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Abstract

Goal-oriented script planning, or the ability
to plan coherent sequences of actions toward
specific goals, is commonly used by humans
to plan for daily activities. In e-commerce,
customers increasingly seek LLM-based assis-
tants to plan for them with a script and recom-
mend products at each step, thereby facilitat-
ing convenient and efficient shopping experi-
ences. However, this capability remains un-
derexplored due to several challenges, includ-
ing the inability of LLMs to simultaneously
conduct script planning and product retrieval,
difficulties in matching products caused by se-
mantic discrepancies between planned actions
and search queries, and a lack of methods and
benchmark data for evaluation. In this paper,
we step forward by formally defining the task of
E-commerce Script Planning (ECOMSCRIPT)
as three sequential subtasks. We propose a
novel framework that enables the scalable gen-
eration of product-enriched scripts by associ-
ating products with each step based on the se-
mantic similarity between the actions and their
purchase intentions. By applying our frame-
work to real-world e-commerce data, we con-
struct the very first large-scale ECOMSCRIPT
dataset, ECOMSCRIPTBENCH, which includes
605,229 scripts sourced from 2.4 million prod-
ucts. Human annotations are then conducted to
provide gold labels for a sampled subset, form-
ing an evaluation benchmark. Extensive exper-
iments reveal that current (L)LMs face signifi-
cant challenges with ECOMSCRIPT tasks, even
after fine-tuning, while injecting product pur-
chase intentions improves their performance.

1 Introduction

In our daily lives, humans commonly plan a se-
quence of general prototypical actions, usually in
the form of step-by-step instructions, to achieve
a specific objective (Abbott et al., 1985). This
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Help me plan an autumn-themed party 
with friends and family

Chat with your AI Shopping Assistant!

Type your question here…

… …
… …

… …
… …

Sure! Here is a plan with some products:
1. Select a convenient date and time for 

your party that works for most guests
2. Make a list of people you want to invite
3.  
4.  
5. Prepare autumn-themed food

6. Buy autumn-themed decorations to 
create a festive atmosphere

7.  
8.   

Figure 1: An example of a product-enriched script
for planning the objective of plan an autumn-themed
party with friends and family, with relevant products
associated with some steps. Note that for simpler steps,
such as the first two, no products are needed.

capability, also known as goal-oriented script
planning (Bower et al., 1979; Schank and Abel-
son, 1975), forms the foundation of situationally
grounded planning for complex scenarios, which
is crucial for intelligent agents. With recent ad-
vances in Large Language Models (LLMs; OpenAI,
2024b,a; Dubey et al., 2024), recent works (Yuan
et al., 2023; Wang et al., 2023a; Chan et al., 2024a;
Deng et al., 2024) have demonstrated the strong
capabilities of LLMs in script planning. This has
led to the development of LLM-based script plan-
ners across downstream domains (Hao et al., 2023;
Hazra et al., 2024).
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In e-commerce, there is a growing trend of cus-
tomers querying LLM-empowered shopping assis-
tants to create scripts tailored to their specific needs
or objectives, with each step featuring relevant
products. For example, as illustrated in Figure 1,
LLM assistant is expected to generate an eight-step
script toward the user’s objective, plan an autumn-
themed party with friends and family, while also
associating products that customers may find use-
ful for achieving each step, such as items related
to food and decoration in this example. However,
for simple actions that can be completed without
additional items, no products are recommended. A
goal-oriented script with product recommendations
at certain steps that may necessitate product pur-
chases, which we term as product-enriched script,
facilitates a convenient shopping experience, saves
customers from multiple rounds of searches, and
ultimately fosters new concierge-style applications
for LLM shopping assistants to promote business.

Despite its significant potential, the exploration
of this ability has faced several challenges. First,
while current LLMs excel in script planning, they
struggle to retrieve relevant products from the vast
pool in e-commerce platforms. Although some
LLMs have been pre-trained with e-commerce
product knowledge, prior studies (Li et al., 2024;
Peng et al., 2024) indicate that they still face dif-
ficulties in generating precise product titles that
accurately align with specific items in the pool for
further retrieval. Additionally, while a generate-
then-retrieve approach–where LLMs first plan the
script and then use the steps as corresponding
search queries for product searches using tradi-
tional search engines–might be feasible, there is
often a semantic gap between the planned steps
(the actions users should take sequentially) and the
search queries intended for search engines (see Sec-
tion 3.3). This gap arises because queries typically
include product features and descriptions provided
by users, which are matched against product meta-
data. When users search for actions that a product
can facilitate, this discrepancy compromises the
matching mechanism, further undermining the ef-
fectiveness of search engines and limiting their abil-
ity to address the shortcomings of LLMs in both
planning and product retrieval. Finally, there is a
notable lack of methods and benchmark datasets
that incorporate both script plans and products at
the step level, which are necessary to evaluate the
current capabilities of LLMs in this area.

To bridge these gaps, in this paper, we formally

define the process of E-commerce Script Plan-
ning (ECOMSCRIPT) as a three-step discriminative
process consisting of three sequential sub-tasks.
We then introduce a novel framework for automati-
cally guiding LLMs in generating product-enriched
scripts by incorporating product keyword filtering
at each step to narrow the search scope for rele-
vant products. To address semantic discrepancies,
we search for products based on their purchase in-
tentions, which represent a customer’s underlying
motivation to buy the product (Chang and Wildt,
1994), and then filter out those whose intentions
don’t align closely with the action at each step.

By applying our framework to Amazon Review
data (Hou et al., 2024), we construct a large-scale
knowledge base, ECOMSCRIPTBENCH, that in-
cludes 605,229 product-enriched scripts derived
from real user purchase reviews, alongside 2.4 mil-
lion products, each linked to ten distinct purchase
intentions. Within each script, we associate up
to three products with each step by applying our
intention alignment strategy (§ 4.3). Human anno-
tations are then conducted to provide gold labels
for 15,000 randomly sampled entries across three
subtasks, thereby constructing an evaluation bench-
mark. We then experiment with over 20 (L)LMs,
applying both fine-tuning and advanced prompt-
ing techniques to ECOMSCRIPT tasks. Our find-
ings reveal that all LMs encounter significant chal-
lenges in addressing these tasks. Further analysis
identifies potential reasons for their underperfor-
mance and demonstrates that injecting purchase in-
tentional knowledge significantly enhances LLMs’
performance.

2 Related Works

2.1 Goal-oriented Script Planning

Goal-oriented scripts refer to a coherent and ap-
propriate sequence of steps, usually in the form of
actions, as instructions for achieving a goal (Reg-
neri et al., 2010). They are a common reflection of
language planning capabilities, often observed in
embodied AI (Gan et al., 2022) and robotics (Zhang
et al., 2024a). In the era of LLMs, various works
have explored their script planning capabilities.
Yuan et al. (2023) proposed an over-generate-then-
filter framework to improve the constraint lan-
guage planning capabilities of LLMs and distilled
a knowledge base from it. Sun et al. (2023); Wang
et al. (2023a) attempted generative script learning
in a multimodal manner to enhance the planning
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abilities of large vision-language models. Joshi
et al. (2023) designed an interactive text-based gam-
ing framework that consists of daily real-world hu-
man activities as another benchmark. Nevertheless,
none of the prior works have explored script plan-
ning in the context of e-commerce, which holds
significant potential for customers wishing to plan
toward their desired objectives and purchase neces-
sary products at every step all at once.

2.2 Purchase Intention Understanding

Purchase intention represents the implicit mental
state that motivates customers’ purchase behav-
iors (Anscombe, 2000), which simulates the under-
lying reasons a customer wishes to achieve with the
purchase of a product (Chan et al., 2024b). Various
existing works have already examined the impact
of consumer shopping intentions on downstream
applications (Dai et al., 2006; Zhang et al., 2016;
Hao et al., 2022; Lu et al., 2024). Specifically, Ni
et al. (2019) collected real-world customer reviews
to investigate the underlying purchase intentions in
consumer purchase behavior and created a large-
scale review dataset based on Amazon. Yu et al.
(2023, 2024); Bai et al. (2024) then leveraged this
data and proposed a semi-supervised intention gen-
eration framework to obtain purchase intentions
at scale (FolkScope and COSMO) by distilling
OPT (Zhang et al., 2022). Xu et al. (2024) fur-
ther strengthened this approach by incorporating
visual signals from product images to guide the
generation of more feature-oriented purchase inten-
tions that align with stronger human preferences.
Ding et al. (2024) transformed FolkScope into an
evaluation benchmark and demonstrated that LLMs
cannot effectively utilize intention for product rec-
ommendation. In our work, we share a similar
aspiration of using purchase intention as the key to
match products that best align with each actionable
step in every script, enabling LLMs to implicitly
leverage intention for product retrieval.

