 0.520 0.504 0.467 0.466 0.449 0.479 0.481 0.494 0.484 0.467 0.469 0.479

CLEME2.0-ind

TP 388 596 487 22 0 39 338 248 420 255 85 32 262
sim 9.47 13.11 7.99 0.40 0.00 0.81 6.13 6.80 9.07 6.91 1.54 0.47 5.49

FP 809 1295 948 67 0 488 897 707 1137 781 272 18 787
sim 14.74 28.11 14.42 1.91 0.00 11.82 22.93 13.03 17.62 11.23 6.46 0.25 16.99

FPne 408 627 449 34 0 234 447 388 487 406 134 12 366
sim 6.32 10.62 5.51 0.86 0.00 4.79 9.50 7.30 7.12 5.56 2.41 0.17 6.14

FPun 401 668 499 33 0 254 450 319 650 375 138 6 421
sim 8.42 17.49 8.91 1.05 0.00 7.03 13.43 5.73 10.50 5.67 4.05 0.08 10.85

FN 1029 778 984 1497 1530 1382 1045 1129 989 1135 1398 1506 1136
sim 26.88 20.31 27.94 53.23 41.31 50.21 36.83 28.40 26.59 29.30 40.63 41.49 31.88

Hit 0.213 0.298 0.254 0.014 0.000 0.024 0.185 0.141 0.222 0.142 0.053 0.021 0.149
sim 0.222 0.298 0.193 0.007 0.000 0.015 0.117 0.160 0.212 0.165 0.035 0.011 0.126

Wrong 0.224 0.313 0.234 0.022 0.000 0.141 0.244 0.220 0.257 0.226 0.083 0.008 0.207
sim 0.148 0.241 0.133 0.016 0.000 0.086 0.181 0.172 0.166 0.133 0.054 0.004 0.141

Under 0.564 0.389 0.513 0.964 1.000 0.835 0.571 0.640 0.522 0.632 0.865 0.972 0.644
sim 0.630 0.461 0.674 0.977 1.000 0.900 0.702 0.668 0.622 0.701 0.911 0.985 0.733

Over 0.335 0.353 0.348 0.371 0.000 0.482 0.364 0.334 0.417 0.362 0.387 0.12 0.401
sim 0.348 0.424 0.397 0.454 0.000 0.557 0.462 0.289 0.393 0.313 0.506 0.11 0.483

Score 0.472 0.486 0.490 0.432 0.450 0.389 0.448 0.434 0.461 0.431 0.431 0.453 0.439
sim 0.503 0.508 0.490 0.426 0.450 0.400 0.428 0.463 0.489 0.479 0.425 0.449 0.446

SentCLEME2.0-ind

TP-sim 9.16 12.59 7.73 0.40 0.00 0.75 5.93 6.67 8.77 6.67 1.50 0.47 5.21
FP-sim 15.83 29.93 15.62 1.76 0.00 12.58 24.30 14.17 18.94 12.00 6.84 0.27 17.76
FPne-sim 7.20 12.38 6.58 0.70 0.00 5.27 10.94 8.38 8.37 6.25 2.70 0.19 6.81
FPun-sim 8.63 17.54 9.03 1.07 0.00 7.31 13.36 5.80 10.57 5.75 4.14 0.08 10.95
FN-sim 31.54 22.55 32.06 47.73 48.90 43.66 33.43 33.87 30.37 33.61 45.12 48.29 36.24
Hit 0.155 0.239 0.189 0.010 0.000 0.016 0.137 0.100 0.165 0.106 0.036 0.015 0.105

sim 0.154 0.240 0.174 0.009 0.000 0.014 0.125 0.100 0.155 0.103 0.033 0.012 0.102
Wrong 0.159 0.261 0.178 0.015 0.000 0.110 0.192 0.165 0.192 0.162 0.059 0.005 0.147

sim 0.134 0.229 0.147 0.013 0.000 0.094 0.170 0.144 0.164 0.129 0.051 0.004 0.127
Under 0.403 0.268 0.373 0.627 0.647 0.563 0.390 0.447 0.375 0.450 0.574 0.635 0.449

sim 0.429 0.299 0.415 0.629 0.647 0.580 0.425 0.467 0.407 0.475 0.586 0.639 0.471
Over 0.183 0.315 0.227 0.023 0.000 0.171 0.224 0.163 0.266 0.165 0.086 0.004 0.206

sim 0.183 0.320 0.230 0.023 0.000 0.169 0.229 0.159 0.264 0.150 0.089 0.005 0.211
Score 0.485 0.486 0.493 0.466 0.468 0.428 0.461 0.453 0.474 0.458 0.461 0.474 0.461

sim 0.493 0.498 0.496 0.466 0.468 0.432 0.462 0.461 0.478 0.469 0.462 0.473 0.466

Table 12: Detailed evaluation results across GEC systems on CoNLL-2014. We report True Positives (TPs), False
Positives (FPs), False Negatives (FNs), and True Negatives (TNs) with or w/o similarity-based weighting (sim).
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