3 Problem Definition

3.1 ECOMSCRIPT Task Definitions

We first introduce our definition of the proposed
e-commerce script planning tasks (ECOMSCRIPT).
Since both asking an LLM to generate a script with
products associated with each step and evaluating
such generations are difficult to accomplish directly,
it is challenging to formulate the task simply as a
one-step generative task and evaluate it in an open-

ended manner. To this end, we propose three se-
quential discriminative tasks to emulate the process,
with the aspiration that an LLM can perform these
three tasks to build a generate-then-discriminate
paradigm that fully enables automated e-commerce
script planning. Initially, the model is given a user
objective o, a script consisting of k steps toward
this objective So = {s1, s2, ..., sk} (collected from
the user or generated by the LLM), and a pool of n
e-commerce products P = {p1, p2, ..., pn}.
Task 1: Script Verification: The first task asks
the model to determine the plausibility and feasi-
bility of the script based on the given objective. It
gives the model o and So as input and requires the
model to output a binary score T1(o, So) ∈ {0, 1}
as the indicator where 1 indicates that the script is
plausible and feasible, and 0 indicates otherwise.
Task 2: Step-Product Discrimination: The sec-
ond task aims to determine whether a step in the
script requires the purchase of a product to assist
the user in accomplishing that step. If so, the model
will then be provided with a product and asked to
determine whether purchasing this product can help
with the step. Formally, the model takes o, si, and
pi as inputs and is required to output a binary score
T2(o, si, pi) ∈ {0, 1}, where 0 indicates that the
step does not require any product purchase or that
the product cannot help, and 1 indicates that the
product is a good match to contribute to the step.
Task 3: Script-Products Verification: The final
task aims to determine the overall feasibility of
a product-enriched script by providing the model
with the objective, the script, and products associ-
ated with each step. Formally, the model takes o,
So = {s1, s2, ..., sk}, and the products at each step
Ps1 , Ps2 , ..., Psk as inputs and is expected to out-
put a binary score T3(o, So, (Ps1 , Ps2 , ..., Psk)) ∈
{0, 1} where 0 indicates that there are internal con-
flicts between different steps and products, while
1 means that all products are suitable for each step
and can collaborate within the entire script.

The rationale behind this task design is that, with
the filtering models associated with these three
tasks and an LLM as the core shopping assistant,
we can automate the process of e-commerce script
planning. This is achieved by first asking the LLM
to generate a script based on the user’s provided
objective. Then, the script verifier (T1) can de-
termine the plausibility of the script and guide the
LLM to improve it if necessary. Products will be
retrieved according to our proposed step-intention
alignment strategy, as explained later in Section 4.3.
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The step-product discriminator (T2) can verify
the results of each retrieved product associated with
each step and remove unnecessary products for sim-
ple steps. Finally, the script-products verifier (T3)
will check the product-enriched script and ensure
that all products can coordinate smoothly within
the script to be recommended to the customer.

3.2 Datasets
To ensure the practicality of applying our frame-
work to real-world scenarios, we collect real world
products from purchases made at Amazon.com. To
manage the overwhelming size of the product pool
P and reduce product redundancy, we randomly
sample 10% of unique products from each category
while maintaining the original distribution. As a re-
sult, 2.4 million products and 3.7 million associated
reviews are used for constructing ECOMSCRIPT-
BENCH.

3.3 Semantic Gaps in Product Retrieval
Prior to this work, we conducted a preliminary pi-
lot study to investigate the effectiveness of using
search engines—considered a traditional alterna-
tive method—for retrieving products based on user-
provided steps in the context of e-commerce script
planning. In this study, we selected 200 scripts at
random and used their individual steps as search
queries. The results showed that roughly 68% of
these queries returned only a limited assortment
of products, indicating that search engines strug-
gled to align product titles and metadata with the
nuanced, natural language requirements expressed
in the user queries. We also observe that most
of retrieved products are identical or very similar
to each other, limiting the divergence of product
association results.

For example, when searching for “a reusable
bottle that is easy to clean and suitable for carrying
both hot and cold beverages,” generic listings of
reusable bottles were returned, with little emphasis
on the specific attributes mentioned. This illustrates
a semantic gap between how users describe their
needs and the structured metadata currently used
to index and retrieve products. Addressing this gap
will require incorporating richer contextual signals
and better capturing user intent. By enhancing
the information associated with products—such as
their features, use cases, and suitability—systems
can more effectively match user needs with relevant
product recommendations. This supports the main
motivation of our study, which is to compensate for

the weaknesses of semantic retrieval.

4 ECOMSCRIPTBENCH Construction

In this section, we introduce our method for synthe-
sizing product-enriched scripts to construct an eval-
uation benchmark. An overview of the framework
is shown in Figure 2. Specifically, our framework
consists of four main stages: (1) user objective and
script collection, (2) product purchase intention
mining, (3) script-product association through step-
intention alignment, and (4) human annotation.

To enable scalable data collection, we use GPT-
4o-mini (OpenAI, 2024a), a powerful yet cost-
efficient proprietary LLM, as the generator to
collect user objectives, scripts, and product pur-
chase intentions. Following Brown et al. (2020)
and Wang et al. (2024a), we guide each generation
stage with a few-shot prompt as described below:

<TASK-PROMPT>
<INPUT1><OUTPUT(1,1)> . . . <OUTPUT(1,N1)>
<INPUT2><OUTPUT(2,1)> . . . <OUTPUT(2,N2)>
. . .
<INPUT5><OUTPUT(5,1)> . . . <OUTPUT(5,N5)>
<INPUT6>

where we modify <TASK-PROMPT> at each stage to
provide different instructions that inform the LLM
of the generation objective and incorporate five
<INPUTi> and <OUTPUTi> pairs as few-shot exem-
plars for demonstration (prompts in Appendix A.1).

4.1 User Objective and Script Collection

We start by collecting user objectives by instructing
the LLM to extract and infer them from user pur-
chase reviews, as these are most practically aligned
with real-world use cases. To achieve this, we let
<TASK-PROMPT> clarify the goal to the LLM, which
involves generating an objective that the customer
is trying to achieve based on a series of purchases
and their reviews. Note that we explicitly ask the
LLM to avoid generating overly simplistic objec-
tives and to aim for complex ones that require mul-
tiple steps to complete, in order to facilitate further
script planning. We then populate <INPUTi> and
<OUTPUTi> with five pairs of user purchase reviews
and a list of comma-separated objectives inferred
from the reviews by experts. The LLM is then ex-
pected to infer a list of user objectives from the last
given customer purchase review (<INPUT6>). If the
LLM believes that no objective can be inferred,
“None” will be generated instead. To ensure high
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4.1 User Objective Collection

<Source User Purchase Review>

Objective: Participate in a 
long-range marathon

4.1 Objective-oriented Script Generation

Objective: Participate in a 
long-range marathon

<A multi-step script>
Step 1: Invest in quality 
running shoes
Step 2: Join a local running 
group
   ...
Step 9: Practice hydration 
during runs
Step 10: Register for the 
marathon

4.4 Human Annotation & Expert Verification

Amazon MTurk

Expert

(Candidate Data)

User Objectives and
Scripts

Product-enriched 
Scripts

4.2 Purchase Intention Mining

Nike Air Zoom Running Shoes

<Customers’ Purchase Intentions>

Intention 1: Participate in 
professional running group
Intention 2: Improve their 
running experience
   ...
   ...
Intention 10: Alleviate foot 
pain caused by inadequate or 
poorly fitting shoes

4.3 Step-Intention Alignment

Subtask 1: Script Verification

Subtask 2 & 3: Product Discrimination & 
Product-Script Verification

Step 2: Join a local running group

Nike Air Zoom Running Shoes

Intention: Participate in 
professional running group

Women's Casual Long Sleeve 
Button Down Loose Striped Dress
Intention: Use as a beach cover-up 
in vacations.

High Similarity

Determine the plausibility and feasibility of the 
script:
<A multi-step script>

The script looks good!

Low Similarity

Determine whether the 
product can help achieving 
the step:
<An E-commerce Product>
<A Step from a Script>

This product can be helpful!

Does these products work for 
the script below?
<A Product-enriched Script>

These products can serve 
the script well!

Figure 2: An overview of our benchmark curation and evaluation pipeline for ECOMSCRIPTBENCH.

quality, we discard reviews that are too short or
contain excessive punctuation or hashtags.

With these objectives, we further instruct the
LLM to generate goal-oriented scripts based on
them. We similarly modify the prompt to achieve
this by changing <TASK-PROMPT> to instruct the
LLM to devise a coherent and sequential plan of
steps, in the form of a script, with all steps be-
ing actions that are commonly seen in usual cases.
Specifically, we require the LLM to avoid gener-
ating overly simple actions and to maximize the
necessity of purchases in each step by generating
actions that may require items to complete, when-
ever possible. We then populate <INPUTi> and
<OUTPUTi> with five pairs of user objectives and
their corresponding actionable scripts, written by
experts, as exemplars. The LLM is then expected
to generate the script for the last given user objec-
tive (<INPUT6>). For simplicity, we ask the LLM to
generate scripts that contain no more than 10 steps,
and longer scripts will be truncated to a maximum
of 10 steps. The mined objectives and generated
scripts will be candidate data for the first subtask.

4.2 Purchase Intention Mining

We then collect purchase intentions for e-
commerce products, aiming to leverage these in-
tentions as a key to bridge products and actionable
steps. The rationale behind this approach is that
intentions commonly reflect what customers wish
to achieve with their purchases, which intuitively
aligns with the semantics of actionable steps. This
alignment helps overcome the semantic discrep-
ancy found in traditional search queries, which
typically focus on product features and metadata.

To collect purchase intentions, we follow Yu et al.
(2023) and utilize LLMs to distill intentional knowl-

edge. Specifically, we modify <TASK-PROMPT> to
instruct the LLM to infer purchase intentions by
reasoning about the customer’s motivations and
desires. We emphasize modeling the customer’s
mental state, using phrases like “PersonX wants
to buy this because” or “PersonX believes buy-
ing this can” to guide the generation. We then
populate <INPUTi> and <OUTPUTi> with five pairs
of purchased product metadata and expert-drafted
customer intentions as examples. The model is
then asked to generate purchase intentions for the
last given product (<INPUT6>). For each product,
we collect 10 intentions, resulting in a total of 24
million intentions for 2.4 million products.

4.3 Step-Intention Alignment

In this stage, we first ask the LLM to determine
whether a product purchase is necessary for each
step, in order to filter out trivial actions that can be
performed directly by the user without additional
support from any product, such as “invite friends”
and “check the calendar.” If the LLM believes
that additional product purchases are necessary,
we further ask it to generate a list of keywords to
describe the product as thoroughly as possible. We
will then filter products that contain any of these
keywords to narrow down our search scope.

To achieve this, we modify the <TASK-PROMPT>
to include the descriptions above and populate
<INPUTi> and <OUTPUTi> with five pairs of action-
able steps in a script, along with their associated
purchase necessity and relevant product keywords.
The model will then infer the purchase necessity
and relevant product keywords for the last provided
step in the script (<INPUT6>).

For every step deemed necessary for product pur-
chases and their filtered products, we use Sentence-

5



Type #Data (Unlabeled) #Token Expert.

Scripts 605,229 71.5 94.0%
Steps 5,928,271 7.48 94.0%

w. products 3,018,276 6.98 -
w.o. products 2,909,995 7.98 -

Products 2,401,087 19.31 -
Intentions 24,010,870 10.27 98.5%

Task 1 5,000 (592,729) - 95.5%
Task 2 5,000 (5,919,278) - 96.5%
Task 3 5,000 (589,801) - 97.0%

Table 1: Statistics of the ECOMSCRIPTBENCH bench-
mark. #Token refers to average number of tokens used.
Expert. refers to expert acceptance rate.

BERT (Reimers and Gurevych, 2019) to calculate
the average embedding similarity between each
step and the purchase intentions of each product.
For each step, we rank all filtered products to se-
lect the top three that best align with the actionable
step in the script, using a lower-bound similarity
threshold of τ = 0.45 to control for relevance,
which is determined based on our observation of
the similarity distribution. We limit our selection
to a maximum of three products to reduce overlap
and maintain a manageable dataset size. Each step
and its selected products form the candidate data
for the second task, while the entire script and all
retrieved products are used for the third subtask.

4.4 Human Annotations

Benchmark Annotation: We finally conduct hu-
man annotations via Amazon Mechanical Turk
(AMT) to provide gold labels for a sampled pro-
portion of data and build them into an evaluation
benchmark. For each task, 5,000 data entries are
randomly sampled for annotation. We qualify 56
(18.67%) workers from a pool of 300 candidates
with excellent annotation records and provide them
with detailed instructions to complete each subtask.
They are then tasked with annotating (1) the plau-
sibility and feasibility of a given script towards an
objective as generated in §4.1, (2) the necessity of
purchasing a given product for a specific step in
the script, as collected in §4.3, and (3) the overall
feasibility of a product-enriched script given the
user objective, the entire script, and all retrieved
products. Note that only scripts that passed the
plausibility annotation are used as candidate data
in further tasks. We collect five votes for each
entry, and the majority vote is used as the final la-
bel. The overall inter-annotator agreement (IAA) is
78% in terms of pairwise agreement, and the Fleiss

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 10
0

100K

200K

300K

400K

500K

600K

N
um

be
r o

f S
cr

ip
ts

No Product 1 Product 2 Products 3 Products

Figure 3: Distribution of the number of retrieved prod-
ucts at each step in ECOMSCRIPTBENCH.

Kappa (Fleiss, 1971) is 0.53, indicating sufficient
agreement. More details are in Appendix B.

Expert Verification: To verify the quality of our
collected labels, we invite three additional experts
in e-commerce NLP to perform an extra round of
annotation verification. Each expert is asked to
annotate a sample of 200 data entries for each task,
following the same instructions provided to the
AMT annotators. Results in Table 1 show that, on
average, 96.33% of the labels collected from AMT
annotations align with the experts’ majority vote,
demonstrating the reliability of our collected labels.

5 Experiments and Analyses

5.1 ECOMSCRIPTBENCH Statistics

We first present the statistics of ECOMSCRIPT-
BENCH in Table 1. In total, we collect 605K scripts
with 5.9 million steps. Of a sample of 200 scripts,
94% were annotated as plausibly correct by ex-
pert annotators. Among them, approximately 3
million steps are deemed necessary for product
purchases by the LLM, while the others do not
necessitate products. We also collect 24 million
intentions based on 2.4 million products, of which
98.5% from a sample of 200 are deemed plausi-
ble by expert annotators, demonstrating the high
quality of our dataset. For each task, we collect
labels for 5,000 sampled data entries and leave the
rest unlabeled. We partition the annotated data into
train, dev, and test sets according to an 8:1:1 ra-
tio. Each task follows a high expert acceptance
rate, demonstrating the reliability of ECOMSCRIPT-
BENCH. We further visualize the product distribu-
tions of our collected scripts by steps in Figure 3.
We observe that as the script progresses (the num-
ber of steps increases), more steps are required to
associate with products, indicating the need for e-
commerce script planning in real-world scenarios.
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Methods Backbone Script Verification Product Discrimination Product-Script Veri.

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random N/A 50.00 - 50.00 50.00 - 50.00 50.00 - 50.00
Majority N/A 60.98 - 60.05 57.67 - 57.10 56.46 - 56.24

PTLM
(Zero-shot)

RoBERTa-Large 340M 52.04 51.79 51.21 50.80 50.74 50.68 51.39 51.37 51.32
DeBERTa-Large 435M 51.98 52.06 51.82 52.00 51.96 51.23 52.34 52.59 51.81
CAR 435M 52.77 52.75 51.95 51.98 52.10 51.88 53.06 53.25 52.90
CANDLE 435M 53.76 53.61 53.20 52.89 53.10 52.28 52.40 52.37 51.91
VERA-xl 3B 53.63 53.50 53.18 52.94 52.87 52.21 52.18 52.09 51.94
VERA-xxl 11B 55.77 55.66 54.79 54.49 54.61 53.92 54.90 54.94 54.34

LLM
(Zero-shot)

Meta-Llama-3-8B 70.05 - 69.98 64.83 - 64.36 61.16 - 60.22
Meta-Llama-3-70B 71.74 - 71.52 66.02 - 65.05 62.00 - 61.33
Meta-Llama-3.1-8B 71.45 - 71.30 65.74 - 65.69 61.63 - 60.96
Meta-Llama-3.1-70B 72.65 - 72.42 66.15 - 65.54 62.50 - 62.22
Meta-Llama-3.1-405B 75.26 - 74.97 68.16 - 67.33 65.66 - 65.65
Gemma-2-2B 66.82 - 66.80 60.56 - 60.22 58.95 - 58.10
Gemma-2-9B 71.27 - 70.98 65.14 - 64.15 61.07 - 60.40
Gemma-2-27B 71.77 - 71.27 66.86 - 66.20 63.15 - 62.70
Phi-3.5-mini 4B 68.18 - 68.05 61.92 - 61.15 60.36 - 59.79
Falcon2 11B 71.73 - 71.68 65.70 - 65.12 61.89 - 61.65
Mistral-7B-v0.3 72.38 - 71.49 66.42 - 65.77 62.18 - 61.47
Mistral-Nemo 12B 73.18 - 72.51 66.98 - 66.78 62.95 - 62.71
Mixtral-8x7B-v0.1 75.06 - 74.25 66.39 - 65.59 63.64 - 62.84

PTLM & LLM
(Fine-tuned)

RoBERTa-Large 340M 79.18 79.27 78.86 72.26 72.32 71.74 70.26 70.38 69.83
DeBERTa-v3-Large 435M 81.10 80.76 81.03 74.26 74.56 73.78 72.00 71.93 71.99
Meta-LLaMa-3-8B 83.48 83.38 82.64 75.75 75.52 75.73 73.06 73.33 72.84
Meta-LLaMa-3.1-8B 85.24 85.07 84.64 76.44 76.51 75.53 74.48 74.44 74.38
Gemma-2-2B 81.06 80.95 80.82 73.43 73.51 73.09 69.61 69.79 68.78
Gemma-2-9B 82.04 82.20 81.35 73.58 73.94 73.15 71.65 71.41 71.44
Mistral-7B-v0.3 85.72 85.61 85.51 75.63 75.61 75.33 73.18 73.09 72.62

LLM
(API)

GPT4o-mini 74.30 - 73.54 69.03 - 68.47 69.68 - 69.16
GPT4o-mini (5-shots) 74.56 - 73.61 71.56 - 71.09 71.39 - 71.04
GPT4o-mini (COT) 71.66 - 71.59 69.31 - 68.63 70.62 - 70.23
GPT4o-mini (SC-COT) 72.74 - 72.38 71.13 - 70.79 70.93 - 70.26
GPT4o-mini (SR) 73.32 - 72.35 72.46 - 71.89 71.08 - 70.43
GPT4o 77.50 - 77.23 73.04 - 72.06 71.50 - 71.33
GPT4o (5-shots) 77.92 - 76.93 73.90 - 73.68 72.85 - 72.83
GPT4o (COT) 74.89 - 74.12 71.05 - 70.58 70.32 - 69.68
GPT4o (SC-COT) 73.84 - 73.16 71.08 - 70.67 69.26 - 68.67
GPT4o (SR) 76.22 - 76.13 71.97 - 71.28 71.90 - 70.96

Table 2: Evaluation results (%) of various (L)LMs on the annotated testing sets of ECOMSCRIPTBENCH. The best
performances within each method are underlined and the best among all methods are bold-faced.

5.2 Benchmarking Experiments

Setup: We experiment with a selection of
(L)LMs to investigate their performance on our
proposed tasks. Each task, as defined in §3.1, is
evaluated as a binary classification task using ac-
curacy, AUC, and Macro-F1 scores as evaluation
metrics. The evaluation of different models is cat-
egorized into three types: (1) ZERO-SHOT: We
first evaluate several (L)LMs in a zero-shot manner
on the full annotated testing set. For small-sized
Pre-Trained Language Models (PTLMs), we as-
sess RoBERTa (Liu et al., 2019), DeBERTa-v3 (He
et al., 2023), CAR (Wang et al., 2023b), CAN-
DLE (Wang et al., 2024a), and VERA (Liu et al.,
2023) following the zero-shot question answer-
ing evaluation paradigm (Ma et al., 2021). For
LLMs, we evaluate Llama3, Llama3.1 (Touvron

et al., 2023; Dubey et al., 2024), Gemma2 (Mes-
nard et al., 2024; Riviere et al., 2024), Phi3.5 (Ab-
din et al., 2024), Falcon2 (Malartic et al., 2024),
Mistral (Jiang et al., 2023), and Mixtral (Jiang
et al., 2024) via direct zero-shot prompting (Qin
et al., 2023). (2) FINETUNING: Next, we as-
sess the performance of LLMs when fine-tuned
on ECOMSCRIPTBENCH. We fine-tune RoBERTa,
DeBERTa, Llama3, Llama3.1, Gemma2, Fal-
con2, and Mistral and evaluate them on the par-
titioned testing set. LLMs are fine-tuned using
LoRA (Hu et al., 2022). (3) LLM API: Finally,
we evaluate the performance of GPT4o (OpenAI,
2023, 2024b) and GPT4o-mini (OpenAI, 2024a),
which represent proprietary LLMs, using zero-shot,
few-shot (Brown et al., 2020), Chain-of-Thought
(COT; Wei et al., 2022), Self-Consistent COT (SC-
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COT; Wang et al., 2023d), and Self-Reflection
(SR; Shinn et al., 2023) promptings on the full
annotated testing set. We also include Random and
Majority voting to illustrate the characteristics of
our benchmark. See more details in Appendix A.3.

Results: The evaluation results are presented in
Table 2. Our observations include: (1) Challenges
with ECOMSCRIPT Tasks: (L)LMs struggle with
all tasks in e-commerce script planning, particu-
larly in those involving e-commerce products. All
models achieved only moderately satisfactory per-
formance across the three subtasks. For instance,
the best open-source LLM, LLAMA-3.1-405B, at-
tained accuracy scores of 75%, 68%, and 65% on
the respective tasks. This underscores the inherent
difficulty of the ECOMSCRIPTBENCH. Notably,
the latter two subtasks are considerably more chal-
lenging than script verification, likely due to the
complexities associated with e-commerce products
and the requisite product knowledge. (2) Impact
of Fine-tuning and Advanced Prompting: While
fine-tuning and advanced prompting methods yield
some performance improvements, there remains
significant room for enhancement. We observed
a notable boost in performance when LLMs are
fine-tuned on annotated product-enriched scripts.
For example, the performance of LLAMA-3.1-8B
improved by 12%, 11%, and 13% across the three
tasks, respectively. Similarly, GPT series mod-
els benefited from advanced prompting techniques,
such as few-shot prompting and self-reflection.
COT prompting, on the other hand, cannot help,
which may be due to its reliance on the model’s
internal reasoning paths rather than incorporat-
ing additional external product-related signals or
domain-specific annotations that align closely with
the given tasks. (3) Effects of Model Training
Paradigms and Scale: Enhancing the training
paradigm and increasing the number of parameters
positively impacted performance. In the LLAMA
series, both increasing parameters and updating
training data and methods led to improved results.
The performance trend associated with increasing
the number of parameters is also clear and high-
lights the significance of model scale in achieving
better outcomes on our tasks. (4) Complexity of
Tasks: The poor performances on both the step-
product discrimination and script-product verifi-
cation tasks demonstrate that ECOMSCRIPT is a
complex and challenging problem for LLMs, re-
vealing the limitations of current models in flexibly

integrating e-commerce product knowledge into
planning tasks. Greater efforts should be directed
along this direction in order to achieve automated
e-commerce script planning in a single-step gener-
ative manner.

5.3 The Effect of Injecting Intentions

From the evaluation results in Table 2, we observe
that a key weakness in current LLMs is their dif-
ficulty in associating products with each step in
a script and verifying whether the entire script
can work. To improve this, we hypothesize that
injecting intentional knowledge into LLMs may
help, as it provides a better understanding of what
e-commerce products can help or how they can
assist the customer, thereby promoting the link-
ing of products with script planning. To achieve
this, we select two intention knowledge bases based
on products from Amazon, FolkScope (Yu et al.,
2023), and MIND (Xu et al., 2024) as sources of in-
tentions. We use a natural language prompt to con-
catenate product metadata (title, features, descrip-
tions) as the input with their purchase intentions as
the output, and train LLMs under a generative ob-
jective using LoRA (Hu et al., 2022). They are then
sequentially fine-tuned on training set of ECOM-
SCRIPTBENCH. Another group of LLMs, after
fine-tuning on FolkScope and MIND, is directly
evaluated for comparison. All models are evaluated
on the testing set of ECOMSCRIPTBENCH, and the
results are reported in Table 3. From the results,
we observe a significant improvement across all
tasks when the models are sequentially fine-tuned
on FolkScope and MIND, then on ECOMSCRIPT-
BENCH, compared to being solely fine-tuned on
either one. This indicates that aligning LLMs with
more e-commerce products’ use cases or purchase
motivations enhances their ability to identify use-
ful products for users’ desired actions or steps in
scripts. Since intentions from both resources are
distilled from LLMs, this opens up a scalable yet
cost-efficient paradigm for improving LLMs’ per-
formance on e-commerce script planning tasks.

5.4 Error Analysis of GPT-Series Models

Finally, for a more fine-grained error analysis, we
manually inspect the causes of errors in 200 sam-
pled COT responses generated by GPT-4o across
all tasks and categorize their mistakes into three cat-
egories: (1) Wrong understanding of products:
68% of errors are caused by the LLM’s false under-
standing of a specific usage or feature of a product
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Backbone Training Data Script Verification Product Discrimination Product-Script Veri.

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Llama-3.1
8B

Zero-shot 71.45 - 71.30 65.74 - 65.69 61.63 - 60.96
ECOMSCRIPTBENCH 83.86 83.94 83.05 77.70 77.87 77.59 75.88 75.58 75.58
FolkScope + MIND 67.74 67.63 67.38 66.79 66.43 66.11 64.91 64.87 64.42

+ ECOMSCRIPTBENCH 84.65 84.84 84.13 78.60 78.83 78.27 76.35 76.50 76.08

Mistral-v0.3
7B

Zero-shot 72.38 - 71.49 66.42 - 65.77 62.18 - 61.47
ECOMSCRIPTBENCH 85.72 85.61 85.51 75.63 75.61 75.33 73.18 73.09 72.62
FolkScope + MIND 69.77 70.00 69.56 67.78 67.75 67.39 63.70 63.41 63.66

+ ECOMSCRIPTBENCH 85.87 85.80 86.37 81.18 80.96 80.54 78.94 78.94 78.66

Table 3: Evaluation results (%) of transfering knowledge from FolkScope and MIND to aid ECOMSCRIPTBENCH.
The best performances among each method is underlined and best ones among all methods are bold-faced.

that conflicts with the steps or the entire script. For
example, when a step requires controlling the user’s
non-compatible smart light bulbs using the virtual
assistant, the LLM might incorrectly suggest voice
commands that only work for compatible devices.
To address this issue, multi-modal product images
or more detailed attributes can be incorporated. (2)
Conflict in reasoning across steps: 27% of errors
occur due to the model’s failure to reason about
the feasibility of collaborating products associated
with different steps, where the model may mistak-
enly deem it infeasible to purchase two products
simultaneously. (3) Internal conflict and annota-
tion errors: 5% of errors are due to internal con-
flicts, such as inconsistencies between the binary
predictions made and the corresponding reasoning
rationales, as well as annotation errors, potentially
caused by overzealous annotators.

5.5 Category-wise Performance Analysis

We then conduct a detailed analysis of GPT-4o’s
performance in the product discrimination task
across a variety of product categories. Table 4
presents the accuracy scores obtained for each ma-
jor product category. We observe that GPT-4o per-
forms best in categories like “Toys and Games,”
“Patio Lawn and Garden,” “Grocery and Gourmet
Food,” and “Cell Phones and Accessories,” often
surpassing 80% accuracy. These categories tend
to have clearer, more distinct product descriptors,
making it easier to distinguish between items. In
contrast, performance dips in more ambiguous or
heterogeneous categories like “Beauty and Per-
sonal Care” and “Health and Household.” Products
in these domains often share overlapping descrip-
tors or subtle differences (e.g., similar lotions or vi-
tamins), making text-only differentiation challeng-
ing. Intermediate results in categories like “Elec-
tronics and Office Products” suggest that while

Category Accuracy

Automotive 64.58
Beauty and Personal Care 63.95
Cell Phones and Accessories 82.31
Clothing Shoes and Jewelry 78.99
Electronics 66.15
Health and Household 62.08
Home and Kitchen 65.63
Grocery and Gourmet Food 82.49
Industrial and Scientific 79.51
Office Products 67.42
Patio Lawn and Garden 82.84
Sports and Outdoors 76.68
Tools and Home Improvement 65.57
Toys and Games 84.37

Table 4: Accuracy (%) of GPT-4o on product discrimi-
nation task by product categories.

technical specifications are helpful, the sheer di-
versity of items can still obscure product distinc-
tions. Integrating additional modalities, such as
images or structured product metadata, might help
address these difficulties and improve the model’s
discrimination capabilities across a broader range
of categories.

6 Conclusions

In conclusion, this paper proposes the task of e-
commerce script planning and introduces a novel
framework for collecting product-enriched scripts.
By applying the framework to Amazon product
data, we construct a sibling large-scale knowledge
base and build the very first evaluation bench-
mark upon it. Extensive experiments demonstrate
the challenges of our task and potential solutions
to improve the performance of LLMs on ECOM-
SCRIPT. We hope that our task and benchmark can
serve as an important cornerstone to advance the
e-commerce shopping experience by creating more
intelligent and personalized shopping assistants
with e-commerce script planning capability that
ultimately benefit the community and the world.
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Limitations

We discuss three main limitations of our work.
First, our data construction process relies signif-

icantly on GPT-4o-mini, a proprietary LLM, for
data collection, as well as human annotation for
label collection and verification. This raises con-
cerns about the reproducibility and the high costs
associated with our dataset. However, the expense
of using GPT-4o-mini is relatively low compared to
other proprietary LLMs; for instance, we spent only
around $250 USD to collect 24 million intentions.
The quality of the output remains outstanding, with
fast generation speeds that effectively simulate a
real-world LLM-powered shopping assistant. We
also experimented with using LLAMA-3.1-405B
as the core generator for data collection, which also
yields exceptional data quality. However, hosting
the model and using it for inference proved to be
computationally and time-intensive, leading us to
ultimately choose GPT-4o-mini.

Next, we assign the verification of product
compatibility between different steps to a human-
annotated task and do not implement any strategies
within our data collection framework. This deci-
sion is made because detecting conflicting products
is a complicated task that requires consideration
of many features, some of which cannot be deter-
mined solely based on product metadata. We leave
this verification to future industrial efforts to ensure
that products retrieved at different stages can ac-
commodate each other and collectively contribute
to successful execution.

Finally, we defer the exploration of practical so-
lutions to assist LLMs in solving ECOMSCRIPT,
as well as the deployment of these solutions to de-
liver real-world benefits, to future work. We can
also implement knowledge editing techniques to
address this, as done by Lau et al. (2024); Zhang
et al. (2024b). In the long run, we envision a
model capable of accurately understanding a cus-
tomer’s needs and recommend all products at once
via e-commerce script planning can promote pur-
chase decision-making and increase e-commerce
revenue.

Ethics Statement

Since our dataset curation pipeline involves prompt-
ing LLMs, it is important to implement stringent
measures to ensure the absence of offensive content
in both the prompts and the generated responses.
We first explicitly state in the prompt that the LLM

should not generate any content that contains per-
sonal privacy violations, promotes violence, racial
discrimination, hate speech, sexual content, or self-
harm. Then, we manually inspect a random sample
of 500 data entries from all tasks in ECOMSCRIPT-
BENCH for offensive content. Based on our obser-
vations, we have not detected any offensive content.
Therefore, we believe that our dataset is safe and
will not yield any negative societal impact.

Due to data privacy issues, our dataset will not
be made public. As for language models, we ac-
cess all open-source LMs via the Hugging Face
Hub (Wolf et al., 2020). The number of parameters
is presented in Table 2. All associated licenses per-
mit user access for research purposes, and we have
agreed to follow all terms of use.

We conduct large-scale human annotations on
the Amazon Mechanical Turk (AMT) platform. We
invite annotation workers from the US, Europe, and
India due to their proficiency in English. The an-
notators are paid an average hourly rate of $17.50,
which is comparable to the minimum wage in their
local jurisdictions. The selection of these annota-
tors is solely based on their performance on the
evaluation set, and we do not collect any personal
information about the participants from AMT. The
expert annotators agree to participate as their con-
tribution to the paper without compensation.

Acknowledgements

We thank the anonymous reviewers and the area
chair for their constructive comments. The au-
thors of this paper were supported by the ITSP
Platform Research Project (ITS/189/23FP) from
the ITC of Hong Kong, SAR, China, as well as the
AoE (AoE/E-601/24-N), the RIF (R6021-20), and
the GRF (16205322) from the RGC of Hong Kong,
SAR, China. We also thank the Amazon Search
Experience Science team for supporting this intern
project.

References
Valerie Abbott, John B Black, and Edward E Smith.

1985. The representation of scripts in memory. Jour-
nal of memory and language, 24(2):179–199.

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav

10



Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

GEM Anscombe. 2000. Intention. Harvard University
Press.

Jiaxin Bai, Zhaobo Wang, Junfei Cheng, Dan Yu, Zerui
Huang, Weiqi Wang, Xin Liu, Chen Luo, Qi He, Yan-
ming Zhu, Bo Li, and Yangqiu Song. 2024. Intention
knowledge graph construction for user intention rela-
tion modeling. CoRR, abs/2412.11500.

Gordon H Bower, John B Black, and Terrence J Turner.
1979. Scripts in memory for text. Cognitive psychol-
ogy, 11(2):177–220.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2024a. Exploring the potential of chatgpt on sen-
tence level relations: A focus on temporal, causal,
and discourse relations. In Findings of the Associa-
tion for Computational Linguistics: EACL 2024, St.
Julian’s, Malta, March 17-22, 2024, pages 684–721.
Association for Computational Linguistics.

Chunkit Chan, Cheng Jiayang, Yauwai Yim, Zheye
Deng, Wei Fan, Haoran Li, Xin Liu, Hongming

Zhang, Weiqi Wang, and Yangqiu Song. 2024b. Ne-
gotiationtom: A benchmark for stress-testing ma-
chine theory of mind on negotiation surrounding.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pages 4211–4241. Associa-
tion for Computational Linguistics.

Tung-Zong Chang and Albert R Wildt. 1994. Price,
product information, and purchase intention: An em-
pirical study. Journal of the Academy of Marketing
science, 22:16–27.

Honghua (Kathy) Dai, Lingzhi Zhao, Zaiqing Nie, Ji-
Rong Wen, Lee Wang, and Ying Li. 2006. Detecting
online commercial intention (OCI). In Proceedings
of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, UK, May
23-26, 2006, pages 829–837. ACM.

Zheye Deng, Chunkit Chan, Weiqi Wang, Yuxi Sun,
Wei Fan, Tianshi Zheng, Yauwai Yim, and Yangqiu
Song. 2024. Text-tuple-table: Towards information
integration in text-to-table generation via global tuple
extraction. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pages 9300–9322. Association for Computa-
tional Linguistics.

Wenxuan Ding, Weiqi Wang, Sze Heng Douglas Kwok,
Minghao Liu, Tianqing Fang, Jiaxin Bai, Xin Liu,
Changlong Yu, Zheng Li, Chen Luo, Qingyu Yin,
Bing Yin, Junxian He, and Yangqiu Song. 2024. In-
tentionqa: A benchmark for evaluating purchase in-
tention comprehension abilities of language models
in e-commerce. In Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami,
Florida, USA, November 12-16, 2024, pages 2247–
2266. Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann,
Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon

11

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2412.11500
https://doi.org/10.48550/ARXIV.2412.11500
https://doi.org/10.48550/ARXIV.2412.11500
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-emnlp.244
https://aclanthology.org/2024.findings-emnlp.244
https://aclanthology.org/2024.findings-emnlp.244
https://doi.org/10.1145/1135777.1135902
https://doi.org/10.1145/1135777.1135902
https://aclanthology.org/2024.emnlp-main.523
https://aclanthology.org/2024.emnlp-main.523
https://aclanthology.org/2024.emnlp-main.523
https://aclanthology.org/2024.findings-emnlp.123
https://aclanthology.org/2024.findings-emnlp.123
https://aclanthology.org/2024.findings-emnlp.123
https://aclanthology.org/2024.findings-emnlp.123


Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jen-
nifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, and Kevin
Stone. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao,
Hongming Zhang, Yangqiu Song, and Bin He. 2021a.
Benchmarking commonsense knowledge base pop-
ulation with an effective evaluation dataset. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 8949–8964. Association
for Computational Linguistics.

Tianqing Fang, Hongming Zhang, Weiqi Wang,
Yangqiu Song, and Bin He. 2021b. DISCOS: bridg-
ing the gap between discourse knowledge and com-
monsense knowledge. In WWW ’21: The Web Con-
ference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 2648–2659. ACM / IW3C2.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Al-
ter, Abhishek Bhandwaldar, Dan Gutfreund, Daniel
L. K. Yamins, James J. DiCarlo, Josh H. McDer-
mott, Antonio Torralba, and Joshua B. Tenenbaum.
2022. The threedworld transport challenge: A vi-
sually guided task-and-motion planning benchmark
towards physically realistic embodied AI. In 2022
International Conference on Robotics and Automa-
tion, ICRA 2022, Philadelphia, PA, USA, May 23-27,
2022, pages 8847–8854. IEEE.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 8154–8173. Association for Computational
Linguistics.

Zhenyun Hao, Jianing Hao, Zhaohui Peng, Senzhang
Wang, Philip S. Yu, Xue Wang, and Jian Wang. 2022.
Dy-hien: Dynamic evolution based deep hierarchi-
cal intention network for membership prediction. In
WSDM ’22: The Fifteenth ACM International Confer-
ence on Web Search and Data Mining, Virtual Event
/ Tempe, AZ, USA, February 21 - 25, 2022, pages
363–371. ACM.

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De
Raedt. 2024. Saycanpay: Heuristic planning with
large language models using learnable domain knowl-
edge. In Thirty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI 2024, Thirty-Sixth Conference

on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 20123–
20133. AAAI Press.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding
sharing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi
Chen, and Julian J. McAuley. 2024. Bridging lan-
guage and items for retrieval and recommendation.
CoRR, abs/2403.03952.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 6384–6392. AAAI
Press.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

Abhinav Joshi, Areeb Ahmad, Umang Pandey, and
Ashutosh Modi. 2023. Scriptworld: Text based en-
vironment for learning procedural knowledge. In
Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023,
19th-25th August 2023, Macao, SAR, China, pages
5095–5103. ijcai.org.

12

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.705
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.705
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1109/ICRA46639.2022.9812329
https://doi.org/10.1109/ICRA46639.2022.9812329
https://doi.org/10.1109/ICRA46639.2022.9812329
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.1145/3488560.3498517
https://doi.org/10.1145/3488560.3498517
https://doi.org/10.1609/AAAI.V38I18.29991
https://doi.org/10.1609/AAAI.V38I18.29991
https://doi.org/10.1609/AAAI.V38I18.29991
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2403.03952
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1609/AAAI.V35I7.16792
https://doi.org/10.1609/AAAI.V35I7.16792
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.24963/IJCAI.2023/566
https://doi.org/10.24963/IJCAI.2023/566


Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kelvin J. L. Koa, Yunshan Ma, Ritchie Ng, and Tat-
Seng Chua. 2024. Learning to generate explainable
stock predictions using self-reflective large language
models. In Proceedings of the ACM on Web Confer-
ence 2024, WWW 2024, Singapore, May 13-17, 2024,
pages 4304–4315. ACM.

Ching Ming Samuel Lau, Weiqi Wang, Haochen
Shi, Baixuan Xu, Jiaxin Bai, and Yangqiu Song.
2024. Ecomedit: An automated e-commerce
knowledge editing framework for enhanced prod-
uct and purchase intention understanding. CoRR,
abs/2410.14276.

Yangning Li, Shirong Ma, Xiaobin Wang, Shen Huang,
Chengyue Jiang, Haitao Zheng, Pengjun Xie, Fei
Huang, and Yong Jiang. 2024. Ecomgpt: Instruction-
tuning large language models with chain-of-task
tasks for e-commerce. In Thirty-Eighth AAAI Con-
ference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2024, Fourteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 18582–18590. AAAI Press.

Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A.
Smith, Yejin Choi, and Hannaneh Hajishirzi. 2023.
Vera: A general-purpose plausibility estimation
model for commonsense statements. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1264–1287. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Feihong Lu, Weiqi Wang, Yangyifei Luo, Ziqin Zhu,
Qingyun Sun, Baixuan Xu, Haochen Shi, Shiqi Gao,
Qian Li, Yangqiu Song, and Jianxin Li. 2024. Miko:
Multimodal intention knowledge distillation from
large language models for social-media common-
sense discovery. In Proceedings of the 32nd ACM
International Conference on Multimedia, MM 2024,
Melbourne, VIC, Australia, 28 October 2024 - 1
November 2024, pages 3303–3312. ACM.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan
Bisk, Eric Nyberg, and Alessandro Oltramari. 2021.
Knowledge-driven data construction for zero-shot
evaluation in commonsense question answering. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI

2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 13507–13515.
AAAI Press.

Quentin Malartic, Nilabhra Roy Chowdhury, Ruxan-
dra Cojocaru, Mugariya Farooq, Giulia Campesan,
Yasser Abdelaziz Dahou Djilali, Sanath Narayan,
Ankit Singh, Maksim Velikanov, Basma El Amel
Boussaha, Mohammed Al-Yafeai, Hamza Alobei-
dli, Leen Al Qadi, Mohamed El Amine Seddik,
Kirill Fedyanin, Réda Alami, and Hakim Hacid.
2024. Falcon2-11b technical report. CoRR,
abs/2407.14885.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Jianmo Ni, Jiacheng Li, and Julian J. McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 188–197. Association for Com-
putational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

OpenAI. 2024a. Gpt-4o mini: advancing cost-efficient
intelligence. OpenAI.

OpenAI. 2024b. Hello gpt-4o. OpenAI.

Bo Peng, Xinyi Ling, Ziru Chen, Huan Sun, and
Xia Ning. 2024. ecellm: Generalizing large lan-
guage models for e-commerce from large-scale, high-
quality instruction data. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023.
Is chatgpt a general-purpose natural language pro-
cessing task solver? In Proceedings of the 2023

13

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3589334.3645611
https://doi.org/10.1145/3589334.3645611
https://doi.org/10.1145/3589334.3645611
https://doi.org/10.48550/ARXIV.2410.14276
https://doi.org/10.48550/ARXIV.2410.14276
https://doi.org/10.48550/ARXIV.2410.14276
https://doi.org/10.1609/AAAI.V38I17.29820
https://doi.org/10.1609/AAAI.V38I17.29820
https://doi.org/10.1609/AAAI.V38I17.29820
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.81
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.81
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3664647.3681339
https://doi.org/10.1145/3664647.3681339
https://doi.org/10.1145/3664647.3681339
https://doi.org/10.1145/3664647.3681339
https://doi.org/10.1609/AAAI.V35I15.17593
https://doi.org/10.1609/AAAI.V35I15.17593
https://doi.org/10.48550/ARXIV.2407.14885
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.18653/V1/D19-1018
https://doi.org/10.18653/V1/D19-1018
https://doi.org/10.48550/ARXIV.2303.08774
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openreview.net/forum?id=LWRI4uPG2X
https://openreview.net/forum?id=LWRI4uPG2X
https://openreview.net/forum?id=LWRI4uPG2X
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.85
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.85


Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 1339–1384. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, July 11-16, 2010, Uppsala, Swe-
den, pages 979–988. The Association for Computer
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980–3990.
Association for Computational Linguistics.

Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
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Appendices

A Implementation Details

A.1 Dataset Construction Prompts
We first present the prompts used in each step to
sequentially instruct GPT-4o-mini to generate can-
didate data for ECOMSCRIPTBENCH. Special to-
kens, such as <example>, </example>, are added
whenever necessary throughout the prompts.

A.1.1 User Objective and Script Collection
To collect real-world user objectives and their as-
sociated scripts, we use the following prompt to
instruct the LLM.

Given a product and an user review

about it, infer some potential action

goals of purchasing the product. The

goals should be what the user wants to

do with the product. They do not have

to be explicitly stated in the review,

but can be reasoned from the context.

You may think of big goals of what the

user wants to achieve with the help of

the product. Action goals should be

specific and actionable objectives that

take multiple steps to achieve, and the

product may contribute to one step of

them. Do not generate goals that are

too simple. Do not generate buying a

product again, recommend the product

or brand to others, reliable customer

service, etc. They shouldn’t be very

long-term goals, do not generate being

successful or making a lot of money.

Separate each goal with || and make

each goal specific by describing it in

detail. Follow these examples:

. . .
Product <i>: Nike Air Zoom Running

Shoes

Review <i>: This is the best pair of

running shoes I’ve ever owned. They are

comfortable and provide great support.

Goals: participate in a marathon || stay

a healthy lifestyle || start running

regularly

. . .
Product <N>: Samsung 65-Inch 4K Smart

TV

Review <N>: This TV has great picture

quality and sound. It’s perfect for
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watching movies and shows.

We drop reviews that are less than 10 tokens or
contain fewer than 3 unique tokens. Additionally,
we exclude reviews with more than 5 hashtags, as
these are sometimes misleading. These thresholds
were determined based on our prior experience in
processing e-commerce reviews and have proven
to provide the best trade-off in retaining the maxi-
mum number of valid reviews. When reviews are
of poor quality or unavailable, our offline exper-
iments show that LLMs can still infer potential
user objectives from the product title and metadata
alone. This ensures that the framework remains
functional and capable of reasoning about product
use cases, even without relying on user reviews.

We then use the following prompt to generate
a goal-oriented script based on the objectives col-
lected above. A brief explanation of each step is
required for clarification.

Given an actionable goal, generate a

script of steps that can be used to

achieve the goal. The script should be

detailed and specific, and each step

should be actionable and achievable

sequentially. Limit the script to

within 10 steps and each step to

within 20 words. For each step, a

short explanation of the step should

be provided. The steps should be in

the correct logical and temporal order

and should be detailed enough to be

executed sequentially by someone who

is not familiar with the goal. For

each step, try to ensure that some

E-commerce products can be purchased to

help achieve the step.

. . .
Objective <i>: Participate in a

marathon.

Step 1: Choose a marathon to participate

in (Research and select a marathon that

fits your schedule and location

preference)

Step 2: Register for the marathon

(Complete the registration form and pay

any associated fees)

Step 3: Create a training plan (Develop

a schedule with incremental mileage

increases and rest days)

Step 4: Purchase proper running gear

(Buy running shoes, moisture-wicking

clothing, and a water bottle)

Step 5: Start your training program

(Follow your schedule, gradually

increasing your running distance each

week)

Step 6: Maintain a balanced diet (Eat

a mix of carbohydrates, proteins, and

fats to fuel your training)

Step 7: Stay hydrated (Drink plenty of

water daily and during your runs)

Step 8: Practice long runs (Include one

long run per week to build endurance,

following your training plan)

Step 9: Get enough rest (Ensure

adequate sleep and recovery time to

avoid overtraining and injuries)

Step 10: Plan race day logistics

(Prepare your transportation, know

the race course, and plan post-race

recovery)

. . .
Objective <N>: Learn to play the guitar.

For scripts that are more than 10, we drop the out-
lier steps. In total, we recorded only 3,098 cases
where truncation occurs, which is very rare. In
most cases, LLM follows our instruction precisely.

A.1.2 Purchase Intention Mining
We then distill product purchase intentions from
the LLM by following Yu et al. (2023, 2024) with
the prompt below. This type of intention distil-
lation has been proven effective and can support
downstream applications. Thus, our knowledge
distillation-based method is justifiable and enables
large-scale benchmark construction.

Given a product retrieved from Amazon,

you are required to generate 10 possible

intentions that a user may have that

motivates them to purchase the product.

The intention should be describing what

the user wants to do with the product,

believe the product can help them

achieve, or the problem the product

can solve. It should be specific and

not too general. For example, "like

the product", "wants to buy it", "good

product" are invalid intentions. Best

intentions describe the user’s goal,

desire, or action to be taken with

the product. Generate the intentions
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directly with one intention per line.

Follow these examples:

. . .
Product <i>: Nike Air Zoom Running

Shoes

Intention 1: Improve their running

performance with better cushioning and

support.

Intention 2: Train for a marathon or

other long-distance race.

Intention 3: Increase comfort during

daily jogging sessions.

Intention 4: Reduce the risk of injuries

by using shoes with advanced technology.

Intention 5: Enhance their athletic

appearance with stylish and modern

footwear.

Intention 6: Replace worn-out running

shoes with a high-quality, durable

option.

Intention 7: Experience the benefits of

lightweight shoes for faster running

times.

Intention 8: Participate in a running

club or group with appropriate gear.

Intention 9: Transition to a more

serious and dedicated running routine.

Intention 10: Alleviate foot pain

caused by inadequate or poorly fitting

shoes.

. . .
Product <N>: chouyatou Women’s Casual

Long Sleeve Button Down Loose Striped

Cotton Maxi Shirt Dress

Using intention as the connecting link is inher-
ently more effective than traditional search queries,
such as keywords in product titles and metadata,
which are often not represented in script steps. To
best align intentions with steps, we create exem-
plars with similar semantics and grammatical struc-
tures to effectively guide GPT-4o-mini in generat-
ing steps and intentions with consistent linguistic
patterns (e.g., omitting the subject, using the simple
present tense, and keeping them short and concise).
However, gaps between intentions and steps can
still occur. To address this, we generate 10 inten-
tions per product to ensure as much coverage as
possible. In industrial applications, even more in-
tentions per product could be generated to enhance
coverage and improve alignment further, given the

low cost of generating outputs with GPT-4o-mini.
In our current dataset construction pipeline, expert
evaluations and human annotations confirm that
our method is effective and does not significantly
impact final performance. However, verifying its
efficacy at an industrial scale is left to future work
by the e-commerce community.

A.1.3 Step-Intention Alignment
Finally, we prompt the LLM again to determine
whether a product purchase is necessary for each
step in the script. For steps that are deemed nec-
essary, we ask the LLM to generate a list of key-
words to help us narrow down the search scope of
products and proceed with our intention alignment
strategy. We use the following prompt to assess the
purchase necessity of each step:

Given a plan consisting of ten steps,

determine whether any additional item or

product can be helpful in each step to

make it successful. Note that it can be

anything or any product that is helpful

in terms of achieving the step. There

are steps that definitely do not require

additional help from other things or

items, such as "inviting a friend",

"going to somewhere", "select a time",

"search for a specific information".

They are usually actions that can be

done directly by the person and do not

require additional assistance from a

product. There are also steps that can

be assisted by having other products,

such as "prepare food", "clean the

house", "write a letter", "make a phone

call", "prepare entertainment". They

usually involve interactions with some

tools, materials, or other things to

complete the action, or can be done

mor easily or efficiently with the help

of them. Given the steps below, first

provide a yes or no answer to whether

it is helpful to purchase a product

to achieve the step. Then, provide a

short list of product keywords that

represent items that can be helpful

in achieving the step. These keywords

can be general to represent more items.

You are forced to follow the example

format in generating the answer, which

is first generate a one word answer,

either "yes" or "no", then generate a
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list of keywords. Generate one line per

step. For example:

. . .
Step 1: Get measuring cups and spoons

(Purchase a set with common baking

measurements to accurately measure

ingredients)

Step 2: Get a food scale (Weigh

ingredients like meat and flour for

reliable portioning)

Step 3: Use a thermometer (Monitor oil

and internal temperatures for frying

and roasting)

Step 4: Time activities (Use a timer

to track marinating, baking, etc. for

consistency)

Step 5: Watch tutorial videos (View

cooking demos to learn proper knife

skills and techniques)

Step 6: Take an in-person cooking class

(Learn from a professional chef for

hands-on experience)

Step 7: Practice fundamental recipes

(Master basic recipes to handle

ingredients and temperatures)

Step 8: Focus on one technique (Work

on skills like sautéing, searing, or

deglazing)

Step 9: Invest in high-quality cookware

(Buy pans that distribute heat evenly

for optimal cooking)

Step 10: Follow recipes precisely

(Carefully measure and time each step

before improvising)

yes (measuring cups, spoons,

measurement, ingredients)

yes (food scale, scale, weight)

yes (thermometer, oil, temperature)

yes (timer, activities, marinating)

yes (tutorial videos, cooking demos,

knife skills)

no

yes (fundamental recipes, basic recipes,

recipes)

no

yes (high-quality cookware, pans, heat)

yes (recipes, measure, time)

. . .
Step 1: Choose a marathon to participate

in (Research and select a marathon that

fits your schedule and location

preference)

Step 2: Register for the marathon

(Complete the registration form and pay

any associated fees)

Step 3: Create a training plan (Develop

a schedule with incremental mileage

increases and rest days)

Step 4: Purchase proper running gear

(Buy running shoes, moisture-wicking

clothing, and a water bottle)

Step 5: Start your training program

(Follow your schedule, gradually

increasing your running distance each

week)

Step 6: Maintain a balanced diet (Eat

a mix of carbohydrates, proteins, and

fats to fuel your training)

Step 7: Stay hydrated (Drink plenty of

water daily and during your runs)

Step 8: Practice long runs (Include one

long run per week to build endurance,

following your training plan)

Step 9: Get enough rest (Ensure

adequate sleep and recovery time to

avoid overtraining and injuries)

Step 10: Plan race day logistics

(Prepare your transportation, know

the race course, and plan post-race

recovery)

For SentenceBERT, we use T5-xxl (11B; Raffel
et al., 2020) as the backbone. We begin by calculat-
ing the embeddings of all purchase intentions for a
product and all steps separately, then compute the
semantic similarity between every pair of intention
and step using cosine similarity as the metric. Each
product’s purchase relatedness is determined by the
average similarity of all pairs relevant to the prod-
uct for a specific step. To ensure that only related
products are selected, we set a lower bound thresh-
old of τ = 0.4, which filters out approximately
95% of products at each step, improving the data
quality.

Analyzing the distribution of embedding simi-
larity, we find that 13% of intentions have a sim-
ilarity score higher than 0.5 with the user objec-
tive. If we were to eliminate cases where intentions
closely match objectives, the effectiveness of prod-
uct retrieval would likely decrease. This is because
many product recommendations rely on the seman-
tic alignment between intentions and specific steps
in a user’s script. Removing these closely matched
cases could lead to gaps in relevant product as-
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sociations, resulting in less accurate or relevant
recommendations. Therefore, we argue that non-
script-level intentions—those not directly tied to a
specific step—also play a crucial role in improving
product retrieval and the overall user experience.

A.2 Evaluation Prompts

To evaluate LLMs on three tasks in ECOMSCRIPT-
BENCH, we present our evaluation prompts in a
zero-shot scenario in Table5. These prompts are
consistently used across all model evaluations to
ensure a fair comparison.

For few-shot evaluations, examples are added
after the task descriptions and before the prompted
test entry. The exemplars are randomly sampled for
each test entry from a set of 20 expert-annotated
examples.

For Chain of Thought (COT) prompting, we
specifically instruct LLMs to "think step by step
and generate a short rationale to support your rea-
soning." We then ask them to provide an answer
based on the generated rationale. The sampling
temperature, τ , is set to 0.1 by default, and 5 COT
responses are sampled with τ set to 0.7 in the SC-
COT setting. In the SC-COT setting, we also ex-
plicitly include another round of conversation to
allow the LLM to verify whether the prediction is
correct according to its generated rationale.

For self-reflection, we follow previous ap-
proaches (Wang et al., 2024c; Koa et al., 2024)
and construct similar prompts to evaluate the LLM.

A.3 Evaluation Implementations

To evaluate PTLMs in a zero-shot manner, we
adopt the evaluation pipeline used for zero-shot
question answering (Ma et al., 2021; Wang et al.,
2023b,c, 2024b). Specifically, for each task, we
convert the question into two declarative state-
ments, which serve as natural language assertions
corresponding to ‘yes” or “no” options. For in-
stance, when determining whether a product is
necessary for a step, we generate two assertions:
“The product <PRODUCT> is helpful to the step
<STEP>,” and “The product <PRODUCT> is not help-
ful to the step <STEP>.” The models are then
tasked with computing the loss of each asser-
tion. The assertion with the lowest loss is con-
sidered as the model’s prediction. This approach
allows any PTLM to be evaluated under classifi-
cation tasks with an arbitrary number of options
or even type classification based on a single asser-

tion. We use the open code library1 as our code
base and follow the default hyperparameter set-
tings. For VERA, we follow the exact same im-
plementation2 (Liu et al., 2023). The accessed
backbone models are liujch1998/vera-xl (3B)
and liujch1998/vera (11B), and all other hyper-
parameter settings follow the default setting.

For evaluating LLMs in a zero-shot manner, we
transform the input for each task into assertions
using natural language prompts, as explained in
Appendix A.2 and Table 5. The models are then
prompted to determine the plausibility of the pro-
vided assertions by answering yes or no questions.
We parse their responses using pre-defined rules to
derive binary predictions. When generating each to-
ken, we consider the top 10 tokens with the highest
probabilities. Their generation process is limited
to 10 tokens for computational efficiency.

For fine-tuning LLMs, we use LoRA for fine-
tuning, and the LoRA rank and α are set to 16
and 32, respectively. We adopt the open code li-
brary from LlamaFactory3 (Zheng et al., 2024) for
model training and evaluation. We similarly use
an Adam (Kingma and Ba, 2015) optimizer with
a learning rate of 5e-5 and a batch size of 8. The
maximum sequence length for the tokenizer is set
at 300. All models are fine-tuned over three epochs
and the last checkpoint is evaluated. We use three
random seeds and report the average performance
for all experiments.

Finally, for evaluating proprietary LLMs, such
as GPT-4o and GPT-4o-mini, we similarly prompt
them as with open LLMs. Detailed prompts are
explained in Appendix A.2.

B Annotation Details

B.1 Worker Selection Protocol

To ensure the high quality of our human annotation,
we implement strict quality control measures. Ini-
tially, we invite only those workers to participate
in our qualification rounds who meet the following
criteria: 1) a minimum of 2,000 HITs approved,
and 2) an approval rate of at least 90%. We se-
lect workers separately for each task and conduct
three qualification rounds per task to identify those
with satisfactory performance. In each qualifica-
tion round, we create a qualification test suite that
includes both easy and challenging questions, each

1https://github.com/Mayer123/HyKAS-CSKG
2https://github.com/liujch1998/vera
3https://github.com/hiyouga/LLaMA-Factory
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Task Prompt

SV.

You are given an objective <TEST-ENTRY-OBJECTIVE> and a script <TEST-ENTRY-SCRIPT>.
Your task is to assess the plausibility and feasibility of the script in relation to the objective.
First, evaluate the plausibility by determining if the script logically aligns with the objective.
Next, consider the feasibility by assessing whether the script is realistic and achievable given the constraints of the objective.
Based on your evaluation, please output a binary answer “yes” or “no”.
“yes” indicates that the script is both plausible and feasible. “no” indicates that the script is either implausible or infeasible.
Please answer with one word “yes” or “no”:

PD.

You are given an objective <TEST-ENTRY-OBJECTIVE>, a specific action
<TEST-ENTRY-STEP>, and a product <TEST-ENTRY-PRODUCTT>.
Your task is to determine whether the step requires the purchase of a product to assist the user in accomplishing that step.
First, assess if the step <TEST-ENTRY-STEP> necessitates any product purchase.
If it does, evaluate whether purchasing the product <TEST-ENTRY-PRODUCT> can effectively help with the step.
Based on your evaluation, please output a binary answer “yes” or “no”.
“yes” indicates that the product is a good match and can contribute to the step.
“no” indicates that the step does not require any product purchase or that the product cannot help.
Please answer with one word “yes” or “no”:

SPV.

You are given an objective <TEST-ENTRY-OBJECTIVE>, a script consisting of multiple steps <TEST-ENTRY-SCRIPT>,
and the products associated with each step <TEST-ENTRY-PRODUCT-ENRICHED-SCRIPT>.
Your task is to determine the overall feasibility of the product-enriched script.
Evaluate whether any internal conflicts exist between the different steps and their associated products.
If all products are suitable for their respective steps and can collaborate effectively within the entire script.
Based on your evaluation, please output a binary answer “yes” or “no”.
“yes” indicates that all products are appropriate and can work together seamlessly.
“no” indicates that there are internal conflicts among the steps and products.
Please answer with one word “yes” or “no”:

Table 5: Evaluation prompts used for benchmarking LLMs’ performances across three tasks in ECOMSCRIPT-
BENCH: SV, PD, and SPV refer to: Script Verification, Product Discrimination, and Script-Product Verification.

with a gold label from the authors. Workers are
required to complete a minimum of 40 questions.
To qualify, they must achieve an accuracy rate of
at least 75% on the qualification test. After our
selection process, we chose 56 workers from a pool
of 300 candidates as our benchmark annotators. On
average, our worker selection rate stands at 18.67%.
Following the qualification rounds, workers are re-
quired to complete another instruction round. This
round contains complex questions selected by the
authors, and workers are required to briefly ex-
plain the answer to each question. The authors
will then double-check the explanations provided
by the annotators and disqualify those with a poor
understanding.

B.2 Annotation Instructions

For each task, we provide workers with compre-
hensive task explanations in layman’s terms to en-
hance their understanding. We also offer detailed
definitions and several examples of each choice to
help annotators understand how to make decisions.
These definitions largely align with our task def-
initions, as explained in Section 3.1. Each entry
requires the worker to annotate using a four-point
Likert scale. Workers are asked to rate each given
script using such scale, where 1 signifies strong
agreement and 4 indicates strong disagreement. We

consider annotations with a value of 1 or 2 as plausi-
ble and those with a value of 3 or 4 as implausible.

To ensure comprehension, we require annota-
tors to confirm that they have thoroughly read the
instructions by ticking a checkbox before starting
the annotation task. We also manually monitor the
performance of the annotators throughout the anno-
tation process and provide feedback based on com-
mon errors. Spammers or underperforming work-
ers will be disqualified. The overall inter-annotator
agreement (IAA) stands at 78% in terms of pair-
wise agreement, and the Fleiss kappa (Fleiss, 1971)
is 0.53. The IAA and Fleiss Kappa scores for the
three subtasks are closely aligned, with a differ-
ence range of ±0.05. These statistics are generally
comparable to or slightly higher than those of other
high-quality dataset construction works (Sap et al.,
2019; Fang et al., 2021a,b; Hwang et al., 2021;
Wang and Song, 2024), which indicates that the
annotators are close to achieving a strong internal
agreement.

B.3 Expert Verification

Finally, we seek the help of three e-commerce NLP
experts, each with extensive experience in NLP
research, to validate the annotations. The experts
are NLP scientists with extensive experience in
e-commerce NLP. They are well trained in con-
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ducting NLP research and are familiar with the
e-commerce domain. In contrast, AMT crowd-
sourced workers are generally considered to have
only a basic understanding of AI, NLP, and related
fields. Therefore, recruiting experts to verify the
annotated labels is critical, as they have a deeper
understanding of the tasks and can better assess
whether the collected labels align with the task re-
quirements and design. They are given the same
instructions as those provided to crowd-sourcing
workers and asked to verify a sample of 200 anno-
tations for each task. The high level of consistency
between our expert annotators and AMT annota-
tors, as demonstrated in Table 1, suggests that our
AMT annotation is of high quality.
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